
Theory, Algorithms, and Applications

of

Level Set Methods for Propagating Interfaces ∗

J.A. Sethian
Dept. of Mathematics

University of California, Berkeley

August 15, 1995

In Press: Acta Numerica

Abstract

We review recent work on level set methods for following the evolution of complex interfaces.
These techniques are based on solving an initial value partial differential equations for a level set
functions, using techniques borrowed from hyperbolic conservation laws. Topological changes,
corner and cusp development, and accurate determination of geometric properties such as cur-
vature and normal direction are naturally obtained in this setting. The methodology results in
robust, accurate, and efficient numerical algorithms for propagating interfaces in highly complex
settings. We review the basic theory and approximations, describe a hierarchy of fast methods,
including an extremely fast marching level set scheme for monotonically advancing fronts, based
on a stationary formulation of the problem, and discuss extensions to multiple interfaces and
triple points. Finally, we demonstrate the technique applied to a series of examples from ge-
ometry, material science and computer vision, including mean curvature flow, minimal surfaces,
grid generation, fluid mechanics, combustion, image processing, computer vision, and etching,
deposition and lithography in the microfabrication of electronic components.

Contents

1 Introduction 4

I Level Set Formulations 4

2 Theory of Front Evolution 5

2.1 Fundamental Formulation . 6
2.2 Total Variation: Stability and the Growth of Oscillations 6
2.3 The Role of Entropy Conditions and Weak Solutions 8
2.4 Effects of Curvature: The Viscous Limit and the Link to Hyperbolic Conservation

Laws . 10

∗Supported in part by the Applied Mathematics Subprogram of the Office of Energy Research under DE-AC03-
76SF00098, and the National Science Foundation DARPA under grant DMS-8919074.

1

3 The Time-Dependent Level Set Formulation 12

3.1 Formulation . 12
3.2 Advantages . 13
3.3 Theoretical Aspects of the Level Set Formulation 14
3.4 Summary . 15

4 The Stationary Level Set Formulation 16

II Numerical Approximation 18

5 Traditional Techniques for Tracking Interfaces 18

6 A First Attempt at Constructing An Approximation to the Gradient 18

7 Schemes from Hyperbolic Conservation Laws 21

8 Approximating the Time-Dependent Level Set Equation 21

9 First and Second Order Schemes for Convex Speed Functions 23

10 First and Second Order Schemes for Non-Convex Speed Functions 25

11 Approximations to Curvature and Normals 26

12 Initialization and Boundary Conditions 26

III Extensions to the Basic Method 28

13 A Hierarchy of Fast Level Set Methods 28

13.1 Parallel Algorithms . 28
13.2 Adaptive Mesh Refinement . 28
13.3 Narrow Banding and Fast Methods . 30
13.4 Re-Initialization Techniques: Direct Evaluation, Iteration, Huygens Flowing . . . 31

13.4.1 Direct Evaluation . 31
13.4.2 Iteration . 31
13.4.3 Huygens Principle Flowing . 32

14 Additional Complexities 32

14.1 Masking and Sources . 32
14.2 Discontinuous Speed Functions and Sub-grid Resolution 33
14.3 Multiple Interfaces . 34
14.4 Triple Points . 37
14.5 Building Extension Velocity Fields . 37

IV Approximating the Stationary Level Set Formulation: A
New Fast Marching Level Set Method 39

15 A fast marching level set method 39

15.1 Proof that the algorithm constructs a viable solution 41
15.2 Finding the smallest value . 42

16 Other Speed Functions: When does this method work? 43

17 Some Clarifying Comments 43

2

V Applications 45

18 Geometry 45

18.1 Curvature Flow . 45
18.2 Grid Generation . 48
18.3 Image Enhancement and Noise Removal . 50

18.3.1 The Min/Max Flow . 51
18.3.2 Extension of Min/Max Scheme to Grey-Scale, Texture, and Color Images 53
18.3.3 Results . 54

19 Combustion, Crystal Growth, and Two-Fluid Flow 55

19.1 Turbulent Combustion of Flames and Vorticity, Exothermicity, Flame Stretch
and Wrinkling . 56

19.2 Crystal Growth and Dendritic Solidification . 57

20 Two-Phase Flow 59

21 Constrained Problems: Minimal Surfaces and Shape Recovery 60

21.1 Minimal Surfaces . 60
21.2 Shape Detection/Recovery . 61

22 Applications of the Fast Marching Level Set Method 64

22.1 Shape-from-shading . 64
22.2 Photolithography Development . 65

23 A Final Example: Etching and Deposition in the Microfabrication of Semi-

conductor Devices 67

23.1 Background . 67
23.2 Results . 68

23.2.1 Etching/Deposition . 68
23.2.2 Ion-Milling: Non-convex Sputter Laws . 68
23.2.3 Discontinuous Etch Rates . 69
23.2.4 Simultaneous Etching and Deposition . 71

23.3 Three-Dimensional Simulations . 71

24 Other Work 71

3

1 Introduction

Propagating interfaces occur in a wide variety of settings. As physical entities, they
include ocean waves, burning flames, and material boundaries. Less obvious boundaries
are equally important, and include shapes against backgrounds, hand-written characters,
and iso-intensity contours in images.

The goal of this paper is to describe some recent work on level set methods which
attempts to unify these problems and provide a general framework for modeling the
evolution of boundaries. Our aim is to review a collection of state-of-the-art details of
computational techniques for tracking moving interfaces, and to give some sense of the
flavor and breadth of applications.

Level set methods are numerical techniques which offer remarkably powerful tools for
understanding, analyzing, and computing interface motion in a host of settings. At their
core, they rely on a fundamental shift in how one views moving boundaries; rethinking
the Lagrangian geometric perspective and exchanging it for an Eulerian, initial value
partial differential equation perspective. Five clear advantages result from this new view
of propagating interfaces:

• First, from a theoretical/mathematical point of view, the real complexities of front
motion are illuminated, in particular, the role of singularities, weak solutions, shock
formation, entropy conditions and topological change in the evolving interface.

• Second, from a numerical perspective, natural and accurate ways of computing del-
icate quantities emerge, including the ability to build high order advection schemes,
compute local curvature in two and three dimensions, track sharp corners and cusps,
and handle subtle topological changes of merger and breakage.

• Third, from an implementation point of view, since the approach is based on an
initial value partial differential equation, robust schemes result from numerical pa-
rameters set at the beginning of the computation. The error is thus controlled
by

1. The order of the numerical method,

2. The grid spacing ∆h,

3. The time step ∆t.

• Fourth, computational adaptivity, both in meshing and in computational labor, is
possible, as is a clear path to parallelism.

• Fifth, in the case of monotonically advancing fronts under certain speed laws, in
this paper we introduce exceptionally fast methods based on merging narrow band
techniques and sorting algorithms.

In this paper, we survey an illustrative subset of past and current applications of level
set methods. By no means is this an exhaustive review. A large body of work has been
reluctantly skipped in the effort to keep this paper of reasonable length. The interested
reader is referred to the many references references will be given throughout the text.

4

Part I

Level Set Formulations

2 Theory of Front Evolution

Consider a boundary, either a curve in two dimensions or a surface in three dimensions,
separating one region from another. Imagine that this curve/surface moves in its normal
direction with a known speed function F . Our goal is to track the motion of this interface
as it evolves. We are only concerned with the motion of the interface in its normal
direction; throughout, we shall ignore tangential motions of the interface.

Inside

Outside Outside

-F = F (L, FB, I)

���

@@I

@@R
��	

Figure 1: Curve Propagating With Speed F in Normal Direction

The speed function F can be thought of as depending on three types of arguments,
namely

F = F (L,G, I), (1)

where

• L= Local Properties of the front, are those determined by local geometric informa-
tion, such as curvature and normal direction,

• G= Global Properties of the front, such as integrals along the front and associated
differential equations, are those whose solution depend on the shape and position
of the front. For example, suppose the interface is a source of heat which affects
diffusion on either side of the interface which in turn influences the motion of the
interface. This would be characterized as global argument.

• I: Independent Properties, are those which are independent of the shape of the front,
such as an underlying fluid velocity which passively transports the front.

Much of the challenge in interface problems comes from producing an adequate model
for the speed function F ; this is a separate issue independent of the goal of an accurate
scheme for advancing the interface based on the model for F . In this section, we assume
that the speed function F is known. In Part IV, we discuss the development of models
for a collection of applications.

Our first goal is to develop the necessary theory to understand the interplay between
the speed function F and the shape of the interface. For ease of discussion, we now turn
to the simplest case of a closed curve propagating in the plane.

5

2.1 Fundamental Formulation

Let γ be a smooth, closed initial curve in R2, and let γ(t) be the one–parameter family
of curves generated by moving γ = γ(t = 0) along its normal vector field with speed
F . Here, F is the given scalar function. Thus, we have that ~n · ~xt = F , where ~x is the
position vector of the curve, t is time, and ~n is the unit normal to the curve.

As a first attempt, a natural approach is to consider a parameterized description of the
motion. We further restrict ourselves and imagine that the speed function F depends only
on the local curvature κ of the curve, that is, F = F (κ). Thus, we let the position vector
~x(s, t) parameterize γ at time t. Here, 0 ≤ s ≤ S, and we assume periodic boundary
conditions ~x(0, t) = ~x(S, t). The curve is parameterized so that the interior is on the left
in the direction of increasing s (see Fig.2). Let ~n(s, t) be the parameterization of the
outward normal and κ(s, t) be the parameterization of the curvature. The equations of
motion can then be written in terms of individual components ~x = (x, y) as

xt = F [
yssxs − xssys

(x2
s + y2

s)3/2
] (

ys

(x2
s + y2

s)1/2
) yt = −F [

yssxs − xssys

(x2
s + y2

s)3/2
] (

xs

(x2
s + y2

s)1/2
),

(2)
where we have used the parameterized expression for the curvature κ = yssxs−xssys

(x2
s+y2

s)3/2

inside the speed function F (κ). This is a ”Lagrangian” representation because the range
of (x(s, t), y(s, t)) describes the moving front.

-(∂x
∂t
, ∂y

∂t
) = F ~n

• x(s,t=0),y(s,t=0)

@@I
~n

@@R~n
��	

s

Figure 2: Parameterized View of Propagating Curve

2.2 Total Variation: Stability and the Growth of Oscillations

What happens to oscillations in the initial curve as it moves? We summarize the argu-
ment in [106] showing that the decay of oscillations depends only on the sign of Fκ at
κ = 0. The metric g(s, t), which measures the “stretch” of the parameterization, is given
by g(s, t) = (x2

s + y2
s)1/2. Define the total oscillation (also known as the total variation)

in the front

V ar(t) =

∫ S

0

|κ(s, t)|g(s, t)ds. (3)

This measures the amount of “wrinkling”. Our goal is to find out if this wrinkling
increases or decreases as the front evolves (see Figure 3).

6

Differentiation of both the curvature and the metric with respect to time, together
with substitution from Eqn. 2 produces the corresponding evolution equations for the
metric and curvature, namely

κt = −g−1(Fsg
−1)s − κ2F (4)

gt = gκF (5)

(Here, g−1 is 1/g, not the inverse). Now, suppose we have a non-convex initial curve
moving with speed F (κ), and suppose the moving curve stays smooth. By evaluating
the time change of the total variation in the solution, we have the following (see [106]):

Original Curve Decrease in V ariation Increase in V ariation

Figure 3: Change in Variation

THEOREM
Consider a front moving along its normal vector field with speed F (κ), as in Eqn.

2. Assume that the initial curve γ(0) is smooth and non-convex, so that κ(s, 0) changes
sign. Assume that F is twice differentiable, and that κ(s, t) is twice differentiable for
0 ≤ s ≤ S and 0 ≤ t ≤ T . Then, for 0 ≤ t ≤ T ,

• if Fκ ≤ 0 (Fκ ≥ 0) wherever κ = 0, then

dV ar(t)

dt
≤ 0 (

dV ar(t)

dt
≥ 0); (6)

• if Fκ < 0 (Fκ > 0) and κs 6= 0 wherever κ = 0, then

dV ar(t)

dt
< 0 (

dV ar(t)

dt
> 0). (7)

Remarks:
The theorem states that if Fκ < 0 wherever κ = 0, then the total variation decreases as

the front moves and the front “smooths out”, that is, the energy of the front dissipates.
The front is assumed to remain smooth in the interval 0 ≤ t ≤ T (the curvature is
assumed to be twice differentiable). (In the next section, we discuss what happens if the
front ceases to be smooth and develops a corner.) In the special case that γ(t) is convex

for all t, Proposition 1 is trivial, since V ar(t) =
∫ S

0
κgds = 2π. The proof may be found

in [106].

7

Swallowtail(F = 1.0) Entropy Solution(F = 1.0)
F ig.4a F ig.4b

Figure 4: Cosine Curve Propagating with Unit Speed

Two important cases can be easily checked. A speed function F (κ) = 1 − ǫκ for ǫ
positive has derivative Fκ = −ǫ, and hence the total variation decays. Conversely, a
speed function of the form F (κ) = 1 + ǫκ yields a positive speed derivative, and hence
oscillations grow. We shall see that the sign of the curvature term in this case corresponds
to the backwards heat equation, and hence must be unstable.

2.3 The Role of Entropy Conditions and Weak Solutions

The above theorem assumes that the front stays smooth and differentiable. In many
cases of evolving fronts, differentiability is soon lost. For example, consider the periodic
initial cosine curve

γ(0) = (−s, [1 + cos 2πs]/2) (8)

propagating with speed F (κ) = 1. The exact solution to this problem at time t may be
easily constructed by advancing each point of the front in its normal direction a distance
t. In fact, in terms of our parameterization of the front, the solution is given by

x(s, t) =
ys(s, t = 0)

(x2
s(s, t = 0) + y2

s(s, t = 0))1/2
t+ x(s, t = 0), (9)

y(s, t) = − xs(s, t = 0)

(x2
s(s, t = 0) + y2

s(s, t = 0))1/2
t+ y(s, t = 0). (10)

In Figure 4, the solution is given for this propagating cosine curve.
It is clear that the front develops a sharp corner, known as a shock, in finite time;

however, once this corner develops, it is not at all clear how to construct the normal at
the corner and continue the evolution, since the derivative is not defined there. Thus,
beyond the formation of the discontinuity in the derivative, we need a weak solution,
so-called because the solution weakly satisfies the definition of differentiability

How shall we continue the solution beyond the formation of the singularity in the
curvature corresponding to the corner in the front? The correct answer depends on the
nature of the interface under discussion. If we regard the interface as a geometric curve
evolving under the prescribed speed function, then one possible weak solution is the
“swallowtail” solution formed by letting the front pass through itself; this is the solution
shown in Figure 4a. We note that this solution is in fact the one given by Eqns. 9, 10;

8

Shock Rarefaction Fan
F ig.5a F ig.5b

Figure 5: Front Propagating with Unit Normal Speed

the lack of differentiability at the center point does not destroy the solution, since we
have written the solution in terms of the initial data.

However, if we regard the moving curve as an interface separating two regions, the
front at time t should consist of only the set of all points located a distance t from the
initial curve. (This is known as the Huygens principle construction, see [106]). Roughly
speaking, we want to remove the “tail” from the “swallowtail”. In Figure 4b, we show
this alternate weak solution. Another way to characterize this weak solution is through
the following “entropy condition” posed by Sethian (see [106, 105]): If the front is viewed
as a burning flame, then once a particle is burnt it stays burnt. Careful adherence to this
stipulation produces the Huygens principle construction.

What does this “entropy condition” have to do with the notion of “entropy”? An
intuitive answer is that an entropy condition stipulates that no new information can be
created during the evolution of the problem. Once an entropy condition is invoked, some
information about the initial data is lost. Indeed, our entropy condition says that once
a particle is burnt, it stays burnt, that is, once a corner has developed, the solution is
no longer reversible. The problem cannot be run “backwards” in time; if we try to do
so, we will not retrieve the initial data. Thus, some information about the solution is
forever lost.

As further illustration, we consider the case of a V-shaped front propagating normal
to itself with unit speed (F = 1). In Figure 5a, the point of the front is downwards; as
the front moves inwards with unit speed, a shock develops as the front pinches off, and
an entropy condition is required to select the correct solution to stop the solution from
being multiple-valued. Conversely, in Figure 5b, the point of the front is upwards; in this
case the unit normal speed results in a circular fan which connects the left state with
slope +1 to the right state which has slope −1.

It is important to summarize a key point in the above discussion. Our choice of weak
solution given by our entropy condition rests on the perspective that the front separates
two regions, and the assumption that we are interested in tracking the progress of one
region into the other.

9

F = 1.− 0.25κ F = 1.− ǫκ Entropy Solution(F = 1.0)
F ig.6a. F ig.6b

Figure 6: Entropy-Solution is the Limit of Viscous Solution

2.4 Effects of Curvature: The Viscous Limit and the Link to
Hyperbolic Conservation Laws

Consider now a speed function of the form F = 1 − ǫκ, where ǫ is a constant. The
modifying effects of curvature on the former constant speed law are profound, and in
fact pave the way towards constructing accurate numerical schemes which adhere to the
correct entropy condition.

Following [106], the curvature evolution equation given by Eqn. 4 can be rewritten
in terms of arclength, namely

κt = ǫκαα + ǫκ3 − κ2, (11)

where the second derivative of the curvature κ is taken with respect to arclength α. This
is a reaction-diffusion equation; the drive toward singularities due to the reaction term
(ǫκ3−κ2) is balanced by the smoothing effect of the diffusion term (ǫκαα). Indeed, with
ǫ = 0, we have a pure reaction equation κt = −κ2, and the developing corner can be seen
in the exact solution κ(s, t) = κ(s, 0)/(1 + tκ(s, 0)), which is singular in finite t if the
initial curvature is anywhere negative. Thus, as shown, corners can form in the moving
curve when ǫ = 0.

Consider again the cosine front given in Eqn. 8 and the speed function F (κ) = 1−ǫκ,
ǫ > 0. As the front moves, the troughs at s = n+ 1/2, n = 0,±1,±2, are sharpened
by the negative reaction term (because κ < 0 at such points) and smoothed by the
positive diffusion term (see Figure 6a). For ǫ > 0, it can be shown (see [106, 88]) that
the moving front stays C∞. The entropy-satisfying solution to this problem when F = 1
from Figure 4b is shown in Figure 6b.

The central observation, given in [106] and key to the level set approach, is the
following link:

Consider the above propagating cosine curve and the two solutions:

• Xǫ
curvature(t), obtained by evolving the initial front with Fǫ = 1− ǫκ,

• Xconstant(t), obtained with speed function F = 1 and the entropy condition,

Then, at any time T ,
lim
ǫ→0

Xǫ
curvature(T) = Xconstant(T). (12)

10

x

ψ ← ψ(x, t+ ∆t)

← ψ(x, t)

HH
@

@
@HHH ����

�
�

��

HH
@

@
@HHH ����

�
�

��

@@I

-

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�6
V

@
@I
F -

1

6ψx

Figure 7: Variables For Propagating Graph

Thus, the limit of motion with curvature, known as the ”viscous limit”, is the entropy
solution for the constant speed case, see [106].

Why is this known as the ”viscous limit”, or, more accurately, what does this have to
do with viscosity? In order to see why viscosity is an appropriate name, we turn to the
link between propagating fronts and hyperbolic conservation laws; for details, see [106].

An equation of the form
ut + [G(u)]x = 0 (13)

is known as a hyperbolic conservation law. A simple example is Burger’s equation, given
by

ut + uux = 0 (14)

which describes the motion of a compressible fluid in one-dimension. The solution to
this equation can develop discontinuities, known as ”shocks”, where the fluid undergoes
a sudden expansion or compression. These shocks (for example, a sonic boom) can arise
from arbitrarily smooth initial data; they are a function of the equation itself. However, if
one includes the effects of fluid viscosity, the equation includes a right-hand-side, namely

ut + uux = ǫuxx. (15)

This second derivative on the right-hand-side acts like a smoothing term and stops the
development of such shocks; it can be shown that the solutions must remain smooth for
all time.

