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Abstract

We study hypersurfaces moving under flow that depends on the mean

curvature. The approach is based on a numerical technique that embeds

the evolving hypersurface as the zero level set of a family of evolving sur-

faces. In this setting, the resulting partial differential equation for the

motion of the level set function φ may be solved by using numerical tech-

niques borrowed from hyperbolic conservation laws. This technique is

used to analyze a collection of problems. First we analyze the singularity

produced by a dumbbell collapsing under its mean curvature and show

that a multi-armed dumbbell develops a separate, residual closed inter-

face at the center after the singularity forms. The level set approach is

then used to generate a minimal surface attached to a one-dimensional

wire frame in three space dimensions. The minimal surface technique is

extended to construct a surface of any prescribed function of the curva-

ture attached to a given bounding frame. Finally, the level set idea is

used to study the flow of curves on 2-manifolds under geodesic curvature

dependent speed.

1 Introduction

In this paper, the motion of hypersurfaces under flow that depends on the mean

curvature is studied. The main tool is a numerical technique, introduced in [20],

that accurately follows the evolving hypersurface by embedding it as the zero

level set in a family of hypersurfaces. The resulting partial differential equa-

tions for the motion of the level set function may be solved by using numerical

techniques borrowed from hyperbolic conservation laws. The advantage to this

approach is that sharp corners and cusps are accurately tracked, and topologi-

cal changes in the evolving hypersurface are handled naturally with no special

attention.
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Starting from the fundamental perspective of this ”level set approach” to

propagating interfaces, this paper extends the technology in several directions.

First, the collapse of a hypersurface under motion by mean curvature is studied.

In [23], numerical experiments were performed of the collapse of a dumbbell,

and showed that the handle pinches off and splits the single dumbbell into two

separate hypersurfaces, each of which collapses to a point. In this paper, we

show that an extension of this problem produces an interesting result: a multi-

armed dumbbell leaves a separate, residual closed object at the center after the

singularity forms. This result is verified by studying a series of similar numerical

problems, each showing this detached hypersurface. At the end of this section,

hypersurfaces propagating under Gaussian curvature are briefly considered.

Next, the level set approach is used to generate minimal surfaces attached

to a one-dimensional wire frame in three space dimensions. Given a wire frame,

we construct a surface passing through that 1-D curve and view it as the zero

level set of a higher dimensional function. The mean curvature equation for this

function is then evolved in time, producing a minimal surface as the final limiting

state. Using this technique, the minimal surface spanning two parallel rings is

studied. As a test, the exact catenoid shape is compared to computed values.

The rings are then pulled apart and the evolution of the spanning minimal

surface is computed as it shrinks, breaks, and changes topology, resulting in the

final shape of two disks. Minimal surfaces spanning a collection of other frames

are also given.

Next, we compute hypersurfaces of constant non-zero mean curvature by

adding a hyperbolic component to the flow partial differential equation. As ex-

amples, catenoid-like surfaces of a variety of non-zero curvatures are computed.

The extension of the level set formulation to the computation of surfaces of any

prescribed function of the curvature is given.
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Finally, the curvature flow algorithm is generalized to apply to curves on

2-manifolds in R3. In this context, the curves flow with speed dependent on

the geodesic curvature of the curve. Examples of curves on a cube, sphere, and

torus are given. The techniques used for computing minimal surfaces are then

applied to this setting creating an algorithm for computing the geodesics of a

manifold.

In summary, using the basic level set approach, this paper introduces and

applies extensions to complex surfaces, flows under Gaussian curvature, com-

putation of surfaces of non-constant curvature, and geodesics on manifolds. We

hope that some of the complex and subtle phenomena exposed in this paper may

lead to further conjectures and understanding of curvature-driven flow. Finally,

as a point of reference, this report first appeared as a technical report of the Cen-

ter for Pure and Applied Mathematics at Berkeley; a few examples from that

work contributed to a overview report which appeared in the Computational

Crystal Growers Workshop /citechopp-sethian4.

2 The Level Set Formulation

2.1 Equations of Motion

Consider a closed curve γ(t) where t is time, t ∈ [0,∞), moving with speed F

normal to itself. The speed F may depend on local properties of the curve such

as the curvature or normal vector. The origin of the work to follow propagating

interfaces began in [21, 22], where the role of curvature in the speed function F

for the propagating front γ(t) was shown to be analogous to the role of viscosity

in the corresponding hyperbolic conservation law for the evolving slope of γ(t).

