SAMPLE MIDTERMS SOLUTIONS MATH 55

Sample 1.

1.

$$\exists x, y \in \mathbb{R} \quad (x < y) \land (f(x) \ge f(y)).$$

2.

(a) $\mathbb{Z} \times \mathbb{Z}$ is countable. In class we constructed the bijections $f : \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$ and $g : \mathbb{Z} \to \mathbb{Z}^+$. Now we define a bijection $h : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}^+$ by the formula h(m,n) = f(g(m),g(n)) for all $(m,n) \in \mathbb{Z} \times \mathbb{Z}$.

(b) $\mathbb{R} - \mathbb{Z}$ is not countable, it contains an open interval (0, 1) as a subset. The cardinality of (0, 1) is continuum and $|(0, 1)| \leq |\mathbb{R} - \mathbb{Z}|$.

(c) the set of all irrational real numbers is not countable. To prove it assume that this set is countable, denote it by I. Then $\mathbb{R} = \mathbb{Q} \cup I$. We have proved that the union of two countable sets is countable and that \mathbb{Q} is countable, but \mathbb{R} is not. Thus, we obtains contradiction with our assumption that I is countable.

3. Find the binary and hexadecimal expansions for 500. For binary we get

 $500 = 250 \times 2 + 0, \ 250 = 125 \times 2 + 0, \ 125 = 62 \times 2 + 1, \ 62 = 31 \times 2 + 0, \ 31 = 15 \times 2 + 1,$

 $15 = 7 \times 2 + 1, \ 7 = 3 \times 2 + 1, \ 3 = 1 \times 2 + 1, \quad 1 = 2 \times 0 + 1.$

So we obtain $500 = (111110100)_2$. For hexadecimal expansion take the binary expansion and translate 4-digit groups into hexadecimal digits $500 = (1F4)_{16}$.

4. Just follow the algorithm from the textbook. We have $m = 315 M_1 = 63, M_2 = 45, M_3 = 35.$

$$63y_1 \equiv 1 \pmod{5}, \quad y_1 \equiv 2 \pmod{5}, 45y_2 \equiv 1 \pmod{7}, \quad y_2 \equiv 5 \pmod{7}, 35y_3 \equiv 1 \pmod{9}, \quad y_1 \equiv -1 \pmod{9}. x \equiv 3 \times 63 \times 2 + 4 \times 45 \times 5 + 2 \times 35 \times (-1) = 1208 \pmod{315}$$

or $x \equiv 263 \pmod{315}$.

5. Basic step:

$$1(1+1) = 2 = \frac{1(1+1)(1+2)}{3}.$$

Inductive step:

$$\sum_{i=1}^{k+1} i(i+1) = \sum_{i=1}^{k} i(i+1) + (k+1)(k+2) = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2) = \frac{k(k+1)(k+2) + 3(k+1)(k+2)}{3} = \frac{(k+1)(k+2)(k+3)}{3}.$$

Sample 2.

1. Since |A| = |B| and |B| = |C|, there exist bijections $f : A \to B$ and $g : B \to C$. The composition $g \circ f : A \to C$ is a bijection. Therefore |A| = |C|.

2. (a) 1, 2, 6, 42, 1806. (b) We have $a_{n+1} - a_n = a_n^2 + a_n - a_n = a_n^2 > 0$. Hence $a_{n+1} > a_n$. 3. $292 = 2012 \mod 344$, $52 = 344 \mod 292$, $32 = 292 \mod 52$,

 $20 = 52 \mod 32$, $12 = 32 \mod 20$, $8 = 20 \mod 12$,

 $4 = 12 \mod 8, \quad 0 = 8 \mod 4.$

Thus, gcd(2012, 344) = 4.

4. If p = 3 then $p^2 + 14 = 23$ is prime. If $p \neq 3$, then 3 does not divide p and hence p is congruent to 1 or 2 modulo 3. Then $p^2 \equiv 1 \pmod{3}$ and $p^2 + 14 \equiv 0 \pmod{3}$. Hence 3 divides $p^2 + 14$ and therefore $p^2 + 14$ is composite.

5. $x \in \bigcap_{n=1}^{\infty} A_n$ iff x is divisible by any positive integer. Therefore $\bigcap_{n=1}^{\infty} A_n = \{0\}$. Sample 3

1. Let $f : A \to B$ be a surjective function. To prove that $|B| \leq |A|$ we have to show the existence of an injective function $g : B \to A$. For every $b \in B$ there exists at least one $a \in A$ such that f(a) = b. Set g(b) = a. If $g(b_1) = g(b_2) = a$, then $f(a) = b_1 = b_2$. Therefore g is one-to-one. The statement is proven.

2. Since $10 \equiv 1 \pmod{9}$ we have $10^k \equiv 1 \pmod{9}$ for any $k \in \mathbb{N}$. Hence

$$a_n 10^n + \dots + a_0 \equiv a_n + \dots + a_0 \pmod{9}.$$

3. Basic step: n = 1 is the first Fibonacci number. Inductive step: assume that the statement is true for all positive k < n. We want to prove it for n. If n is a Fibonacci number $n = f_m$, then the statement is clear. Otherwise let f_m be the largest Fibonacci number less that n and let $k = n - f_m$. Then k < n. Note also $n < f_{m+1}$ implies $k < f_{m+1} - f_m = f_{m-1}$. Since k is a sum of distinct Fibonacci numbers $f_{i_1} + \cdots + f_{i_s}$, we obtain $n = f_{i_1} + \cdots + f_{i_s} + f_m$. Inequality $k < f_{m-1}$ ensures that f_m is greater than any of f_{i_j} , Hence n is a sum of distinct Fibonacci numbers.

4. Let P(n) denote the predicate $n^2 + n + 41$ is prime.

(a) The truth values of P(1), P(2), P(5) is T, because 43, 47 and 71 are prime numbers.

(b) For n = 41 P(n) is false. Indeed $41^2 + 41 + 41$ is divisible by 41 and therefore not prime.

5. Procedure root (p > 2 prime integer)

for
$$r = 2$$
 to $p - 1$
 $a := r, x := 1$
while $a \neq 1$ $a := ar \mod p, x := x + 1$
if $x = p - 1$ return r

 $\mathbf{2}$