What does this have to do with our propagating front equation? Consider the initial
front given by the graph of f(x), with f periodic on [0, 1], and suppose that the prop-
agating front remains a function for all time. Let ψ be the height of the propagating
function at time t, thus ψ(x, 0) = f(x). The tangent at (x, ψ) is (1, ψx). Referring to
Figure 7, the change in height V in a unit time is related to the speed F in the normal
direction by

V

F
=

(1 + ψ2
x)1/2

1
, (16)

11

and thus the equation of motion becomes

ψt = F (1 + ψ2
x)1/2. (17)

Using the speed function F (κ) = 1− ǫκ and the formula κ = −ψxx/(1 + ψ2
x)3/2, we get

ψt − (1 + ψ2
x)1/2 = ǫ

ψxx

1 + ψ2
x

. (18)

We first note that this is a partial differential equation with a first order time and
space derivative on the left hand side, and a parabolic second-order term on the right.
Differentiating both sides of this equation yields an evolution equation for the slope
u = dψ/dx of the propagating front, namely

ut + [−(1 + u2)1/2]x = ǫ[
ux

1 + u2
]x. (19)

Thus, as shown in [113], the derivative of our equation with parabolic right-hand-
side for the changing height ψ looks like a viscous hyperbolic conservation law with
G(u) = (1 +u2)1/2 for the propagating slope u (see [113]). Hyperbolic conservation laws
of the above form have a long history, in fact, our entropy condition is equivalent to the
one for propagating shocks in hyperbolic conservation laws (see [106]). Our goal will be to
exploit the theory and technology of numerical solutions of hyperbolic conservation laws
to devise accurate numerical schemes to solve the equation of motion for propagating
fronts.

Before doing so, however, we have a technical problem. The equation of motion given
by Eqn. 17 only refers to fronts which remain the graph of a function as they move. The
above ideas must be extended to include propagating fronts which are not easily written
as functions. This is the time-dependent level set idea introduced by Osher and Sethian
[88].

3 The Time-Dependent Level Set Formulation

3.1 Formulation

Given a closed N − 1 dimensional hypersurface Γ(t), we now produce an Eulerian for-
mulation for the motion of the hypersurface propagating along its normal direction with
speed F , where F can be a function of various arguments, including the curvature, normal
direction, etc. The main idea of the level set methodology is to embed this propagating
interface as the zero level set of a higher dimensional function φ. Let φ(x, t = 0), where
x is a point in RN , be defined by

φ(x, t = 0) = ±d, (20)

where d is the distance from x to Γ(t = 0), and the plus (minus) sign is chosen if the
point x is outside (inside) the initial hypersurface Γ(t = 0). Thus, we have an initial
function φ(x, t = 0) : RN → R with the property that

Γ(t = 0) = (x|φ(x, t = 0) = 0) . (21)

Our goal is to produce an equation for the evolving function φ(x, t) which contains the
embedded motion of Γ(t) as the level set φ = 0. Let x(t) be the path of a point on
the propagating front. That is, x(t = 0) is a point on the initial front Γ(t = 0), and
xt · n = F (x(t)) where n is the normal to the front at x(t). Since we want the zero level

12

x

y

x

y

x

y

x

y

γ

γ(0)

(t)

γ

γ

(0) = Level

 Set

(t) = Level

 Set

φ = 0

φ = 0

φ =

φ =

C

z =

z =

φ

φ

(x,y,t=0)

(x,y,t)

C

(a) (b)

(c) (d)

Figure 8: Propagating Circle

set of the evolving function φ to always match the propagating hypersurface, we must
have

φ(x(t), t) = 0. (22)

By the chain rule,
φt +∇φ(x(t), t) · x′(t) = 0. (23)

Since n = ∇φ/|∇φ|, we have the evolution equation for φ, namely

φt + F |∇φ|= 0 (24)

φ(x, t = 0) given. (25)

This is our time-dependent level set equation. For certain forms of the speed function
F , we obtain a standard Hamilton-Jacobi equation.

In Figure 8 (taken from [108]), we show the outward propagation of an initial curve
and the accompanying motion of the level set function φ.

In Figure 8a, we show the initial circle, and in Figure 8c, we show the circle at a
later time. In Figure 8b, we show the initial position of the level set function φ, and
in Figure 8d, we show this function at a later time. We refer to this as an Eulerian
formulation because the underlying coordinate system remains fixed.

3.2 Advantages

There are four major advantages to this Eulerian level set formulation.

1. First, the evolving function φ(x, t) always remains a function as long as F is smooth.
However, the level surface φ = 0, and hence the propagating hypersurface Γ(t), may
change topology, break, merge, and form sharp corners as the function φ evolves
(see [88]).

13

2. The second major advantage of this Eulerian formulation concerns numerical ap-
proximation. Because φ(x, t) remains a function as it evolves, we may use a discrete
grid in the domain of x and substitute finite difference approximations for the spa-
tial and temporal derivatives. For example, using a uniform mesh of spacing h, with
grid nodes (i, j), and employing the standard notation that φn

ij is the approximation
to the solution φ(ih, jh, n∆t), where ∆t is the time step, we might write

φn+1
ij − φn

ij

∆t
+ (F)(∇ijφ

n
ij) = 0 (26)

Here, we have used forward differences in time, and let ∇ijφ
n
ij be some appropriate

finite difference operator for the spatial derivative. Thus, an explicit finite difference
approach is possible.

3. The third major advantage of the above formulation is that intrinsic geometric
properties of the front may be easily determined from the level set function φ. For
example, at any point of the front, the normal vector is given by

~n =
∇φ
|∇φ|, (27)

and the curvature of each level set is easily obtained from the divergence of the
gradient of the unit normal vector to the front, i.e.,

κ = ∇ · ∇φ|∇φ| =
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)3/2
. (28)

4. Finally, the fourth major advantage of the above level set approach is that there
are no significant changes required to follow fronts in three dimensions. By simply
extending the array structures and gradient operators, propagating surfaces are
easily handled.

As an example of the application of level set methods, consider once again the problem
of a front propagating with speed F (κ) = 1 − ǫκ. In Figure 9, we show two cases of a
propagating initial triple sine curve. For ǫ small (Fig. 9a), the troughs sharpen up and
result in transverse lines that come too close together. For ǫ large (Fig. 9b), parts of
the boundary with high values of positive curvature can initially move downwards, and
concave parts of the front can move quickly upwards.

3.3 Theoretical Aspects of the Level Set Formulation

Numerical techniques for approximating moving fronts have been the focus of much effort
in computational physics. At the same time, the theoretical analysis of moving curves
and surfaces has been a subject of considerable importance in its own right. The work
of Gage [48], Gage and Hamilton [49], and Grayson [52], discussed later provided some
groundbreaking analysis of flow of curves under the curvature, and the seminal result
that a closed curve shrinking under its curvature collapses smoothly to a point.

Along a very different approach, Brakke [15] applied varifold theory to the problem
of a hypersurface moving under its curvature, and in doing so provided a wide-ranging

14

F = 1.− 0.025κ F = 1.− 0.25κ
F ig.9a. F ig.9b

Figure 9: Propagating Triple Sine Curve.

perspective for these problems. His was a general approach, and included problems in
which the results were not necessarily smooth. His analysis provided a detailed look at
surface curvature evolution problems.

There has been considerable theoretical analysis of the level set approach, its formu-
lation, and its relation to other perspectives on front propagation. The model posed
in [105], which considered flame propagation as a function of curvature, and introduced
an entropy condition for evolving fronts, served as the basis for theoretical analysis by
Barles [8]. The full level set methodology of [88] provides a view of surface evolution
different from the one provided in the work of Gage, Grayson, and Brakke. First, the
embedding of the front as a higher dimensional function naturally accounts for some of
the issues of topological change and corner formation. Second, and more importantly,
the transformation of a geometry problem into an initial value partial differential equa-
tion means that available technology, including regularity of solutions, viscous solutions
of Hamilton-Jacobi equations, and questions of existence and uniqueness, can be applied
in this geometrical setting.

Using the above level set approach, Evans and Spruck [41, 42, 43, 44], and Chen,
Giga, Goto and Ishii [26, 50, 51] performed detailed analysis of curvature flow in a series
of papers. They exploited much of the work on viscosity solutions of partial differential
equations developed over the past 15 years (see [71]), which itself was inspired by the
corresponding work applied to hyperbolic conservation laws. These papers examined the
regularity of curvature flow equations, pathological cases, and the link between the level
set perspective and the varifold approach of Brakke. These papers opened up a series of
investigations into further issues; we also refer the interested reader to [59, 60, 40].

3.4 Summary

The discussion in Part I may be summarized as follows:

1. A front propagating at a constant speed can form corners as it evolves; at such
points, the front is no longer differentiable and a weak solution must be constructed
to continue the solution.

15

2. The correct weak solution, motivated by viewing the front as an evolving interface
separating two regions, comes by means of an entropy condition.

3. A front propagating at a speed which depends on its curvature does not form cor-
ners and stays smooth for all time. Furthermore, the limit of this motion as the
dependence on curvature vanishes is the entropy-satisfying solution obtained for the
constant speed case.

4. If the propagating front remains a graph as it moves, there is a direct link between
the equation of motion and one-dimensional hyperbolic conservation laws. The role
of curvature in a propagating front is analogous to the role of viscosity in equations
of viscous compressible fluid flow.

5. By embedding the motion of a curve as the zero level set of a higher dimensional
function, an initial value partial differential equation can be obtained which extends
the above to include arbitrary curves and surfaces moving in two and three space
dimensions.

4 The Stationary Level Set Formulation

In the above level set equation
φt + F |∇φ|= 0 (29)

the position of the front is given by the zero level set of φ at a time t. Suppose we
now restrict ourselves to the particular case of a front propagating with a speed F that
is either always positive or always negative. In this case, we can convert our level set
formulation from a time-dependent partial differential equation to a stationary one in
which time has disappeared. We now describe a stationary level set formulation, which
is common in control theory.

To explain this transformation, imagine the two-dimensional case in which the inter-
face is a propagating curve, and suppose we graph the evolving zero level set above the
xy plane. That is, let T (x, y) be the time at which the curve crosses the point (x, y).
The surface T (x, y) then satisfies the equation

|∇T |F = 1. (30)

Eqn. 30 simply says that the gradient of arrival time surface is inversely proportional
to the speed of the front. This is a Hamilton-Jacobi equation, and the recasting of the
a front motion problem into a stationary one is common in a variety of applications,
see [45, 46]. In the case where the speed function F depends only on position, we get
the well-known Eikonal equation. The requirement that the speed function always be
positive1 is so that the crossing time surface T (x, y) is single-valued.

To summarize,

• In the time-dependent level set equation, the position of the front Γ at time t is
given by the zero level set of φ at time t, that is Γ(t) = {(x, y)|φ(x, t) = 0}.

1or conversely, always negative

16

• In the stationary level set equation, the position of the front Γ is given by the level
set of value t of the function T (x, y), that is Γ(t) = {(x, y)|T (x, y) = t}.

That is, we wish to solve

Time-Dependent Formulation Stationary Formulation

φt + F |∇φ| = 0 |∇T |F = 1
Front= Γ(t) = {(x, y)|φ(x, t) = 0} Front= Γ(t) = {(x, y)|T (x, y) = t}

Applies for arbitrary F Requires F > 0

(31)

In both cases, we require an “entropy-satisfying” approximation to the gradient term.
In this next section, we discuss appropriate approximations for this term, leading to
schemes for both the time-dependent and stationary level set formulations. Our goal
now is to turn to issue of numerical approximations, and to develop the necessary theory
and numerics to accurately approximate the level set initial value partial differential
equation.

17

Part II

Numerical Approximation

5 Traditional Techniques for Tracking Interfaces

Before discussing the numerical approximation of these level set equations, it is instruc-
tive to review briefly more traditional techniques for computing the motion of interfaces.

• Marker/String Methods: In these methods, a discrete parametrized version of the
interface boundary is used. In two dimensions, marker particles are used; in three
dimensions, a nodal triangularization of the interface is often developed. The po-
sitions of the nodes are then updated by determining front information about the
normals and curvature from the marker representation. Such representations can
be quite accurate, however, limitations exist for complex motions. To begin, if cor-
ners and cusps develop in the evolving front, markers usually form “swallowtail”
solutions which must be removed through delooping techniques which attempt to
enforce an entropy condition inherent in such motion (see [106]). Second, topo-
logical changes are difficult to handle; when regions merge, some markers must be
removed. Third, significant instabilities in the front can result, since the underlying
marker particle motions represent a weakly ill-posed initial value problem (see [88]).
Finally, extensions of such methods to three dimensions require additional work.

• Cell-Based Methods: In these methods, introduced by Noh and Woodward [85],
the computational domain is divided into a set of cells which contain “volume
fractions”. These volume fractions are numbers between 0 and 1, and represent
the fraction of each cell containing the physical material. At any time, the front
can be reconstructed from these volume fractions. Since their introduction, many
elaborate reconstruction techniques have been developed over the years to include
pitched slopes and curved surfaces, see [30, 57, 93]. The accompanying accuracy
depends on the sophistication of the reconstruction and the so-called “advection
sweeps”. Some of the most elaborate and accurate versions of these schemes to
date are due to Puckett, see [93]. Advantages of such techniques include the ability
to easily handle topological changes, design adaptive mesh methods, and extend the
results to three dimensions. However, determination of geometric quantities such
as normals and curvature can be inaccurate.

• Characteristic Methods: In these methods, “ray-trace”-like techniques are used.
The characteristic equations for the propagating interface are used, and the entropy
condition at forming corners (see [106]) is formally enforced by constructing the
envelope of the evolving characteristics. Such methods handle the looping prob-
lems more naturally, but may be complex in three-dimensions and require adaptive
adding and removing rays, which can cause instabilities and/or oversmoothing.

6 A First Attempt at Constructing An Approxima-

tion to the Gradient

We now turn to our time-dependent level set equation itself, and attempt to construct a
numerical method.

18

Recall that our goal is to solve the equation given in Eqn. 24 by

φt + F |∇φ|= 0, (32)

φ(x, t = 0) given. (33)

The marker particle method discretizes the front. The volume-of-fluid (VOF) method
divides the domain space into cells which contain fractions of material. The level set
method divides the domain up into grid points which discretize the values of the level
set function φ. Thus, the grid values give the height of a surface above the domain, and
if we slice this surface by the xy plane, we extract the zero level set corresponding to the
front.

Another way to look at this is to say that each grid point contains the value of the
level set function at that point. Thus, there is an entire family of contours, only one of
which is the zero level set (see Figure 10). Rather than move each of the contours in a
Lagrangian fashion, we stand at each grid point and update its value to correspond to
the motion of the surface, thus producing a new contour value at that grid point.

Figure 10: Dark Line is Zero Level Set Corresponding to Front

What is the right way to approximate this equation? We shall investigate the most
straightforward numerical approach we can think of by studying the simpler case of an
evolving curve whose position can always be described as the graph of a function. The
equation for this case was given in Eqn. 17 as shown in Figure 7, namely

ψt = F (1 + ψ2
x)1/2. (34)

Perhaps the most straightforward way of creating an algorithm to approximate the
solution to this equation is to replace all spatial derivatives with central differences and
the time derivative with a forward difference, just as we did in in the Lagrangian case.

19

However, it is easy to see that such an algorithm may not work. Let F (κ) = 1 and
consider the initial value problem

ψt = (1 + ψ2
x)1/2, (35)

ψ(x, 0) = f(x) =

{

1/2− x x ≤ 1/2
x− 1/2 x > 1/2

}

. (36)

The initial front is a “V” formed by rays meeting at (1/2, 0). By our entropy condition,
the solution at any time t is the set of all points located a distance t from the initial “V”.
To construct a numerical scheme, divide the interval [0, 1] into 2M − 1 points, and form
the central difference approximation to the spatial derivative ψx in Eqn. 35, namely

ψn+1
i − ψn

i

∆t
= [1 + [

ψn
i+1 − ψn

i−1

2∆x
]2]1/2 (37)

Since xM = 1/2, by symmetry, ψM+1 = ψM−1, thus ψt(1/2, 0) = 1. However, for
all x 6= 1/2, ψt is correctly calculated to be

√
2, since the graph is linear on either side

of the corner and thus the central difference approximation is exact. Note that this has
nothing to do with the size of the space step ∆x or the time step ∆t. No matter how
small we take the numerical parameters, as long as we use an odd number of points, the
approximation to ψt at x = 1/2 gets no better. It is simply due to the way in which the
derivative ψx is approximated. In Figure 11, we show results using this scheme, with the
time derivative ψt replaced by a forward difference scheme.

Exact Solution Central Differences ∆t = .005 Central Differences ∆t = .0005

Figure 11: Central Difference Approximation to Level Set Equation

It is easy to see what has gone wrong. In the exact solution, ψt =
√

2 for all x 6= 1/2.
This should also hold at x = 1/2 where the slope is not defined; the Huygens construction
sets ψt(x = 1/2, t) equal to limx→1/2 ψt. Unfortunately, the central difference approxi-
mation chooses a different (and, for our purpose, wrong) limiting solution. It sets the
undefined slope ψx equal to the average of the left and right slopes. As the calculation
progresses, this miscalculation of the slope propagates outwards from the spike as wild
oscillations. Eventually, these oscillations cause blowup in the solution.

It is clear that some more care must be taken in formulating an algorithm. What
we require are schemes that approximate the gradient term |∇φ| in a way that correctly
accounts for the entropy condition. This is the topic of the next section.

20

7 Schemes from Hyperbolic Conservation Laws

Our schemes are linked to those from hyperbolic conservation laws. As motivation,
consider the single scalar hyperbolic conservation law

ut + [G(u)]x = 0. (38)

It is well-known that discontinuities known as shocks can develop in the solution, even
with smooth initial data, see [68, 70]. These discontinuities occur because of the colli-
sion of characteristics, and an appropriate weak solution must be constructed to carry
the solution beyond the collision time. The correct “entropy-solution” is obtained by
considering the limit of the associated viscous conservation laws ut + [G(u)]x = ǫuxx as
the viscous coefficient ǫ goes to zero.

From a numerical point of view, the equation can be approximated through the con-
struction of appropriate numerical fluxes g such that

un+1
i − un

i

∆t
= −g(u

n
i , u

n
i+1)− g(un

i−1, u
n
i)

∆x
. (39)

where we require that g(u, u) = G(u). A wide collection of numerical flux functions are
available, such as the Lax-Friedrichs flux, Godunox flux, and TVD schemes, see [34, 70].
The goal in the construction of such flux functions is to make sure that the conservation
form of the equation is preserved, make sure the entropy condition is satisfied, and try to
give smooth (highly accurate) solutions away from the discontinuities. One of the most
straightforward approximate numerical fluxes is the Engquist-Osher scheme [39], which
is given by

gEO(u1, u2) = G(u1) +

∫ u2

u1

min(
dG

du
, 0)du. (40)

For the Burger’s equation in which G(u) = u2, we have the particularly compact repre-
sentation of this flux function as

gEO(u1, u2) = (max(u1, 0)2 + min(u2, 0)2) (41)

This flux function will serve as our core technique for approximating the level set equa-
tion.

8 Approximating the Time-Dependent Level Set Equa-

tion

In this section, we develop schemes for the level set equation

φt + F |∇φ|= 0. (42)

We begin by writing this equation with a general Hamiltonian H as

φt +H(φx, φy, φz) = 0. (43)

where
H(u, v, w) =

√

u2 + v2 + w2. (44)

We begin with the one-dimensional version, that is, φt +H(φx) = 0, where H(u) =
√
u2.

21

• • •

• •
un+1

i •

uiui−1

- �
ui+1

�-◦ ◦

�
��

Gi−1/2

@
@I

Gi+1/2

g(ui−1, ui) g(ui, ui+1)

Figure 12: Update of u Through Numerical Flux Function

From the previous section, we have numerical flux functions for the conservation
equation ut + [G(u)]x = 0 which satisfy

un+1
i − un

i

∆t
= −g(u

n
i , u

n
i+1)− g(un

i−1, u
n
i)

∆x
. (45)

In terms of our computational grid shown in Fig.12a, the value of G at the point
(i− 1/2)∆x (called Gi−1/2) is approximated by the numerical flux function g as

Gi−1/2 = g(un
i−1, u

n
i). (46)

Similarly, at the point i+ 1/2, we have

Gi+1/2 = g(un
i , u

n
i+1). (47)

Then from Fig.12, we see that the right-hand-side of Eqn. 39 is just the central differ-
ence operator applied to the numerical flux function g. As the grid size goes to zero,
consistency requires that g(u, u) = G(u).

