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Abstract

We apply a level set formulation to the problem of surface advance-
ment in three-dimensional topography simulation of deposition, etching,
and lithography processes in integrated circuit fabrication. The level set
formulation is based on solving a Hamilton-Jacobi type equation for a
propagating level set function, using techniques borrowed from hyperbolic
conservation laws. Topological changes, corner and cusp development,
and accurate determination of geometric properties such as curvature and
normal direction are naturally obtained in this setting. The equations
of motion of a unified model, including the effects of isotropic and uni-
directional deposition and etching, visibility, surface diffusion, reflection,
and material dependent etch/deposition rates are presented and adapted
to a level set formulation. In Part I of this paper, the basic equations
and algorithms for two dimensional simulations were developed. In this
paper, the extension to three dimensions is presented. We show a large
collection of simulations, including three-dimensional etching and depo-
sition into cavities under the effects of visibility, directional and source
flux functions, evolution of lithographic profiles, discontinuous etch rates
through multiple materials, and non-convex sputter yield flux functions.
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In Part I1I of this paper, effects of reflection, re-emission, surface diffusion,
and multiple materials will be presented.

1 Introduction

In this paper, we continue the development of a level set formulation to simu-
lated deposition, etching, and lithography in integrated circuit fabrication. The
goal is an accurate, stable, and efficient technique for surface advancement due
to complex motion which, under different physical effects, may include effects
of anisotropy, visibility conditions, and material-dependent propagation rates.
In Part I of this paper, “A Level Set Approach to a Unified Model for Etch-
ing, Deposition, and Photolithography I: Two-Dimensional Simulations” [2],
the basic equations and algorithms for two dimensional simulations are devel-
oped. In this paper, the extension to three dimensions is presented. We show
a large collection of simulations, including three-dimensional etching and de-
position into cavities under the effects of visbility, directional and source flux
functions, evolution of lithographic profiles, discontinuous etch rates through
multiple materials, and non-convex sputter yield flux functions. The validity of
various physical models for microfabrication will not be examined. Instead, we
hope to a provide a robust numerical approach to these phenomena which can
then be used to systematically examine various models.

A variety of numerical algorithms are available to advance fronts in etching,
deposition and photolithography processes. These methods are not unique to
such simulations, and in fact are in use in such areas as dendritic growth and
solidification, flame/combustion models, and fluid interfaces. Roughly speaking,
they fall into three general categories:

e Marker/String Methods: In these methods, a discrete parametrized ver-
sion of the interface boundary is used. In two dimensions, marker particles
are used; in three dimensions, a nodal triangularization of the interface is
often developed. The positions of the nodes are then updated by determin-
ing front information about the normals and curvature from the marker
representation. Such representations can be quite accurate, however, lim-
itations exist for complex motions. To begin, if corners and cusps develop
in the evolving front, markers usually form “swallowtail” solutions which
must be removed through delooping techniques which attempt to enforce
an entropy condition inherent in such motion (see [36]). Second, topo-
logical changes are difficult to handle; when regions merge, some markers
must be removed. Third, significant instabilities in the front can result,
since the underlying marker particle motions represent a weakly ill-posed
initial value problem (see [28]). Finally, extensions of such methods to
three dimensions require additional work.



e (Cell-Based Methods: In these methods, the computational domain is di-
vided into a set of cells which contain “volume fractions” These volume
fractions are numbers between 0 and 1, and represent the fraction of each
cell containing the physical material. At any time, the front can be re-
constructed from these volume fractions. Advantages of such techniques
include the ability to easily handle topological changes, adaptive mesh
methods, and extensions to three dimensions. However, determination of
geometric quantities such as normals and curvature can be inaccurate.

o Characteristic Methods: In these methods, “ray-trace”-like techniques are
used. The characteristic equations for the propagating interface are used,
and the entropy condition at forming corners (see [36]) is formally enforced
by constructing the envelope of the evolving characteristics. Such methods
handle the looping problems more naturally, but may be complex in three-
dimensions and require adaptive adding and removing rays, which can
cause instabilities and/or oversmoothing.

Level set methods, introduced in [28], offer a highly robust and accurate
method for tracking interfaces moving under complex motions. Their major
virtue is that they naturally construct the fundamental weak solution to surface
propagation posed by Sethian [35, 36]. They work in any number of space
dimensions, handle topological merging and breaking naturally, and are easy
to program. They approximate the equations of motion for the underlying
propagating surface, which resemble Hamilton-Jacobi equations with parabolic
right-hand sides. The central mathematical idea is to view the moving front as
a particular level set of a higher dimensional function. In this setting, sharp
gradients and cusps can form easily, and the effects of curvature may be easily
incorporated. The key numerical idea is to borrow the technology from the
numerical solution of hyperbolic conservation laws and transfer these ideas to
the Hamilton-Jacobi setting, which then guarantees that the correct entropy
satisfying solution will be obtained.

