REPRESENTATION THEORY WEEK 5

1. Invariant forms

Recall that a bilinear form on a vector space V is a map

$$B: V \times V \rightarrow k$$

satisfying

$$B(cv, dw) = cdB(v, w), B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w), B(v, w_1 + w_2) = B(v, w_1) + B(v, w_2).$$

One can also think about a bilinear form as a vector in $V^* \otimes V^*$ or as a homomorphism $B: V \to V^*$ given by the formula $B_v(w) = B(v, w)$. A bilinear form is symmetric if B(v, w) = B(w, v) and skew-symmetric if B(v, w) = -B(w, v). Every bilinear form is a sum $B = B^+ + B^-$ of a symmetric and a skew-symmetric form,

$$B^{\pm}(v, w) = \frac{B(v, w) \pm B(w, v)}{2}.$$

Such decomposition corresponds to the decomposition

$$(1.1) V^* \otimes V^* = S^2 V^* \oplus \Lambda^2 V^*.$$

A form is non-degenerate if $B: V \to V^*$ is an isomorphism, in other words B(v, V) = 0 implies v = 0.

Let $\rho: G \to \mathrm{GL}\,(V)$ be a representation. We say that a bilinear form B on V is G-invariant if

$$B\left(\rho_{s}v,\rho_{s}w\right) = B\left(v,w\right)$$

for any $v, w \in V$, $s \in G$.

The following properties of an invariant form are easy to check

- (1) If $W \subset V$ is an invariant subspace, then $W^{\perp} = \{v \in V \mid B(v, W) = 0\}$ is invariant. In particular, Ker B is invariant.
- (2) $B: V \to V^*$ is invariant iff $B \in \text{Hom}_G(V, V^*)$.
- (3) If B is invariant, then B^+ and B^- are invariant.

Lemma 1.1. Let ρ be an irreducible representation of G, then any bilinear invariant form is non-degenerate. If $\bar{k} = k$, then a bilinear form is unique up to multiplication on a scalar.

Proof. Follows from (2) and Schur's lemma.

Date: September 29, 2005.

Corollary 1.2. A representation ρ of G admits an invariant form iff $\chi_{\rho}(s) = \chi_{\rho}(s^{-1})$ for any $s \in G$.

Lemma 1.3. If $\bar{k} = k$, then an invariant form on an irreducible representation ρ is either symmetric or skew-symmetric. Let

$$m_{\rho} = \frac{1}{|G|} \sum_{s \in G} \chi_{\rho} \left(s^2 \right).$$

Then $m_{\rho}=1,0$ or -1. If $m_{\rho}=0$, then ρ does not admit an invariant form. If $m_{\rho}=\pm 1$, then m_{ρ} admits a symmetric (skew-symmetric) invariant form.

Proof. Recall that $\rho \otimes \rho = \rho_{\text{alt}} \oplus \rho_{\text{sym}}$.

$$(\chi_{\text{sym}}, 1) = \frac{1}{|G|} \sum_{s \in G} \frac{\chi_{\rho}(s^2) + \chi_{\rho}(s^2)}{2},$$

$$(\chi_{\text{alt}}, 1) = \frac{1}{|G|} \sum_{s \in G} \frac{\chi_{\rho}(s^2) - \chi_{\rho}(s^2)}{2}.$$

Note that

$$\frac{1}{|G|} \sum_{s \in G} \chi_{\rho} \left(s^2 \right) = \left(\chi_{\rho}, \chi_{\rho^*} \right).$$

Therefore

$$(\chi_{\text{sym}}, 1) = \frac{(\chi_{\rho}, \chi_{\rho^*}) + m_{\rho}}{2}, \ (\chi_{\text{alt}}, 1) = \frac{(\chi_{\rho}, \chi_{\rho^*}) - m_{\rho}}{2}$$

If ρ does not have an invariant form, then $(\chi_{\text{sym}}, 1) = (\chi_{\text{alt}}, 1) = 0$, and $\chi_{\rho^*} \neq \chi_{\rho}$, hence $(\chi_{\rho}, \chi_{\rho^*}) = 0$. Thus, $m_{\rho} = 0$.

