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Abstract

We apply a level set formulation to the problem of surface advance-
ment in a two-dimensional topography simulation of deposition, etching,
and lithography processes in integrated circuit fabrication. The level set
formulation is based on solving a Hamilton-Jacobi type equation for a
propagating level set function, using techniques borrowed from hyperbolic
conservation laws. Topological changes, corner and cusp development,
and accurate determination of geometric properties such as curvature and
normal direction are naturally obtained in this setting. The equations
of motion of a unified model, including the effects of isotropic and uni-
directional deposition and etching, visibility, surface diffusion, reflection,
and material dependent etch/deposition rates are presented and adapted
to a level set formulation. The development of this model and algorithm
naturally extends to three dimensions in a straightforward manner, and
is described in Part 1T of this paper [2].
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1 Introduction

In this paper, we develop a level set formulation to simulated deposition, etch-
ing, and lithography in integrated circuit fabrication. Our central concern is
an accurate, stable, and efficient technique for surface advancement due to
complex motion which, under different physical effects, may include effects of
anisotropy, visibility conditions, and material-dependent propagation rates. In
this paper, which focuses on a two-dimensional simulation, and the accompany-
ing paper “A Level Set Approach to a Unified Model for Etching, Deposition,
and Photolithography: IT” | which extends this work to three-dimensional topo-
graphic simulation, the validity of various physical models for the microfabri-
cation project will not be examined. Instead, we hope to a provide a robust
numerical approach to these phenomena which can then be used to systemati-
cally examine various models.

A variety of numerical algorithms are available to advance fronts in etching,
deposition and photolithography processes. These methods are not unique to
such simulations, and in fact are in use in such areas as dendritic growth and
solidification, flame/combustion models, and fluid interfaces. Roughly speaking,
they fall into three general categories:

e Marker/String Methods: In these methods, a discrete parametrized ver-
sion of the interface boundary is used. In two dimensions, marker particles
are used; in three dimensions, a nodal triangularization of the interface is
often developed. The positions of the nodes are then updated by determin-
ing front information about the normals and curvature from the marker
representation. Such representations can be quite accurate, however, lim-
itations exist for complex motions. To begin, if corners and cusps develop
in the evolving front, markers usually form “swallowtail” solutions which
must be removed through delooping techniques which attempt to enforce
an entropy condition inherent in such motion (see [27]). Second, topo-
logical changes are difficult to handle; when regions merge, some markers
must be removed. Third, significant instabilities in the front can result,
since the underlying marker particle motions represent a weakly ill-posed
initial value problem (see [20]). Finally, extensions of such methods to
three dimensions require additional work.

e (Cell-Based Methods: In these methods, the computational domain is di-
vided into a set of cells which contain “volume fractions” These volume
fractions are numbers between 0 and 1, and represent the fraction of each
cell containing the physical material. At any time, the front can be re-
constructed from these volume fractions. Advantages of such techniques
include the ability to easily handle topological changes, adaptive mesh
methods, and extensions to three dimensions. However, determination of
geometric quantities such as normals and curvature can be inaccurate.



o Characteristic Methods: In these methods, “ray-trace”-like techniques are
used. The characteristic equations for the propagating interface are used,
and the entropy condition at forming corners (see [27]) is formally enforced
by constructing the envelope of the evolving characteristics. Such methods
handle the looping problems more naturally, but may be complex in three-
dimensions and require adaptive adding and removing rays, which can
cause instabilities and/or oversmoothing.

Level set methods, introduced in [20], offer a highly robust and accurate
method for tracking interfaces moving under complex motions. Their major
virtue is that they naturally construct the fundamental weak solution to surface
propagation posed by Sethian [26, 27]. They work in any number of space
dimensions, handle topological merging and breaking naturally, and are easy
to program. They approximate the equations of motion for the underlying
propagating surface, which resemble Hamilton-Jacobi equations with parabolic
right-hand sides. The central mathematical idea is to view the moving front as
a particular level set of a higher dimensional function. In this setting, sharp
gradients and cusps are easily tracked, and the effects of curvature may be
easily incorporated. The key numerical idea is to borrow the technology from
the numerical solution of hyperbolic conservation laws and transfer these ideas
to the Hamilton-Jacobi setting, which then guarantees that the correct entropy
satisfying solution will be obtained.

In this paper, we apply these level set technique to etching, deposition, and
lithography problems in two space dimensions. The resulting numerical method
allows one to accurately predict two-dimensional profile evolution, naturally tak-
ing into account such effects as incident angles, masks, yield functions, visibility,
and anisotropy on the surface motion. Due to the use of conservative upwind
schemes, the method selects the correct weak solution: where shocks in the
tangent occurs, the necessary entropy condition is invoked; at outward-facing
corners the correct rarefaction fan solution is built. The method is second-order
accurate in the motion of the front, and is of the same computational work as
cell and marker particle methods; that is, the work is a constant times the num-
ber of points which characterize the evolving front. The technique extends in
a completely straightforward manner to three dimensions with minimal change
to the algorithm; the three-dimensional version will be reported on elsewhere.

The outline of this paper is as follows. In Section I, we describe the basic
level set algorithm applied to propagating interfaces. In Section II, we give a
unified set of equations for the motion of an interface under deposition, etching,
and lithography. In Section III, we give the reformulation of these equations in
the level set perspective. In Section IV, we discuss some details of the numerical
implementation. In Section V, we perform a series of numerical tests to verify
the method, and in Section VI we apply the method to three different problems.
In Section VII, future work is discussed.