This led to the level set formulation of the propagating interface introduced in

[20]. In general terms, let γ(0) be a closed, non-intersecting, (N−1) dimensional
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hypersurface and construct a function φ(x̄, t) defined from RN to R such that

the level set {φ = 0} is the front γ(t), that is

γ(t) = {x̄ : φ(x̄, t) = 0}x̄ ∈ RN (1)

In order to construct such a function φ(x̄, t), appropriate initial conditions

φ(x̄, 0) and associated partial differential equation for the time evolution of

φ(x̄, t) must be supplied. We initialize φ by

φ(x̄, 0) = ±d(x̄) (2)

where d(x̄) is the signed distance from x̄ to the initial front γ(t = 0). In order

to derive the partial differential equation for the time evolution of φ, consider

the motion of some level set {φ(x̄, t) = C}. Let x̄(t) be the trajectory of some

particle located on this level set, so that, (see [18]),

φ(x̄(t), t) = C (3)

The particle velocity ∂x̄
∂t in the direction n̄ normal to the level set C is given by

∂x̄

∂t
· n̄ = F (4)

where the normal vector n̄ is given by n̄ = ∇φ/‖∇φ‖. By the chain rule,

φt +
∂x̄

∂t
· ∇φ = 0 (5)

and substitution yields

φt + F ‖∇φ‖ = 0 (6)

φ(x̄, t = 0) = given

Eqn. (6) yields the motion of the interface γ(t) as the level set φ = 0, thus

γ(t) = {x|φ(x̄, t) = 0} (7)
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Eqn. (6) is referred to as the level set formulation. For certain speed functions

F , it reduces to some familiar equations. For example, for F = 1, the equation

becomes the eikonal equation for a front moving with constant speed. For

F = 1− ǫκ, where κ is the curvature of the front, Eqn. (6) becomes a Hamilton-

Jacobi equation with parabolic right-hand-side, similar to those discussed in [6].

For F = κ, Eqn. (6) reduces to the equation for mean curvature flow. When

required, the curvature κ may be determined from the level set function φ. For

example, in three space dimensions the mean curvature is given by

κ =

(φxx)(φ2
y + φ2

z) + (φyy)(φ2
x + φ2

z) + (φzz)(φ
2
x + φ2

y)

−2(φxφyφxy + φyφzφyz + φxφzφxz)

2(φ2
x + φ2

y + φ2
z)

3/2
(8)

Eqn. (6) is an Eulerian formulation for the hypersurface propagation prob-

lem, because it is written in terms of a fixed coordinate system in the physical

domain. This is in contrast to a more geometry-based Lagrangian approach, in

which the motion of the hypersurface is written in terms of a parameterization

in (N − 1)-dimensional space. There are several advantages of the Eulerian

approach given in Eqn. (6). First, the fixed coordinate system avoids the nu-

merical stability problems that plague approximation techniques based on a pa-

rameterized approach. Second, topological changes are handled naturally, since

the level surface φ = 0 need not be simply connected. Third, the formulation

clearly applies in any number of space dimensions.

As illustration, in Figure 1 the motion of circle in the xy-plane propagat-

ing outwards with constant speed is shown. Fig. 1a shows the initial circle,

while Fig. 1b shows the same circle as the level set φ = 0 of the initial surface

φ(x, y, t = 0) = (x2 + y2)1/2 − 1. The one-parameter family of moving curves

γ(t) is then matched with the one-parameter family of moving surfaces in Figs.

1c and 1d.

This level set approach to front propagation has been employed in a vari-
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figures/eulerformula.eps

Figure 1: Eulerian formulation of equations of motion

ety of investigations. In numerical settings, it has been used to study flame

propagation [26] and crystal growth and dendrite simulation [24]. The theoret-

ical underpinnings of this approach have been examined in detail by Evans and

Spruck [7, 8]; for further theoretical work, see also [3, ?, 9, 13].

2.2 Numerical Approximation

A successful numerical scheme to approximate Eqn. (6) hinges on the link with

hyperbolic conservation laws. As motivation, consider the simple case of a

moving front in two space dimensions that remains a graph as it evolves, and

consider the initial front given by the graph of f(x) with f , f ′, periodic on

[0, 1]. Let y(x, t) be the height of the propagating function at time t, thus

y(x, 0) = f(x). The normal at (x, y) is (−yx, 1), and the equation of motion

becomes yt = F (κ)(1 + y2
x)1/2. Using the speed function F (κ) = 1 − ǫκ, where

the curvature κ = yxx/(1 + y2
x)3/2, we get

yt − (1 + y2
x)1/2 = ǫ

yxx

(1 + y2
x)

(9)

To construct an evolution equation for the slope u = dy/dx, we differentiate

both sides of the above with respect to x and substitute to obtain

ut +
[

−(1 + u2)1/2
]

x
= ǫ

[

ux

(1 + u2)

]

x

(10)
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Thus, the derivative of the Hamilton-Jacobi equation with curvature-dependent

right-hand-side for the changing height y(x, t) is a viscous hyperbolic conserva-

tion law for the propagating slope u. With this hyperbolic conservation law,

an associated entropy condition must be invoked to produce the correct weak

solution beyond the development of a singularity in the evolving curvature.

Complete details may be found in [23].