In Part I of this paper [2], these level set techniques were used to develop
detailed two dimensional calculations of etching, deposition, and lithography
problems. The resulting numerical method accurately predicts two-dimensional
profile evolution, naturally taking into account such effects as incident angles,
masks, yield functions, visibility, and anisotropy on the surface motion. Due to
the use of conservative upwind schemes, the method selects the correct weak
solution; where shocks in the tangent occurs, the necessary entropy condition is
invoked; at outward-facing corners the correct rarefaction fan solution is built.
The method is second-order accurate in the motion of the front, and is of the
same computational work as cell and marker particle methods; that is, the work
is a constant times the number of points which characterize the evolving front.

We refer the interested reader to Part I of this paper [2] for complete details
of the method. In that work, numerical convergence studies and validation tests



of the method were performed. Here, we concentrate on the extension to three
dimensions and on numerical simulations. The extension of this method to three
dimensions requires considerable care in several areas. First, the calculation of
visibility is more intricate and time-consuming. Second, re-initialization of the
level set function required by the narrow band formulation is complex, and
requires a different algorithm. Third, integration of the flux from the source
warrants fast integration techniques.

The outline of this paper is as follows. In Section I, we describe the basic
level set algorithm applied to propagating interfaces. In Section II, we give a
unified set of equations for the motion of an interface under deposition, etching,
and lithography. In Section III, we give the reformulation of these equations in
the level set perspective. In Section IV, we discuss some details of the numer-
ical implementation. In Section V, we demonstrate the power of the approach
through a series of model problems, and in Section VI we apply the method to
a some particular problems of interest. Part III of this paper will include the
effects of reflection/re-emission and surface diffusion.

2 Numerical Algorithms for Propagating Fronts

2.1 Entropy Conditions and Curvature

The fundamental aspects of front propagation in our context can be illustrated
as follows. Let v(0) be a smooth, closed initial curve in R?, and let y(t) be
the one—parameter family of curves generated by moving v(0) along its normal
vector field with speed F(K). Here, F(K) is a given scalar function of the
curvature K. Thus, n -z, = F(K), where z is the position vector of the curve,
t is time, and n is the unit normal to the curve.

Consider a speed function of the form 1 — eK, where € is a constant. An
evolution equation for the curvature K, see [36], is given by

Ki = eKpo+eK3 - K? (1)

where we have taken the second derivative of the curvature K with respect to
arclength a. This is a reaction-diffusion equation; the drive toward singularities
due to the reaction term (e K® — K?) is balanced by the smoothing effect of the
diffusion term (eKoq). Indeed, with ¢ = 0, we have a pure reaction equation
K; = —K?. In this case, the solution is K(s,t) = K(s,0)/(1+¢K(s,0)), which
is singular in finite ¢ if the initial curvature is anywhere negative. Thus, corners
can form in the moving curve when ¢ = 0.
As an example, consider the periodic initial cosine curve

¥(0) = (—s,[1 + cos 27s]/2) (2)

propagating with speed F(K) = 1—¢K, ¢ > 0. As the front moves, the troughs
at s=n+1/2,n=0,41,42 ... are sharpened by the negative reaction term
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Figure 1: Propagating Cosine Curve.

(because K < 0 at such points) and smoothed by the positive diffusion term
(see Figure la). For € > 0, it can be shown (see [36, 28]) that the moving front
stays C'*°.

On the other hand, for € = 0, the front develops a sharp corner in finite time
as discussed above. In general, it is not clear how to construct the normal at the
corner and continue the evolution, since the derivative is not defined there. One
possibility is the “swallowtail” solution formed by letting the front pass through
itself (see Figure 1b). However, from a geometrical argument it seems clear that
the front at time ¢ should consist of only the set of all points located a distance ¢
from the initial curve. (This is known as the Huygens principle construction, see
[36]). Roughly speaking, we want to remove the “tail” from the “swallowtail”.
In Figure lc, we show this alternate weak solution. Another way to characterize
this weak solution is through the following “entropy condition” posed by Sethian
(see [36]): If the front is viewed as a burning flame, then once a particle is burnt
it stays burnt. Careful adherence to this stipulation produces the Huygens
principle construction. Furthermore, this physically reasonable weak solution 1is
the formal limit of the smooth solutions ¢ > 0 as the curvature term vanishes,
(see [36]).

As further illustration, we consider the case of a V-shaped front propagating
normal to itself with unit speed (F = 1). In [35], the link between this motion
and hyperbolic conservation laws is explained. In Figure 2a, the point of the
front is downwards; as the moves inwards with unit speed, a shock develops as
the front pinches off, and an entropy condition is required to select the correct
solution to stop the solution from being double-valued and to produce the limit
of the viscous case. Conversely, in Figure 2b, the point of the front is upwards;
in this case the unit normal speed results in a rarefaction fan which connects
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Figure 2: Front Propagating with Unit Normal Speed

the left state with slope +1 to the right state which has slope —1. Extensive
discussion of the role of shocks and rarefactions in propagating fronts may be
found in [35].