We are now all set to build a scheme for our level set equation. Let u = φx. Then we
can write

φt +H(u) = 0. (48)

In terms of our computational grid in Fig.13, in order to produce φn+1
i we need φn

i as
well as a value for H(un

i). Fortunately, an approximate value for H(un
i) is exactly what

is given by our numerical flux function, hence we have

H(u) ≈ g(ui−1/2, ui+1/2) (49)

All that remains is to construct values for u in the middle of our computational cells.
Since u = φx, we can use a central difference approximation in φ to construct those
values. Thus, (see Figure 13), we have

φn+1
i = φn

i −∆t g

(

φn
i − φn

i−1

∆x
,
φn

i+1 − φn
i

∆x

)

(50)

where g is one of the numerical flux functions, and again, we have substituted forward
and backward difference operators on φ for the values of u at the left and right states.

In the specific case of our one-dimensional level set equation with H(u) =
√
u2, we

can use the EO scheme given in the previous section and, for speed F = 1, write

φn+1
i = φn

i −∆t (max(D−x
i , 0)2 + min(D+x

i , 0)2)1/2 (51)

22

• • •

• •
φn+1

i •

φiφi−1 φi+1

- � �-◦ ◦
D−x

i φ D+x
i φ

g(D−x
i φ,D+x

i φ)

�� @I

6

Figure 13: Update of φ Through Numerical Hamiltonian

This is the level set scheme given in [88]. As long as the Hamiltonian is symmetric
in each of the space dimensions, the above can be replicated in each space variable to
construct schemes for two and three-dimensional front propagation problems.

In general then, we follow the following philosophy;

1. If the Hamiltonian ”H” is convex, then we use the variant on the Engquist-Osher
Scheme presented in [88] and described below.

2. If the Hamiltonian ”H” is non-convex, then we use a variant on the Lax-Friedrichs
scheme described below.

It is important to point out that far more sophisticated schemes exist than the ones
presented here. In the applications of these schemes to hyperbolic problems and shock
dynamics, high order resolution schemes are often necessary [34], because of the differ-
entiation of the numerical flux function g. However, in our case, because we are solving
φt + H(u) = 0 rather than ut + [H(u)]x, the differentiation is not required. Thus, we
have found that for almost all practical purposes, the first and second order schemes
presented below are adequate.

Before constructing the general schemes, let’s return to the example of the propagating
curve. Earlier, we attempted to follow the propagation of a simple corner moving with
speed F = 1. Our attempts to use a central difference approximation failed. In Figure 14,
we show what happens if we use the scheme given in Eqn. 51. The exact answer is shown,
together with two simulations. The first uses the entropy-satisfying scheme with only
20 points (Fig.14b), the second (Fig.14c) with 100 points. In the first approximation,
the entropy condition is satified, but the corner is somewhat smoothed due to the small
number of points used. In the more refined calculation, the corner remains sharp, and
the exact solution is very closely approximated.

9 First and Second Order Schemes for Convex Speed

Functions

Given a convex speed function F (that is, a speed function F such that the resulting
HamiltonianH = F |∇φ| is convex), we can produce the following schemes, first presented
in [88]. Start with the equation

φt +H(φx, φy, φz) = 0, (52)

and approximate it by

φn+1
i = φn

i −∆t g (
φn

ijk − φn
i−1,j,k

∆x
,
φn

i+1,j,k − φn
i,j,k

∆x
, (53)

23

Exact Solution Scheme with 20 Points Scheme with 100 Points
F ig.14a F ig.14b F ig.14c

Figure 14: Upwind, Entropy-Satisfying Approximations to the Level Set Equation

φn
ijk − φn

i,j−1,k

∆y
,
φn

i,j+1,k − φn
i,j,k

∆y
,

φn
ijk − φn

i,j,k−1

∆z
,
φn

i,j,k+1− φn
i,j,k

∆z
).

A multi-dimensional version of this scheme [88] is then given by

gEO(u1, u2, v1, v2, w1, w2) = [max(u1, 0)2 + min(u2, 0)2 + (54)

max(v1, 0)2 + min(v2, 0)2 +

max(w1, 0)2 + min(w2, 0)2]1/2.

Thus we have

1. First-Order Space Convex:

φn+1
ijk = φn

ijk −∆t[max(Fijk, 0)∇+ + min(Fijk, 0)∇−] (55)

where

∇+ = [max(D−x
ijk, 0)2 + min(D+x

ijk, 0)2 + (56)

max(D−y
ijk, 0)2 + min(D+y

ijk, 0)2 +

max(D−z
ijk, 0)2 + min(D+z

ijk, 0)2]1/2

∇− = [max(D+x
ijk, 0)2 + min(D−x

ijk, 0)2 + (57)

max(D+y
ijk, 0)2 + min(D−y

ijk, 0)2 +

max(D+z
ijk, 0)2 + min(D−z

ijk, 0)2]1/2.

Here, we have used a short-hand notation in which D+xφn
i is rewritten as D+x

i , etc.

2. Second-Order Space Convex:

In [88], the above schemes were extended to higher order, using technology from
[55]. The basic trick is to build a switch that turns itself off whenever a shock is
detected; otherwise, it will use a higher order polynomial approximation of minimal

24

oscillations. These details will not be presented; see [88] for details. The scheme is
the same as the above, however this time ∇+ and ∇− are given by

∇+ = [max(A, 0)2 + min(B, 0)2 + (58)

max(C, 0)2 + min(D, 0)2 +

max(E, 0)2 + min(F, 0)2]1/2

∇− = [max(B, 0)2 + min(A, 0)2 + (59)

max(D, 0)2 + min(C, 0)2 +

max(F, 0)2 + min(E, 0)2]1/2

where

A = D−x
ijk +

∆x

2
m(D−x−x

ijk , D+x−x
ijk)B = D+x

ijk −
∆x

2
m(D+x+x

ijk , D+x−x
ijk) (60)

C = D−y
ijk +

∆y

2
m(D−y−y

ijk , D+y−y
ijk)D = D+y

ijk −
∆y

2
m(D+y+y

ijk , D+y−y
ijk) (61)

E = D−z
ijk +

∆z

2
m(D−z−z

ijk , D+z−z
ijk)F = D+z

ijk −
∆z

2
m(D+z+z

ijk , D+z−z
ijk) (62)

and the switch function is given by

m(x, y) =







{

x if |x| ≤ |y|
y if |x| > |y|

}

xy ≥ 0

0 xy < 0







(63)

10 First and Second Order Schemes for Non-Convex
Speed Functions

Given a non-convex speed function F (that is, a speed function F such that the resulting
Hamiltonian H = F |∇φ| is non-convex), we can follow the work in [89], obtained by re-
placing the Hamiltonian F |∇φ| with the Lax-Friedrichs numerical flux function produces
the following schemes:

1. First-Order Space Non-Convex:

φn+1
ijk = φn

ijk −∆t[H(
D−x

ijk +D+x
ijk

2
,
D−y

ijk +D+y
ijk

2
,
D−z

ijk +D+z
ijk

2
) (64)

−1

2
αu(D+x

ijk −D−x
ijk)− 1

2
αv(D

+y
ijk −D

−y
ijk)− 1

2
αw(D+z

ijk −D−z
ijk)]

where αu (αv, αw) is a bound on the partial derivative of the Hamiltonian with
respect to the first (second, third) argument, and the non-convex Hamiltonian is a
user-defined input function.

2. Second-Order Space Non-Convex:

φn+1
ijk = φn

ijk −∆t[H(
A+B

2
,
C +D

2
,
E + F

2
) (65)

−1

2
αu(B −A) − 1

2
αv(D −C)− 1

2
αw(F −E)]

where A, B, C, D, E, and F are defined as above. For details, see [89, 2, 3].

25

11 Approximations to Curvature and Normals

As discussed above, one of the main advantages of level set formulations is that geometric
qualities of the propagating interface, such as curvature and normal direction are easily
calculated. For example, consider the case of a curve propagating in the plane. The
expression for the curvature of the zero level set assigned to the interface itself (as well
as all other level sets) is given by

κ = ∇ · ∇φ|∇φ| =
φxxφ

2
y − 2φyφxφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

(66)

In the case of a surface propagating in three space dimensions, one has many choices
for the curvature of the front, including the mean curvature κM and the Gaussian cur-
vature κG. Both may be conveniently expressed in terms of the level set function φ
as

κM = ∇· ∇φ|∇φ| =
(φyy + φzz)φ

2
x + (φxx + φzz)φ

2
y + (φxx + φyy)φ

2
z − 2φxφyφxy − 2φxφzφxz − 2φyφzφyz

(φ2
x + φ2

y + φ2
z)

3/2

(67)

κG =

φ2
x(φyyφzz − φ2

yz) + φ2
y(φxxφzz − φ2

xz) + φ2
z(φxxφyy − φ2

xy)

+ 2[φxφy(φxzφyz − φxyφzz) + φyφz(φxyφxz − φyzφxx)

+ φxφz(φxyφyz − φxzφyy)]

(φ2
z + φ2

y + φ2
x)2

(68)

Construction of the normal itself requires a more sophisticated scheme than simply
building the difference approximation to ∇φ. This is because at corners, the direction
of the normal can undergo a jump. This suggests the following technique, introduced
in [117]. First, the one-sided difference approximations to the unit normal in each pos-
sible direction are formed. All four limiting normals are then averaged to produce the
approximate normal at the corner. Thus, the normal nij is formed by first letting

n∗
ij ≡

φx, φy

(φ2
x + φ2

y)1/2
(69)

=
(D+x

ij , D
+y
ij)

[(D+x
ij)2 + (D+y

ij)2]1/2
+

(D−x
ij , D

+y
ij)

[(D−x
ij)2 + (D+y

ij)2]1/2
(70)

(D+x
ij , D

−y
ij)

[(D+x
ij)2 + (D−y

ij)2]1/2
+

(D−x
ij , D−y

ij)

[(D−x
ij)2 + (D−y

ij)2]1/2

and then normalizing so that nij ≡ n∗
ij/|n∗

ij|. If any of the one-sided approximations to
|∇φ| is zero, that term is not considered and the weights are adjusted accordingly.

12 Initialization and Boundary Conditions

The time-dependent level set approach requires an initial function φ(x, t = 0) with the
property that the zero level set of that initial function corresponds to the position of the
initial front. The original level set algorithm computed the signed distance from each
grid point to the initial front which is matched to the zero level set. This is an expensive
technique. Many other initial functions are possible, including those that are essentially
constant except in a narrow band around the front itself.

26

The use of a finite computational grid means that we must develop boundary condi-
tions. If the speed function F causes the front to expand (such as in the case F = 1),
upwind schemes will naturally default to outward-flowing one-sided differences at the
boundary of the domain. However, in cases of more complex speed functions, mirror
boundary conditions usually suffice.

27

Part III

Extensions to the Basic Method

13 A Hierarchy of Fast Level Set Methods

The above level set method may be easily programmed. However it is not particularly
fast, nor does it make efficient use of computational resources. In this section, we consider
a sequence of more sophisticated versions of the basic scheme.

13.1 Parallel Algorithms

The above method updates all the level sets, not just the zero level set corresponding to
the front itself. The advantage of this approach is that the data structures and operations
are extremely clear, and it is a good starting point for building level set codes.

There are a variety of circumstances in which this approach is desirable. If, in fact,
all the level sets are themselves important (such as problems encountered in image pro-
cessing, see a later section), then computation over the entire domain is required. A
simple approach is to perform a parallel computation. Since each grid point is updated
by a nearest neighbor stencil using only grid points on each side, this technique almost
falls under the classification of “embarrassingly parallel”. In [114], a parallel version of
the level set method was developed for the Connection Machine CM-2 and CM-5. In the
CM-2, nodes are arranged in a hypercube fashion, in the CM-5, nodes are arranged in
a fat-tree. The code was written in global CMFortran, and at each grid point CSHIFT
operators were used to update the level set function. The operation count per time step
reduces to O(1), since in most cases the full grid can be placed into physical memory. A
time-explicit second order space method was used to update the level set equation.

13.2 Adaptive Mesh Refinement

As a first level of creating a more efficient level set method, an adaptive mesh refinement
strategy can be pursued. This is the approach taken by Milne in [82], motivated by the
adaptive mesh refinement work in [13]. Adaptivity may be desired in regions where level
curves develop high curvature or where speed functions change rapidly. In Figure 15a, we
show mesh cells which are hierarchically refined in response to a parent-child relationship
around the zero level set of φ. Calculations in [82] are performed on both the fine and
coarse grid. Grid cell boundaries always lie along coordinate lines and patches do not
overlap; in the scheme presented in [82], no attempt is made to align the refined cells
with the front.

The data structures for the adaptive mesh refinement are fairly straightforward. How-
ever, considerable care must be taken at the interfaces between coarse and fine cells; in
particular, the update strategy for φ at so-called “hanging nodes” is subtle. These are
nodes at the boundary between two levels of refinement which do not have a full set of
nearest neighbors required to update φ. To illustrate, in Figure 15b, we show a two-
dimensional adaptive mesh; the goal is to determine an accurate update strategy for the
hanging node marked ◦.

The strategy laid out in [82] for updating φ at such points is as follows. Consider the
archetypical speed function F (κ) = 1− ǫκ.
• The advection term 1 leads to a hyperbolic equation; here, straightforward interpo-

lation of the updated values of φ from the coarse cell grid is used to produce the new

28

Cell Hierarchy Hanging Nodes

Figure 15: Adaptive Mesh Refinement

value of φ at ◦. The sophisticated technology in [13] is not required, since we are
modeling the update according to the numerical flux function g, not the derivative
of the numerical flux function as required for hyperbolic conservation laws.

• In the case of the curvature term −ǫκ, the situation is not as straightforward.
The parabolic term cannot be approximated through simple interpolation. In [82],
interpolation from updated values on the coarse grid to the fine grid was shown
to provide poors answers; if this procedure is employed, the boundary between the
two levels of refinement acts as a source of noise, and significant error is generated
at the boundary. Instead, values from both the coarse and refined grid next to
the hanging node are used to construct a least squares solution for φ before the
update. This solution surface is then formally differentiated to produce the various
first and second derivatives in each component direction. These values are then
used to produce the update value for φ similar to all other nodes. For details, see
[82].

Figure 16: Two-Dimensional Slice of Adaptive Mesh For Propagating Surface

As illustration, in Figure 16, we show a two-dimensional slice of a fully three-dimensional

29

adaptive mesh calculation of a surface collapsing under its mean curvature. As discussed
in a later section, the dumbbell neck pinches off under such a configuration, due to the
high positive value of the principle axis of curvature.

13.3 Narrow Banding and Fast Methods

An alternative to the above techniques is particularly valuable when one wants to track
a specific front, namely the one associated with the zero level set. There are several
disadvantages with the “full-matrix” approach given above.

• Speed: Performing calculations over the entire computational domain requires O(N2)
operations in two dimensions, and O(N3) operations in three dimensions, where N
is the number of grid points along a side. As an alternative, an efficient modification
is to perform work only in a neighborhood of the zero level set; this is known as the
narrow band approach. In this case, the operation count in three dimensions drops
to O(kN2), where k is the number of cells in the width of the narrow band. This is
a significant cost reduction. Typically, good results can be obtained with about six
cells on either side of the zero level.

• Calculating Extension Variables: The time-dependent level set approach requires
the extension of the speed function F in Eqn. 24 to all of space; this then updates
all of the level sets, not simply the zero level set on which the speed function is
naturally defined. Recall that three types of arguments may influence the front
speed F ; local, global, and independent. Some of these variables may have meaning
only on the front itself, and it may be both difficult and awkward to design a speed
function which extrapolates the velocity away from the zero level set in a smooth
fashion. Thus, another advantage of a narrow band approach is that this extension
need only be done to points lying in the narrow band.

• The full-matrix approach requires the choice of a time step that applies in response
to the maximum velocity over the entire domain, not simply in response to the speed
of the front itself. In a narrow band implementation, the time step can be adaptively
chosen in response to the maximum velocity field only within the narrow band. This
is of significance in problems in which the front speed changes substantially as it
moves (for example, due to the local curvature or as determined by the underlying
domain). In such problems, the CFL restriction for the velocity field for all the
level sets may be much more stringent than the one for those sets within the narrow
band.

The above “narrow band method” method was introduced in [28], used in recovering
shapes from images in [78], and analyzed extensively by Adalsteinsson in [1].

In Figure 17 we show the placement of a narrow band around an initial front. The
entire two-dimensional grid of data is stored in a square array. A one–dimensional object
is then used to keep track of the points in this array (dark grid points in Fig. 17 are
located in a narrow band around the front of a user-defined width) (see Figure 17). Only
the values of φ at points within the tube are updated. Values of φ at grid points on the
boundary of the narrow band are frozen. When the front moves near the edge of the
tube boundary, the calculation is stopped, and a new tube is built with the zero level set
interface boundary at the center. This rebuilding process is known as “re-initialization”.

Thus, the narrow band method consists of the following loop:

• Tag “alive” points in narrow band.

• Build “land mines” to indicate nearby edge.

30

• • • • • • • • • • - �
� H

@
@H ��

�
� H

@
@H ��

�
� H

@
@H ��

�
� H

@
@H ��

�
� H

@
@H ��

•
•
•
•
•

•
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
•

•
•
•
•
•

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Figure 17: Pointer Array Tags Interior and Boundary Band Points

• Initialize “far away” points outside(inside) narrow band with large positive(negative)
values.

• Solve level set equation until a land mine is hit.

• Rebuild, loop.

Use of narrow bands leads to level set front advancement algorithms which are equiva-
lent in complexity to traditional marker methods and cell techniques, while maintaining
the features of topological merger, accuracy, and easy extension to multi-dimensions.
Typical, the speed up associated with the narrow band method is about ten times faster
on a 160×160 grid than the full matrix method. Such a speed up is substantial; in three-
dimensional simulations, it can make the difference between computationally intensive
problems and those that can be done with relative ease. Details on the accuracy, typical
tube sizes, and number of times a tube must be rebuilt may be found in [1].

The above narrow banding technique requires a re-building and re-initialization of a
new narrow band around the location of the front. There are several ways to perform
this re-initialization, one of which leads to an efficient level set scheme for the particular
case of a front propagating with a speed F = F (x, y) where F is of one sign.

13.4 Re-Initialization Techniques: Direct Evaluation, Iteration,
Huygens Flowing

13.4.1 Direct Evaluation

A straightforward approach is to find the zero level set by using a contour plotter and
then recalculate the signed distance from each grid point to this zero level set to rebuild
the band. This technique, first used in [28], can be used to ensure that the level set
function stays well-behaved. However, this approach can be expensive, since the front
must be explicitly constructed and distances must be calculated to neighboring grid
points.

13.4.2 Iteration

An alternative to this was given by Sussman, Smereka, and Osher [122], based on an
observation of Morel. Its virtue is that one need not find the zero level set to re-initialize
the level set function. Consider the partial differential equation

φt = sign(φ)(1 − |∇φ|) (71)

where sign(φ) gives the sign of φ. Given initial data for φ, solving the above equation
to steady-state provides a new value for φ with the property that —∇φ| = 1, since

31

convergence occurs when the right-hand-side is zero. The sign function controls the flow
of information in the above; if φ is negative, information flows one way and if φ is positive,
then information flows the other way. The next effect is to “straighten-out” the level sets
on either side of the zero level set and produce a φ function with |∇φ| = 1 which in fact
corresponds to the signed distance function. Thus, their approach is to periodically stop
the level set calculation and solve the above until convergence; if done often enough, the
initial data is often close to the signed distance function, and few iterations are required.
One disadvantage of this technique is the relative crudeness of the switch function based
on checking the sign of the level set equation; considerable motion of the zero level set
can occur during the re-initialization, since the sign function does not do an accurate job
of using information about the exact location of the front.