Consequently, considerable care must be taken in devising numerical schemes

to approximate the level set Eqn. (6). Because a central difference approxima-

tion to the gradient produces the wrong weak solution, we instead exploit the

technology of hyperbolic conservation laws in devising schemes which maintain

sharp corners in the evolving hypersurface and choose the correct, entropy-

satisfying weak solution. One of the easiest such schemes is a variation of the

Engquist-Osher scheme presented in [20]. This scheme is upwind in order to fol-

low the characteristics at boundaries of the computational domain. The scheme

is as follows. Decompose the speed function F into F = FA + FB, where FA is

treated as the hyperbolic component which must be handled through upwind

differencing, and the remainder FB which is to approximated through central

differencing. Let φn
ijk be the numerical approximation to the solution φ at the

point i∆x, j∆y, k∆z, and at time n∆t, where ∆x, ∆y, ∆z is the grid spacing

and ∆t is the time step. We can then advance from one time step to the next

by means of the numerical scheme

φn+1
ijk = φn

ijk + FA∆t ·

(

(min(D−

x φijk, 0))2 + (max(D+
x φijk, 0))2 + (min(D−

y φijk, 0))2

+ (max(D+
y φijk, 0))2 + (min(D−

z φijk, 0))2 + (max(D+
z φijk, 0))2

)1/2

+ ∆tFB‖∇φ‖ (11)

Here, the difference operators D−

x refers to the backward difference in the x
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direction. The other difference operators are defined similarly.

2.3 Examples

In Figure 5, the motion of a closed two-dimensional spiral collapsing under its

own curvature is given, that is, with F (κ) = −κ. Grayson [14] has shown that

any non-intersecting closed curve must collapse smoothly to a circle; see also

[10, 11, 12]. Consider the wound spiral traced out by

γ(0) = (0.1e(−10y(s)) − (0.1 − x(s))/20)(cos(a(s)), sin(a(s))) s ∈ [0, 1]. (12)

where

a(s) = 25 tan−1(10y(s))

(x(s), y(s)) = ((0.1) cos(2πs) + 0.1, (.05) sin(2πs) + 0.1).

The mesh is a 200 by 200 grid. In Figure 5, the unwrapping of the spiral

and its eventual disappearance is depicted. Note that the calculation follows

a family of spirals lying on the higher dimensional surface. The particular

front corresponding to the propagating curve vanishes when the evolving surface

moves entirely above the xy-plane, that is, when φn
ij > 0.

As a different example, let the wound spiral in the previous example repre-

sent the boundary of a flame burning with speed F (κ) = 1− ǫκ, ǫ = 0.1. Here,

the entropy condition is needed to account for the change in topology as the

front burns together. In Fig. 6a, the initial spiral as the boundary of the shaded

region is given. In Fig. 6b, the spiral expands, and pinches off due to the out-

ward normal burning and separates into two flames, one propagating outwards

and one burning in. In Figure 6c, the front is the boundary of the shaded region.

The outer front expands and the inner front collapses and disappears. In Fig.

6d all that remains is the outer front which asymptotically approaches a circle.
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3 Singularity Formation in Curvature Flow

3.1 Collapsing Dumbbells under Mean Curvature Flow

In this section, singularity formation of hypersurfaces in three space dimensions

propagating under mean curvature is studied. Theoretical discussion of such

flows have been made in [2, 15, 17]. Numerical calculations based on a marker

Langrangian approach have been made in [1].

A well-known example is the collapse of a dumbbell, studied in [23]. In Fig.

7, the cross-section of the evolution of a dumbbell on a 214 by 72 by 72 grid

collapsing under its mean curvaturel (F (κ) = −κ) is given. In Figure 7a, various

time snapshots of the collapsing dumbbell are shown. As can be seen from the

evolving slope, the center handle of the dumbbell pinches off, separating the

collapsing hypersurface into two pieces.

An extension of this problem can be seen in Figure 8, where a periodic link of

dumbbells is considered. As can be seen from the figures, each handle pinches

off and breaks, leaving a collection of separate periodic closed hypersurfaces

which each collapse into a sphere.

However, a different picture emerges if we consider multiple-armed dumb-

bells. In Figure 9, a three-armed dumbbell is shown. As this surface collapses

under its mean curvature, the three handles pinch off, leaving a separate closed

surface in the center. This ”pillow” occurs because the mean curvature of each

handle is larger than the saddle joints in the webbing between the spikes. Once

this pillow separates off, it quickly collapses to a point.

A more dramatic and pronounced version is shown in Figure 10, which shows

the collapse of a four-armed dumbbell. Once again, a residual pillow separates

off in the center and collapses smoothly through a spherical shape to a point.

The separated pillow is larger because the ”webbing” between the arms collapses
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GridSize Diagonal Volume

30 × 30× 10 .35012 .00863

46 × 46× 16 .34105 .00964

61 × 61× 60 .35181 .01058

61 × 61× 61 .35214 .01063

Table 1: Mesh Refinement of Detached Surface, four-armed case

slower as the number of arms increases. In Figure 11, the evolution of a six-

armed dumbbell is calculated, showing the appearance of the isolated pillow. In

this case, the pillow is almost the same size as the collapsing end balls.