The key to constructing numerical schemes which adhere to both this entropy
condition and rarefaction structure comes from the link between propagating
fronts and hyperbolic conservation laws. Consider the initial front given by the
graph of f(z), with f and f’ periodic on [0, 1], and suppose that the propagating
front remains a function for all time. Let ¢ be the height of the propagating
function at time ¢, thus ¢(z,0) = f(z). The normal at (z, ¢) is (1, ¢,), and the
equation of motion becomes ¢; = F(K)(1 4+ ¢2)'/2. Using the speed function
F(K)=1—¢K and the formula K = —¢,, /(1 + ¢2)3/2, we get

_bes
1+ ¢2

Differentiating both sides of this equation yields an evolution equation for the
slope u = d¢/dz of the propagating front, namely

¢ — (1422 =

(3)

Ug

1+ u?

e+ [=(1+ u?) e = [ (4)
Thus, the derivative of the Hamilton-Jacobi equation with parabolic right-hand-
side for the changing height ¢ is a viscous hyperbolic conservation law for the
propagating slope u (see [39]). Our entropy condition is in fact equivalent to the
one for propagating shocks in hyperbolic conservation laws. Thus, we exploit
the numerical technology from hyperbolic conservation laws to build consistent,
upwind schemes which select the correct entropy conditions. For details, see

[28, 38).



Our goal then is to develop the above equations into numerical techniques
for propagating fronts. Before doing so, we must extend the above ideas to
include propagating fronts which are not easily written as functions. This is the
level set idea introduced by Osher and Sethian [28].

2.2 Level Set Methods

Given a moving closed hypersurface T'(t), that is, T'(t = 0) : [0,00) — RY,
we wish to produce an Eulerian formulation for the motion of the hypersurface
propagating along its normal direction with speed F', where F' can be a function
of various arguments, including the curvature, normal direction, etc. The main
idea is to embed this propagating interface as the zero level set of a higher
dimensional function ¢. Let ¢(z,t = 0), where z € R™ be defined by

é(x,t=0) =+xd (5)

where d is the distance from z to T'(¢ = 0), and the plus (minus) sign is chosen
if the point z is outside (inside) the initial hypersurface I'(¢ = 0). (Any smooth
function will do). Thus, we have an initial function ¢(z,t = 0) : RY — R with
the property that

Dt = 0) = (zlé(z, = 0) = 0) (6

Our goal is to now produce an equation for the evolving function ¢(z,t) which
contains the embedded motion of T'(¢) as the level set ¢ = 0. Let z(t),¢ € [0, c0)
be the path of a point on the propagating front. That is, (¢ = 0) is a point
on the initial front T'(¢ = 0), and z; = F(z(¢)) with the vector z; normal to the
front at z(¢). Since the evolving function ¢ is always zero on the propagating
hypersurface, we must have

o(x(t),t) =0 (7)
By the chain rule,
¢r + Vo(x(t,1)) - 2'(t) =0 (8)

Since F' already gives the speed in the outward normal direction, then 2'(t) -n =
F where n = V¢/|V¢|. Thus, we then have the evolution equation for ¢, namely

¢+ F|Vo|=0 (9)

é(x,t =0) given (10)

We refer to this as a Hamilton-Jacobi “type” equation because, for certain forms
of the speed function F', we obtain the standard Hamilton-Jacobi equation.

In Figure 3, (taken from [37]), we show the outward propagation of an initial
curve and the accompanying motion of the level set function ¢. In Figure 3a,
we show the initial circle, and in Figure 3b, we show the circle at a later time.
In Figure 3c, we show the initial position of the level set function ¢, and in
Figure 3d, we show this function at a later time.
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Figure 3: Propagating Circle

There are four major advantages to this Eulerian Hamilton-Jacobi formula-
tion. The first is that the evolving function ¢(z,¢) always remains a function
as long as F' 1s smooth. However, the level surface ¢ = 0, and hence the prop-
agating hypersurface T'(), may change topology, break, merge, and form sharp
corners as the function ¢ evolves, see [28].

The second major advantage of this Eulerian formulation concerns numerical
approximation. Because ¢(z,?) remains a function as it evolves, we may use a
discrete grid in the domain of  and substitute finite difference approximations
for the spatial and temporal derivatives. In fact, a key aspect to the level
set approach is to exploit the technology of hyperbolic conservation laws to
construct the correct entropy-satisfying solution.

The third major advantage of the above formulation is that intrinsic geo-
metric properties of the front may be easily determined from the level function
¢. For example, at any point of the front, the normal vector is given by

Ve
Vol

=

(11)

and the curvature is easily obtained from the divergence of the gradient of the
unit normal vector to front, i.e.,

K=V =~ (@2 1 62y

(12)
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Figure 4: Propagating Triple Sine Curve.

Finally, the fourth major advantage of the above level set approach is that
there are no significant differences in following fronts in three space dimensions.
By simply extending the array structures and gradients operators, propagating
surfaces are easily handled.