13.4.3 Huygens Principle Flowing

An alternative technique, described in [104], is based on the idea of computing crossing
times as discussed in [108], and is related to the ideas given by Kimmel in [66]. Consider
a particular value for the level set function φinitial(x, t). With speed function F = 1, flow
the level set function both forward and backwards in time and calculate crossing times
(that is when φ changes sign) at each grid point. These crossing times (both positive and
negative) are equal to the signed distance function by Huygens’ principle. This approach
has the advantage that one knows a priori how long to run the problem forward and
backward to re-initialize grid points a given distance from the front. This calculation
can be performed using a high order scheme to produce accurate values for the crossing
times.

This idea of computing crossing times is equivalent to converting the level set evolution
problem into a stationary problem. This conversion can be used to develop an extremely
fast marching level set scheme for the particular case of solving the level set equation
for speed function F = F (x, y), where F is always either positive or negative. This is
discussed in the section on fast marching methods for the stationary formulation.

14 Additional Complexities

Since their introduction, the capabilities and applicability of time-dependent level set
methods has been considerably refined and extended. In this section, we discuss a few
extensions which have proven to be useful in a variety of applications.

14.1 Masking and Sources

Consider the problem of a front propagating with a speed F and subject to the constraint
that the evolving interface cannot enter into a region Ω in the domain. This region Ω is
referred to as a “mask”, since it inhibits all motion. There are several solutions to this
problem, depending on the degree of accuracy required.

The simplest solution is to set the speed function F equal to zero for all grid points
inside Ω. The location of all points inside Ω can be determined before any calculation
is carried out. This technique assures that the front stops within one grid cell of the
mask. In Figure 18, we show a plane front propagating upwards with speed F = 1 in
the upwards direction, with a rectangular block in the center of the domain serving as a
mask. In Fig. 18a, the speed function is reset to zero inside the mask region, and as the
front propagates upwards it is stopped in the vicinity of the mask and is forced to bend
around it.

32

V elocity = 0 Inside Rectangle φ Reset By Mask
F ig.18a F ig.18b

Figure 18: Front Propagating Upwards Around Masking Block: 13×13 Grid

The calculations in Fig. 18a are performed on a very crude 13× 13 mesh in order to
accentuate a problem with this approach, namely that the front can only be guaranteed
to stop within one grid cell of the obstacle itself. This is because the level set method
constructs an interpolated speed between grid points, and hence by setting the speed
function to zero on and in the mask, the front slows down before it actually reaches
the mask. Note that since this means one grid cell normal to the mask’s boundary, a
considerable amount of error can result.

A different fix, which eliminates much of this problem, comes from alternate view.
Given a mask area Ω, construct the signed distance function φΩ by taking the positive
distance if inside Ω and the negative distance if outside (note that this is opposite sign
choice from the one we typically use). Then we limit motion into the masked region not
by modifying the speed function but instead by resetting the evolving level set function.
Let φ(∗) be the value produced by advancing the level set φn one time step. Then let

φn+1 = max(φ∗, φΩ). (72)

This resets the level set function so that penetration is not possible; of course, this is
only accurate to the order of the grid. Results using this scheme are shown in Figs. 18b.
Again, we have used a very coarse grid to accentuate the differences.

If we consider now the opposite problem, in which a region Ω acts as a source, the solu-
tion is equally straightforward, and given by φn+1 = min(φ∗,−φΩ); this is the technique
used in [95], inspired by the work in [91].

14.2 Discontinuous Speed Functions and Sub-grid Resolution

Let us generalize the above problem somewhat, and imagine that we want to solve a
interface propagation problem in which there is a clear discontinuous speed function.
For example, one may want to track the propagation of an interface through materials
which correspond to differing media, across which propagation rates change quite sharply.
As an example, consider again the evolution of the upwards propagating front, but this
time the rectangular block slows the speed to 1/2 (that is, F = 1 outside Ω and F = .5
inside and on Ω. The standard level set will interpolate between these two speeds, and
the results obtained will depend on the placement of the underlying grid; substantial
variation in result will occur depending on whether a grid line lies directly on, below, or
above the bottom edge of the rectangular block.

33

Figure 19: Regions A and B Expand into Region C

In order to accurately solve this problem, we need some sub-grid information about
the speed function to correctly construct the speed function for those cells that lie only
partially within Ω. Such a technique can be devised, motivated by the idea of the volume-
of-fluid methods discussed earlier. Given a region Ω, before any calculation proceeds we
construct the cell fraction V olΩij , which is a number between 0 and 1 for those cells that
have at least one grid point in Ω and one outside Ω. This cell fraction corresponds to
the amount of Ω material in the cell. These values are stored, and a list is kept of such
boundary cells. We then proceed with the level set calculation, letting F be given by
its value in the corresponding region. However, we modify the speed function for those
cells that are marked as boundary cells. At the beginning of the time step, compute the
volume fraction V olφij for the zero level set in each cell; this may be approximately done
without explicitly finding the zero level set through a least squares fit. This value is then
compared with the stored value V olΩij to provide an appropriate speed.

14.3 Multiple Interfaces

As initially designed in [88], the level set technique applies to problems in which there
is a clear distinction between an “inside” and “outside”. This is because the interface is
assigned the zero level value between the two regions. Extensions to multiple (more that
two) interfaces have been made in some specific cases. In the case in which interfaces
are passively transported and behave nicely, one may be able to use only one level set
function and judiciously assign different values at the interfaces. For example, the zero
level set may correspond to the boundary between two regions A and B, with the level
set value 10 corresponding to the interface between two regions B and C. If A and C
never touch, then this technique may be used to follow the interfaces in some cases.

However, in the more general case evolving the emergence and motion of triple points,
a different approach is required, since many different situations can occur (see, for ex-
ample, [17, 123]). Consider the following canonical example, as illustrated in Figure 19.
Regions A and B are both circular disks growing into region C with speed unity in the
direction normal to the interface. At some point, the interfaces will touch and meet at
a triple point, where a clear notion of “inside” and “outside” cannot be assigned in a
consistent manner.

A level set approach to this problem has been proposed by Bence, Merriman and
Osher [81]; they move each interface separately for one time step, find the interfaces
of the various fronts, and then rebuild level set functions. This technique requires re-
initializing the pairwise level set functions; any of the techniques described earlier can be
used. Before describing this technique, we discuss a later set of techniques presented in
[109, 104], applicable to many cases, and which do not require any such re-initialization.

34

F ig.20a F ig.20b F ig.20c F ig.20d

Influence Matrix on A on B on C

Effect of A 1.0 0.0 1.0

Effect of B 0.0 1.0 1.0

Effect of C 0.0 0.0 1.0

Figure 20: A and B Move into C with speed 1, Stop at each other

We will then return to the algorithm presented in [81] in the case of motion driven by
surface tension where some sort of re-initialization is required.

The key idea in each method lies in recasting the interface motion as the motion of
one level set function for each material. In some sense, this is what was done in the
re-ignition idea given in [95], where the front was a flame which propagated downstream
under a fluid flow. This front was re-ignited at each time step at a flame holder point
by taking the minimum of the advancing flame and its original configuration around the
flame holder, thus ensuring that the maximum burned fluid is achieved.

In general, imagine N separate regions and a full set of all possible pairwise speed
functions FIJ which describe the propagation speed of region I into region J: F is taken
as zero if Region I cannot penetrate J. The idea is to advance each interface to obtain
a trial value for each interface with respect to motion into every other region, and then
combine the trial values in such a way as to obtain the maximum possible motion of the
interface.

In general then, proceed as follows. Given a Region I, obtain N − 1 trial level set
functions φ∗

IJ by moving the Region I into each possible Region J, J=1,N (J 6= I) with
speed FIJ . During the motion of Region I into Region J, assume that all other regions
are impenetrable, that is, use the masking rule given by Eqn. 72. We then test the
penetrability of the Region J itself, leaving the value of φ∗

IJ unchanged if FIJ 6= 0, else
modifying it with the maximum of itself and −φ∗

JI . Finally, to allow Region I to evolve
as much as possible, we take the minimum over all possible motions to obtain the new
position; this is the re-ignition idea described earlier. Complete details of the approach
may be found in [104].

Three examples, taken from [104], are shown to illustrate this approach. Given regions
A, B, and C, the influence matrix describes the interaction of the various regions with
each other. The interaction of each region with itself is 1, hence the matrix has ones on
the diagonal. The interaction of any pair of regions is required to be zero in one of the
two interactions.

In Figure 20, regions A and B expand with unit speed into Region C, but cannot
penetrate each other. They advance and meet; the boundary between the two becomes
a vertical straight line.

Next, we consider a problem with different evolution rates. In Figure 21, region A
grows with speed 1 into region C (and region C grows with speed 0 into region A),
and region B grows with speed 2 into region C. Once they come into contact, region

35

F ig.21a F ig.21b F ig.21c F ig.21d

Influence Matrix on A on B on C

Effect of A 1.0 3.0 1.0

Effect of B 0.0 1.0 2.0

Effect of C 0.0 0.0 1.0

Figure 21: A into C with speed 1, A into B with speed 3, B into C with speed 2

F ig.22a T = 0.0 F ig.22b T = 2.0 F ig.22c T = 3.0 F ig.22c T = 5.0

Influence Matrix on A on B on C

Effect of A 1.0 1.0 0.0

Effect of B 0.0 1.0 1.0

Effect of C 1.0 0.0 1.0

Figure 22: Spiraling Triple Point: 98x98 Grid

A dominates region B with speed 3, thus region B grows through Figure 21c, and then
is “eaten up” by the advancing region A. Note what happens: region A advances with
speed 3 to the edge of region B, which is only advancing with speed 1 into region C.
However, region A cannot pass region B, because its speed into region C is slower than
that of region B.

Finally, in Figure 22 the motion of a triple point between regions A, B, and C is
shown. Assume that region A penetrates B with speed 1, B penetrates C with speed
1, and C penetrates A with speed 1. The exact solution is given by a spiral with no
limiting tangent angle as the triple point is approached. The triple point does not move;
instead, the regions spiral around it. In Figure 22, results are shown from a calculation
on a 98× 98 grid. Starting from the initial configuration, the regions spiral around each
other, with the leading tip of each spiral controlled by the grid size. In other words, we
are unable to resolve spirals tighter than the grid size, and hence that controls the fine
scale description of the motion. However, we note that the triple point remains fixed. A
series of additional calculations using this approach may be found in [109].

36

14.4 Triple Points

Consider now the case of a triple point motion in which the speed of each interface is
driven by curvature, which may correspond to surface tension. Imagine a triple point, in
which each of the three regions is attempting to move according to their own curvature.
In Figure 23a, we show an initial configuration on the left and a final state in Figure 23b
in the center, which consists of the three lines meeting in equal angles of 120 degrees.

F ig.23a : Initial State F ig.23b : F inal State F ig.23c : Level Set

Figure 23: Evolution of Triple Point under Curvature

If one attempts to apply the level set method for multiple interfaces described in the
previous sections, a difficulty occurs because each level function attempts to move away
from the others, creating a gap, In Fig. 23c, we show this gap developing when a level
set technique is applied to the final state.

Two different level set type algorithms were introduced in [81] for tackling this prob-
lem. The first can be viewed a “fix” to the above problem; the second is a wholly different
level set approach.

To begin, the problem with the above calculation is that the various level sets pull
apart. In [81], the level set functions are reset every time step to hold the triple point in
place, that is,

φi = φi −maxφj (73)

where the maximum is taken over all j 6= i. This keeps the triple point in place, however,
as explained in [81], the cost is that the level set functions can develop spontaneous
zero crossings later in time. A remedy is to re-initialize all the level sets using any of
the re-initialization techniques described in the previous section. With those two added
steps in the algorithm, level set methods can easily handled some interesting problems
concerning triple points (see [81]).

A considerably different approach was also presented in [81]. The “DGCDM” algo-
rithm works by applying applying a reaction-diffusion type equation to a characteristic
function assigned to each region, which is one inside the region and zero outside. This
algorithm works by exploiting the link between curvature flow and a diffusion equation,
along the lines of the material discussed earlier. The basic idea is that a diffusion term is
applied, and then a sharpening term is executed which sharpens up the solution. The net
effect is to evolve the boundary line under curvature. This is a very clever algorithm, and
can be applied to multiple interfaces. A series of fascinating calculations are presented
in [81], for additional work on this topic, see [17].

14.5 Building Extension Velocity Fields

What happens when the speed of the moving front has meaning only on the front itself?
This is a common occurrence in areas such as combustion, material science, and fluid
mechanics, where the philosophy of embedding the front as the zero level set of a family

37

of contours can be problematic. In fact, the most difficult part of level set methods is
this “extension” problem, and will be a central focus of the Part IV.

Recall the division of arguments in the speed function F given in Eqn. 1. Front-based
arguments are those that depend on geometric quantities of the front, such as curvature
and normal vector, and have a clear meaning for all the level sets. Independent variables
are equally straightforward, since their contribution to the speed makes no reference to
particular information from the front itself.

The troublesome variables are the so-called “global” variables, which can arise from
solving differential equations on either side of the interface. Briefly, there are at least
four ways to extend a velocity from the front to the grid points.

1. At each grid point, find the closest point on the front. This was the technique used
in [78], and may be done efficiently in many cases by tracing backwards along the
gradient given by ∇φ.

2. Evaluate the speed function off the front using an equation that only has meaning
on the front itself. This is the technique used in the crystal growth/dendritic so-
lidification calculations employed in [117], where a boundary integral is evaluated
both on and off the front.

3. Develop an evaluation technique that assigns artificial speeds to the level set going
through any particular grid point. For example, in the etching/deposition simula-
tions of [2, 3, 4], visibility of the zero level set must be evaluated away from the
front itself.

4. Smearing the influence of the front. In the combustion calculations of [95] and
the fluid dynamics calculations of [122], the influence of the front is mollified to
neighboring grid points on which an appropriate equation is solved.

38

Part IV

Approximating the Stationary Level
Set Formulation: A New Fast
Marching Level Set Method

Consider the special case of a monotonically advancing front, that is, a front moving
with speed F where F is always postive (or negative). Previously, we have produced a
stationary level set equation, namely

|∇T |F = 1. (74)

which is simply a static Hamilton-Jacobi equation; if F is only a function of position, this
becomes the well-known Eikonal equation. A large body of research has been devoted
to studying these types of equations, we refer the interested reader to [10, 71, 118], to
name just a few. At the same time, there are a wide collection of schemes to solve
this problem, see, for example, [11, 46, 96, 87]. Here, we introduce an entirely new and
extremely fast method for solving this equation. It relies on a marriage between our
narrow band technique and a fast heapsort algorithm, and can be viewed as an extreme
one-cell version of our narrow band technique.

For ease of discussion, we limit ourselves to a two-dimensional problem inside a square
from [0, 1]× [0, 1] and imagine that the initial front is along the line y = 0; furthermore,
we assume that we are given a positive speed function F (x, y) that is periodic in x.
Thus, the front propagates upwards off the initial line, and the speed does not depend on
the orientation of the front (it depends only on independent variables, using our earlier
terminology). Using our approximation to the gradient, we are then looking for a solution
in the unit box to the equation

Fij

[

max(D−x
ij T, 0)2 + min(D+x

ij T, 0)2 + max(D−y
ij T, 0)2 + min(D+y

ij T, 0)2)
]

= 1 (75)

where T (x, 0) = 0.
Since Eqn. 75 is in essence a quadratic equation for the value at each grid point

(assuming the others are held fixed), we can iterate until convergence by solving the
equation at each grid point, selecting the largest possible value as the solution in accor-
dance with obtaining the correct viscosity solution. An iterative algorithm for computing
the solution to this problem was introduced by Rouy and Tourin in [96]. Typically, one
iterates several times through the entire set of grid points until a converged solution is
reached.

15 A fast marching level set method

The key to constructing a fast marching algorithm is the observation that the upwind
difference structure of equation 75 means that information propagates “one way”, that
is, from smaller values of T to larger values. Hence, our algorithm rests on “solving”
equation 75 by building the solution outwards from the smallest time value T . Our idea
is to sweep the front ahead in an upwind fashion by considering a set of points in narrow
band around the existing front, and to march this narrow band forward, freezing the
values of existing points and bringing new ones into the narrow band structure. The key
is in the selection of which grid point in the narrow band to update. The technique is

39

Figure 24: Narrow band approach to marching level set method

easiest to explain algorithmically, see Figure 24. We imagine that we want to propagate
a front through an N by N grid with speed Fij giving the speed in the normal direction
at each grid point. Here the set of grid points j = 1 correspond to the y axis, and we
assume that Fij > 0.

Algorithm:

1. Initialize

(a) (Alive Points: Grey Disks): Let A be the set of all grid points {i, j = 1}; set
Ti,1 = 0.0 for all points in A.

(b) (Narrow Band Points: Black Circles): Let NarrowBand be the set of all grid
points {i, j = 2}, set Ti,1 = dy/Fij for all points in NarrowBand.

(c) (Far Away Points: Black Rectangles): Let FarAway be the set of all grid points
{i, j > 2}, set Ti,j =∞ for all points in FarAway.

2. Marching Forwards

(a) Begin Loop: Let (imin , jmin) be the point in NarrowBand with the smallest
value for T .

(b) Add the point (imin, jmin) to A; remove it from NarrowBand.

(c) Add to the narrow band list any neighboring points (imin − 1, jmin), (imin +
1, jmin), (imin , jmin − 1), (imin, jmin + 1) that are not Alive. If the neighbor is
in FarAway, remove it from that list.

(d) Recompute the values of T at all neighbors according to Eqn. 75, selecting the
largest possible solution to the quadratic equation.

(e) Return to top of Loop:

We take periodic boundary conditions where required. Assuming for the moment that
it takes no work to determine the member of the narrow band with the smallest value
of T , the total work required to compute the solution at all grid points is O(N2), where
calculation is performed on an N by N grid.

Why does the above algorithm work? Since we are always locating the smallest value
in the narrow band, its value for T must be correct; other narrow band points or far
away points with larger T values cannot affect it. The process of recomputing the T
values at neighboring points (that have not been previously accepted) cannot yield a
value smaller than any of that at any of the accepted points, since the correct viscosity
solution is obtained by selecting the largest possible solution to the quadratic equation.
Thus, we can march the solution outwards, always selecting the narrow band grid point
with minimum trial value for T , and readjusting neighbors. Another way to look at this
is that each minimum trial value begins an application of Huygen’s principle, and the
expanding wave front touches and updates all others.

40

B

A ? C
D

Figure 25: Matrix of neighboring values

15.1 Proof that the algorithm constructs a viable solution

Here, we prove that the above algorithm produces a solution which everywhere satisfies
the discrete version of our equation, which is given by

[

max(max(D−x
ij T, 0),−min(D+x

ij T, 0))2 + max(max(D−y
ij T, 0),−min(D+y

ij T, 0))2
]

= f2
ij

(76)
where f2

ij = 1/F 2
ij. We shall give a constructive proof. Since the values of T (x, y, z) are

built by marching forwards from the smallest value to the largest, we need only show
that whenever a “trial” value is converted into an “alive” value, none of the recomputed
neighbors obtain new values less than the accepted value. If this is true, then we will
always be marching ahead in time, and the thus the correct “upwind” nature of the
differencing will be respected. We shall prove our result in two dimensions; the three-
dimensional proof is the same.

Thus, consider the matrix of grid values given in Figure 25. Our argument will follow
the computation of the new value of T in the center grid point to replace the value of
?, based on the neighboring values. We will assume, without loss of generality, that the
value A at the left grid point is t he smallest of all “trial” values, and prove that when
we recompute the value at the center grid point (called Trecomputed−from−A), it cannot
be less than A. This will prove that the upwinding is respected, and that we need not go
back and readjust previously set values. We shall consider the four cases that (1) none
of the neighbors B, C, or D, are “alive”, (2) one of these neighbors is “alive”, (3) two of
the neighbors are “alive”, and (4) all three of these neighbors are “alive”. 2

A, B, C and D are “trial”, A is the smallest

In this case, all of the neighbors around the center grid point are either “trial” or set
to FarAway. Since A is the smallest such value, we convert that value to “alive” and
recompute the value at the center grid point. We now show that the recomputed value
A ≤ Trecomputed−from−A ≤ A + f .

