The set of all even integers is countable.

\[f(n) = \begin{cases} \frac{n-1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases} \]

Given by \(f(n) = \frac{n}{2} + 1 \).

Example: The set of all positive even integers is countable.

\[\mathbb{Z^+} \subseteq \mathbb{R} \]

The set of positive even integers is a finite set of the set of the same cardinality.

If there is one-to-one correspondence from \(A \to B \), then \(|A| = |B| \).

Definition: Two sets \(A \) and \(B \) have the same cardinality.
A set of countable set.

\[A \cup \bigcup_{i=1}^{\infty} A_i \]

Finite union of countable sets is countable.

For every natural number \(n \)

\[\{ \frac{1}{n} \} \]

The set of positive rational numbers is countable.

\[f: A \leftrightarrow B \]

\[(A \subseteq B) \lor (B \subseteq A) \]

If there is a one-to-one function of \(A \) is less than cardinality of \(B \).

We say that cardinality of \(A \) is equal to the same as \(B \).

The new guest into the room.

Move a guest from room \(n \) to room \(n+1 \) and move.

We are successful. A new guest arrive.

Heller's equation: Countable numbers of room.
Suppose A is finite, is again finite.

If A and B are countable, then $A \cup B$ is countable.

Further results: If A and B are countable, then $A \cup B = A \cup (B - A)$ is countable.

$A = \{ a_1, a_2, \ldots \}$
$B = \{ b_1, b_2, b_3, \ldots \}$
$\mathbb{N} = \{ 0, 1, 2, 3, \ldots \}$
An example of uncountable set: \(\mathbb{R} \) is uncountable. Assume the opposite.

\[
\exists x, y \in \mathbb{R} \text{ such that } x < y \quad \text{and} \quad x + y = 1
\]

Since \(\mathbb{R} \) is uncountable, there must exist \(\exists z \in \mathbb{R} \) such that \(x, y, z \) are one-to-one.

We prove the following:

\[
\mathbb{R} \neq [0,1]
\]

We prove that \(\exists x \in [0,1] \) such that \(f(x) = x \).

Let \(f(x) = x^2 \) for \(x \in [0,1] \). Then \(f([0,1]) \mapsto [0,1] \).

Show that \(f([0,1]) \) is not open.

Proof: It is not difficult. Note the proof above:

\[
|A| > |B| \implies |A| > |B|
\]

Schöder-Bernstein Theorem. If \(A \) and \(B \) are sets and \(|A| > |B| \),
There is a program computing f. A function is computable if

\[g(x) = \begin{cases} A \quad & \text{if } x \in A, \text{ then } g(x) = A. \\ \varnothing \quad & \text{if } x \notin A, \text{ then } g(x) = \varnothing. \end{cases} \]

Indeed, if $x \in A$, then $g(x) = A$ since $x \in g(x)$.

Then we claim that there is no $x \in S$ such that

\[A = \{ x \in S \mid x \notin g(x) \}. \]

Let us consider the subset $A \subseteq S$ defined by

Suppose that there is a bijection $g : S \leftrightarrow \{ 0 \}$.

Hence $|S| = |\{ 0 \}|$.

\[(S \smallsetminus \{ 0 \}) \neq \emptyset \quad \text{and} \quad |S| \geq |S| \Rightarrow |S| \geq |(S \smallsetminus \{ 0 \})| \quad \text{and} \quad |(S \smallsetminus \{ 0 \})| \neq 0. \]

Let S be a set. Then

Proof: $f : S \rightarrow \{ 0 \}$. \[\]
between countable and continuum, i.e. $1 \leq |\mathbb{Z}^+| \leq |\mathbb{R}|$.

Continuum Hypothesis: There is no set with cardinality

of $(\mathbb{Z}^+, \mathcal{P}(\mathbb{Z}^+))$.

Continuum is the cardinality of \mathbb{R} (the same as the cardinality of \mathbb{Q}) - the continuum of \mathbb{R} is the same as the size of \mathbb{R}.

Indeed, the cardinality of this set is the same as $(\mathbb{Z}^+, \mathcal{P}(\mathbb{Z}^+))$ as uncountable.

The set of function $f: \mathbb{Z} \to \mathbb{Z}$ is one to one.

A program is a string of symbols from finite alphabet.

Proof: The set of all programs is countable.

In an uncomputable function.

Theorem
Continuum Hypothesis: There is no set S such that $1 < |S| < |\mathbb{R}|$.

Define $A = \{ x \in S | f(x) \}$.

If $A \neq A$, then $A \neq f(a)$ because $A = A$.

If f is a bijection, then there exists an a such that $f(a) = A$.

Define $A = \{ x \in S | x \neq f(x) \}$.

If there exists a bijection $f : S \rightarrow \mathbb{R}$, then f is one-to-one.

Let $f(x) = f(x)$. Then f is one-to-one.

Indeed define $f : S \rightarrow \mathbb{R}$.

For any set S, $|S| > |\mathbb{R}|$. Proof: $f(\mathbb{R}) = \mathbb{R}$, then f is one-to-one.
Algorithm is a finite sequence of instructions for solving a problem.

procedure min (a1, a2, ..., an : integers) {
 min := a1
 for i := 2 to n {
 if a[i] < min then min := a[i]
 }
 return min
}

Comments

General: Generality
Finiteness
Coherency
Definition
Output
Input

Computer problem in pseudocode
procedure Linear search (x:integer, a[1..n] : array)

q := 0
if x in a[1..n] then
 q := location
else
 q := 0

where (\exists i \in \mathbb{N} \text{ and } x \neq a[i]) \ni i = q + 1

q

else

"dist. integer"

3
You find in such that

\[m = \lceil \log_2 n \rceil \]

2

m = \lceil \log_2 n \rceil

[2, 50, 100]

\[\text{procedure search} (x; \text{integers}, a_1, \ldots, \text{an in sequence}) \]

\[\text{if } x = a_i \text{ then location := } i \]

\[\text{else location := 0} \]

\[\text{while } i < j \]

\[m := \frac{i + j}{2} \]

\[\text{if } x \geq a_m \text{ then } j := m \]

\[\text{else } i := m + 1 \]

\[\text{return location} \]
Given a finite sequence of real numbers, write them in increasing order.

```
for i := 1 to n-
  for j := i+1 to n
    if a[i] > a[j] then interc_echange a[i] and a[j]
```

The bubble sorting procedure sort (a_1, ... , a_n : real numbers, n > 2)
```
procedure insert_sort (a : array (1..n) of real, n : real number, n > 2);

q := 1;
while q > n do
    i := i + 1
    for k := q to n - i do
        if a[k] < a[k - 1] then
            t := a[k]
            a[k] := a[k - 1]
            a[k - 1] := t
        end
    end
end
```
Example

Minimal number of coins at most 2 dimes

\[25 > 10 > 5 > 1 \]

works

```
return false, ..., d = 3
```

\[r = 2 \]

```
for i = 1 to 2
    d[i] = 0
    n[i] = n - c[i]

n[2] = 25
n[1] = 10
n[0] = 1
```

\[h = 2 \]

Greedy algorithm

change (c_1 < c_2 < ... < c_r : values in positive integers to coins)
So = 10 + 10 + 10 (better)
30 = 25 + 1 + 1 + 1 + 1 + 1 (6 coins)

For 30 cans greedy algorithm gives

Does not work

n = 25

n > 25 as well.

Let n have as few coins as possible
There are uncomputably many functions. There exist uncomputable functions. Computer programs whose values can be computed by a function are called computable functions.
The halting problem (Turing)

Input: p - program

H(p, I)