To verify that these results are indeed real and not numerical artifacts, results

of a quantitative study of the collapse of the four-armed dumbbell are given

in Table 1. At the time when the dumbbell develops, the diagonal span of

the pillow from one web to another is measured, as well as the total volume.

Results obtained under considerable mesh refinement show that the results are

independent of the chosen mesh size.

As a final demonstration of this process, Figures 12 and 13 show the collapse

of a diagonal lattice of tubes. The lattice shown in Figure 12a (Time = 0.0)

has periodic boundary conditions; thus, the figure represents one section of an

infinite lattice. As the hypersurface collapses (Figure 12b, Time = 0.385), the

pillow emerges at the intersection of the tubes. The bodies of the tubes collapse,

leaving only the residual pillows which begin as pointed shapes (Figure 12c,

Time = 0.405) and quickly evolve towards spherical shapes which collapse to

points (Figure 12d, Time = 0.415). For comparison, in Figure 12e (Time =

0.385), the single hypersurface before breakage is shown from a slightly different

angle.
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A wholly different result is shown in Figure 13, where the same tube lattice is

shown, only this time with thicker tubes (Figure 13a). In this case, the separate

pillows appear in the holes of the lattice, as the evolving surface collapses around

them (Figures 13b, 13c, 13d).

Next, a three-dimensional version of the spiral collapsing under mean curva-

ture is computed. The three-dimensional spiral hypersurface shown in Figure 14

is actually hollow on the inside; the opening on the right end extends all the

way through the object to the leftmost tip. The inner boundary of the spiral

hypersurface is only a short thickness away from the outer boundary. As the

hypersurface collapses under its mean curvature, the inner sleeve shrinks faster

than the outer sleeve, and withdraws to the rightmost edge before the outer

sleeve collapses around it.

3.2 Collapsing Surfaces under Gaussian Curvature Flow

A variation on the above study can performed using the Gaussian curvature in-

stead of the mean curvature. Starting with the definition of Gaussian curvature

κGaussian for a surface (see [16]), an expression for κGaussian in terms of the level

set function φ can be obtained, namely

κGaussian =

φ2
x(φyyφzz − φ2

yz) + φ2
y(φxxφzz − φ2

xz) + φ2
z(φxxφyy − φ2

xy)

+ 2[φxφy(φxzφyz − φxyφzz) + φyφz(φxyφxz − φyzφxx)

+ φxφz(φxyφyz − φxzφyy)]

(φ2
z + φ2

y + φ2
x)2

(13)

Suppose we consider flow of surfaces under Gaussian curvature. If the closed

hypersurface is convex, the Gaussian curvature will not change sign, and the

surface should collapse as it flows, see [19]. In Figure 15, the motion of a

flat disk-like surface collapsing under its Gaussian curvature is shown. The

sharply curved regions move in quickly, since they are regions of high Gaussian

curvature, and the hypersurface moves towards a spheroidal shape.
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In the case of non-convex closed hypersurfaces, the situation is delicate, due

to the fact that Gaussian curvature is the product of the two principle curva-

tures. In general, the problem acts like the backwards heat equation, and goes

unstable in most cases. We illustrate with two examples. In Figure 16, a very

slightly depressed dumbbell is shown. The balls have radius .5, while the inner

handle has radius .45. The distance between the centers of the two end balls

is 2.0. Because the variation away from a cylindrical shape is small, the strong

positive Gaussian curvature on the ends pulls the surface inwards, and it seems

that the calculation does not go unstable and the surface collapses. In contrast,

in Figure 17 the evolution of two spheres glued together is shown. The ring

connecting the two spheres has a fairly narrow radius, and thus the Gaussian

curvature along the edges of the ring is initially large and negative. This car-

ries the indentation area outwards, and wild oscillations develop, showing the

instability.

4 Construction of Minimal Surfaces

In this section, the level set perspective is used to construct minimal surfaces.

Consider a closed curve Γ(s) in R3; Γ : [0, 1] → R3. The goal is to construct a

membrane with boundary Γ and mean curvature zero.

Given the bounding wire frame Γ, consider some initial surface S(t = 0)

whose boundary is Γ. Let S(t) be the family of surfaces parameterized by t

obtained by allowing the initial surface S(t = 0) to evolve under mean curvature,

with boundary given by Γ. Defining the surface S by S = limt→∞ S(t), one

expects that the surface S will be a minimal surface for the boundary Γ. Thus,

given an initial surface S(0) passing through Γ, construct a family of neighboring

surfaces by viewing S(0) as the zero level set of some function φ over all of R3.

Using the level set Eqn. (6), evolve φ according to the speed law F (κ) = −κ.
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figures/twopoints.eps

Figure 2: Grid points around the boundary

Then the minimal surface S will be given by

S = lim
t→∞

{x|φ(x, t) = 0} (14)

The difficult challenge with the above approach is to ensure that the evolving

zero level set always remains attached to the boundary Γ. This is accomplished

by creating a set of boundary conditions on those grid points closest to the

wire frame and link together the neighboring values of φ to force the level set

φ = 0 through Γ. The underlying idea is most easily explained through a one-

dimensional example. Here, we follow the discussion in Chopp [5].