2 Numerical Algorithms for Propagating Fronts

2.1 Entropy Conditions and Curvature

The fundamental aspects of front propagation in our context can be illustrated
as follows. Let v(0) be a smooth, closed initial curve in R?, and let y(t) be
the one—parameter family of curves generated by moving v(0) along its normal
vector field with speed F(K). Here, F(K) is a given scalar function of the
curvature K. Thus, n -z, = F(K), where z is the position vector of the curve,
t is time, and n is the unit normal to the curve.

Consider a speed function of the form 1 — ¢, where € is a constant. An
evolution equation for the curvature K, see [27], is given by

Ki = eKpo+eK3— K? (1)

where we have taken the second derivative of the curvature K with respect to
arclength a. This is a reaction-diffusion equation; the drive toward singularities
due to the reaction term (e K® — K?) is balanced by the smoothing effect of the
diffusion term (eKoq). Indeed, with ¢ = 0, we have a pure reaction equation
K; = —K?. In this case, the solution is K (s,t) = K(s,0)/(1+¢K(s,0)), which
is singular in finite ¢ if the initial curvature is anywhere negative. Thus, corners
can form in the moving curve when € = 0.
As an example, consider the periodic initial cosine curve

¥(0) = (=s,[1 + cos 27s]/2) (2)

propagating with speed F(K) = 1—¢€K, € > 0. As the front moves, the troughs
at s=n+1/2,n=0,%1,42 ... are sharpened by the negative reaction term
(because K < 0 at such points) and smoothed by the positive diffusion term
(see Figure la). For € > 0, it can be shown (see [27, 20]) that the moving front
stays C'™°.

On the other hand, for € = 0, the front develops a sharp corner in finite time
as discussed above. In general, it is not clear how to construct the normal at the
corner and continue the evolution, since the derivative is not defined there. One
possibility is the “swallowtail” solution formed by letting the front pass through
itself (see Figure 1b). However, from a geometrical argument it seems clear that
the front at time ¢ should consist of only the set of all points located a distance ¢
from the initial curve. (This is known as the Huygens principle construction, see
[27]). Roughly speaking, we want to remove the “tail” from the “swallowtail”.
In Figure lc, we show this alternate weak solution. Another way to characterize
this weak solution is through the following “entropy condition” posed by Sethian
(see [27]): If the front is viewed as a burning flame, then once a particle is burnt
it stays burnt. Careful adherence to this stipulation produces the Huygens
principle construction. Furthermore, this physically reasonable weak solution 1is
the formal limit of the smooth solutions ¢ > 0 as the curvature term vanishes,

(see [27]).
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Figure 1: Propagating Cosine Curve.

As further illustration, we consider the case of a V-shaped front propagating
normal to itself with unit speed (F = 1). In [26], the link between this motion
and hyperbolic conservation laws is explained. In Figure 2a, the point of the
front is downwards; as the moves inwards with unit speed, a shock develops as
the front pinches off, and an entropy condition is required to select the correct
solution to stop the solution from being double-valued and to produce the limit
of the viscous case. Conversely, in Figure 2b, the point of the front is upwards;
in this case the unit normal speed results in a rarefaction fan which connects
the left state with slope +1 to the right state which has slope —1. Extensive
discussion of the role of shocks and rarefactions in propagating fronts may be
found in [26].

The key to constructing numerical schemes which adhere to both this entropy
condition and rarefaction structure comes from the link between propagating
fronts and hyperbolic conservation laws. Consider the initial front given by the
graph of f(z), with f and f’ periodic on [0, 1], and suppose that the propagating
front remains a function for all time. Let ¢ be the height of the propagating
function at time ¢, thus ¢(z,0) = f(z). The normal at (z, ¢) is (¢, —1), and the
equation of motion becomes ¢; = F(K)(1 4 ¢2)'/2. Using the speed function
F(K)=1-¢K and the formula K = —¢,,/(1 + ¢2)3/?, we get

Goz
1+ ¢2

Differentiating both sides of this equation yields an evolution equation for the
slope u = d¢/dz of the propagating front, namely

b — (L4622 =¢

(3)

up + [—(1 +u?) 7, = ¢ Jo- (4)
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Figure 2: Front Propagating with Unit Normal Speed

Thus, the derivative of the Hamilton-Jacobi equation with parabolic right-hand-
side for the changing height ¢ is a viscous hyperbolic conservation law for the
propagating slope u (see [29]). The entropy condition in [27] is in fact equivalent
to the one for propagating shocks in hyperbolic conservation laws. Thus, we
exploit the numerical technology from hyperbolic conservation laws to build
consistent, upwind schemes which select the correct entropy conditions. For
details, see [20, 28].

Our goal then is to choose an appropriate speed function that yields front
motion away from the body that remains smooth for all time, and thus can act
to define one set of body-fit coordinate lines. Before doing so, we must extend
the above ideas to include propagating fronts which are not easily written as
functions. This is the level set idea introduced by Osher and Sethian [20].