1. Suppose A + f ≤ min(B,D). Then Trecomputed−from−A = (A + f) is a solution to
the problem, since only the difference operator to the left grid point is non-zero.
footnoteWe are absorbing the grid size ∆x into the inverse speed function f .

2. Suppose A+ f ≥ min(B,D). Then, without loss of generality, assume that B ≤ D.
We can solve the quadratic equation

(Trecomputed−from−A − A)2 + (Trecomputed−from−A −B)2 = f2 (77)

The discriminant is non-negative when f ≥ (B−A)√
2

, which must be true since we

assumed that A+ f ≥ B and hence f ≥ (B −A). Thus, a solution exists, and it is
easy to check that this solution must then be greater than or equal to B and thus
falls into the required range. Furthermore, we see that T ≤ A+ f , since the second
term on the left is non-negative.

2Recall that “alive” means that their T values are less than A. Here, we are using the notation that the symbol A

stands for both the grid point and its T value.

41

Thus, we have shown thatA ≤ Trecomputed−from−A ≤ A+f , and therefore Trecomputed−from−A

cannot be less than the just converted value A.
This case will act a template for the other cases.

B is “alive”, A, C and D are “trial”, A is the smallest of the trial values

In this case, A has just been converted, since it is the smallest of the trial values. We
shall prove when we recalculate TrecomputedA , its new value must still be greater than
A. At some previous stage, when B was converted from trial to alive, the values of A,
C and D were all trial values, and hence must have been larger. Then this means that
when B was converted from trial to alive, we had the previous case above, and hence
B ≤ Trecomputed−from−B ≤ B + f ; furthermore, since the value at the center was not
chosen as the smallest trial value, we must have that A ≤ B + f . By the above case, we
then have that B ≤ A ≤ Trecomputed−from−A ≤ B + f , and hence the recomputed value
cannot be less than the just converted value of A.

C is “alive”, A, B and D are “trial”, A is the smallest of the trial values

In this case, due to the direction of the upwind differencing, the value at C is the
contributor in the x direction, the acceptance of A does not affect the recomputation,
and the case defaults into the first case above.

The remaining cases are all the same, since the differencing takes the smallest values
in each coordinate direction. The proof in three dimensions is identical.

15.2 Finding the smallest value

The key to an efficient version of the above technique lies in a fast way of locating the
grid point in the narrow band with the smallest value for T . We use a variation on
a heapsort algorithm, see Press et. al. [92] and Sedgewick [103], with the additional
feature of back pointers. In more detail, imagine that the list of narrow band points
is initially sorted in a heapsort so that the smallest member can be easily located. We
store the values of these points in the heapsort, together with their indices which give
their location in the grid structure. We keep a companion array which points from the
two-dimensional grid to the location of that grid point in the heapsort array. Finding the
smallest value is easy. In order to find the neighbors of that point, we use the pointers
from the grid array to the heapsort structure. The values of the neighbors are then
recomputed, and then the results are bubbled upwards in the heapsort until they reach
their correct locations, at the same time readjusting the pointers in the grid array. This
results in an O(logN) algorithm for the total amount of work, where N is the number
of points in the narrow band. For implementation details and further application of this
technique, see [111, 110, 116].

The above technique considered a flat initial interface for which trial values at the
narrow band points could be easily initialized. Suppose we are given an arbitrary closed
curve or surface as the initial location of the front. In this case, we use the original
narrow band level set method to initialize the problem. First, label all grid points
as “far away” and assign them T values of ∞. Then, ina very small neighborhood
around the interface,construct the signed distance function from the initial hypersurface
Γ. Propagate that surface both forwards and backwards in time until a layer of grid
points is crossed in each direction, computing the signed crossing times as in [108]. Then
collect the points with negative crossing times as “alive” points with T value equal to the
crossing time, and the points with positive crossing times as narrow band points with T
value equal to the positive crossing times. Then begin the fast marching algorithm.

42

16 Other Speed Functions: When does this method

work?

Our fast marching method as designed applied to speed functions F which depend only
on position. In such cases, other forms for the gradient approximation can be used; for
example, Rouy and Tourin [96], namely

Fij

[

max(max(D−x
ij T, 0),−min(D+x

ij T, 0))2 + max(max(D−y
ij T, 0),−min(D+y

ij T, 0))2
]

= 1
(78)

How general is our new technique? Suppose now we consider the more general case
of stationary level set equation:

|∇T |F = 1. (79)

We begin be rewriting this in the standard form of a static Hamiltonian, namely

H(Tx, Ty, Tz) = 1. (80)

We already have a scheme for the case where H = ∇T . Some variations on this
Hamiltonians important in computer vision, such as

H = max(|Tx|, |Ty|, |Tz|) H = |Tx|+ |Ty|+ |Tz| (81)

may be approximated in a straightforward manner using the any of the above entropy-
satisfying approximations to the individual gradients. Our fast marching method will
work in these cases. Wnen the speed F depends in a subtle way on the value of ∇T (for
example, in some problems in etching and deposition discussed in a later section, the
situation is more delicate.

When will the technique work? Here, we present an intuitive perspective; complete
details may be found in [110, 116]. Suppose H is convex and always positive (or always
negative), and suppose the approximation to H satisfies two properties:

• First, the approximation scheme is consistent

• Second, at each grid point the scheme only makes use of smaller neighboring values
when updating the value at that point (this is the upwindness requirement), and
cannot produce a new value which is less than any of the neighbors

Then we can expect that our upwind sweeping method will work; searching for the
smallest trial value will provide a consistent way of sweeping through the mesh and
constructing the soluton surface T . Complete details and many other schemes may be
found in [110, 116].

17 Some Clarifying Comments

The time-dependent level set method and the stationary level set method each require
careful construction of upwind, entropy-satisfying schemes, and make use of the dynamics
and geometry of front propagation analyzed in [106]. However, we note that the time-
dependent level set method advances the front simultaneously, while the stationary
method constructs “scaffolding” to build the time solution surface T one grid point at
a time. This means that the time at which the surface crosses a grid point (that is, its
T value) may be found before other positions of that front at that time are determined.

43

As such, there is no notion of a time step in the stationary method; one is simply
constructing the stationary surface in an upwind fashion.

This means that if one is attempting to solve a problem in which the the speed of a
front depends on the current position of the front (such as in the case of visibility), or on
subtle orientations in the front (such as in sputter yield problems), it is not clear how to
use the stationary method, since the front is being constructed one grid point at a time.

The stationary method works because we were able to construct a simple approxima-
tion to the gradient. This was possible because the speed function F did not depend
on the orientation of the front, nor on issues like visibility. Thus, returning to our ear-
lier categorization of speed functions, our fast scheme works in cases where the speed
F only depends on independent variables, such as in the case of photolithography de-
velopment. Upwind entropy-satisfying schemes which can be transported to this fast
stationary scheme for the case of more general speed functions F are more problem-
matic, and discussed in detail in [110].

To summarize,

• The stationary method is convenient for problems in which the front speed depends
on independent variables, such as a photoresist rate function, and only applies if
the speed function does not change sign.

• The time-dependent level set method is designed for more delicate speed functions,
and can accurately fronts evolving under highly complex arguments

In the next part, we discuss a variety of applications which employ both the time-
dependent level set method and the fast marching method for monotonically advancing
fronts.

44

Part V

Applications
In this part, we present a series of applications of both the time-dependent level set
method and the fast marching level set method to propagating interfaces. This is only
a subset of the level set applications in the literature; throughout, we provide references
to many other applications.

18 Geometry

In this section, we consider application of level set methods to problems in the geometric
evolution of curves and surfaces. The motion will depend solely on local geometric
properties such as normal direction and curvature; nonetheless, this is a fascinating and
rich area.

18.1 Curvature Flow

Suppose we are given a hypersurface in Rn propagating with some speed F (κ). Previ-
ously, we have considered speed functions of the form F (κ) = 1 − ǫκ, where κ is the
curvature. Let us now focus on a special speed function, namely F = −κ, where κ is the
curvature. This corresponds to a geometric version of the heat equation; large oscilla-
tions are immediately smoothed out, and long-term solutions correspond to dissipation
of all information about the initial state. As we shall see in later sections, curvature
motion plays an important role in many applications such as a modeling term for surface
tension in flexible membranes and a viscous term in physical phenomena.

The remarkable work of Gage and Grayson investigated the motion of a simple closed
curve collapsing under its curvature. First, Gage [48, 49] showed that any convex curve
moving under such a motion remains convex and must shrink to a point. Grayson [52]
followed this work with a stunning proof that all curves must shrink to a round point,
regardless of their initial shape.

In Figure 26, we take an odd-shaped initial curve and view this as the zero level set
of a function defined in all of R2. Here, for illustration, we have φ such that φ < 0 as
black and φ > 0 as white, thus the zero level set is the boundary between the two. As
the level curves flow under curvature, the ensuing motion carries each to a point which
then disappears. In the evolution of the front, one clearly sees that the large oscillations
disappear quickly, and then as the front becomes circular, motion slows, and the front
eventually disappears.

45

Figure 26: F (κ) = −κ:

46

Figure 27: Collapse of Two-handled Dumbbell

In three dimensions, flow under mean curvature does not necessarily result in a col-
lapse to a sphere. Huisken [58] showed that convex shapes shrink to spheres as they
collapse, analogous to the result of Gage. However, Grayson showed that non-convex
shapes may in fact not shrink to a sphere [53], and provided the counterexample of the
dumbbell. A narrow handle of a dumbbell may have such a high inner radius that the
mean curvature of the saddle point at the neck may still be positive, and hence the neck
will pinch off.

As illustration, in Figure 27, taken from [29], we show two connected dumbbells
collapsing under mean curvature. As the intersection point collapses, the necks break off
and leave a remaining “pillow”-like region behind. This pillow region collapses as well,
and eventually all five regions disappear.

Finally, what about self-similar shapes? In two dimensions, it is clear that a circle
collapsing under its own curvature remains a circle, this can be seen by integrating the
ordinary differential equation for the changing radius. In three dimensions, a sphere is
self-similar under mean curvature flow, since its curvature is always constant. Angenent
[7] proved the existence a self-similar torus which preserves the balance between the
competing pulls towards a ring and a sphere.

In order to devise an algorithm to produce self-similar shapes, two things are required.
First, since hypersurfaces get smaller as they move under their curvature, a mechanism is
needed to “rescale” their motion so that the evolution can be continued towards a possible
self-similar shape. And second, a way of pushing the evolving fronts back towards self-
similarity is required. Chopp has accomplished both in a clever numerical algorithm that
produces a family of self-similar surfaces, see [27]. His family comes from taking regular
polyhedra (for example, a cube), and drilling holes in each face. The resulting figure
then evolves according to auxiliary level set equation which contains the re-scaling as
part of the equation of motion. Two such self-similar surfaces are shown in Figure 28.

47

Self − Similar Cube with Holes Self − Similar Octahedron with Holes
F ig. 28a F ig. 28b

Figure 28: Self-Similar Shapes

18.2 Grid Generation

Imagine that one is given a closed body, either as a curve in two space dimensions, or a
surface in three space dimensions. In many situations, one wishes to generate a logically
rectangular, body-fitted grid around or inside this body. By logically rectangular, we
mean that each node of the grid has four neighbors (in two dimensions; in three dimen-
sions, there are 6 neighbors); by body-fitted, we mean that the grid aligns itself with the
body so that one set of coordinate lines matches the body itself. This grid generation
problem is difficult in part because of the competing desires of uniformity in cell area
and mesh orthogonality; we refer the interested to [67].

Level set techniques offer an interesting technique for generating such grids. The
idea, as presented in [108], is to exploit the geometric nature of the problem and view
the body itself as the initial position of an interface which must be advanced outwards
away from the body. The initial position of the interface and its position at later times
forms one set of grid lines; its orthogonal set forms the other. The body is propagated
outwards with speed F = 1− ǫκ; by finding the zero level set at discrete times, the set of
coordinate lines that encircle the body is found. Construction of transverse lines normal
to the body are obtained by following trajectories of ∇φ. Additional node adjustment
is possible through application of additional smoothing operators. Node placement on
the boundary and the ensuing exterior/interior grid can be automatically controlled. For
details, see [108].

This technique roughly falls into the category of a hyperbolic solver. However, by
solving the correct evolution equation for an advancing front, we avoid the difficulties
of shock formation and colliding characteristics that plague most hyperbolic techniques.
User intervention is kept to a minimum; for the most part, grids are generated automat-
ically without the need to adjust parameters.

In Figure 29, taken from [108], we show a variety of grids constructed using this level
set approach, starting with relatively smooth grids and ending with a three-dimensional
grid around an indented dumbbell. As can be seen, interior and exterior grids can be
created, with the capability of handling significant corners and cusps. The grids are
automatically created; there has been no adjustment of parameters in the creation of
these different grids.

48

Figure 29: Body-Fitted Grids Generated Using Level Set Approach

49

Figure 30: An Image I(x, y) with Noise

18.3 Image Enhancement and Noise Removal

The previous sections concerned geometrical motion of a particular hypersurface of in-
terest. Next, we turn to a level set problem in which all the level sets have meaning, and
must be evolved.

The goal in this section is to apply some of the level set methodology to image
enhancement and noise removal. To do so, we first need a few definitions. Define an
image to be an intensity map I(x, y) given at each point of a two-dimensional domain.
The range of the function I(x, y) depends on the type of image; for black and white
image the range is either 0 or 255, for grey-scale images I(x, y) is a function mapped
between 0 and 255, and, for color images, I(x, y) is a vector-valued function into some
color-space, typically either RGB or HSI.

Given such an image, two goals are to remove noise from the image (see Figure
30) without sacrificing useful detail and to enhance or highlight certain features. A
straightforward and widely used approach is the Gaussian filter, in which both 1-D and
2-D signals are smoothed by convolving them with a Gaussian kernel; the degree of
blurring is controlled by the characteristic width of the Gaussian filter. If the image is
viewed as a surface, this convolution will reduce spikes as they blend into the background
values. In this sense, the Gaussian removes noise. However, the Gaussian is an isotropic
operator; it smoothes in all directions, and sharp boundaries will also be blurred. The
goal is to improve upon this basic idea and remove noise without being forced into too
much blurring. A variety of techniques have been introduced to improve upon this basic
idea, including anisotropic diffusion schemes which perform intraregion smoothing in
preference to interregion smoothing, see Perona and Malik [90], as well as Wiener filters,
and wavelet schemes.

Alvarez, Lions and Morel ([5]) introduced a significant advancement in noise removal
by employing, in part, some of the above ideas about curvature flow and level set equa-
tions. Consider the equation

It = F |∇I| where F = ∇ · ∇I|∇I| = κ (82)

where again ∇ · ∇I
|∇I| = κ. This is our standard curvature evolution equation. An attrac-

tive quality of this motion is that sharp boundaries are preserved; smoothing takes place
inside a region, but not across region boundaries. Of course, as shown by Grayson’s
theorem, eventually all information is removed as each contour shrinks to zero and dis-
appears.

50

An alternative approach is due to Rudin, Osher and Fatemi ([97]). They take a total
variation approach to the problem which leads to a level set methodology and a very sim-
ilar curvature-based speed function, namely F (κ) = κ/|I|; see also [86]. Following these
works, a variation on these two approaches was produced by Sapiro and Tannenbaum
([100]). In that work, a speed function of the form F (κ) = κ1/3 was employed. In each
of these schemes, all information is eventually removed through continued application of
the scheme. Thus, a “stopping criteria” is required.

A recent level set scheme for noise removal and image enchancement was introduced
by Malladi and Sethian in [75, 74]. The scheme results from returning to the original
ideas of curvature flow, and exploiting a “min/max” function which correctly selects the
optimal motion to remove noise. It has two highly desirable features:

1. There is an intrinsic, adjustable definition of scale within the algorithm, such that
all noise below that level is removed, and all features above that level are preserved.

2. The algorithm stops automatically once the sub-scale noise is removed; continued
application of the scheme produces no change.

These two features are quite powerful, and lead to a series of open questions about
the morphology of shape and asymptotics of scale-removal; for details, see [74].

18.3.1 The Min/Max Flow

Consider the equation
φt = F̄ |∇φ|. (83)

A curve collapsing under its curvature will correspond to speed F̄ = κ. Now, consider
two variations on the basic curvature flow, namely

• F̄ (κ) = min(κ, 0.0)

• F̄ (κ) = max(κ, 0.0)

Here, we have chosen the negative of the signed distance in the interior, and the positive
sign in the exterior region. The effect of flow under F̄ (κ) = min(κ, 0.0) is allow the inward
concave fingers to grow outwards, while suppressing the motion of the outward convex
regions. Thus, the motion halts as soon as the convex hull is obtained. Conversely, the
effect of flow under F̄ (κ) = max(κ, 0.0) is to allow the outward regions to grow inwards
while suppressing the motion of the inward concave regions. However, once the shape
becomes fully convex, the curvature is always positive and the flow becomes the same as
regular curvature flow.

Our goal is to select the correct choice of flow that smoothes out small oscillations,
but maintains the essential properties of the shape. In order to do so, we discuss the
idea of the min/max switch.

Consider the following speed function, introduced in [75] and refined considerably in
[74]:

F̄ Stencil=k
min /max =

{

min(κ, 0) if AveR=kh
φ(x,y) < 0

max(κ, 0) if AveR=kh
φ(x,y) ≥ 0

(84)

where AveR=kh
φ(x,y) is defined as the average value of φ in a disk of radius R = kh centered

around the point (x, y). Here, h is the step size of the grid. Thus, given a “StencilRadius”
k, the above yields a speed function which depends on the value of φ at the point (x, y),
the average value of φ in neighborhood of a given size, and the value of the curvature of
the level curve going through (x, y).

51

Initial Boundary Min/Max F low :
“Noisy′′ Shape Stencil Radius = 0; (T =∞)

Min/Max F low : Continued Min/MaxF low :
Stencil Radius = 1; (T =∞) Stencil Radius = 2; (T =∞)

Figure 31: Motion of Star-Shaped Region with Noise under Min/Max Flow at Various Stencil Levels

We can examine this speed function in some detail. For ease of exposition, consider
a black region on a white background, chosen so that the interior has a negative value of
φ and the exterior a positive value of φ.

• StencilRadius k = 0

If the radius R = 0 (k = 0), then choice of min(κ, 0) or max(κ, 0) depends only the
value of φ. All the level curves in the black region will attempt to form their convex
hull, when seen from the black side, and all the level curves in the white region will
attempt to form their convex hull. The net effect will be no motion of the zero level
set itself, and the boundary will not move.

• StencilRadius k = 1

If the average is taken over a stencil of radius kh, then some movement of the zero
level corresponding to the boundary is possible. If there are some oscillations in the
front boundary on the order of one or two pixels, then the average value of φ at
the point (x, y) can have a different sign than the value at (x, y) itself. In this case,
the flow will act as if it were selected from the “other side”, and some motion will
be allowed until these first-order oscillations are removed, and a balance between
the two sides is agained reached. Once this balanced is reached, further motion is
suppressed.

52

• StencilRadius k

By taking averages over a larger stencil, larger amounts of smoothing are applied to
the boundary. In other words, decisions about where features belong are based on
larger and larger perspectives. Once features on the order of size k are removed from
the boundary, balance is reached and the flow stops automatically. As an example,
let k = ∞. Since the average will compute to a value close to the background
color, on this scale all structures are insignificant, and the max flow will be chosen
everywhere, forcing the boundary to disappear.

To show the results of this hierarchical flows, we start with an initial shape in Figure
31a and first perform the min/max flow under steady-state is reached with stencil size
zero in Figure 31b. In this case, the steady-state is achieved right away, and the final
state is the same as the initial state. Min/max flow is then performed until steady-state
is achieved with stencil size k = 1 in Figure 31c, and then min/max flow is again applied
with a larger stencil until steady-state is achieved in Figure 31d.

These results can be summarized as follows:

• The min/max flow switch selects the correct motion to diffuse the small-scale pixel
notches into the boundary.

• The larger, global properties of the shape are maintained.

• Furthermore, and equally importantly, the flow stops once these notches are diffused
into the main structure.

• Edge definition is maintained, and, in some global sense, the area inside the bound-
ary is preserved.

• The noise removal capabilities of the min/max flow are scale-dependent, and can
be hierarchically adjusted.