As an example of the application of level set methods, consider once again
the problem of a front propagating with speed F(K) = 1 —¢K. In Figure 4, we
show two cases of a propagating initial triple sin curve. For e small (Fig. 4a),
the troughs sharpen up and will result in transverse lines that come too close
together. For ¢ large (Fig. 4b), parts of the boundary with high values of positive
curvature can initially move inwards, and concave parts of the front can move
quickly up.

Since its introduction in [28], the above level set approach has been used
in a wide collection of problems involving moving interfaces. Some of these
applications include the generation of minimal surfaces [8], singularities and
geodesics in moving curves and surfaces in [9], flame propagation [31, 46], fluid
interfaces [5, 6, 27], shape-from-shading problems [19], shape reconstruction [24]
and image processing [22, 23]. Extensions of the basic technique include fast
methods in [1], grid generation in [37, 40], and algorithms for mutiple materials
in [34]. The fundamental Eulerian perspective presented by this approach has
since been adopted in many theoretical analyses of mean curvature flow, see in
particular [11, 7], and related work in [4, 10, 12, 13, 14, 17].



3 Equations of Motion for Deposition, Etching,
and Lithography

The goal is now to build the speed function F' for deposition, etching, and
lithography in the level set equation of motion

¢+ FIVo| =0 (13)
é(x,t =0) given (14)

Note that F' is the speed in the normal direction. Our approach is to write the
normal speed function as the superposition of the three main physical effects:

= FDeposition + FEtching + FLithography (15)

All effects do not take place at once; however the design of the numerical
algorithm allows various combinations of terms to be “turned on” during any
time step of the surface advancement.

The underlying physical effects involved in etching, deposition and lithog-
raphy are quite complex; much of the following summary is obtained from the
excellent overviews in [32, 33, 43, 44, 25, 30]. The effects may be summarized
briefly as follows:

e Deposition: Particles are deposited on the surface, which causes build-up
in the profile. The particles may either isotropically condense from the
surroundings (known as chemical or “wet” deposition), or be deposited
from a source. In the latter case, we envision particles leaving the source
and depositing on the surface; the main advantage of this approach is
increased control over the directionality of surface deposition. The rate of
deposition, and hence growth of the layer, may depend on source masking,
visibility effects between the source and surface point, angle-dependent
flux distribution of source particles, the angle of incidence of the particles
relative to the surface normal direction, reflection of deposited particles,
and surface diffusion effects.

e FEtching: Particles remove material from the evolving profile boundary.
The material may be isotropically removed, known again as chemical or
“wet” etching, or chipped away through reactive ion etching, also known
as “lon milling” Similar to deposition, the main advantage of reactive ion
etching is enhanced directionality, which becomes increasingly important
as device sizes decrease substantially and etching must proceed in vertical
directions without affecting adjacent features. As described in [42], the
total etch rate consists of an ion-assisted rate and a purely chemical etch
rate due to etching by neutral radicals, which may still have a directional
component. As in the above, the total etch rate due to wet and directional

10



milling effects can depend on source masking, visibility effects between
the source and surface point, angle-dependent flux distribution of source
particles, the angle of incidence of the particles relative to the surface
normal direction, reflection/re-emission of etching/million particles, and
surface diffusion effects.

e Lithography: The underlying material is treated by an electromagnetic
wave which alters the resist property of the material. The aerial image is
found, which then determines the amount of crosslinking at each point in
the material which then produces the etch/resist rate at each point of the
material. A profile is then etched into the material, where the speed of the
profile in its normal direction at any point is given by the underlying etch
rate. The key factors that determine the evolving shape are the etch/resist
profile and masking effects.

In the rest of this section, we formalize the above.

3.1 Initial Position and Setup

Define the coordinate system with the z and y axis lying in the plane and z
being the vertical axis. We consider a periodic initial profile h(z,y), where h
gives the heighth of the initial surface above the zy plane. We also consider a
source 7 given as a surface above the initial profile, and write Z(z,y) refering
to the height of the source at the point (z, y).

For both etching and deposition, define the source ray to be the ray leaving
the source and aimed towards the surface profile Let ¢ be the angle variation
in the source ray away from the negative z axis; ¢ runs from 0 to m, through
it is physically unreasonable to have 1 values between 7/2 and 7. Let 7 be the
angle between the projection of the source ray in the zy plane and the positive
x axis. Let n be the normal vector at a point x on the surface profile, and 6 the
angle between the normal and the source ray.

In Figure 5, we indicate these variables. Masks, which force flux rates to be
zero, are indicated by heavy dark patches on the initial profile. At each point
of the profile, we also assign a visibility indicator function M~ (Z,Z’) which
indicates whether the point # on the initial profile can be seen by the source
point Z’.

Our goal is to write the effects of deposition, etching, and lithography on
the speed F' at a point Z on the front.

3.2 Deposition

We consider three separate types of deposition:

e FP . Isotropic deposition. Uniform deposition. This may be a function

of the underlying material.

11
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. FD?M Unidirection deposition. Deposition in a particular direction, based
on the angle of the incoming stream.

e FP . Source deposition. Deposition radiating from a point source, in-
cluding sputter deposition and angle-based flux functions.