2.2 Level Set Methods

Given a moving closed hypersurface ['(¢), that is, T'(t = 0) : [0,00) — RY,
we wish to produce an Eulerian formulation for the motion of the hypersurface
propagating along its normal direction with speed F', where F' can be a function
of various arguments, including the curvature, normal direction, etc. The main
idea is to embed this propagating interface as the zero level set of a higher
dimensional function ¢. Let ¢(z,t = 0), where z € R" is defined by

d(x,t=0) ==+d (5)

where d is the distance from z to T'(¢ = 0), and the plus (minus) sign is chosen if
the point z is outside (inside) the initial hypersurface T'(t = 0). Thus, we have



an initial function ¢(z,t = 0) : R — R with the property that
I'(t=0)=(z|¢(x,t=0)=0) (6)

Our goal is to now produce an equation for the evolving function ¢(z,t) which
contains the embedded motion of T'(¢) as the level set ¢ = 0. Let z(t),¢ € [0, 00)
be the path of a point on the propagating front. That is, (¢ = 0) is a point
on the initial front T'(¢ = 0), and z; = F(z(¢)) with the vector ; normal to the
front at z(¢). Since the evolving function ¢ is always zero on the propagating
hypersurface, we must have

o(x(t),t) =0 (7)
By the chain rule,
¢t + Vo(x(t,1)) - 2'(t) =0 (8)

Since F' already gives the speed in the outward normal direction, then 2'(t)-n =
F where n = V¢/|V¢|. Thus, we then have the evolution equation for ¢, namely

¢+ F|Vo|=0 (9)

é(x,t =0) given (10)

We refer to this as a Hamilton-Jacobi “type” equation because, for certain forms
of the speed function F', we obtain the standard Hamilton-Jacobi equation.

In Figure 3, (taken from [30]), we show the outward propagation of an initial
curve and the accompanying motion of the level set function ¢. In Figure 3a,
we show the initial circle, and in Figure 3b, we show the circle at a later time.
In Figure 3c, we show the initial position of the level set function ¢, and in
Figure 3d, we show this function at a later time.

There are four major advantages to this Eulerian Hamilton-Jacobi formula-
tion. The first is that the evolving function ¢(z,¢) always remains a function
as long as F' 1s smooth. However, the level surface ¢ = 0, and hence the prop-
agating hypersurface T'(¢), may change topology, break, merge, and form sharp
corners as the function ¢ evolves, see [20].

The second major advantage of this Eulerian formulation concerns numerical
approximation. Because ¢(z,?) remains a function as it evolves, we may use a
discrete grid in the domain of z and substitute finite difference approximations
for the spatial and temporal derivatives. For example, using a uniform mesh of
spacing h, with grid nodes (4, j), and employing the standard notation that o7
is the approximation to the solution ¢(ih, jh,nAt), where At is the time step,

we might write
7T — g
— "+ (F)(Vi055) = 0 (11)
At
Here, we have used forward differences in time, and let V;;¢7; represents some
appropriate finite difference operator for the spatial derivative. As discussed
above, the correct entropy-satisfying approximation to the difference operator
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Figure 3: Propagating Circle

comes from exploiting the technology of hyperbolic conservation laws. Following
[20], given a speed function F(K), we update the front by the following scheme.
First, separate F(K) into a constant advection term Fy and the remainder
F1(K), that is,

F(K) = Fy+ F1(K) (12)
The advection component Fy of the speed function is then approximated using

upwind schemes, while the remainder is approximated using central differences.
In one space dimension with positive Fjy, we have

Ot = 67 — AtFy [(max(D; ,0) + min(D},)) " — [Fi(K)Ver|]  (13)

Extension to higher dimensions are straightforward; we use the version intro-
duced in [33].

The third major advantage of the above formulation is that intrinsic geo-
metric properties of the front may be easily determined from the level function
¢. For example, at any point of the front, the normal vector is given by

Ve
Vdl

and the curvature is easily obtained from the divergence of the gradient of the

(14)

n=
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Figure 4: Propagating Triple Sine Curve.

unit normal vector to front, i.e.,

K=V 1ge = (@2 1 62)372

(15)

Finally, the fourth major advantage of the above level set approach is that
there are no significant differences in following fronts in three space dimensions.
By simply extending the array structures and gradients operators, propagating
surfaces are easily handled.

As an example of the application of level set methods, consider once again
the problem of a front propagating with speed F(K) = 1 —¢K. In Figure 4, we
show two cases of a propagating initial triple sin curve. For e small (Fig. 4a),
the troughs sharpen up and will result in transverse lines that come too close
together. For ¢ large (Fig. 4b), parts of the boundary with high values of positive
curvature can initially move inwards, and concave parts of the front can move
quickly up.

Since its introduction in [20], the above level set approach has been used
in a wide collection of problems involving moving interfaces. Some of these
applications include the generation of minimal surfaces [6], singularities and
geodesics in moving curves and surfaces in [7], flame propagation [23, 38], fluid
interfaces [3, 5, 19], and shape reconstruction [16]. Extensions of the basic
technique include fast methods in [1], level set techniques for multiple fluid
interfaces and triple point junctions in [32], and grid generation in [30, 31]. The
fundamental Eulerian perspective presented by this approach has since been
adopted in many theoretical analyses of mean curvature flow, in particular, see

8, 4].