If ρ has a symmetric invariant form, then $(\chi_{\rho}, \chi_{\rho^*}) = 1$ and $(\chi_{\text{sym}}, 1) = 1$. This implies $m_{\rho} = 1$. Similarly, if ρ admits a skew-symmetric invariant form, then $m_{\rho} = -1$.

Let $k = \mathbb{C}$. An irreducible representation is called *real* if $m_{\rho} = 1$, *complex* if $m_{\rho} = 0$ and *quaternionic* if $m_{\rho} = -1$. Since $\chi_{\rho}(s^{-1}) = \bar{\chi}_{\rho}(s)$, then χ_{ρ} takes only real values for real and quaternionic representations. If ρ is complex then $\chi_{\rho}(s) \notin \mathbb{R}$ at least for one $s \in G$.

Example. Any irreducible representation of S_4 is real. A non-trivial representation of \mathbb{Z}_3 is complex. The two-dimensional representation of quaternionic group is quaternionic.

Exercise. Let |G| be odd. Then any non-trivial irreducible representation of G over \mathbb{C} is complex.

2. Some generalities about field extension

Lemma 2.1. If char k = 0 and G is finite, then a representation $\rho : G \to \operatorname{GL}(V)$ is irreducible iff $\operatorname{End}_G(V)$ is a division ring.

Proof. In one direction it is Schur's Lemma. In the opposite direction if V is not irreducible, then $V = V_1 \oplus V_2$, then the projectors p_1 and p_2 are intertwiners such that $p_1 \circ p_2 = 0$.

For any extension F of k and a representation $\rho: G \to \mathrm{GL}(V)$ over k we define by ρ_F the representation $G \to \mathrm{GL}(F \otimes_k V)$.

For any representation $\rho: G \to \mathrm{GL}(V)$ we denote by V^G the subspace of G-invariants in V, i.e.

$$V^G = \{ v \in V \mid \rho_s v = v, \forall s \in G \} .$$

Lemma 2.2. $(F \otimes_k V)^G = F \otimes_k V^G$.

Proof. The embedding $F \otimes_k V^G \subset (F \otimes_k V)^G$ is trivial. On the other hand, V^G is the image of the operator

$$p = \frac{1}{|G|} \sum_{s \in G} \tau_s,$$

in particular $\dim V^G$ equals the rank of p. Since rank p does not depend on a field, we have

$$\dim F \otimes_k V^G = \dim (F \otimes_k V)^G.$$

Corollary 2.3. Let $\rho: G \to \operatorname{GL}(V)$ and $\sigma: G \to \operatorname{GL}(W)$ be two representations over k. Then

$$\operatorname{Hom}_{G}(F \otimes_{k} V, F \otimes_{k} W) = F \otimes \operatorname{Hom}_{G}(V, W).$$

In particular,

$$\dim_k \operatorname{Hom}_G(V, W) = \dim_F \operatorname{Hom}_G(F \otimes_k V, F \otimes_k W).$$

Proof.

$$\operatorname{Hom}_G(V, W) = (V^* \otimes W)^G$$
.

Corollary 2.4. Even if a field is not algebraically closed

$$\dim \operatorname{Hom}_G(V, W) = (\chi_{\rho}, \chi_{\sigma}).$$

A representation $\rho: G \to \operatorname{GL}(V)$ over k is called absolutely irreducible if it remains irreducible after any extension of k. This is equivalent to $(\chi_{\rho}, \chi_{\rho}) = 1$. A field is splitting for a group G if any irreducible representation is absolutely irreducible. It is not difficult to see that some finite extension of \mathbb{Q} is a splitting field for a finite group G.

3. Representations over \mathbb{R}

A bilinear symmetric form B is positive definite if B(v,v) > 0 for any $v \neq 0$.