Consider the simple problem of finding the shortest distance between two

points A and B in the plane. The goal is to give conditions on a function φ

defined in R2 so that φ(A, t) = φ(B, t) = 0 for all time. In Figure 2, an initial

curve is shown which is the level set φ(x, t) = 0 and the boundary points A and

B. Suppose that the point A is located in the middle between points gi and

gd (Figure 3). In order to have that φ(A, t) = 0 for all time, we require that

φ(gi, t) = −φ(gd, t). Label the subscripts d and i for dependent and independent,

and set the dependent point in terms of the independent point. This binds the

dependent points to the independent points in a way that forces the zero level

set through the points A and B. In general, the boundary conditions will be

represented as a vector equation of the form

vdep = Avind (15)
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Figure 3: Grid points around the boundary

where
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(16)

and A is an m × n matrix. The matrix A is determined from the chosen mesh

and wire frame, and hence both the classification of dependent and independent

points and the matrix A need only be computed once at the beginning of the

calculation. This links the set of all dependent points in terms of the set of

all independent points, in such a way that the level set φ = 0 is forced to

pass through the wire frame. Complete details of the automatic technique for

generating this list of boundary conditions may be found in [5].

There is one final issue that comes into play in the evolution of the level set

function φ towards a minimal surface. By the above set of boundary conditions,

only the zero level set φ = 0 is constrained. Thus the other level surfaces are

free to move at will, which means on one side of the level set φ = 0 the surfaces

will crowd together, while on the other side they will pull away from the zero

level set. This causes numerical difficulties in the evaluation of derivatives over

such a steep gradient. A reinitialization procedure is used to remedy this; after

a given number of time steps, the level set φ = 0 is computed, and the function

φ is reinitialized using the signed distance function as given in Section 2. This
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uniformly redistributes the level sets so that the calculation can proceed.

As a test example, the minimal surface spanning two rings has an exact

solution given by the catenoid

r(x) = a cosh(x/a) (17)

where r(x) is the radius of the catenoid at a point x along the x axis, and

a is the radius of the catenoid at the center point x = 0. Suppose that the

boundary consists of two rings of radius R located at ±b on the x-axis. Then

the parameter a is determined from the expression

R = a cosh(b/a) (18)

If there is no real value of a which solves this expression, then a catenoid solution

between the rings does not exist. Thus, for a given R, if the rings are closer than

some minimal distance 2bmax apart, there are two distinct catenoid solutions,

one of which is stable and the other is not. For rings exactly bmax apart, there is

only one solution. For rings more than bmax apart, there is no catenoid solution.

In Figure 18, the minimal surface spanning two rings each of radius 0.5 and

at positions x = ±.277259 is computed. A cylinder spanning the two rings is

taken as the initial level set φ = 0. A 27 × 47 × 47 mesh with space step 0.025

is used. The final shape is shown in from several different angles in Figure 18.

Next, in Figure 19, this same problem is computed, but the rings are placed far

enough apart so that a catenoid solution cannot exist. Starting with a cylinder

as the initial surface, the evolution of this cylinder is computed as it collapses

under mean curvature while remaining attached to the two wire frames. As the

surface evolves, the middle pinches off and the surface splits into two surfaces,

each of which quickly collapses into a disk. The final shape of a disk spanning

each ring is indeed a minimal surface for this problem. This example illustrates

one of the virtues of the level set approach. No special cutting or ad hoc decisions
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are employed to decide when to break the surface. Instead the characterization

of the zero level set as but one member of a family of flowing surfaces allows

this smooth transition.

In Figure 20, six squares which are initially spanned by the union of three

cylinders with square cross-section are shown. Each square has side of length

1/2. On the x-axis, the squares are located at ±0.375, on the y-axis at ±0.775,

and on the z-axis at ±1.275. The different distances cause the surface to break

at three different times. More complex examples of minimal surfaces are given

in [5].

5 Extensions to Surfaces of Prescribed Curva-

ture

5.1 Surfaces of Constant Mean Curvature

The above technique can be extended to produce surfaces of constant but non-

zero mean curvature. To do so requires further inspection of the suggestive

example of a front propagating with speed F (κ) = 1 − ǫκ. Suppose that ǫ = 1,

and consider the evolution of the partial differential equation

φt = (1 − κ)‖∇φ‖ (19)

where again the mean curvature κ is given by Eqn. 8. Furthermore, consider

initial data given by

φ(x, y, z, t = 0) = (x2 + y2 + z2)1/2 − 1 (20)

The zero level set is the sphere of radius one, which remains fixed under the

motion F (κ) = 1 − κ. All level surfaces inside the unit sphere have mean cur-

vature greater than one, and hence propagate inwards, while all level surfaces
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outside the unit sphere have mean curvature less than one, and hence prop-

agate outwards. Thus, the level sets on either side of the zero level set unit

sphere pull apart. If one were to apply the level set algorithm in free space,

the gradient ‖∇φ‖ would smooth out to zero along the unit sphere surface, and

this eventually causes numerical difficulties. However, the reinitialization pro-

cess describe earlier periodically rescales the labeling of the level sets, and thus

‖∇φ‖ is renormalized.