3 Equations of Motion for Deposition, Etching,
and Lithography

Our goal is now to build the speed function F' for deposition, etching, and
lithography in the level set equation of motion

¢+ FIVo| =0 (16)
é(x,t =0) given (17)

Note that F' is the speed in the normal direction. Our approach is to write the
normal speed function as the superposition of the three main physical effects:

= FDeposition + FEtching + FLithography (18)

Of course, all effects do not take place at once; however the design of the
numerical algorithm allows various combinations of terms to be “turned on”
during any time step of the surface advancement.

The underlying physical effects involved in etching, deposition and lithog-
raphy are quite complex; much of the following summary is obtained from the
excellent overviews in [24, 25, 35, 36, 17, 22]. The effects may be summarized
briefly as follows:

e Deposition: Particles are deposited on the surface, which causes build-up
in the profile. The particles may either isotropically condense from the
surroundings (known as chemical or “wet” deposition), or be deposited
from a source. In the latter case, we envision particles leaving the source
and depositing on the surface; the main advantage of this approach is
increased control over the directionality of surface deposition. The rate of
deposition, and hence growth of the layer, may depend on source masking,
visibility effects between the source and surface point, angle-dependent
flux distribution of source particles, the angle of incidence of the particles
relative to the surface normal direction, reflection of deposited particles,
and surface diffusion effects.

e FEtching: Particles remove material from the evolving profile boundary.
The material may be isotropically removed, known again as chemical or
“wet” etching, or chipped away through reactive ion etching, also known
as “lon milling” Similar to deposition, the main advantage of reactive ion
etching is enhanced directionality, which becomes increasingly important
as device sizes decrease substantially and etching must proceed in vertical
directions without affecting adjacent features. As described in [34], the
total etch rate consists of an ion-assisted rate and a purely chemical etch
rate due to etching by neutral radicals, which may still have a directional
component. As in the above, the total etch rate due to wet and directional

10



milling effects can depend on source masking, visibility effects between
the source and surface point, angle-dependent flux distribution of source
particles, the angle of incidence of the particles relative to the surface
normal direction, reflection/re-emission of etching/milling particles, and
surface diffusion effects.

e Lithography: The underlying material is treated by an electromagnetic
wave which alters the resist property of the material. The aerial image is
found, which then determines the amount of crosslinking at each point in
the material which then produces the etch/resist rate at each point of the
material. A profile is then etched into the material, where the speed of the
profile in its normal direction at any point is given by the underlying etch
rate. The key factors that determine the evolving shape are the etch/resist
profile and masking effects.

In the rest of this section, we formalize the above.

3.1 Initial Position and Setup

We consider a periodic initial curve ¥(s), 0 < s < 1, where x(s) is a point in R?
on v(s). We also consider a source 7 given as a curve above the initial curve,
and write Z(z) refering to the height of the source at the point .

For both etching and deposition, define the source ray to be the ray leaving
the source and aimed towards the surface profile Let ¢ be the angle variation
in the source ray away from the y axis; ¢ positive will correspond to an angle
clockwise from the positive y axis. Let n be the normal vector at a point z on
the surface profile, and 6 the angle between the normal and the source ray.

In Figure 5, we indicate these variables. Masks, which force flux rates to
be zero, are indicated by heavy dark lines on the initial profile. The visibility
angle T is indicated by the region between the heavy dashed lines. Our goal is
to write the effects of deposition, etching, and lithography on the speed F' at a
point x on the front 4(s, t) obtained by updating the initial curve.

3.2 Deposition

We consider three separate types of deposition:

. FIDM: Isotropic deposition. Uniform deposition. This may be a function
of the underlying material.

e FP .. Unidirection deposition. Deposition in a particular direction, based
on the angle of the incoming stream.

o FP : Source deposition. Deposition radiating from a point source.

11
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In Figure 5, we generalize all of these effects as the “source”. Thus, the
line source as shown in the figure may consist of locations which emit either
unidirectional deposition or point source deposition.

The above terms may assembled as follows:

D D D
FDeposition — FDeposition(Fjso; FUni; FSou) (19)

that is, the deposition speed may depend on isotropic, unidirectional, or source
deposition.

Let us now change notation and let My ;) be one if the point z’ on the
source is visible from the point x on the profile, and zero otherwise. Let r be
the distance from z to z’, and, finally, let o be the unit vector at the point z’
on the source pointing towards the point z on the profile. Then we may refine
the above terms as:

3.2.1 Isotropic deposition
Ff, = RP Fluz? (20)

Iso

Here, RP. s the rate of growth and Fluz? (z) is the isotropic flux function.

3.2.2 Unidirectional deposition
Fini = Ripni (2) M (o o) Fluag, (v, 4, 0, 2) (7 - &) (21)

Here, Rgm» is the rate of growth, and Flu:ngm(r, ¥, 0, z) is the unidirectional
flux function, which may depend on the distance r from x to the source, the
emission angle v, the angle of incidence 6, and the starting point z’.

3.2.3 Source deposition

/2
F&u = R?ou(m)/ Flu:ngou(r, Y, 0, I)Mr(xyxl)(ﬁ -ad)do (22)
—m/2

Here, the integral is over all angles & between —7/2 and 7/2, RY_ is the rate

of growth, and FZUCL‘?OU (r,,0,2) is the flux function. A typical flux function
might include the effects of sputter deposition and be of the form cos™(Av),
where n is a constant and || < 27 A.