Lemma 3.1. Every representation of a finite group over \mathbb{R} admits positive-definite invariant symmetric form. Two invariant symmetric forms on an irreducible representation are proportional.

Proof. Let B' be any positive definite form. Define

$$B(v, w) = \frac{1}{|G|} \sum_{s \in G} B'(\rho_s v, \rho_s w).$$

Then B is positive definite and invariant.

Let Q(v, w) be another invariant symmetric form. Then from linear algebra we know that they can be diagonalized in the same basis. Then for some $\lambda \in \mathbb{R}$, $\operatorname{Ker}(Q - \lambda B) \neq 0$. Since $\operatorname{Ker}(Q - \lambda B)$ is invariant, $Q = \lambda B$.

Theorem 3.2. Let $\mathbb{R} \subset K$ be a division ring, finite-dimensional over \mathbb{R} . Then \mathbb{R} is isomorphic \mathbb{R} , \mathbb{C} or \mathbb{H} (quaternions).

Proof. If K is a field, then $K \cong \mathbb{R}$ or \mathbb{C} , because $\mathbb{C} = \mathbb{R}$ and $[\mathbb{C} : \mathbb{R}] = 2$. Assume that K is not commutative. For any $x \in K \setminus \mathbb{R}$, $\mathbb{R}[x] = \mathbb{C}$. Therefore we have a chain $\mathbb{R} \subset \mathbb{C} \subset K$. Let $f(x) = ixi^{-1}$. Obviously f is an automorphism of K and $f^2 = id$. Hence $K = K^+ \oplus K^-$, where

$$K^{\pm} = \left\{ x \in K \mid f\left(x\right) = \pm x \right\}.$$

Moreover, $K^+K^+ \subset K^+$, $K^-K^- \subset K^+$, $K^+K^- \subset K^-$, $K^-K^+ \subset K^-$. If $x \in K^+$, then $\mathbb{C}[x]$ is a finite extension of \mathbb{C} . Therefore $K^+ = \mathbb{C}$. For any nonzero $y \in K^-$ the left multiplication on y defines an isomorphism of K^+ and K^- as vector spaces over \mathbb{R} . In particular $\dim_{\mathbb{R}} K^- = \dim_{\mathbb{R}} K^+ = 2$. For any $y \in K^-$, $x \in \mathbb{C}$, we have $y\bar{x} = xy$, therefore $y^2 \in \mathbb{R}$. Moreover, $y^2 < 0$. (If $y^2 > 0$, then $y^2 = b^2$ for some real b and (y - b)(y + b) = 0, which is impossible). Put $j = \frac{y}{\sqrt{-y^2}}$. Then we have k = ij = -ji, ki = (ij)i = j, $K = \mathbb{R}[i,j]$ is isomorphic to \mathbb{H} .

Lemma 3.3. Let $\rho: G \to \operatorname{GL}(V)$ be an irreducible representation over \mathbb{R} , then there are three possibilities:

- (1) $End_G(V) = \mathbb{R}$ and $(\chi_\rho, \chi_\rho) = 1$;
- (2) $End_G(V) \cong \mathbb{C}$ and $(\chi_{\rho}, \chi_{\rho}) = 2$;
- (3) $End_G(V) \cong \mathbb{H}$ and $(\chi_\rho, \chi_\rho) = 4$.

Proof. Lemma 2.1 and Theorem 3.2 imply that $\operatorname{End}_G(V)$ is isomorphic to \mathbb{R} , \mathbb{C} or \mathbb{H} , $(\chi_{\rho}, \chi_{\rho}) = 1, 2$ or 4 as follows from Corollary 2.4.

4. Relationship between representations over \mathbb{R} and over \mathbb{C}

Hermitian invariant form. Recall that a Hermitian form satisfies the following conditions

$$H\left(av,bw\right) = \bar{a}bH\left(v,w\right), H\left(w,v\right) = \bar{H}\left(v,w\right).$$

The following Lemma can be proved exactly as Lemma 3.1.

Lemma 4.1. Every representation of a finite group over \mathbb{C} admits positive-definite invariant Hermitian form. Two invariant Hermitian forms on an irreducible representation are proportional.