• The scheme requires only a nearest neighbor stencil evaluation.

18.3.2 Extension of Min/Max Scheme to Grey-Scale, Texture, and Color
Images

The above technique applies to black and white images. An extension to grey-scale
images can be made by replacing the fixed threshold test value of 0 with a value that
depends on the local neighborhood. As designed in [75], let Tthreshold be the average
value of the intensity obtained in the direction perpendicular to the gradient direction.
Note that since the direction perpendicular to the gradient is tangent to the iso-intensity
contour through (x, y), the two points used to compute are either in the same region,
or the point (x, y) is an inflection point, in which the curvature is in fact zero and the
min/max flow will always yield zero. By choosing a larger stencil we mean computing
this tangential average over endpoints located further apart.

Formally then, our min/max scheme becomes:

F̄min/max =

{

max(κ, 0) if Average(x, y) < Tthreshold

min(κ, 0) otherwise
(85)

Further details about this scheme may be found in [74]. In that work, these techniques
are applied to a wide range of images, including salt-and-pepper, multiplicative and
Gaussian noise applied to black and white, grey scale, textured, and color images.

53

50.0%Noise Restored 80.0%Noise Restored

Figure 32: Image restoration of Binary Images with Grey-Scale Salt-and-Pepper Noise Using
Min/Max Flow: Restored shapes are final shape obtained (T =∞).

(a) 40% Noise (b) Min/Max Flow (c) Cont.: Larger Stencil

Figure 33: Min/Max Flow Applied to Grey-Scale Image

18.3.3 Results

In this section, we provide a few examples of this min/max flow. In Figure 32, 50% and
80% grey-scale noise is added to a black and white image of a hand-written character.
The noise is added as follows: X% noise means that at X% of the pixels, the given value
is replaced with a number chosen with uniform distribution between 0 and 255. Here,
the min/max switch function is taken relative to the value 127.5 rather than zero. The
restored figures are converged. Continued application of the scheme yields almost no
change in the results.

Next, salt-and-pepper gray-scale noise is removed from a grey-scale image. The results
are obtained as follows. Begin with 40% noise in Figure 33a. First, the min/max flow
from Eqn. 85 is applied until a steady-state is reached (Figure 33b. This removes most of
the noise. The scheme is then continued with a larger threshold stencil for the threshold
to remove further noise (Figure 33c). For the larger stencil, we compute the average
Average(x, y) over a larger disk, and compute the threshold value Tthreshold using a
correspondingly longer tangent vector.

54

Original Reconstructed

Figure 34: Continuous Gaussian Noise added to Image

Finally, we show the effects of this scheme applied to an image upon which 100%
Gaussian grey-scale noise has been superimposed a random component drawn from a
Gaussian distribution with mean zero is added to each (every) pixel. Figure 34 shows
the “noisy” original together with the reconstructed min/max flow image.

19 Combustion, Crystal Growth, and Two-Fluid Flow

In this section, we consider some applications of the level set methodology to a large and
challenging class of interface problems. These problems are characterized by physical
phenomena in which the front acts as a boundary condition to a partial differential
equation, and the solution of this equation controls the motion of the front. In combustion
problems, the interface is a flame, and both exothermic expansion along the front and
flame-induced vorticity drive the underlying fluid mechanics. In crystal growth and
dendritic formation, the interface is the solid/liquid boundary, and is driven by a jump
condition related to heat release along the interface. In two fluid problems, the interface
represents the boundary between two immiscible fluids of significantly different densities
and/or viscosities, and the surface tension along this interface plays a significant role in
the motion of the fluids.

From an algorithmic perspective, the significant level set issue is that information
about the speed of the front itself must be somehow transferred to the Eulerian framework
that updates the level set function at the fixed grid points. This is significant challenge
for two reasons:

• In many situations, the interface velocity is determined by the interaction of local
geometric quantities of the front itself (such as curvature) with global variables on
either side of the interface (for example, jumps in velocity, heat, or concentration
of species). If these global variables are calculated on a grid, it may be difficult to
extend the values to the front itself where they are required to evaluate the speed

55

function F . However, these quantities are only known at grid points, not at the
front itself, where the relationship has meaning.

• It may be very difficult to extend this interface velocity back to the grid points
(that is, to the other level sets). This problem, known as the extension problem, see
[2, 3], must be solved in order for the level set method to work; some mechanism of
updating the grid points in the neighborhood of the zero level set is required.

In this section, we discuss three applications areas where these problems have been
solved. The common link in these sections is the presence of a term in the equation
represented by a Dirac delta function along the interface. The interested reader is referred
to the literature cited below for a detailed description of the algorithms and results.

19.1 Turbulent Combustion of Flames and Vorticity, Exother-
micity, Flame Stretch and Wrinkling

In [95], a flame is viewed as an infinitely thin reaction zone, separating two regions of
different but constant densities. The hydrodynamic flow field is two-dimensional and
inviscid, and the Mach number is vanishingly small. This corresponds to the equations
of zero Mach number combustion, introduced in [72]. The flame propagates into the
unburnt gas at a prescribed flame speed Su which depends on the local curvature, due
to the focusing/de-focusing of heating effects as a function of flame shape.

As the reactants are converted to products (that is, as the material makes the tran-
sition from “unburnt” to “burnt”), the local fluid undergoes volume increase known as
exothermic expansion associated with the density jump. At the same time, pressure gra-
dients tangential to the flame cause different accelerations in the light and heavy gases.
This causes a production of vorticity (known as baroclinic torque) across the flame, since
the pressure gradient is not always aligned with the density gradient. Together, the burn-
ing of the flame acts as source of vorticity and volume for the underlying hydrodynamic
field, both of which in turn affect the evolution of the flame interface.

This model presents a significant challenge for a level set method. The flame is
tracked by identifying the flame interface as the zero level set of the level set function.
The curvature is determined using the expression given in Eqn. 66. The vortical field
is represented by a collection of vortex blobs as in vortex method, see [32, 107]. The
exothermic field is determined by solving a Poisson’s equation on the underlying grid
with right-hand-side given by smearing the Dirac delta function to the neighboring grid
points. The no-flow boundary is satisfied by the addition of a potential flow that exactly
cancels the existing flow field. Finally, the tangential stretch component is evaluated by
tracing the values of the tangential velocity from the given position backwards along the
normal to the front to evaluate the change in tangential velocity. For complete details,
see [95].

Figure 35, taken from [95], shows two results from this algorithm. We compare
an anchored flame, with upstream turbulence imposed by a statistical distribution of
positive and negative vortices. The goal here is to understand the effect of exothermicity
and flame-induced vorticity on the flame wrinkling and stability. In Fig. 35a, we show
an anchored flame in the oncoming turbulent field; here, different time snapshots are
superimposed upon each other to show the flame “brush”. In Fig. 35b, we turn on the
effects of both volume expansion (a large density jump) and vorticity generation along
the flame front. The resulting flow field generates a significantly wider flame brush, as
the vorticity induces flame wrinkling and the exothermicity affects the surrounding flow
field.

In the above application of the level method, the front acted as source of volume and

56

F lame with Exothermicity F lame with Exothermicity and V orticity
F ig.35a F ig.35b

Figure 35: Comparison of Flame Brush

vorticity. In the next application, developed in [117], the interface motion is controlled
by a complex jump condition.

19.2 Crystal Growth and Dendritic Solidification

Imagine a container filled with a liquid such as water, which has been so smoothly and
uniformly cooled below its freezing point that the liquid does not freeze. The system is
now in a “metastable” state, where a small disturbance such as dropping a tiny seed of the
solid phase into the liquid will initiate a rapid and unstable process known as dendritic
solidification. The solid phase will grow from the seed by sending out branching fingers
into the distant cooler liquid nearer the undercooled wall. This growth process is unstable
in the sense that small perturbations of the initial data can produce large changes in the
time-dependent solid/liquid boundary.

Mathematically, this phenomenon can be modeled by a moving boundary problem.
The temperature field satisfies a heat equation in each phase, coupled through two bound-
ary conditions on the unknown moving solid/liquid boundary, as well as initial and
boundary conditions. First, the normal velocity of the interface depends on the jump in
the normal component of the heat flux across the interface. Second, the temperature at
the interface itself depends on the local curvature and the velocity. Thus, the goal is to
incorporate the influence of the front on the heat solvers across the interface. For further
details, see [19, 84].

A variety of techniques are possible to numerically approximate these equations of
motion. One approach is to solve the heat equation in each phase and try to move the
boundary so that the two boundary conditions are satisfied. Another approach is to
recast the equations of motion as a single integral equation on the moving boundary and
solve the integral equation numerically. References for these various techniques are given
in [117].

In [117] a hybrid level set/boundary integral approach was developed, which includes
the effects of undercooling, crystalline anisotropy, surface tension, molecular kinetics,
and initial conditions. The central idea is to exploit a transformation due to Strain
[119] which converts the equations of motion into a single, history-dependent boundary
integral equation on the solid/liquid boundary, given by

ǫκ(n)κ+ ǫV (n)V + U +H

∫ t

0

∫

Γ(t′)

K(x, x
′

, t− t′) V (x
′

, t
′

)dx
′

dt
′

= 0 (86)

57

Upper Left: H = .75 Upper Right: H = .833
Lower Left: H = .916 Lower Right: H = 1.0

Figure 36: Effect of Changing Latent Heat

for all x on the interface Γ(t). Here, K is the heat kernel, ǫκ and ǫV are constants, U is
the temperature, V is the normal velocity of the interface, and H is the latent heat of
solidification. Note that the velocity V depends not only on the position of the front but
also on its previous history. Thus, as shown in [119], information about the temperature
off the front is stored in the previous history of the boundary. This can be evaluated by
a combination of fast techniques, see [119, 120, 121, 54].

In Figure 36, we show one example from [117] in which the effect of changing the latent
heat of solidificationH is analyzed. Since the latent heat controls the balance between the
pure geometric effects and the solution of the history-dependent heat integral, increasing
H puts more emphasis on the heat equation/jump conditions. Calculations are performed
on a unit box, with a constant undercooling on the side walls of uB = −1. The kinetic
coefficient is ǫV = .001, the surface tension coefficient is ǫκ = .001, there is no crystalline
anisotropy. The initial shape was a perturbed circle. A 96× 96 mesh is used with time
step ∆t = .00125. The calculations are all plotted at the same time.

In the calculations shown, H is varied smoothly. In Fig. 36a, H = .75; the dominance
of geometric motion serves to create a rapidly evolving boundary that is mostly smooth.
H is increased in each successive figure, ending with H = 1.0 in Fig. 36d. As the latent
heat of solidification is increased, the growing limbs expand outwards less smoothly,
and instead develop flat ends. These flat ends are unstable and serve as precursors
to tip splitting. We also note that the influence of the heat integral slows down the
evolving boundary, as witnessed by the fact that all the plots are given at the same time.
Presumably increasing latent heat decreases the most unstable wavelength, as described
by linear stability theory. The final shape shows side-branching, tip-splitting, and the
strong effects of the side walls.

58

20 Two-Phase Flow

In this last section, we discuss level set methods applied to problems of two-phase flow.
Two early applications of fluid dynamical problems using level set methods to track

the interface are the projection method calculations of compressible gas dynamics of
Mulder, Osher and Sethian [83] and the combustion calculations of Zhu and Sethian
[128]. Each viewed the interface as the zero level set, and tracked this interface as a
method of separating the two regions.

To begin, in [83] the evolution of rising bubbles in compressible gas dynamics was
studied. The level set equation for the evolving interface separating two fluids of differ-
ing densities was incorporated inside the conservation equations for the fluid dynamics.
Both the Kelvin-Helmholtz instability and the Rayleigh-Taylor instability were studied;
the density ratio was about 30 to 4, and both gases were treated as perfect gases. Con-
siderable discussion was devoted to the advantages and disadvantages of embedding the
level set equation as an additional conservation law.

Next, in the combustion calculations presented in [128], the interface represented a
flame propagating from the burnt region into the unburnt region. Unlike the above
calculations concerning flame stability in flame holders, in these calculations the flame
was viewed as a “cold flame”; that is, the hydrodynamic flow field affected the position
of the flame, but the advancing flame did not in turn affect the hydrodynamic field.
In these calculations, the hydrodynamic field was computed using Chorin’s projection
method (see [31]), coupled to the level set approach. The problem under study was the
evolution of a flame inside a swirling two-dimensional chamber; and the results showed
the intermixing that can occur, the creating of pockets of unburnt fuel surrounded by
burnt pockets.

These two works were followed by the work of Chen, Hou, Merriman, Osher, Smereka,
and Sussman in [25, 122] using projection methods coupled to the level set equation to
study the motion of incompressible, immiscible fluids where steep gradients in density
and viscosity exist across the interface, and the role of surface tension is crucial.

There are three key aspects of these fascinating calculations. First, using a formulation
first developed by Brackbill, Kothe, and Zemach [14], the surface tension generated by
the level set curvature expression can be smoothed using a mollified delta function to
the neighboring grid points; this smoothing denotes a “thickness” for the interface layer,
and allows the role of surface tension to be transported to the grid for inclusion in the
projection method. Second, the contribution due to surface tension is converted from a
delta function to the Heaviside formulation and incorporated as such into the projection
step. This eliminates the standard numerical instabilities and oscillations that plague
attempts to directly difference the delta function itself. Third, the level set lines cease
to correspond to the distance function due to the significant variation in fluid velocities
across the interface; to redistribute the level set contours, the re-initialization idea using
iteration on the sign of φ described in Eqn. 71 was developed in [122].

The calculations performed using these techniques show a wide range of applications
concerning falling drops, colliding drops, and the role of surface tension, and open the
door to a range of important fluid dynamics applications. We refer the reader to [122, 25]
for further details.

59

Figure 37: Minimal Surface: Catenoid

21 Constrained Problems: Minimal Surfaces and Shape
Recovery

Another set of applications include problems in which the motion of the front is con-
strained by external boundary conditions. In this section, we briefly review some work
on the construction of minimal surfaces and shape recovery from images.

21.1 Minimal Surfaces

The basic problem may be stated as follows: Consider a closed curve Γ(s) inR3. The goal
is to construct a membrane with boundary Γ and mean curvature zero. In some cases,
this can be achieved by as follows. Given the bounding wire frame Γ, consider some initial
surface S(t = 0) whose boundary is Γ. Let S(t) be the family of surfaces parameterized by
t obtained by allowing the initial surface S(t = 0) to evolve under mean curvature, with
boundary always given by Γ. Defining the surface S by S = limt→∞ S(t), one expects
that the surface S will be a minimal surface for the boundary Γ. Several computational
approaches exist to construct such minimal surfaces based on this approach, including
K. Brakke’s Surface Evolver program [16].

A level set approach to this problem rests on embedding the motion of the surface
towards its minimal energy as the zero level set of a higher dimensional function. Thus,
given an initial surface S(0) passing through Γ, construct a family of neighboring surfaces
by viewing S(0) as the zero level set of some function φ over all of R3. Using the level
set equation (Eqn. 24), evolve φ according to the speed law F (κ) = −κ. Then a possible
minimal surface S will be given by

S = lim
t→∞
{x|φ(x, t) = 0} (87)

The difficult challenge with the above approach is to ensure that the evolving zero level
set always remains attached to the boundary Γ. This is accomplished by Chopp [28] by
creating a set of boundary conditions on those grid points closest to the wire frame that
link together the neighboring values of φ to force the level set φ = 0 through Γ. Thus,
the problem turns into one of constrained level set problem; we track mean curvature
flow with the constraint the evolving zero level set remained attached to the front.

In Figure 37, taken from [28], the minimal surface spanning two rings each of radius
0.5 and at positions x = ±.277259 is computed. A cylinder spanning the two rings is
taken as the initial level set φ = 0. A 27× 47× 47 mesh with space step 0.025 is used.
The final shape is shown in from several different angles in Figure 37.

Next, in Figure 38 (again taken from [28]), this same problem is computed, but the
rings are placed far enough apart so that a catenoid solution cannot exist. Starting with

60

Time = 0.0 Time = 0.41 Time = 0.42 Time = 0.50

Figure 38: Splitting of Catenoid

a cylinder as the initial surface, the evolution of this surface is computed as it collapses
under mean curvature while remaining attached to the two wire frames. As the surface
evolves, the middle pinches off and the surface splits into two surfaces, each of which
quickly collapses into a disk. The final shape of a disk spanning each ring is indeed a
minimal surface for this problem. This example illustrates one of the virtues of the level
set approach. No special cutting or ad hoc decisions are employed to decide when to
break the surface. Instead, viewing the zero level set as but one member of a family of
flowing surfaces allows this smooth transition. Further results may be found in [28].

21.2 Shape Detection/Recovery

Imagine that one is given an image. The goal in shape detection/recovery is to extract
a particular shape from that image; here, “extract” means to produce a mathematical
description of the shape which can be used in a variety of forms. The work on level set
techniques applied to shape recovery described here was first presented in [78]; further
work using the level set scheme in the context of shape recovery may be found in [79,
76, 73, 23]. We refer the interested reader to those papers for motivation, details, and a
large number of examples.

Imagine that we are given an image, with the goal of isolating a shape within the
image. Our approach (see [78]) is motivated by the active force contour/snake approach
to shape recovery given by Kass, Witkin, and Terzopoulos [61]. Consider a speed function
of the form 1 − ǫκ (1 + ǫκ), where ǫ is a constant. As discussed earlier, the constant
acts as an advection term, and is independent of the moving front’s geometry. The
front uniformly expands (contracts) with speed 1 (−1) depending on the sign, and is
analogous to the inflation force defined in [33]. The diffusive second term ǫK depends
on the geometry of the front and smooths out the high curvature regions of the front. It
has the same regularizing effect on the front as the internal deformation energy term in
thin-plate-membrane splines [61].

Our goal now is to define a speed function from the image data that acts as a halting
criterion for this speed function. We multiply the above speed function by the term:

kI(x, y) =
1

1+ | ∇Gσ ∗ I(x, y) |
, (88)

where the expression Gσ ∗ I denotes the image convolved with a Gaussian smoothing
filter whose characteristic width is σ. The term |∇Gσ ∗ I(x, y)| is essentially zero except

61

where the image gradient changes rapidly, in which case the value becomes large. Thus,
the filter kI(x, y) is close to unity away from boundaries, and drops to zero near sharp
changes in the image gradient, which presumably corresponds to the edge of the desired
shape. In other words, the filter function anticipates steep changes in the image gradient,
and stops the evolving front from passing out of the desired region.

Thus the algorithm works as follows. A small front (typically a circle) is started inside
the desired region. This front then grows outwards and is stopped at the shape boundary
by the filter term which drops the value of the speed function F to zero.

There are several desirable aspects of this approach.

• The initial front can consist of many fronts; due to the topological capabilities of
the level set method, these fronts will merge into a single front as it grows into the
particular shape.

• The front can follow intricate twists and turns in the desired boundary.

• Use of narrow band techniques makes the algorithm very fast.

• The technique can be used to extract three-dimensional shapes as well by initializing
in a ball inside the desired region.

• Small isolated spots of noise where the image gradient changes substantially are
ignored; the front propagates around these points and closes back in on itself and
then disappears.

As a demonstration, level set shape recovery techniques are applied to the difficult
problem of extracting the left and right ventricles of the heart. In these calculations,
taken from [77], the problem is initialized by simultaneously tagging both the left and the
right ventricle; the right ventricle is found by the evolving front, as is the left ventricle.
Note that in the evolution of the right ventricle front, the papillary muscle is also found,
see Figure 39. This feature is found by initializing with a single contour which wraps
around the papillary muscle and separates into an inner ring and outer ring. After the
outer wall of the left and right ventricles are recovered, the outer wall of the right ventricle
is extracting; this is done by temporarily relaxing the stopping criteria, and allowing the
front to move past the inner wall of the right ventricle. Once this occurs, the stopping
criteria is turned back on, and the front expands until the outer wall is found.

This technique for shape detection/recovery can be performed in three dimensions if
three-dimensional data is available. For details of this and related work, see [78, 79, 77].