3.3 Etching

In this formulation, the equations of etching are quite similar; we include them
for the sake of completeness. We consider three separate types of etching;:

. FIE;O: Isotropic etching. Uniform etching. This may be a function of the

underlying material.

13



. Fgm Unidirection etching. Etching in a particular direction, based on
the angle of the incoming stream.

o FE . Source etching. Etching radiating from a point source, including
ion-milling and transport of neutral radicals.

The above terms may assembled as follows:

FEtching = FEtching(FIEsoa FL];:nia F.‘fou) (23)

where again we may refine the above terms as

3.3.1 Isotropic etching
FE, = RE Fluz¥ (24)

Iso

Here, RE,  is the etch rate based on the isotropic flux function FluzE (r).

3.3.2 Unidirectional etching
Fifni = Rni(@) Mo o) Fluz g, (r, 4,0, 2)(7 - @) (25)

Here, Rgm» is the etch rate, and Flumgm»(r, ¥, 0, z) is the unidirectional flux
function, which may depend on the distance r from 2 to the source, the emission
angle ¢, the angle of incidence #, and the starting point . A typical flux function
might be of the form cos™ (Aw), where n is a constant and |¢| < 27 A.

3.3.3 Source etching
/2
FE = R?OU(CL‘)/ Fluzf (v, O) My (z o) (7 - d)do (26)
—m/2

Here, the integral is over all angles ¢ between —n/2 and 7/2, RE  is the
rate of growth, and FluzZ  (r 1,0, z) is the flux function.

3.4 Lithography

The construction of the speed function for lithographic cases is extremely straight-
forward if one assumes that the etch rate is given. Typically, an aerial image is
found using a simulator such as SPLAT [37], which, together with a program
such as BLEACH [37], provides the etch rate at each point of the material.
Since the etch rate is provided everywhere in the material, we may simply write

FLithography = Rritho (27)

where the etch rate Rpiin, 18 supplied by the simulator.

14



3.5 Other effects

In etching and deposition, additional effects can play an important role in the
evolving profile. These include

4

o Surface Migration. Migration of particles as they collide with the interface.

This causes a diffusion-like term which tends to diffuse large deposition
peaks. Given the above speed function F' for surface motion, one can think
of two ways to include the effects of surface diffusion/migration. One is
to simply modify the speed function by the term 1 — ¢ K, where K 1is the
local curvature. As discussed in Section II, this has the effect of diffusing
the front. The second way is to obtain a more accurate representation
of the diffusion term as follows. Given a curve x(s) in R?, we imagine
that a scalar function g(s) is defined on that curve. We want to solve
the diffusion equation g; = €gss, where s is differentiation with respect
to arc-length. Clearly, the limit as time approaches infinity is a constant
value of g along the curve x(s). Thus, we can modify the speed function
F' by solving the above diffusion equation on the front.

Re-emission/reflection. Some of incoming flux/neutral radicals may not
stick to the surface, but instead be reflected/re-emitted. The fraction
of particles that are not reflected/re-emitted is known as the “sticking
probability” and varies between 0 and 1. Thus, a sticking probability of
unity corresponds to the case under study above. For sticking probabilities
less than unity, and depending on the surface physics, the re-emission can
be either specular or diffusive. Thus, each point on the evolving profile
may act as additional source when viewed from other visible sites on the
front. This can be set up as an integral equation for the total source
flux at a point, depending on the seen visible angle and probability flux
re-emission distribution. For details, see the derivation in [34], and the
calculations in [18]. This integral yields a dense, non-symmetric matrix
which needs to be solved at every time step in order to calculate the correct
flux to advance the front. In two dimensions this is tractable; in three
dimensions, the problem is daunting and requires significant resources.

Fundamental Ideas of Implementation

Here, we discuss the numerical implementation of the above equations of motion
in the level set formulation given by Eqn. 16, using the version of the numerical
approximation of Eqn. 13 given in [33]. For details we refer the reader to [28].

4.1

The Narrow-Band Formulation

The main issue in the level set approach is the extension of the speed function
F given by Eqn. 18 to all of space in order to move all the level sets, not simply

15



the zero level set on which the speed function is naturally defined. While this
may be straightforward in some cases (such as in lithography, see below), it
is not efficient, since one must perform considerable computational labor away
from the front to advance the other level sets.

Consequently, we adopt the approach introduced in [6], used in recovering
images in [16], and analyzed extensively in [1], and focus our computational
effort in a narrow band about the zero level set. We only update the values
of the level set function ¢ in this thin zone around the interface. Thus, in two
dimensions, an O(N?) calculation, where N is the number of grid points per side,
reduces to an O(kN) calculation, where k is the number of cells in the narrow
band. Typically, this is considerably faster than marker particle methods, due
to the need for many marker points per mesh cell in order to obtain acceptable
accuracy. As the front moves, the narrow band must occasionally be rebuilt
(known as “re-initialization”) of the interface. For details, see [6, 16, 1].

Briefly, the entire two-dimensional grid of data is stored in a square array.
A one—dimensional object 1s used to keep track of which points in this array
correspond to the tube, and the values of ¢ at those points are updated. When
the front moves half the distance towards the edge of the tube boundary, the
calculation is stopped, and a new tube is built with the zero level set interface
boundary at the center. Details on the accuracy, typical tube sizes, and number
of times a tube must be rebuilt may be found in [1].