Thus, in order to construct a surface of constant curvature κ0, start with any

initial surface passing through the initial wire frame and allow it to propagate

with speed

F (κ) = κ0 − κ (21)

Here, as before, the “constant advection term” κ0 is taken as the hyperbolic

component FA in Eqn. 11, and treated using the entropy-satisfying upwind

difference solver, while the parabolic term κ is taken as FB, and is approximated

using central differences.

Using the two ring “catenoid” problem as a guide, in Figure 21 this tech-

nique is used to compute the surface of constant curvature spanning the two

rings. In each case, the initial shape is the cylinder spanned by the rings. The

final computed shapes for a variety of different mean curvatures are shown. In

Figure 21a, a surface of mean curvature 2.50 spanning the rings is given: the

rings are located a distance .61 apart and have diameter 1.0. The resulting

surface bulges out to fit against the two rings. In Figure 21b, a surface of mean

curvature 1.0 is found, which corresponds to the initial surface. The slight bow-

ing is due to the relatively coarse 40×40×40 mesh. In Figure 21c, the catenoid

surface of mean curvature 0.0 is given. We isolated the value of −0.33 as a value

close to the breaking point (Figure 21d). In Figure 21e, a mean curvature value

of −0.35 is prescribed, causing the initial bounding cylinder to collapse onto
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the two rings and bulge out slightly. Finally, in Figure 21f, bowing out disks

corresponding to surfaces of mean curvature −1.00 are shown.

5.2 Surfaces of Non-Constant Mean Curvature

To complete the construction, the technique is extended to allow the calculation

of surfaces of a prescribed function of the curvature. Suppose we wish to find

a surface of curvature A(x̄) passing through a given wire frame, where A is

some given function of a point x̄ in three-dimensional space. Using the above

approach, the initial bounded zero level surface is evolved with speed

F (κ) = A(x̄) − κ (22)

As a simple example, the surface spanning two rings with curvature at any

point x along the x-axis given by 10 cos(10x) is constructed. The obtained

wavy surface with prescribed curvature is shown in Figure 22. The grid size is

40 × 75 × 75, with uniform mesh size of ∆x = 0.02. The rings are located at

±0.305, with radius .5. After 100 time steps, the change in φ is less than 10−5

per time step of size 10−4, indicating the computed value has converged to the

solution.

6 Geodesic Curvature Flow

The curvature flow algorithm can be generalized to more complicated two-

dimensional spaces. For example, we may let the level set function φ be defined

on a differentiable 2-manifold in R3 with speed depending on geodesic curva-

ture. By restricting the level set function φ to coordinate patches, it is possible

to study single curves on non-simply connected manifolds , e.g. a torus. The

fixed boundary condition techniques for minimal surfaces can also be applied
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here. In this case, a curve with fixed endpoints should flow towards a geodesic

of the manifold, i.e. a curve with constant geodesic curvature zero.

6.1 Equations of Motion

Consider a 2-dimensional manifold M ⊂ R3. Let γ(t) ⊂ M , for t ∈ [0,∞), be

a family of closed curves moving with speed F (κg) in the direction normal to

itself on M . Here, κg is the geodesic curvature of γ(t) on M . Let gt(s) be the

parameterization of γ(t) by arc length.

First assume that M is orientable. In this case, the unit normal map N is

continuous on M . At every point gt(s), a natural coordinate system for TM

is given by the vectors g′t(s), N × g′t(s). Thus, for any point x(t) ∈ γ(t), the

velocity under this flow is given by

ẋ · (N × g′t) = F (κg).

The expression for geodesic curvature is given by

κg = (N × g′t) · g
′′

t . (23)

Note that a change in sign of the unit normal N results in a corresponding

change in sign of κg. If F is an odd function, then ẋ is independent of the

choice of N . However, if F is not an odd function, then the choice of the

normal changes the flow. Therefore, if M is not orientable, then only odd speed

functions F are allowed. The algorithm presented here also requires that F be

an odd function when M is not simply connected.

Assume the manifold M is given by M = f−1(0), where f : R3 → R. We

break the manifold into a collection of coordinate maps, {(Ui, πi)} such that

M = ∪Ui, each set Ui is simply connected, and πi : Ui → Vi ⊂ R2 is a bijection.