In Figure 5, we generalize all of these effects as the “source”. Thus, the
line source as shown in the figure may consist of locations which emit either
unidirectional deposition or point source deposition.

The above terms may assembled as follows:

D D D
FDeposition - FDeposition(Fjsm FUniv FSou) (16)

that is, the deposition speed may depend on isotropic, unidirectional, or source
deposition.

Let M~y (#,Z") be one if the point Z’ on the source is visible from the point
¥ on the profile, and zero otherwise. Let r be the distance from z to z’, and,
finally, let & be the unit vector at the point Z’ on the source pointing towards
the point x on the profile. Then we may refine the above terms as:

3.2.1 Isotropic deposition
D D D -
FIso:RIsoFlumIso (1{)

Here, RIDSO is the rate of growth and Flum?so(f) is the 1sotropic flux function.

3.2.2 Unidirectional deposition

Here, R . is the rate of growth, and Fluz® .(r,v,7,0, %) is the unidirec-
tional flux function, which may depend on the distance r from & to the source,
the emission angles 1) and =, the angle of incidence #, and the starting point &.

3.2.3 Source deposition
F2. = R?ou(f)/ Fluz g, (r,,7,0, %)My z1(ii - &)do  (19)
Source

Here, the integral is over the entire source, R?ou is the rate of growth, and
Flua:?ou(r, ¥,v,0,Z) is the flux function. A typical flux function might include
the effects of sputter deposition and be of the form cos™(Aw), where n is a
constant and |¢| < 27 A.

13



3.3 Etching

In this formulation, the equations of etching are quite similar; we include them
for the sake of completeness. We consider three separate types of etching:

e FE _: Isotropic etching. Uniform etching. This may be a function of the
underlying material.

e FE .. Unidirection etching. Etching in a particular direction, based on
the angle of the incoming stream.

o FE : Source deposition. Etching radiating from a point source, including
ion-milling and transport of neutral radicals.

The above terms may assembled as follows:

FEtching = FEtching(F]Esoa F[?nza Fgou) (20)

where again we may refine the above terms as

3.3.1 Isotropic etching
E E E .
FIso = RIsoFluwIso (21)

Here, Rio is the etch rate based on the isotropic flux function Flumﬁ,o(r).

3.3.2 Unidirectional etching

Here, Rgm- is the etch rate, and Flumgm»(r, ¥,7,0,Z) is the unidirectional
flux function, which may depend on the distance r from # to the source, the
emission angles ¢ and 4, the angle of incidence 8, and the starting point Z.

3.3.3 Source etching
FEL = RELE) [ Pluck oo M@ @ (23
Source

Here, the integral is over the entire source. RE s the rate of growth, and
Fluzf  (r,¢,5,0,%) is the flux function.

14



3.4 Lithography

The construction of the speed function for lithographic cases is extremely straight-
forward if one assumes that the etch rate is given. Typically, an aerial image is
found using a simulator such as SPLAT [45], which, together with a program
such as BLEACH [45], provides the etch rate at each point of the material.
Since the etch rate is provided everywhere in the material, we may simply write

FLithography = Rritho (24)

where the etch rate Rpiin, 18 supplied by the simulator.

3.5 Other effects

In etching and deposition, additional effects can play an important role in the
evolving profile. These include

e Surface Migration. Particles can migrate when they collide with the inter-
face. This causes a diffusion-like term which tends to diffuse large peaks
of velocities. Given the above speed function F' for surface motion, one
can think of two ways to include the effects of surface diffusion/migration.
One is to simply modify the speed function by the term 1 —eK |, where K is
the local curvature, which has the effect of diffusing the front. The second
way 1s to obtain a more accurate representation of the diffusion term as
follows. Given a surface x(s) in R?, we imagine that a scalar function g is
defined on that surface, and solve the diffusion equation g; = ¢Vg along
the surface.

e Re-emission/reflection. Some of incoming flux/neutral radicals may not
stick to the surface, but instead be reflected/re-emitted. The fraction
of particles that are not reflected/re-emitted is known as the “sticking
probability” and varies between 0 and 1. Thus, a sticking probability of
unity corresponds to the case under study above. For sticking probabilities
less than unity, and depending on the surface physics, the re-emission can
be either specular or diffusive. Thus, each point on the evolving profile
may act as additional source when viewed from other visible sites on the
front. This can be set up as an integral equation for the total source
flux at a point, depending on the seen visible angle and probability flux
re-emission distribution. For details, see the derivation in [42], and the
calculations in [26]. This integral yields a dense, non-symmetric matrix
which needs to be solved at every time step in order to calculate the correct
flux to advance the front. In two dimensions this is tractable; in three
dimensions, the problem is daunting and requires significant resources.
Extensions of the level set approach to problems including reflection, re-
emission and surface diffusion are the focus of Part I1T of this paper [3].

15



4 Fundamental Ideas of Implementation

We briefly discuss the application of the level set approach to this problem.
Complete details may be found in Part I [2] of this sequence.