4.2 Lithography

The application of the level set approach to lithography is straightforward, since
the etch/resist rate at each grid point is supplied as input. Some calculations
of lithographic problems exploiting the level set/conservation law of [20] were
made by Helmsen, see [11, 10], studying various etch functions from different
aerial images, including thin film effects.

In the case of lithography, as mentioned above, we use a narrow band ap-
proach, as well as a second-order in space conservative advancement scheme as
outlined in [20], modified as in [33]. This yields a method which is both con-
siderably faster than the full matrix approach and less diffusive than the first
order scheme used in [10]; the difference between the two methods is discussed
in detail in the results section.

4.3 Etching and Deposition

To advance the front according to etching/deposition, we distinguish between
local variables, which are easily calculated at each grid point within the narrow
band, and front-based extension variables, which are most naturally defined only
at the moving interface. The general philosophy is to use values of local variables
wherever they can be calculated, and extension variables from the front to the
grid points in the narrow band only when necessary. Once all the variables are

16



assembled at each grid point (those obtained from local calculations and those
obtained by extensions), the speed function in Eqn. 18 is then evaluated.

Local variables such as surface normals and curvature are easily calculated
from the grid information as discussed extensively in [33]. The main idea is to
construct a each grid point the local variables for the level set passing through
that grid point. Thus, if at grid point (¢, ) the value of ¢ is ¢g, then we find
the normal vector and curvature of the level surface passing through that grid
point whose level value is ¢g. The values of ¢ at each grid point will then be
updated by evaluating the speed function at the grid using the values of the
local variables; this results in an approximation of the updated position of the
zero level set corresponding to the real front.

Variations in etch rate as a function of material properties are local variables,
and are easily handled by marking the given material properties at each grid
point within the tube. Wide variations in the etch rate are easily handled.

The main front-based extension variable that must be determined is the
visibility at a given point z of the interface. That is, we must construct values
for the visibility function at each grid point, even though it only has real meaning
for points on the zero level set corresponding to the interface. This is done as
follows. At each grid point above the interface we compute the seen angle
relative to the zero level set, and use this value of the visibility term at that
point. At each point below the interface, previous values are used to determine
the appropriate speed; those values are directly employed as the visibility values
for the new position. This technique yields the visibility angles at each grid point
in the narrow tube, which is then used to evaluate the full speed function in
Eqgn. 18.

Variations in etch rate as a function of material properties are easily handled
by marking the given material properties at each grid point within the tube. Of
course, wide variations in the etch rate are easily handled.

Masks are handled by requiring that no motion be executed below a mask;
this is accomplished by creating a new tube matrix whenever updated which is
reset to old values at grid points that are masked.

4.4 Updating The Front

We update the front using a second order in space scheme as described in [20, 28].
In the one—dimensional case, the first order scheme in the case of speed F = 1
is given by

61+ = 67 — At [(max(D],0)* + min(DF,0)%) '] (28)
A second order version is provided by

§F = 67 — At [ (max(4,0)? + min(5,0)) "/ (29)
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where

Az

A=Di +—-m(D; ", Di7) (30)
A
B =D} — —=m(D{*, D7) (31)

where D=~ ,D~ 1, and Dt* are backwards, centered, and forward second order
difference operators, and the switch function m is given by

z if|z] <yl
m(z,y) =y if|z] > |yl (32)
0 ifry<0

The construction of the two-dimensional version of this scheme, using oper-
ator splitting is straightforward. We have

1] -

7T = or; — At {(max(A, 0)% + min(B, 0)* + max(C, 0)? + min(D, 0)2)1/2}

(33)
where A

—z T —z—x T—T
xr A"L‘ r+x r—x QK

—y , By -y—y pty-y
C = Dij + Tm(Dij ,Dij ) (36)
D= Dty _ Ay (DFVHY DY) (37)

= Ly 5 m{L; y i

where D=%=% D=%+% and D*T®*% are backwards, centered, and forward second

order difference operators in x; similar expressions hold in the y direction. The
switch function m is defined the same as above. Extension to three dimensions
is straightforward, and discussed in detail in [2].

5 Numerical Tests of Method

In this section, we perform numerical tests to verify the accuracy and efficiency
of the method.

5.1 Deposition
5.1.1 Source Deposition

We begin by studying source deposition into a trench. In Figure 6 we take a
deposition source above a trench, where deposition material emitted from a line
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40 Cells 80 Cells 160 Cells
Fig.6a. Fig.6b Fug.6c

Figure 6: Source Deposition Into Trench

source from the solid line above the trench. In this experiment, the deposition
rate is the same in all directions. The effects of shadowing are considered.
In Figure 6a, we show results for 40 computational cells along the width the
compute region (between the two vertical dashed lines, Figure 6b has 80 cells,
and Figure 6¢ has 160 cells. The time step for all three calculations is At =
.00625. The calculations are performed with a narrow band tube width of 6 cells
on either side of the front. There is little change between the calculation with
80 cells and the one with 160 cells, indicating that the solution is converged.

As the walls pinch toward each other, the seen visible angle decreases and
the speed diminishes.

Next, in Figure 7, we study a deposition problem in which a cavity on the
right is hidden from the deposition source. This cavity grows very slowly, and
material fills above it until it is shut off. The calculation is presented on a grid
with 160 cells in the horizontal direction and again a tube width of 6 cells on
each side of the interface.