Let $\rho: G \to \mathrm{GL}(V)$ be a representation over \mathbb{C} . Denote by $V^{\mathbb{R}}$ a vector space V as a vector space over \mathbb{R} of double dimension. Denote by $\rho^{\mathbb{R}}$ the representation of G in $V^{\mathbb{R}}$. Check that

$$\chi_{\rho^{\mathbb{R}}} = \chi_{\rho} + \bar{\chi}_{\rho}.$$

Theorem 4.2. Let $\rho: G \to \operatorname{GL}(V)$ be an irreducible representation over \mathbb{C} .

- (1) If ρ can be realized by matrices with real entries, then ρ admits an invariant symmetric form.
- (2) If $\operatorname{End}_G(V^{\mathbb{R}}) = \mathbb{C}$, then ρ is complex, i.e. ρ does not admit a bilinear invariant symmetric form.
- (3) If $\operatorname{End}_G(V^{\mathbb{R}}) = \mathbb{H}$, then ρ admits an invariant skew-symmetric form.

Proof. (1) follows from Lemma 3.1. For (2) use (4.1). Since $(\chi_{\rho}, \chi_{\rho}) = 2$ by Lemma 3.3, then $\chi_{\rho} \neq \bar{\chi}_{\rho}$, and therefore ρ is complex.

Finally let us prove (3). Let $j \in \operatorname{End}_G(V^{\mathbb{R}}) = \mathbb{H}$, then $j(bv) = \bar{b}v$ for any $b \in \mathbb{C}$. Let H be a positive-definite Hermitian form on V. Then

$$Q\left(v,w\right) =H\left(jw,jv\right)$$

is another invariant positive-definite Hermitian form. By Lemma 4.1 $Q = \lambda H$ for some $\lambda > 0$. Since $j^2 = -1$, $\lambda^2 = 1$ and therefore $\lambda = 1$. Thus,

$$H\left(v,w\right) =H\left(jw,jv\right) .$$

Set

$$B(v, w) = H(jv, w).$$

Then B is a bilinear invariant form, and

$$B\left(w,v\right)=H\left(jw,v\right)=H\left(jv,j^{2}w\right)=-H\left(jv,w\right)=-B\left(v,w\right),$$

hence B is skew-symmetric.

Corollary 4.3. Let σ be an irreducible representation of G over \mathbb{R} . There are three possibilities for σ

 σ is absolutely irreducible and $\chi_{\sigma} = \chi_{\rho}$ for some real representation ρ of G over \mathbb{C} ; $\chi_{\sigma} = \chi_{\rho} + \bar{\chi}_{\rho}$ for some complex representation ρ of G over \mathbb{C} ;

 $\chi_{\sigma} = 2\chi_{\rho}$ for some quaternionic representation ρ of G over \mathbb{C} .

5. Representations of symmetric group

Let \mathcal{A} denote the group algebra $\mathbb{Q}(S_n)$. We will see that \mathbb{Q} is a splitting field for S_n . We realize irreducible representation of S_n as minimal left ideals in \mathcal{A} .

Conjugacy classes are enumerated by partitions $m_1 \geq \cdots \geq m_k > 0, m_1 + \cdots + m_k > 0$ $m_k = n$. To each partition we associate the table of n boxes with rows of length m_1, \ldots, m_k , it is called a Young diagram. Young tableau is a Young diagram with entries $1, \ldots, n$ in boxes. Given a Young tableau λ , we denote by P_{λ} the subgroup of permutations preserving rows and by Q_{λ} the subgroup of permutations preserving columns. Introduce the following elements in \mathcal{A}

$$a_{\lambda} = \sum_{p \in P_{\lambda}} p, \ b_{\lambda} = \sum_{q \in Q_{\lambda}} (-1)^q \ q, \ c_{\lambda} = a_{\lambda} b_{\lambda}.$$

The element c_{λ} is called Young symmetrizer.