Rather than employ the full level set approach, we use a narrow band ver-
sion which focusses computational labor on cells which bracket the zero level
set corresponding to the front. This approach was introduced in [8], used in re-
covering images in [24], and analyzed extensively in [1]. There are two reasons
to do so. The first is speed; in three dimensions, the operation count for the
full level set method is O(N?3), where N is the number of cells in each direction.
By limiting calculations to a narrow band of width k£ around the zero level set,
the operation count drops to O(kN?), which is a substantial savings. Typically
we use bandwdiths of 6 cells is each direction, and the corresponding speedup
is an order of magnitude over the full level set approach.

The second reason to employ the narrow band construction is because cer-
tain properties of the front which contribute to determining its motion have
no natural meaning on other level sets. For example, the visibility of the front
has meaning for the zero level set, but not others. Such variables, known as
extension variables, are best treated by the following approach; for any given
level set, the value of the extension variable is found by using the value on the
closest point of the zero level set. For details, see [1], [2].

Local variables, such as normal vectors and curvature have meaning for all
the level sets, and may be easily calculated using those values. Normals are
calculated using the average one-sided difference technique discussed in [41].
Variations in etch rate, either through masks, material dependence, or litho-
graphic etch rates are directly incorporated into the speed function.

The front is updated using second order in space schemes specially designed
for the level set function, see [2]. There are two separate schemes; first, an
ENO-based scheme for convex speed functions F' which most naturally occur
in lithography simulations and some source deposition problems, and a non-
convex Lax-Friedrichs/ENO scheme ((see [29]), which can be required for sputter
etch/deposition problems. In three space dimensions, the schemes are given by:

The schemes are as follows:

1. First-Order Space Convez:

PPkt = ¢l — At[max(Fy;,0)Vt + min(Fj;,0)V7] (25)

where

ijko ijko

max(Di_jZ7 0) + min(D;;Z, 0)?

max(Dj;, 0)” + min(D}, 0)2]'/2

VT = [max(D;;%,0)* + min(DfF 0)? + (26)
+
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V™ = [max(D;"jz, 0)% + min(Di_jZ, 0)% + (27)

max(D;'jz, 0)% + 1rnilr1(DZ»_jZ7 0)% +
max(D;7, 0)” + min(Dj;;, 0)%]'/?
2. Second-Order Space Convez: The same as the above, however where this
time V*t and V™ are given by
VT = [max(4,0)* + min(B, 0)* + (28)
max(C, 0)? + min(D, 0)? +
max(E, 0)* + min(F, 0)2]1/

V)

2

V™ = [max(B, 0)* + min(4, 0)* + (29)
max(D, 0)? + min(C,0)* +
max(F,0)? + min(E, 0)%]*/?

where A
—x L —r—x r—x <
A= Dijk + Tm(Dijk aD;;'k ) (30)
B = D;_jk - Tm(Dj_jk+ 7D;;'k ) (31)
— Ay —y— +y—
C= Diji + Tm(DijZ yﬂDijz Y) (32)
Ay _
+ +y+ +
D= DUZ - Tm(DijZ yaDijZ Y) (33)
—z Az —z—z z2—2z <
E = Diji + —-m(Djj ,Dfi) (34)
4 AZ zZT2 zZ2—2
F =D} - Tm(D;;.,j , D7) (35)
and the switch function is given by
v ifle] <
m(z,y) =1 y iflz]> [yl (36)
0 zy <0

3. First-Order Space Non-Convex:

" . D+ Dy Digh+ D% D+ DR o
O =l - M[H(—E o, SR SR ) (37)
1 1 1
+z - + - +z —z
_§Mu(Dijk - Dijk) - §MU(DUZ - Diji) - §Mw(Dijk - Dijk)]

where M, (M,, My) is a bound on the partial derivative of the Hamilto-
nian with respect to the first (second, third) argument, and the non-convex
Hamiltonian is a user-defined input function.
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4. Second-Order Space Non-Convex:
A+B C+D E+F

O = e - MH (TS ) (38)
1 1 1 .
—§M (B A) o) (D C) o) (F E)] (39)

where A, B, C', D, E, and F' are defined as above.

5. Time Integration: The above is for first order explicit schemes. The most
natural way to make a second order in time version is through a predic-
tor/corrector method; e.g., Heun’s method. This requires embedding the
entire sequence of one time step advancement in a two-step loop. More
precisely, proceed as follows;

a Let n 1 be the SOhltiO obtai ed b updatl the SOlUtiOH .
h y g ijk
one tlme Step

(b) Let ¢Z;Lk+2 ** be the solution obtained by updating the solution ¢Z;Lk+1
one time step.
(c) Then let
n n n+2)* n
O = 6+ Blol — ol (40)

5 Numerical Tests of Method

In this section, we perform some tests to demonstrate the power of this approach.

5.1 Deposition
5.1.1 Isotropic Deposition

We begin by studying isotropic deposition. This 1s fairly straightfoward appli-
cation of the level set approach. In Figure 6 we show a square hole upon which
a material is being isotropically deposited; this corresponds to a simple speed
function of F = 1. The hole closes off as the deposition material fills in the
cavity.