5.1.2 Directional Deposition

Next, we consider directional deposition. Material emits from the line source at
an angle of 30 degrees from the vertical. In Figure 8, we show results at various
times, starting with the initial state. Due to the effects of shadowing, the profile
develops bumps as 1t evolves.

5.1.3 Wet/Chemical Deposition

Finally, for completeness we consider the case of wet/chemical deposition applied
to the above cavity. in Figure 9, we advance the profile in its normal direction
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Figure 7: Source Deposition Into Cavity

at unit speed.

5.2 Etching
5.2.1 Source Etching

We begin by considering source etching into a trench. The dark line again acts
as a line source of etching material, evenly distributed in all angles. Visibility
effects are considered. In Figure 10a, we show the results with 40 horizontal
cells; Fig. 10b has 80 cells and Fig. 10c has 160 cells. There is little difference
between the last two figures, indicating that the results are converged. In this
example there is no yield variation in the etch rate as a function of angle of
incidence, thus corners immediately smooth out, since the correct rarefaction
fan is built in this case, (see [27]).

Next, in Figure 11, we study the etching problem in which a cavity on the
right is hidden from the etching source. The lip of the cavity is etched away
until 1t breaks through, revealing the full expanse of the region.

5.2.2 Directional Etching

Next, we consider directional etching. Material emits from the line source at an
angle of 30 degrees from the vertical. In Figure 12, we show results at various
times, starting with the initial state. Again there is no yield variation in the
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Figure 8: Directional Deposition Into Cavity
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Figure 9: Chemical Deposition Into Cavity

40 Cells 80 Cells 160 Cells
Fig.10a. Fig.10b Flig.10c

Figure 10: Source Etching Into Trench
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Figure 11: Etching Into Cavity
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Fig.12d. Fig.12¢ Fig.12f

Figure 12: Directional Etching Into Cavity

etch rate due to angle of incidence with the normal; in other words, the speed
of the profile in the normal direction is just the projection of the directional
etch rate in that normal direction. Due to the effects of shadowing, as the
profile evolves we again see that part of the profile aligns itself tangential to the
incoming unidirectional etching stream.

5.2.3 Wet/Chemical Etching

Finally, for completeness we consider the case of wet/chemical etching applied
to the above cavity. In Figure 13, we advance the profile in its normal direction
into the material at unit speed. One could choose to stop all motion inside
a void once it forms on the basis of visibility, or continue the motion. In the
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figures we continued the motion; the other case is easily handled by a test of
the connectedness of a contour.

5.3 Lithography

We begin by using a model Gaussian etch rate function. In a region which is
one unit across, and two units in height (the dotted region in Flgure 14), we
use an etch rate of

We start with a flat initial front, and allow it to propagate downwards with

Figure 13: Chemical Etching Into Cavity

R= 6_64(£_'5)2(COSZ(6y) +.01)
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etch rate given by the above. In the first column of Figure 14, we show the results
of mesh refinement of this etch rate using our first order method narrow band
method. As the grid is refined, the overshoot that occurs in the leading part of
the propagating front diminishes until the correct solution is reached. Further
refinement of the first order narrow band method yields the same converged
shape.

Next, we study the effects of using the full level set method and update all
the level sets, not just those in the narrow band. We repeat the calculation using
the full two-dimensional matrix technique in the second column of Fig. 14. The
results on the coarsest grid is better for the full matrix than the narrow band
approach beacuse of the inaccuracy of the reinitialization on the coarse grid.

Finally, we analyze the effects of moving to a second-order in space scheme.
In the last column of Fig. 14, we use a second order operator split version of
our scheme. Here, the second order method achieves the converged shape on
a coarse grid, as expected, verifying that high accuracy can be obtained in the
front motion by using the technology of high resolution hyperbolic conservation
laws. A second order in time method is possible using the predictor-corrector
method outlined in [20]. Tn terms of timings, the narrow band calculation is
around 10 times faster for the finest calculation than the full matrix solution.

In summary, similar to marker particle and cell methods, the narrow band
approach requires work of order N to advance a front, where N is the number
of cells in one dimension. Minimal extension is required off the zero level set,
and high order schemes are readily available. The speedup resulting from the
narrow band approach yields a highly competitive method.

6 Some Model Problems

In this section, we perform some additional experiments to demonstrate the
versatility of the level set approach.

6.1 Wet/Chemical Etching

We provide an example to demonstrate how the level set approach can follow
complex changes in topology. We start with a square with masks covering
segments of the boundary, and imagine the square surrounded by an etching
substance. In Figure 15, the etch eats into the non-masked walls, and the
resulting front moves into the region and reconnects with other parts of the
advancing front.

6.2 Sputter Etching/Deposition

In some problems (for example, ion milling), the normal speed of the profile
depends on the angle of incidence between the surface normal and the incoming
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Figure 14: Lithography Under Model Gaussian
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Figure 15: Chemical Etching into Multiply Masked Region
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beam. This yield function is often empirically fit from experiment, and has been
observed to cause such effects as faceting at corners, see [15, 12]. To study this
phenomenon, in Figure 16 we consider several front motions and their effects
on corners. We envision an etching beam coming down in the vertical direction.
In all cases under study here, the angle # shown in Figure 5 refers to the angle
between the surface normal and the positive vertical. For this set of calculations,
in order to examine the geometry of sputter effects on shocks/rarefaction fan
development, we ignore visibility effects. Following our usual notation, let F'(6)
be the speed of the front in direction normal to the surface.