62

(a) Initialization (b) Intermediate Stage (c) End of Stage One

(d) Intermediate Stage Two (e) End of Stage Two

Figure 39: Shape Extraction From Heart Data

63

22 Applications of the Fast Marching Level Set Method

In the case of a monotonically advancing front whose speed in the normal direction
depends only on position, we have previously seen that this can be converted into a
stationary time problem. Furthermore, we have developed a fast marching algorithm for
solving the Eikonal equation associated with this problem. Here, we show two applica-
tions of this technique.

22.1 Shape-from-shading

Suppose we illuminate a non-self-shadowing surface from a single point light source. At
each point of the surface, one can define the brightness map I which depends on the
reflectivity of the surface and the angle between the incoming light ray and the surface
normal. Points of the surface where the normal is parallel to the incoming beam are
brightest; those where the normal is almost orthogonal are darkest (again, we rule out
surfaces that are self-shadowing). The goal of shape-from-shading is to reconstruct the
surface from its brightness function I. A good starting point is the work

We point out right away that the problem as posed does not have a unique solution.
For example, imagine a beam coming straight down; it is impossible to differentiate a
surface from its mirror image from the brightness function. That is, a deep valley could
also be a mountain peak. Other ambiguities can exist, we refer the reader to Rouy
and Tourin[96] and Kimmel and Bruckstein [65]. Nonetheless, in its simplest form the
shape-from-shading problem provides a simple example of an Eikonal equation that can
be solved using our fast marching level set method.

We begin by considering a surface T (x, y); the surface normal is then given by

n =
(−Tx,−Ty, 1)

(|∇T |2 + 1)1/2
. (89)

Let (α, β, γ) be the direction from the light source. In the simplest case of a Lamber-
tian surface, the brightness map is given in a very simple form by

I(x, y) = (α, β, γ) · n. (90)

Thus, the shape-from-shading problem is to reconstruct the surface T (x, y) given the
brightness map I(x, y).

Consider the simplest case, namely that in which the light comes from straight down.
Then the light source vector is (0, 0, 1), and we have

I(x, y) =
1.

(|∇T |2 + 1)1/2
. (91)

Rearranging terms, we then have an Eikonal equation for the surface, namely

|∇T | =
√

1

I2
− 1. (92)

where n is the normal to the surface. We still need initial conditions for this problem
Let us imagine that at extrema of T we know the values of T . Then we can construct a
viable solution surface using our fast marching method.

To demonstrate, we start with a given surface, first compute the brightness map I,
and then reconstruct the surface by solving the above Eikonal equation. In Figure 40,
we show a paraboloid surface of the form T = 3.− 3(x2 + y2). In Figure 40(a) we show

64

0
10

20
30

40

0

10

20

30

40
1.5

2

2.5

3

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

0
10

20
30

40

0

10

20

30

40
1.5

2

2.5

3

(a) Original (b) Brightness (c) Reconstructed

Figure 40: Shape-from-shading reconstruction of Paraboloid surface

10
20

30
40

10

20

30

40

1

1.2

1.4

1.6

1.8

2

2.2

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

10
20

30
40

10

20

30

40

1

1.2

1.4

1.6

1.8

2

2.2

(a) Original (b) Brightness (c) Reconstructed

Figure 41: Shape-from-shading reconstruction of Double Gaussian surface

the original surface, in Figure 40()b we show the brightness map I(x, y), and in Figure
40(c) we show the reconstructed surface. This surface is “built” by setting T = 3 at the
point where the maximum is obtained, and then solving the Eikonal equation.

As a more complex example, we use a double Gaussian function of the form

T (x, y) = 3e−(x2+y2) − 2e−20((x−.05)2+(y−.05)2) (93)

Once again, we compute the brightness map and then reconstruct the surface, see Figure
41.

We have barely touched the topic of shape-from-shading; in the case of multiple
extrema and non-vertical light sources, more care must be taken, and we refer the inter-
ested reader to the above sources. Nonetheless, the fast marching level set algorithm is
extremely effective for these problems.

22.2 Photolithography Development

One component process in the manufacturing of microchips is the stage of lithography
development, see Chapter 17. In this process, the resist properties of a material have been
altered due to exposure to a beam which has been partially blocked by a pattern mask.

65

Figure 42: Lithographic development on 50x50x50 grid

Grid Size Time to Load Rate File Time to Propagate Front Total Time

50x50x50 0.1 secs 0.7 secs 0.8 secs
100x100x100 1.2 secs 8.2 secs 9.4 secs

150x150x150 3.9 secs 37.8 secs 41.7 secs
200x200x200 9.0 secs 80.0 secs 89 secs

Figure 43: Timings for Development to T=10: Sparc 10

The material is then “developed”, which means the material with less resistivity is etched
away. While the process is discussed in more detail in the next section, at this point
we simply note that the problem reduces to that of following an initially plane interface
propagating downwards in three dimensions, where the speed in the normal direction
is given as a supplied rate function at each point. The speed F = F (x, y, z) depends
only on position, however it may change extremely rapidly. The goal in lithography
development is to track this evolving front. In order to develop realistic structures in
three-dimensional development profiles, a grid of size 300x300x100 is not unreasonable;
hence a fast algorithm is required to perform the development step.

Start with a flat profile at height z = 1 in the unit cube centered at (.5, .5, .5) and
follow the evolution of the interface downwards with speed given by the model Gaussian
rate function

F (x, y, z) = e−64(r2)(cos2(12z) + .01) (94)

where r =
√

(x− .5)2 + (y − .5)2). This rate function F corresponds to effect of standing
waves which change the resist properties of the material, and causes sharp undulations
and turns in the evolving profile. In Figure 42, we show the profile etched out by such
an initial state; the calculation is carried out until T = 10.

In Figure 43, we give timings for a parameter study on a Sparc10 for the speed function
F = e−64(r2)(cos2(6z)+.01). We note that loading the file containing the model Gaussian
rate function F is a significant proportion of the total compute time.

Further details of the application of our fast marching level set method may be found

66

in [111, 110, 116]

23 A Final Example: Etching and Deposition in the

Microfabrication of Semiconductor Devices

23.1 Background

A goal of numerical simulations in microfabrication of semi-conductor devices is to model
the process by which silicon devices are manufactured. Here, we briefly summarize the
stages involved. First, a single crystal ingot of silicon is extracted from molten pure
silicon. This silicon ingot is then sliced into a several hundred thin wafers, each of
which is then polished to a smooth finish. A thin layer of crystalline is then oxidized,
a light sensitive “photoresist” that is sensitive to light is applied, and then the wafer is
covered with a pattern mask which shields part of the photoresist. This pattern mask
contains the layout of the circuit itself. Under exposure to a light or an electron beam,
the exposed photoresist polymerizes and hardens, leaving an unexposed material which
is then etched away in dry etch process, revealing bare silicon dioxide layer. Ionized
impurity atoms such as boron, phosphorus and argon are then implanted into the pattern
of the exposed silicon water, and silicon dioxide is deposited at reduced pressure in a
plasma discharge from gas mixtures at a low temperature. Finally, thin films such as
aluminum are deposited by processes such as plasma sputtering, and contacts to the
electrical components and component interconnections are established. The result is a
device that carries the desired electrical properties.

The above processes produce considerable change in the surface profile as it undergoes
the stages of etching, deposition, and photolithography. This problem is known as the
”surface topography problem” in microfabrication, and is controlled by a large collection
by physical effects, including the visibility of the etching/deposition source at each point
of the evolving profile, surface diffusion along the front, non-convex sputter laws which
produce faceting, shocks and rarefactions, material-dependent discontinuous etch rates,
and masking profiles.

The underlying physical effects involved in etching, deposition and lithography are
quite complex; excellent overviews are due to Neureuther and his group, see [56, 101,
102, 125, 126], as well as [20, 21, 22, 80, 94]. The effects may be summarized briefly as
follows:

• Deposition: Particles are deposited on the surface, which causes build-up in the pro-
file. The particles may either isotropically condense from the surroundings (known
as chemical or “wet” deposition), or be deposited from a source. In the latter case,
we envision particles leaving the source and depositing on the surface; the main
advantage of this approach is increased control over the directionality of surface
deposition. The rate of deposition, and hence growth of the layer, may depend
on source masking, visibility effects between the source and surface point, angle-
dependent flux distribution of source particles, the angle of incidence of the particles
relative to the surface normal direction, reflection of deposited particles, and surface
diffusion effects.

• Etching: Particles remove material from the evolving profile boundary. The ma-
terial may be isotropically removed, known again as chemical or “wet” etching, or
chipped away through reactive ion etching, also known as “ion milling”. Similar to
deposition, the main advantage of reactive ion etching is enhanced directionality,
which becomes increasingly important as device sizes decrease substantially and

67

etching must proceed in vertical directions without affecting adjacent features. The
total etch rate consists of an ion-assisted rate and a purely chemical etch rate due
to etching by neutral radicals, which may still have a directional component. As in
the above, the total etch rate due to wet and directional milling effects can depend
on source masking, visibility effects between the source and surface point, angle-
dependent flux distribution of source particles, the angle of incidence of the particles
relative to the surface normal direction, reflection/re-emission of etching/million
particles, and surface diffusion effects.

• Lithography: As discussed earlier, the underlying material is ereated by an electro-
magnetic wave which alters the resist property of the material. The aerial image
is found, which then determines the amount of crosslinking at each point in the
material which then produces the etch/resist rate at each point of the material. A
profile is then etched into the material, where the speed of the profile in its normal
direction at any point is given by the underlying etch rate. The key factors that
determine the evolving shape are the etch/resist profile and masking effects.

In the final analysis, the above reduces to our familiar problem of tracking the bound-
ary of moving interface moving under a speed function F . Abstractly, we may write

F = FDeposition/Etching + FLithography. (95)

Of course, all effects do not take place at once; however the design of the numerical
algorithm allows various combinations of terms to be “turned on” during any time step
of the surface advancement. For details and additional calculations of level set methods
applied to microfabrication, see [2, 3, 4].

23.2 Results

23.2.1 Etching/Deposition

We begin in Figure 44 with a deposition source above a trench, where deposition material
emitted from a line source from the solid line above the trench. In this experiment, the
deposition rate is the same in all directions. The effects of shadowing are considered.
Figure 44a shows results for 40 computational cells along the width the compute region
(between the two vertical dashed lines); Figure 44b has 80 cells, and Figure 44c has
160 cells. The time step for all three calculations is ∆t = .00625. The calculations are
performed with a narrow band tube width of 6 cells on either side of the front. There is
little change between the calculation with 80 cells and the one with 160 cells, indicating
that the solution is converged. As the walls pinch toward each other, the seen visible
angle decreases and the speed diminishes.

23.2.2 Ion-Milling: Non-convex Sputter Laws

A more sophisticated set of examples arises in simulations (for example, of ion milling)
in which the normal speed of the profile depends the angle of incidence between the
surface normal and the incoming beam. This yield function is often empirically fit from
experiment, and has been observed to cause such effects as faceting at corners, see [69, 62].
As shown in [2, 3], such yield functions can often give rise to non-convex Hamiltonians,
in which case alternative schemes must be used. To study this phenomenon, in Figure 45
we consider several front motions and their effects on corners. We envision an etching
beam coming down in the vertical direction. In the cases under study here, the angle θ
refers to the angle between the surface normal and the positive vertical. For this set of
calculations, in order to focus on the geometry of sputter effects on shocks/rarefaction fan

68

40 Cells 80 Cells 160 Cells
F ig.44a. F ig.44b F ig.44c

Figure 44: Source Deposition Into Trench

development, visibility effects are ignored. The calculations are made using the schemes
for non-convex Hamiltonians described earlier. Following our usual notation, let F (θ) be
the speed of the front in direction normal to the surface.

In column A, the effects of purely isotropic motion are shown, thus the yield function
is F = 1. Located above the yield graph are the motions of a downwards square wave.
In column B, the effects of directional motion are shown, thus the yield function is
F = cos(θ). In this case, the horizontal components on the profile do not move, and
vertical components move with unit speed. In column C, the effects of a yield function
of the form F = [1 + 4 sin2(θ)] cos(θ) are shown.

The results of these calculations are given in Figure 45. The results show that the
effects of angle dependent yield functions are pronounced. In Column A the isotropic rate
produces smooth corners, correctly building the necessary rarefaction fans in outward
corners and entropy satisfying shocks in inward corners as discussed and analyzed in
[105, 106]. In Column B, the directional rate causes the front to be essentially translated
upwards, with minimal rounding of the corners. In Column C, the yield function results
in faceting of inward corners where shocks form and sharp corners in the construction of
rarefaction fans.

23.2.3 Discontinuous Etch Rates

Next, we study the effects of etching through different materials. In this example, the
etch rates are discontinuous, and hence sharp corners develop in the propagating profile.
The results of these calculations are show in Figure 46. A top material masks a lower
material, and the profile etches through the lower material first and underneath the
upper material. The profile depends on the ratio of the etch rates. In Figure 46a, the
two materials have the same etch rate, and hence the front simply propagates in its
normal direction with unit speed, regardless of the which material it is passing through.
In Figure 46b, the bottom material etches four times faster that the top; in Figure 46c,
the ratio is ten to one, Finally, in Figure 46d, the ratio is forty to one, in which case the
top material almost acts like a mask.

69

F (θ) = 1 F = cos(θ) F = [1 + 4 sin2(θ)] cos(θ)
Column A Column B Column C

Figure 45: Effect of Different Yield Functions: Non-convex Scheme

Ratio = 1 : 1 Ratio = 4 : 1 Ratio = 10 : 1 Ratio = 40 : 1

Figure 46: Etch Ratio = Bottom Material Rate to Top Material Rate

70

23.2.4 Simultaneous Etching and Deposition

Next, a parameter study of simultaneous etching and deposition is taken from [4]. The
speed function is

F = (1− α)Fetch + αFDeposition (96)

where

Fetch = (5.2249 cosθ−5.5914 cos2 θ+1.3665 cos4 θ) FDeposition = βFIsotropic+(1−β)FSource

(97)
Visibility effects are considered in all terms except isotropic deposition. Figure 47 shows
the results of varying α and β between 0 and 1.

23.3 Three-Dimensional Simulations

Finally, a three-dimensional example of a non-convex sputter yield law is applied to an
indented saddle, which gives rise to faceting as shown in Figure 48. Complete details
of the above and a large variety of simulations of etching, deposition, and lithography
development may be found in [2, 3, 4].

24 Other Work

The range of level set techniques extends far beyond the work covered here. Here, we
point the reader to some additional topics.

On the theoretical side, considerable analysis of level set methods has been performed
in recent years, see, for example, [15, 38, 41, 42, 43, 44, 26, 50, 51, 6]. This work has
concentrated on many aspects, including questions of existence and uniqueness, patho-
logical cases, extensions of these ideas to fronts of co-dimension greater than one (such
as evolving curves in three dimensions), coupling with diffusion equations, links between
the level set technique and Brakke’s groundbreaking original varifold approach.

On the theoretical/numerical analysis side, level set techniques exploit the consider-
able technology developed in the area of viscous solutions to Hamilton-Jacobi equations,
see the work in [9, 35, 36, 37, 71].

A wide range of applications relate to level set methods, including work on minimal
arrival times by Falcone [45], flame propagation work by Zhu and Ronney [129], a wide
collection of applications from computer vision by Kimmel [64], gradient flows applied to
geometric active contour models [63], work on affine invariant scale space [99], and some
related work on the scalar wave equation [47]. We also refer the reader to the collection
of papers from the International Conference on Mean Curvature Flow [18].

Acknowledgements: All calculations were performed at the University of Cali-
fornia at Berkeley and the Lawrence Berkeley Laboratory. The detailed applications of
the level set schemes discussed in this work are joint with D. Adalsteinsson, D. Chopp,
R. Malladi, B. Milne. C. Rhee, J, Strain, L. Talbot and J. Zhu.

References

[1] Adalsteinsson, D., and Sethian, J.A., A Fast Level Set Method for Propagating
Interfaces, J. Comp. Phys., Vol. 118(2), pp. 269–277, May 1995.

[2] Adalsteinsson, D., and Sethian, J.A., A Unified Level Set Approach to Etching,
Deposition and Lithography I: Algorithms and Two-dimensional Simulations, J.
Comp. Phys. 120, 1, pp. 128-144, 1995.

71

F = (1− α)Fetch + αFDeposition

Fetch = (5.2249 cosθ− 5.5914 cos2 θ + 1.3665 cos4 θ) cos θ

FDeposition = βFIsotropic + (1− β)FSource

α Increases F rom Left to Right
β Increases F rom Bottom to Top

Figure 47: Simultaneous Etching and Deposition

72

Initial Shape : T = 0 F = [1 + 4 sin2(θ)] cos(θ) T = 8 F inal Rotated

Figure 48: Downward Saddle Under Sputter Etch

[3] Adalsteinsson, D., and Sethian, J.A., A Unified Level Set Approach to Etching,
Deposition and lithography II: Three-dimensional Simulations, J. Comp. Phys.,
Vol. 122, No. 2, pp.348-366, 1995.

[4] Adalsteinsson, D., and Sethian, J.A., A Unified Level Set Approach to Etching,
Deposition and Lithography III: Complex Simulations and Multiple Effects, to be
submitted, J. Comp. Phys., 1995.

[5] Alvarez, L., Lions, P.L., and Morel, M., Image Selective Smoothing and Edge detec-
tion by Nonlinear Diffusion. II, SIAM Journal on Numerical Analysis, Vol. 29(3),
pp. 845–866, 1992.

[6] Ambrosio, L., and Sonar, H.M., Level Set Approach to Mean Curvature Flow in
Arbitrary Codimension, preprint, 1994.

[7] Angenent, S.,Shrinking Doughnuts, in ”Proceedings of Nonlinear Diffusion Equa-
tions and Their Equilibrium States, 3, (Edited by N.G. Lloyd et. al.), Birkhauser,
Boston, 1992.

[8] Barles, G., Remarks on a Flame Propagation Model, INRIA Report 464, 1985.

[9] Barles, G., Discontinuous Viscosity Solutions of First Order Hamilton-Jacobi Equa-
tions: A Guided Visit, Non-linear Analysis: Theory, Methods, and Applications,
20, 9, pp. 1123-1134, 1993.

[10] Barles, G., and Souganidis, P.E., Convergence of Approximation Schemes for Fully
Non-linear Second Order Equations, Asymptotic Anal., 4, pp.271-283, 1991.

[11] Bardi, M., and Falcone, M., An Approximation Scheme for the Minimum Time
Function, SIAM J. Control Optim, 28, pp. 950-965, (1990),

[12] Bell, J.B., Colella, P., and Glaz, H.M., A Second-Order Projection Method for the
Incompressible Navier-Stokes Equations, J. Comp. Phys., 85, pp. 257-283, 1989.

[13] Berger, M. and Colella, P., Local Adaptive Mesh Refinement for Shock Hydrody-
namics, J. Comp., Phys., 1, 82, pp. 62-84, 1989.

[14] Brackbill, J.U., Kothe, D.B., and Zemach, C., A Continuum Method for Modeling
Surface Tension, J. Comp. Phys., 100, pp. 335-353, 1992.

[15] Brakke, K.A., The Motion of a Surface by Its Mean Curvature, Princeton Univer-
sity Press, Princeton, New Jersey, 1978.

73

[16] Brakke , K.A., Surface Evolver Program, Research Report GCC 17, the Geometry
Supercomputer Project, University of Minnesota, 1200 Washington Ave., South,
Minneapolis, Minn., 55455, 1990.

[17] Bronsard, L., and Wetton, B., A Numerical Method for Tracking Curve Networks
Moving with Curvature Motion, 120, 1, pp. 66087, 1995.

[18] Buttazzo, G., and Visitin, A., Motion by Mean Curvature and Related Topics,
Proceedings of the International Conference at Trento, 1992, Walter de Gruyter,
New York, 1994.

[19] Cahn, J.E., and Hilliard, J.E., Jour. Chem. Phys. 28, pp. 258, 1958.

[20] Cale, T.S., and Raupp, G.B., Free Molecular Transport and Deposition in Cylin-
drical Features, J. Vac. Sci. Tech., B, 8,4, pp. 649-655, 1990.

[21] Cale, T.S., and Raupp, G.B., Free Molecular Transport and Deposition in Long
Rectangular Trenches, J. Appl. Phys., 68, 7, pp.3645-8652, 1990.