5.1.2 Directional Deposition

Next, we study directional deposition. We consider directional deposition from
a plate located above a square hole, where the effects of visibility and shading
are included. In Figure 7, we show two three-dimensional plots which show the
evolving profile. The slant of the profile in the direction of the directional de-
position source is clearly seen; note in particular the shearing below the surface
in the rotated figure.
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Figure 6: Isotropic Deposition into Hole
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Figure 7: Directional Deposition into Hole
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Figure 8: Source Deposition into Hole

5.1.3 Source Deposition

Finally, we study source deposition. We consider source deposition from a plate
located above the hole. Again, the effects of visibility and shading are included.
Along the entire plate, deposition material is emitted uniformly in each direc-
tion. In Figure 8, we show two three-dimensional time plots of the evolving
profile. The trench begins to pinch off due to the effects of visibility, and a
bulb-shaped profile evolves.

5.2 Etching

We now repeat the above experiments under the effects of various types of
etching.

5.2.1 Isotropic Etching

First, we study isotropic etching. In Figure 9 we show a square hole upon
which a material is being isotropically etched; this corresponds to a simple
speed function of FF = —1. As expected, the sides of the cavity are cleanly
etched away, leaving smoothed, rounded walls.

5.2.2 Directional Etching

Next, we study directional etching. We consider directional etching from a
plate located above a square hole, where the effects of visibility and shading
are included. In Figure 7, we show a sequence of three-dimensional time plots
which show the evolving profile. The etching direction is on the upper right in
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Figure 9: Isotropic Etching into Hole

the figure; the etching beam shears away the profile on the left first, and then as
the shadowing wall is eaten away, continues to shear the left side of the profile.

5.2.3 Source Etching

Finally, we study source etching. We consider source etching from a plate lo-
cated above a cavity. Again, the effects of visibility and shading are included.
Along the entire plate, etching occurs uniformly in each direction. In Figure 11,
we show a sequence of three-dimensional time plots which show the evolving
profile. The fact that visibility is included keeps the walls of the profile fairly
steep, in contrast with the isotropic case shown earlier.

5.3 Lithography

Next, we perform a lithographic etch, in which the rate function is obtained
from other numerical simulations, see [45]. We use a second order method with
a grid size of 50x50x47. In Figure 12, results of the evolving profile are shown.

6 Some Model Problems

In this section, we perform a series of additional experiments to demonstrate
the versatility of the level set approach.

6.1 Etching under Discontinuous Etch Coefficients

First, we show what happens when an etching front propagates into a mate-
rial with discontinuous etch coefficients. These discontinuous coefficients cause
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Figure 10: Directional Etching into Hole
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Figure 11: Source Etching into Hole
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Figure 12: Lithography: 2nd Order: Grid Size=50x50%x47

sharp edges and corners in the etch profile. We imagine a multilayered mate-
rial, with etch coefficients of either zero or one. The etch distribution is given
in Figure 13, while the evolution of planar profile down through this material
structure is given in Figure 14. The side walls of the first sub-layer is cutaway
in the final figure to show the hidden downward cavities.

6.2 Development of Topological Changes in Profiles: Etch-
ing and Deposition

Next, we consider initial profiles which lend themselves to topological changes
as they evolve.

We begin by studying isotropic etching of a bridge. The bridge initially has
a thin curtain stretched underneath it; the thickness of the curtain is smallest at
the middle (see Figure 15a). In Figure 15, we show the evolution of this bridge
under isotropic etching. The results show first the disintegration of the curtain
at 1ts center, followed by the narrowing of the top and the final image of two
independent pillars being etched away.

Next, in Figure 16, we show the same structure under unidirectional etching.
Here, the pillars shadow the profile, and their effect can be seen on the flat part
of the surface. The bridge is again etched away.

Finally, in Figure 17, we consider the evolution of the above bridge structure
under source etching. We compare this case with the isotropic case; because
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Figure 13: Layering of Discontinuous Etch Coefficients
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Figure 14: Etching Profile Through MultiBlocks

25



B A 4

Initial T=1

Figure 15: Isotropic Etching of Bridge
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Figure 16: UniDirectional Etching of Bridge

the etching stream is coming almost uniformly from the source plate, the main
difference lies in the shadowing effects below the bridge.

6.3 Sputter Etching/Deposition

As discussed extensively in Part I, in some problems (for example, ion milling),
the normal speed of the profile depends the angle of incidence between the
surface normal and the incoming beam. This yield function is often empirically
fit from experiment, and has been observed to cause such effects as faceting at
corners, see [21, 18]. The resulting equation of motion for the speed function
F yields a non-convex Hamiltonian, which then must be approximated using
non-convex schemes. In the simulations below, we employ the non-convex Lax-
Friedrichs scheme given above.

We envision a beam coming down in the vertical direction. In all cases
under study here, the angle # shown in Figure 5 refers to the angle between the
surface normal and the positive vertical. For this set of calculations, in order to
examine the geometry of sputter effects on shocks/rarefaction fan development,
we ignore visibility effects. Following our usual notation, let F'(6) be the speed
of the front in a direction normal to the surface.