In column A we show the effects of purely isotropic motion, thus the yield
function is F = 1. Located above the yield graph are the motions of an upwards
and downwards square wave. In column B we show the effects of directional
motion, thus the yield function is F' = cos(#). Thus, horizontal components
on the profile do not move, and vertical components move with unit speed. In
column C we show the effects of a yield function suggested by F.A. Leon [14] of
the form F = [1 + 4sin?(8)] cos(f).

The results of these calculations are show in Figure 16. The results show
that the effects of angle dependent yield functions are pronounced. In Column
A the isotropic rate produces smooth corners, correctly building the necessary
rarefaction fans in outward corners and entropy satisfying shocks in inward
corners as discussed and analyzed in [26, 27]. In Column B, the directional
rate causes the front to be essentially translated downwards, with some slight
rounding of the corners. In Column C, the yield function results in faceting of
inward corners where shocks form and slight overhangs in the construction of
rarefaction fans.

These overhangs in fact represent the *wrong* weak solution to the equations
when sharp corners are present; most noticeably in the case of the construction
of rarefaction fans. They in fact occur because the schemes used so far assume
a convex Hamiltonian, when in fact the sputter function under consideration
yields a non-convex Hamiltonian.

In more detail, start with the level set formulation

b+ FIVé| =0 (39)

where ¢ is the level set function and F is the speed in the normal direction. We
may rewrite this in the standard form of a Hamilton-Jacobi equation, namely

where the Hamiltonian H(¢y, ¢y) = F(¢2 + qﬁZ)% When the speed function
F does not depend on ¢, or ¢, it is easy to check that the Hamiltonian H is
convex. Thus, we can use the schemes presented earlier; they can be proved
to produce the correct viscous solution which satisfies the appropriate entropy
condition.
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Figure 16: Effect of Different Yield Functions
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However, consider the case of the sputter function yield function given by
the above, namely

F=(1+ Asinz(ﬁ)) cos (41)

where 6 is the angle to the vertical. A = 0 produces no angle dependence,
A = 4 produces a typical sputter case. We begin by writing this in the above
form, namely

b+ F|Vo| = ¢ + [(1 + A) cos § — Acos® 0]| V| (42)

Noting that cosf = |$—y¢|, some manipulation produces

¢t + H(¢z,dy) =0 (43)

where the Hamiltonian H is now H = (1+ A)g, _A|‘7¢—;|2' This Hamiltonian
is in fact non-convex, and hence different difference schemes must be employed.
We use a second order in space ENO version of Lax-Friedrichs (see [21]), given

by

D"+ D DY+ DfY 1 oy ] _
J 5 J ’ J 5 J )_EMU(D;I;x_D”x)_EMU(D;}]-y_D”y)]
(44)
where M, (M,) is a bound on the partial derivative of the Hamiltonian with
respect to the first (second) argument.
This scheme can be proved to produce the correct viscous entropy-satisfying
solution. When we use this scheme as in the below calculations given Figure 17,
the corners are sharp in Column B and the overhangs dissappear in Column
C. As a final test, in Figure 18, we compare results with those obtained by the
method of characteristics solution (see, for example, [15, 12]), showing excellent
agreement.

oTH = o~ AM[H(

6.3 Multiple Materials/Discontinuous Etch Rates

Next, we study the effects of etching through different materials. In this exam-
ple, the etch rates are discontinuoues, and hence sharp corners develop in the
propagating profile. The results of these calculations are show in Figure 19. A
top material masks a lower material, and the profile etches through the lower
material first and underneath the upper material. The profile depends on the
ratio of the etch rates. In Figure 19a, the two materials have the same etch rate,
and hence the front simply propages in its normal direction with unit speed, re-
gardless of the which material it is passing through. In Figure 19b, the bottom
material etches four times faster that the top, hence some degree of penetration
underneath the top material occurs. In Figure 19¢, the ratio is ten to one, and
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Figure 17: Effect of Different Yield Functions: Non-convex Scheme
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Figure 18: Comparison with Method of Characteristics:
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finally, in Figure 19d, the ratio is forty to one, in which case the top material
almost acts like a mask.

We next demonstrate the power of the method by considering etching through
multiple materials. In Figure 20, we show an etching front moving through
blocks of materials with differing etch rates. The results show the ability of the
method to follow sharp variations in etch rate from material to material.

7 Future Work

The numerical method presented in this paper can be used for a wide vari-
ety of two-dimensional simulations in etching, deposition and lithography; the
method naturally takes into account such effects as incident angles, masks, yield
functions, visibility, and anisotropy on the surface motion. Due to the use of
conservative upwind schemes, the method selects the correct entropy condition
and maintains sharp corners where shocks in the tangent occurs; conversely, the
correct rarefaction fan solution is built at outward-facing corners. The method
is second order accurate in the motion of the front. By using the narrow band
approach, the method is roughly 10 times faster for a reasonably sized problem
than the full matrix method, and is of the same computational work as cell and
marker particle methods; that is, the work is a constant times the number of
points which characterize the evolving front.

The extension of this work to three dimensions is straightforward, and will
be presented in Part IT of this paper, see [2]. Further work will include surface
diffusion effects and reflection/re-emission issues.
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