[22] Cale, T.S., and Raupp, G.B., A Unified Line-of-Sight Model of Deposition in Rect-
angular Trenches, J. Vac. Sci. Tech., B, 8,6, pp. 1242-1248, 1990.

[23] Caselles, V., Catte, F., Coll, T., and Dibos, F., A Geometric Model for Active
Contours in Image Processing, Internal report no. 9210, CEREMADE, Université
de Paris-Dauphine, France.

[24] Castillo, J.E., Mathematical Aspects of Grid Generation. Frontiers in Applied
Mathematics 8, SIAM Publications, 1991.

[25] Chang, Y.C., Hou, T.Y., Merriman, B., and Osher, S.J., A Level Set Formulation
of Eulerian Interface Capturing Methods for Incompressible Fluid Flows, submitted
for publication, Jour. Comp. Phys., 1994.

[26] Chen, Y., Giga, Y., and Goto, S., Uniqueness and Existence of Viscosity Solutions
of Generalized Mean Curvature Flow Equations, J. Diff. Geom, Vol. 33, 749, 1991.

[27] Chopp, D.L., Numerical Computation of Self-Similar Solutions for Mean Curvature
Flow J. Exper. Math., Vol. 3, No. 1, pp.1-15, 1994.

[28] Chopp, D.L., Computing Minimal Surfaces via Level Set Curvature Flow, Jour. of
Comp. Phys., Vol. 106, pp. 77–91, 1993.

[29] Chopp, D.L., and Sethian, J.A,. Flow Under Curvature: Singularity Formation,
Minimal Surfaces, and Geodesics, Jour. Exper. Math., Vol. 2(4), pp. 235–255,
1993.

[30] Chorin, A.J., Flame Advection and Propagation Algorithms, J. Comp. Phys., Vol.
35, pp. 1-11, 1980.

[31] Chorin, A.J., Numerical Solution of the Navier-Stokes Equations, Math. Comp.,
22, pp. 745, 1968.

[32] Chorin, A.J., Numerical Study of Slightly Viscous Flow, J. Fluid Mech., 57, pp.
785-796, 1973.

[33] Cohen, L.D., On Active Contour Models and Balloons, Computer Vision, Graphics,
and Image Processing, Vol. 53, No. 2, pp. 211–218, March 1991.

[34] Colella, P., and Puckett, E.G., Modern Numerical Methods for Fluid Flow, Lecture
Notes, Department of Mechanical Engineering, University of California, Berkeley,
California, 1994.

[35] Crandall, M.G., Evans, L.C., and Lions, P-L., Some Properties of Viscosity Solu-
tions of Hamilton-Jacobi Equations, Tran. AMS, 282, pp. 487-502, 1984.

74

[36] Crandall, M.G., Ishii, H., and Lions, P-L., User’s Guide to Viscosity Solutions of
Second Order Partial Differential Equations, Bull. AMS, 27/1, pp.1-67, 1992.

[37] Crandall, M.G., and Lions, P-L., Viscosity Solutions of Hamilton-Jacobi Equations,
Tran. AMS, 277, pp. 1-43, 1983.

[38] Ecker, K., Huisman, G., Interior Estimates for Hypersurfaces Moving by Mean
Curvature, Inventiones Mathematica, 105, 3, pp. 547-569, 1991.

[39] Engquist, B., and Osher, S.J., Stable and Entropy-Satisfying Approximations for
Transonic Flow Calculations, Math. Comp., Vol. 34, 45, 1980.

[40] Evans, L.C., Sonar, H.M., and Souganidis, P.E., Phase Transitions and Generalized
Motion by Mean Curvature, Communications on Pure and Applied Mathematics,
Vol. 45, 1097, 1992.

[41] Evans, L.C., and Spruck, J., Motion of Level sets by Mean Curvature I, J. Diff.
Geom, Vol. 33, 635, 1991.

[42] Evans, L.C., and Spruck, J., Motion of Level sets by Mean Curvature II, Transac-
tions of the American Mathematical Society, Vol. 330, 91, 1992.

[43] Evans, L.C., and Spruck, J., Motion of Level sets by Mean Curvature III, J. Geom.
Anal. 2, pp. 121-150, 1992.

[44] Evans, L.C., and Spruck, J., Motion of Level sets by Mean Curvature IV, J. Geom.
Anal.,5, 1, pp. 77-114, 1995.

[45] Falcone, M., The Minimum Time Problem and Its Applications to Front Propa-
gation, in “Motion by Mean Curvature and Related Topics”, Proceedings of the
International Conference at Trento, 1992, Walter de Gruyter, New York, 1994.

[46] Falcone, M., Giorgi, T., and Loretti, P., Level Sets of Viscosity Solutions: Some
Applications to Fronts and Rendez-Vous Problems, SIAM J. Appl. Math., 54, 5,
pp. 1335-1354, 1994.

[47] Fatemi, E., Engquist, B., and Osher, S.J., Numerical Solution of the High Frequency
Asymptotic Wave Equation for the Scalar Wave Equation, J. Comp. Phys,. 120,
pp. 145-155, 1995.

[48] Gage, M., Curve Shortening Makes Convex Curves Circular, Inventiones Mathe-
matica, Vol. 76, 357, 1984.

[49] Gage, M., and Hamilton, R., The Equation Shrinking Convex Planes Curves, J.
Diff. Geom, Vol. 23, 69, 1986.

[50] Giga, Y., and Goto, S., Motion of Hypersurfaces and Geometric Equations, Journal
of the Mathematical Society of Japan, Vol. 44, 99, 1992.

[51] Giga, Y., Goto, S., Ishii, H., Global Existence of Weak Solutions for Interface
Equations Coupled with Diffusion Equations, SIAM J. Math. Anal., 23, N4, pp.
821-835, 1992.

[52] Grayson, M., The Heat Equation Shrinks Embedded Plane Curves to Round Points,
J. Diff. Geom., Vol. 26, 285 (1987).

[53] Grayson, M., A Short Note on the Evolution of Surfaces Via Mean Curvatures, J.
Diff. Geom., Vol. 58, 555 (1989).

[54] Greengard, L., and Strain, J., A Fast Algorithm for Evaluating Heat Potentials,
Comm. Pure Appl. Math., XLIII, pp. 949-963, (1990).

[55] Harten, A., Engquist, B., Osher, S., and Chakravarthy, S.R., Uniformly high order
accurate essentially non-oscillatory schemes. III, J. Comp. Phys., 71, 2, pp. 231-
303, 1987

75

[56] Helmsen, J.J., A Comparison of Three-Dimensional Photolithography Development
Methods Ph.D. Dissertation, EECS, University of California, Berkeley, 1994.

[57] Hirt, C.W., and Nicholls, B.D., Volume of Fluid)COF) Method for Dynamics of
Free Boundaries, J. Comp. Phys., 39, pp. 201-225, 1981.

[58] Huisken, G., Flow by Mean Curvature of Convex Surfaces into Spheres, J. Diff.
Geom., Vol. 20, 237, (1984).

[59] Ilmanen, T., Elliptic Regularization and Partial Regularity for Motion by Mean
Curvature, Memoirs of the American Mathematical Society, 108, 520, 1994.

[60] Ilmanen, T., Generalized Flow of Sets by Mean Curvature on a Manifold, Indiana
University Mathematics Journal, 41, 3, pp.671-705, 1992.

[61] Kass, M., Witkin, A., and Terzopoulos, D., Snakes: Active Contour Models, Inter-
national Journal of Computer Vision, pp. 321–331, 1988.

[62] Katardjiev, I.V., Carter, G., Nobes, M.J., Precision Modeling of the Mask-Substrate
Evolution During Ion Etching, J. Vac. Science Technology, A 6(4), pp. 2443-2450,
1988.

[63] Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi, A., Gradient
Flows and Geometric Active Contours, 1994, ICCV, 1995.

[64] Kimmel, R., Curve Evolution on Surfaces, Ph.D. Thesis, Dept. of Electrical Engi-
neering, Technion, Israel, 1995.

[65] Kimmel, R., and Bruckstein, A., Shape from Shading via Level Sets, Center for
Intelligent Systems Report No.9209, Technion- Israel Institute of Technology, June
1992,

[66] Kimmel, R., and Bruckstein, A., Shape Offsets via Level Sets, Computer-Aided
Design, 25, 3, pp. 154-161, 1993.

[67] Knupp, P.M., and Steinberg, S., The Fundamentals of Grid Generation, preprint
1993.

[68] Lax, P.D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory
of Shock Waves, SIAM Reg. Conf. Series, Lectures in Applied Math, 11, pp. 1-47,
1970.

[69] Leon, F.A., Tazawa, S., Saito, K., Yoshi, A., and Scharfetter, D.L., Numerical
Algorithms for Precise Calculation of Surface Movement in 3-D Topography Simu-
lation, 1993 International Workshop on VLSI Process and Device Modeling (1993
VPAD).

[70] LeVeque, R.J., Numerical Methods for Conservation Laws, Birkhauser, Basel, 1992.

[71] Lions, P.L. Generalized Solution of Hamilton-Jacobi Equations, Pittman, Lon-
don,1982.

[72] Majda, A., and Sethian, J.A., Derivation and Numerical Solution of the Equations
of Low Mach Number Combustion, Combustion Science and Technology, 42, pp.
185-205, 1984.

[73] Malladi, R., Adalsteinsson, D., and Sethian, J.A., A Fast Level Set Algorithm for
3D Shape Recovery, submitted, IEEE Transactions on PAMI,. 1995.

[74] Malladi, R., and Sethian, J.A., Image Processing: Flows under Min/Max Curvature
and Mean Curvature, in press, Graphical Models and Image Processing, July 1995.

[75] Malladi, R., and Sethian, J.A., Image Processing via Level Set Curvature Flow,
Proc. Natl. Acad. of Sci., USA, Vol. 92(15), pp. 7046–7050, July 1995.

76

[76] Malladi, R., and Sethian, J.A., A Unified Approach for Shape Segmentation, Rep-
resentation, and Recognition, Report LBL-36069, Lawrence Berkeley Laboratory,
University of California, Berkeley, August 1994.

[77] Malladi, R., and Sethian, J.A., A Unified Approach to Noise Removal, Image En-
hancement, and Shape Recovery, in press, IEEE Image Processing, July 1995.

[78] Malladi, R., Sethian, J.A., and Vemuri, B.C., Evolutionary Fronts for Topology-
independent shape Modeling and Recovery, in Proceedings of Third European Con-
ference on Computer Vision, LNCS Vol. 800, pp. 3–13, Stockholm, Sweden, May
1994.

[79] Malladi, R., Sethian, J.A., and Vemuri, B.C., Shape Modeling with Front Prop-
agation: A Level Set Approach, IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 17(2), pp. 158–175, Feb. 1995.

[80] McVittie, J.P.; Rey, J.C.; Bariya, A.J., and others SPEEDIE: A Profile Simulator
for Etching and Deposition, Proceedings of the SPIE - The International Society
for Optical Engineering, 1991, vol.1392:126-38.

[81] Merriman, B., Bence, J., and Osher, S.J., Motion of Multiple Junctions: A Level
Set Approach, to Jour. Comp. Phys., Vol. 112, No. 2, pp. 334-363, 1994.

[82] Milne, B., and Sethian, J.A., Adaptive Mesh Refinement for Level Set Methods for
Propagating Interfaces, to be submitted for publication, J. Comp. Phys., 1995,

[83] Mulder, W., Osher, S.J., Sethian, J.A., Computing Interface Motion in Compress-
ible Gas Dynamics, Jour. Comp. Phys., Vol. 100, pp. 209-228, 1992.

[84] Mullins, W. W., and Sekerka, R. F., Morphological Stability of a Particle Growing
by Diffusion or Heat Flow, Jour. Appl. Phys., 34, pp. 323-329, 1963

[85] Noh, W. and Woodward, P.: A Simple Line Interface Calculation. Proceedings,
Fifth International Conference on Fluid Dynamics, A.I. vn de Vooran and P.J.
Zandberger, Eds.: Springer-Verlag, 1976.

[86] Osher, S., and Rudin, L.I., Feature-oriented Image Enhancement Using Shock Fil-
ters, SIAM J. Num. Anal., Vol. 27, pp. 919–940, 1990.

[87] Osher, S., and Rudin, L.I., Rapid Convergence of Approximate Solutions of Shape-
From-Shading, to appear, 1992.

[88] Osher, S., and Sethian, J.A., Fronts Propagating with Curvature Dependent speed:
Algorithms Based on Hamilton-Jacobi Formulation, Journal of Computational
Physics, Vol. 79, pp. 12-49, 1988.

[89] Osher, S., and Shu, C., High-Order Nonoscillatory Schemes for Hamilton-Jacobi
Equations, Jour. Comp. Phys., Vol. 28, pp. 907-922, 1991.

[90] Perona, P., and Malik, J., Scale-space and Edge Detection Using Anisotropic Dif-
fusion, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 12(7), pp.
629–639, July 1990.

[91] Pindera, M.Z., and Talbot, L., Flame-Induced Vorticity: The Effects of Stretch,
Twenty-First Symposium (Int’l) on Combustion, The Combustion Institute, Pitts-
burgh, pp. 1357-1366., 1986.

[92] Press, W. H., Numerical Recipes, Cambridge University Press, New York, 1988

[93] Puckett, E.G., A Volume-of-Fluid Interface Tracking Algorithm with Applications
to Computing Shock Wave Refraction, Proceedings of the 4th International Sym-
posium on Computational Computational Fluid Dynamics, Davis, California, 1991

77

[94] Rey, J.C.; Lie-Yea Cheng; McVittie, J.P.; Saraswat, K.C., Monte Carlo Low Pres-
sure Deposition Profile Simulations, Journal of Vacuum Science and Technology A
(Vacuum, Surfaces, and Films), May-June 1991, vol.9, (no.3, pt.1):1083-7.

[95] Rhee, C., Talbot, L., and Sethian, J.A., Dynamical Study of a Premixed V flame,
Jour. Fluid Mech., 300, pp.87-115, 1995.

[96] Rouy, E. and Tourin, A., A Viscosity Solutions Approach to Shape-From-Shading,
SIAM J. Num. Anal, 29, 3. pp. 867-884, 1992.

[97] Rudin, L., Osher, S., and Fatemi, E., Nonlinear Total Variation-Based Noise Re-
moval Algorithms, Modelisations Matematiques pour le traitement d’images, IN-
RIA, pp. 149–179, 1992.

[98] Sapiro, G., and Tannenbaum, A., Area and Length Preserving Geometric Invariant
Scale-spaces, Proc. of Third European Conference on Computer Vision, LNCS Vol.
801, pp. 449–458, Stockholm, Sweden, May 1994.

[99] Sapiro, G., and Tannenbaum, A., Affine Invariant Scale-Space, Int. Jour. Comp.
Vision, 11, 1, pp. 25-44, 1993.

[100] Sapiro, G., and Tannenbaum, A., Image Smoothing Based on Affine Invariant
Flow, Proc. of the Conference on Information Sciences and Systems, Johns Hopkins
University, March 1993.

[101] Scheckler, E.W., Ph.D. Dissertation, EECS, University of California, Berkeley,
1991.

[102] Scheckler, E.W., Toh, K.K.H., Hoffstetter, D.M., and Neureuther, A.R., 3D Lithog-
raphy, Etching and Deposition Simulation, Symposium on VLSI Technology, pp.
97-98, Oiso, Japan, (1991)

[103] Sedgewick, R., Algorithms, Addison-Wesley, 1988.

[104] Sethian, J.A., Algorithms for Tracking Interfaces in CFD and Material Science,
Annual Review of Computational Fluid Mechanics, 1995

[105] Sethian, J.A., An Analysis of Flame Propagation, Ph.D. Dissertation, Mathemat-
ics, University of California, Berkeley, 1982.

[106] Sethian, J.A., Curvature and the Evolution of Fronts, Comm. in Mathematical
Physics, Vol. 101, pp. 487–499, 1985.

[107] Sethian, J.A., A Brief Overview of Vortex Methods, in Vortex Methods and Vortex
Motion, Eds. K. Gustafson and J.A. Sethian, SIAM Publications, Philadelphia,
1991.

[108] Sethian, J.A., Curvature Flow and Entropy Conditions Applied to Grid Generation,
J. Comp. Phys. Vol. 115, pp.440-454, 1994.

[109] Sethian, J.A., Level Set Techniques for Tracking Interfaces; Fast Algorithms, Mul-
tiple Regions, Grid Generation and Shape/Character Recognition, in ”Curvature
Flows and Related Topics”, Eds. A. Damlamian, J. Spruck, and A. Visintin, Gakuto
Int. Series, Vol. 5., Tokyo, 1995.

[110] Sethian, J.A., Level Set Methods: Evolving Interfaces in Geometry, Fluid Me-
chanics, Computer Vision and Material Science, to appear, Cambridge University
Press, 1996.

[111] Sethian, J.A., A Marching Level Set Method for Monotonically Advancing Fronts,
Proc. Nat. Acad. Sci., Feb. 1996.

[112] Sethian, J.A., Numerical Algorithms for Propagating Interfaces: Hamilton-Jacobi
Equations and Conservation Laws, Journal of Differential Geometry, Vol. 31, pp.
131–161, 1990.

78

[113] Sethian, J.A., Numerical Methods for Propagating Fronts, in Variational Methods
for Free Surface Interfaces, edited by P. Concus and R. Finn, (Springer-Verlag,
New Work, 1987).

[114] Sethian, J.A., Parallel Level Set Methods for Propagating Interfaces on the Con-
nection Machine, Unpublished manuscript, 1989.

[115] Sethian, J.A., Turbulent Combustion in Open and Closed Vessels, J. Comp. Phys.,
Vol. 54, pp. 425-456 (1984).

[116] Sethian, J.A., Adalsteinsson, D., and Malladi, R., Efficient Fast Marching Level
Set Methods, in progress, 1996.

[117] Sethian, J.A. and Strain, J.D., Crystal Growth and Dendritic Solidification J.
Comp. Phys., Vol. 98, pp. 231-253, (1992).

[118] Souganidis, P.E., Approximation Schemes for Viscosity Solutions of Hamilton-
Jacobi Equations, J. Diff. Eqns., 59, pp.1-43, 1985.

[119] Strain, J., A Boundary Integral Approach to Unstable Solidification, J. Comp.
Phys., 85, pp. 342-389, (1989).

[120] Strain, J., Linear Stability of Planar Solidification Fronts, Physica D, 30, pp. 297-
320, 1988

[121] Strain, J., Velocity Effects in Unstable Solidification. SIAM Jour. Appl.
Math.,50,pp. 1-15. 1990.

[122] Sussman, M., Smereka, P. and Osher, S.J., A Level Set Method for Computing
Solutions to Incompressible Two-Phase Flow, J. Comp. Phys. 114, pp.146-159,
1994.

[123] Taylor, J.E.; Cahn, J.W.; Handwerker, C.A., Geometric models of crystal growth.,
Acta Metallurgica et Materialia, vol.40,7, pp. 1443-74, 1992.

[124] Terzopoulos, D., Witkin, A., and Kass, M., Constraints on Deformable Models:
Recovering 3D Shape and Nonrigid Motion, Artificial Intelligence, 36, pp. 91–123,
1988.

[125] Toh, K.K.H., Ph.D. Dissertation, EECS, University of California, Berkeley, (1990).

[126] Toh, K.K.H., and Neureuther, A.R., Three-Dimensional Simulation of Optical
Lithography, Proceedings SPIE, Optical/Laser Microlithography IV, vol. 1463,
pp.356-367, (1991).

[127] Young, M.S., Lee, D., Lee., R., and Neureuther, A.R., Extension of the Hopkins
Theory of Partially Coherent Imaging to Include Thin-Film Interference effects
SPIE Optical/Laser Microlithography VI, vl 1927, pp. 452-463, (1993).

[128] Zhu, J., and Sethian, J.A., Projection Methods Coupled to Level Set Interface Tech-
niques, J. Comp. Phys., vol. 102, pp.128-138, 1992.

[129] Zhu, J., and Ronney, P.D., Simulation of Front Propagation at Large Non-
dimensional Flow Disturbance Intensities, to appear, Comb. Sci. Tech., 1995.

79