In Figure 18, we show two-dimensional cross-sections of a three-dimensional
square cap being etched away. In Column A we show the effects of purely
isotropic motion, thus the yield function is F' = 1; the top row gives the x cross
section, the second row the y cross-section and the third row is the diagonal
cross-section. Located in the last row is the etch function F' as a function of
angle #; hence for this case F' = 1 and the line is flat. In Column B we show
the effects of directional motion, thus the yield function is F' = cos(#). Thus,
horizontal components on the profile do not move, and vertical components
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Figure 17: Source Etching of Bridge

move with unit speed. In Column C we show the effects of a yield function
suggested by F.A. Leon [20] of the form F = [1 4 4sin”(0)] cos().

The results show that the effects of angle dependent yield functions are
pronounced. In Column A the isotropic rate produces smooth corners, correctly
building the necessary rarefaction fans in outward corners and entropy satisfying
shocks in inward corners as discussed and analyzed in [35, 36]. In Column B, the
directional rate causes the front to be essentially translated downwards, with
minimal rounding of the corners. In Column C, the yield function results in
faceting of inward corners where shocks form and sharp translations of the side
walls in the direction of the etch. An comparison of this profile with the ”exact”
solution as predicted using the method of characteristics is given in Part I of
this paper.

In the final set of examples, we show a collection of three-dimensional etching
under this non-convex sputter law F = [I 4 4sin?(#)] cos(f) We begin with
Figure 19 showing etching of a rectangular peg and hole.

Next, we show etching under the same speed function of a pyramid; here the
different facets meet at a point. As the figure is etched away, the non-convex
speed function promotes “ribbing” of the evolving profile, as seen in Figure 20.

Next, we show the effects of etching on extruding and excavated shapes
containing sharp corners and saddle points.. We start with an upward saddle
surface under the sputter etch function

F =[1 + Asin?(8)] cos(f). (41)

In Figure 21, Figure 22, and Figure 23, we study the effects under A = 0 and
A=4.

Finally, we study the same etching laws applied to an indented saddle surface,
as shown in Figure 24 and Figure 25.
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Figure 18: Three Dimensions: Effects of Different Yield Functions
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F =[1+4sin*(f)]cos(d) T =0 F =[l1+4sin’(§)]cos(f) T =8

F =[1+4sin*(f)]cos(d) T =0 F =[l1+4sin’(§)]cos(f) T =8
Figure 19: Rectangular Peg and Hole Under Sputter Etch
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F =[1+4sin*(f)]cos(d) T =0 F =[l1+4sin’(§)]cos(f) T =3
F =[1+4sin*(f)]cos(d) T =6 F =[l1+4sin’(§)]cos(f) T =8

Figure 20: Pyramid Under Sputter Etch
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Initial Shape : T =0 F(#) =cosf: T=5

Figure 21: Upward Saddle Under Sputter Etch

32



Initial Shape : T =0 F =[1+4sin?(@)]cos(d) T =1

F =[1+4sin?(8)]cos(d) T =2 F =[1+4sin?(6)]cos(d) T =3

Figure 22: Upward Saddle Under Sputter Etch
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F =[1+4sin*(f)]cos(d) T =4 F =[1+4sin*(f)] cos() T = 4(Sideways)

F =[144sin*(§)]cos(8) T=5

Figure 23: Upward Saddle Under Sputter Etch
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Initial Shape : T =0 F =[l1+4sin?(§)]cos(f) T =2

F =[144sin’(§)]cos(f) T =4

Figure 24: Downward Saddle Under Sputter Etch
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F =[1+4sin*(f)]cos(d) T =6 F =[l1+4sin’(§)]cos(f) T =8

F =[144sin?()]cos(d) T =38

Figure 25: Downward Saddle Under Sputter Etch
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7 Future Work

The numerical method presented in this paper can be used for a wide variety
of three-dimensional dimensional simulations in etching, deposition and lithog-
raphy; the method naturally takes into account such effects as incident angles,
masks, yield functions, visibility, and anisotropy on the surface motion. Due
to the use of conservative upwind schemes, the method selects the correct en-
tropy condition and maintains sharp corners where shocks in the tangent occurs;
conversely, the correct rarefaction fan solution is built at outward-facing cor-
ners. The method is second order accurate in space and time in the motion
of the front. By using the narrow band approach, the method is of the same
computational work as cell and marker particle methods; that is, the work is a
constant times the number of points which characterize the evolving front. In
Part ITT [3], we present the extension of this work to include effects of reflection,
re-emission, and surface diffusion.

Acknowledgements: All calculations were performed at the University of
California at Berkeley and the Lawrence Berkeley Laboratory. A video tape
of the above simulations is available on request. We would like to thank B.
Coughran, J. Helmsen, J. Lee, P. Leon, A. Neureuther, C. Rafferty, J. Rey, V.
Singh, K. Smith, and K. Toh for helpful discussions.
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