The computing is done on the collection of sets Vi = πi(Ui). We define the

function Φi : Vi → R by Φi(x, t) = φ(π−1
i (x), t), so that φ(x, t)|Ui

= Φi(πi(x), t).
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In order to write the equations of motion in the level set representation,

we must compute a velocity field on the entire manifold M . We compute the

velocity field on each coordinate patch and then see that it is consistent in

regions of overlap. For this section, assume φ = φ|Ui
. At any point x ∈ Ui, the

velocity vector will be normal to the level set of φ containing x, towards the

center of curvature in the tangent space TM (x), and have length F (κg).

The geodesic curvature of the curve φ−1(C) in terms of φ is given by

κg =
[N × τ ] · n

1 − (n · N)2

{

τ ·

[(

n · N

‖∇f‖
∇2f −

1

‖∇φ‖
∇2φ

)

· τ

]}

where

n =
∇φ

‖∇φ‖
N =

∇f
‖∇f‖

and τ =
∇f ×∇φ
‖∇f ×∇φ‖

.

The direction of the velocity vector is the same as the orthogonal projection of

∇φ onto TM , so

v = τ × N =
n − (n · N)N

‖n − (n · N)N‖

and the velocity at x on M is described by

ẋ · v = F (κg).

The computing is done on the sets πi(Ui), so we want the equation of motion

in terms of Φi. Therefore, for a point x ∈ πi(Ui), the equation of motion is

described by

ẋ · η = F (κg)Dπi(v) · η

where η = ∇Φi/‖∇Φi‖ is the unit normal to the level set containing Φi(x). Let

F̃ (κg) = F (κg)Dπi(v) · ∇Φi/‖∇Φi‖, (24)

then the equation of motion in terms of Φ is given by

0 = Φit + F̃ (κg)‖∇Φi‖. (25)
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6.2 Geodesic Curvature Algorithm

Putting everything together, the general algorithm for curvature flow on a man-

ifold can be stated as follows:

1. Choose coordinate patches and maps to represent the manifold M .

2. Initialize the functions Φi on each coordinate patch.

3. Compute the boundary values in each coordinate patch based upon overlap

values with neighboring patches.

4. Advance each Φi in time according to the differential equation (25).

5. Go to step 3.

At any time t, the curve γ(t) can be reconstructed from

γ(t) = ∪π−1
i (Φ−1

i (0, t)) (26)

We will now discuss the details of each of these steps.

Given a manifold M , it is important to choose simply connected coordinate

patches {Ui, πi}, so that any simple curve can be represented by a level set of a

function φ on Ui. The equations given above are for the case when πi maps onto

a rectangular coordinate system in R2. In the overlap sets, where Ui ∩ Uj 6= ∅,

there must be at least a three grid point overlap between the sets Vi = πi(Ui)

and Vj −πj(Uj). Computing the boundary conditions for each Vi is made easier

if the grid points and projection maps πi are chosen so that if x ∈ Vi is a grid

point in Vi and π−1
i (x) ∈ Ui ∩ Uj , then πj(π

−1
i (x)) is also a grid point in Vj .

For example, let M be a torus with large radius R and small radius r sym-

metric about the z-axis. One choice of coordinate patches is

U1 =
{

(x, y, z) :
√

x2 + y2 > R − ǫ, x > −ǫ
}
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figures/toruspatch.eps

Figure 4: Example of coordinate patches on a torus.

U2 =
{

(x, y, z) :
√

x2 + y2 < R + ǫ, x > −ǫ
}

U3 =
{

(x, y, z) :
√

x2 + y2 < R − ǫ, x < ǫ
}

U4 =
{

(x, y, z) :
√

x2 + y2 > R − ǫ, x < ǫ
}

where each πi : Ui → Vi = (−π/2 − ǫ, π/2 + ǫ) × (−π/2 − ǫ, π/2 + ǫ) in the

natural way. Then a uniform rectangular grid is placed on the closure of Vi. A

diagram of this choice of coordinate maps is given in figure 4.

The objective when initializing the functions Φi is to satisfy Eqn. (26). We

use the signed distance function where the distance is computed in the manifold

space. The sign of Φi is assigned on each coordinate patch independently. This

ensures that at each grid point x ∈ Ui ∩ Uj ,

|Φi(πi(x))| = |Φj(πj(x))|.

This is important for ensuring consistent motion in the overlap regions. If F is

not an odd function, we must additionally require Φi(πi(x)) = Φj(πj(x)).

The evolution on each patch is computed on the interior grid points of each

patch Vi. The values at the boundary are taken from neighboring patches. Let

x be a grid point on the boundary of Vi. By construction, π−1
i (x) is in the

interior of some other patch Uj. Therefore, we have Φi(x) = ±Φj(πj(π
−1
i (x))),

where the sign is determined by whether Φi ◦ πi and Φj ◦ πj are of equal (plus)

or opposite (minus) sign in the interior of the region Ui ∩ Uj .
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Two coordinate patches may have two or more disconnected overlap regions

on M . The sign convention must be determined individually for each distinct

overlap. For example, the two outer patches on the torus example above overlap

in two distinct locations. It is possible for both patches to share the same sign

convention in one overlap while having the opposite convention in the other

overlap. This property makes it possible to model a single curve on a torus as

a level set of a function within each coordinate patch.

Following the argument in section 5.1, we break the function F into the

constant and non-constant parts, F (κ) = F1 − F2(κ). Eqn. (25) then becomes,

Φit + F̃1‖∇Φi‖ = F̃2(κg)‖∇Φi‖ (27)

As in section 2, upwind techniques from hyperbolic conservation laws are used

to compute the left hand side and central differences are used on the right hand

side.

6.3 Examples

We begin with flow on a sphere. The sphere is constructed with a single coordi-

nate patch with the projection mapping the sphere onto its spherical coordinate

system, the square [−π, π] × [−π, π]. The gap in figures 23 and 24 shows the

boundary of the coordinate patch. Figure 23 shows an initial circle just smaller

than a great circle shrinking to a point at the top. Figure 24 shows a periodic

curve symmetric with respect to the equator collapsing to the equator.

Next, we show flow on a torus. If the torus is constructed with a single

coordinate patch, then it is not possible to model a single non-contractible

curve using a level set approach. For curves which are not too complicated, it

is possible to construct a second curve to allow for the level set formulation. In

figure 25, a single coordinate patch is used and the flow of two non-intersecting

curves is computed.
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However, if multiple coordinate patches are used, then a required sign change

can be handled by the communications between coordinate patches. Therefore,

it is possible to model a single curve on a torus. Figure 26 shows a single

curve flowing on a torus. The coordinate patches for the torus are described in

section 6.2.

Subsets of manifolds can also be used. For example, we compute the flow

of an oval and a periodic curve on a helicoid. The boundary conditions are

periodic at the top and bottom, one sided derivatives on the sides of a single

rectangular coordinate patch. Figure 27 shows the oval as it shrinks to a point,

while figure 28 shows the periodic curve flowing towards the central axis of the

helicoid.

Another example of flow on a submanifold is when the manifold is the graph

of a function f : R2 → R. In this example, we use f(x, y) = 2 cos(2
√

x2 + y2).

One-sided derivatives are used for all boundaries of a rectangular region of this

graph. Figure 29 shows a straight line perturbed off-center flowing away from

the center over a ridge.

Finally, we show several flows on a cube. The cube is constructed with six

coordinate patches corresponding to the faces of the cube. The first experiment

on the cube involves a comparing the flow on a cube with orthogonal edges

to the flow on a cube with constructed round edges. Figures 30–33 show the

orthogonal cube followed by three different rounded cubes with the same initial

curve. The initial curve is flatter on the front faces than on the top. We see

that the flow is similar in all cases with the curve collapsing to a point near the

corner. Two other flows on a cube are shown in figures 34 and 35.
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figures/spiral1.ps figures/spiral2.ps
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Figure 5: Collapsing 2-dimensional spiral

29



figures/flame1.ps figures/flame2.ps
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Figure 6: Burning spiral
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Figure 7: Collapsing Dumbbell
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Figure 8: Collapse of a dumbbell string
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Figure 9: Collapse of a three-armed dumbbell
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Figure 10: Collapse of a four-armed dumbbell
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Figure 11: Collapse of a six-armed dumbbell
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Figure 12: Collapse of a periodic lattice, small tubes
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Figure 13: Collapse of a periodic lattice, large tubes
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Figure 14: Collapse of a twisted testtube
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figures/mint1.ps figures/mint2.ps
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Figure 15: Collapse of a surface under Gaussian curvature
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Figure 16: Collapse of a slightly non-convex surface under Gaussian curvature
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Figure 17: Collapse of a slightly non-convex surface under Gaussian curvature

40
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Figure 18: Euler’s catenoid minimal surface
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figures/catsplit1.ps figures/catsplit2.ps

figures/catsplit3.ps figures/catsplit4.ps

figures/catsplit5.ps figures/catsplit6.ps

Figure 19: Splitting catenoid evolution
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figures/sixsplit1.ps figures/sixsplit2.ps
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Figure 20: Splitting six-armed catenoid evolution
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Figure 21: Constant mean curvature surfaces with fixed boundary
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Figure 22: Non-constant prescribed curvature surface
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Figure 23: Circle shrinking on a sphere

Figure 24: Periodic curve shrinking to a great circle

Figure 25: Two curves flowing on a torus
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Figure 26: A single curve flowing on a torus

figures/helicoid2.ps

Figure 27: A single loop shrinking on a helicoid

figures/helicoid1.ps

Figure 28: A periodic curve on a helicoid

figures/sombrero.ps

Figure 29: A curve flowing on the graph of f(x, y) = 2 cos(2
√

x2 + y2)

Figure 30: A single loop flowing on a cube with orthogonal edges

Figure 31: A single loop flowing on a cube with large rounded edges

Figure 32: A single loop flowing on a cube with medium rounded edges
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Figure 33: A single loop flowing on a cube with small rounded edges

Figure 34: A single loop pulled over two opposite corners on a face

Figure 35: A single loop pulled over alternating corners
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