Theorem 5.1. $V_{\lambda} = Ac_{\lambda}$ is a minimal left ideal in A, therefore V_{λ} is irreducible. V_{λ} is isomorphic to V_{μ} iff the Young tableaux μ and λ have the same Young diagram. Any irreducible representation of S_n is isomorphic to V_{λ} for some Young tableau λ .

Note that the last assertion of Theorem follows from the first two, since the number of Young diagrams equals the number of conjugacy classes.

Examples. For partition (n), $c_{\lambda} = a_{\lambda} = \sum_{s \in S_n} s$, and the representation is trivial. For (1, ..., 1), $c_{\lambda} = b_{\lambda} = \sum_{s \in S_n} (-1)^s s$. Let us consider partition (n-1, 1). Then

$$c_{\lambda} = \left(\sum_{s \in S_{n-1}} s\right) \left(1 - (1n)\right).$$

Clearly, $a_{\lambda}c_{\lambda}=c_{\lambda}$, therefore $\operatorname{Res}_{S_{n-1}}V_{\lambda}$ contains the trivial representation. Let

$$V = \operatorname{Ind}_{S_{n-1}}^{S_n} (\operatorname{triv}).$$

Note that V is the permutation representation of S_n . By Frobenius reciprocity we have a homomorphism $V \to V_{\lambda}$. Therefore $V = V_{\lambda} \oplus \text{triv}$.

Now we will prove Theorem 5.1. First, note that S_n acts on the Young tableaux of the same shape, and

$$a_{s(\lambda)} = sa_{\lambda}s^{-1}, b_{s(\lambda)} = sb_{\lambda}s^{-1}, c_{s(\lambda)} = sc_{\lambda}s^{-1}.$$

Check yourself the following

Lemma 5.2. If $s \in S_n$, but $s \notin P_\lambda Q_\lambda$, then there exists two numbers i and j in the same row of λ and in the same column of $s(\lambda)$.

It is clear also that for any $p \in P_{\lambda}$, $q \in Q_{\lambda}$

$$pa_{\lambda} = a_{\lambda}p = a_{\lambda}, qb_{\lambda} = b_{\lambda}q = (-1)^q b_{\lambda}, pc_{\lambda}q = (-1)^q c_{\lambda}.$$

Lemma 5.3. Let $y \in A$ such that for any $p \in P_{\lambda}$, $q \in Q_{\lambda}$

$$pyq = (-1)^q y.$$

Then $y \in \mathbb{Q}c_{\lambda}$.

Proof. It is clear that y has a form

$$\sum_{s \in P_{\lambda} \backslash S_n/Q_{\lambda}} d_s \sum_{p \in P_{\lambda}, q \in Q_{\lambda}} (-1)^q psq = \sum_{s \in P_{\lambda} \backslash S_n/Q_{\lambda}} d_s a_{\lambda} sb_{\lambda},$$

for some $d_s \in \mathbb{Q}$. We have to show that if $s \notin P_{\lambda}Q_{\lambda}$ then $a_{\lambda}sb_{\lambda} = 0$. That follows from Lemma 5.2. There exists $(ij) \in P_{\lambda} \cap Q_{s(\lambda)}$. Then

$$a_{\lambda}sb_{\lambda}s^{-1} = a_{\lambda}b_{s(\lambda)} = a_{\lambda}(ij)(ij)b_{s(\lambda)} = a_{\lambda}b_{s(\lambda)} = -a_{\lambda}b_{s(\lambda)} = 0.$$

Corollary 5.4. $c_{\lambda} \mathcal{A} c_{\lambda} \subset \mathbb{Q} c_{\lambda}$.

Lemma 5.5. Let W be a left ideal in a group algebra k(G) (char k=0). Then $W^2=0$ implies W=0.

Proof. Since k(G) is completely reducible $k(G) = W \oplus W'$, where W' is another left ideal. Let $y \in \operatorname{End}_G(k(G))$ such that $y_{|W} = \operatorname{Id}$, y(W') = 0. But we proved that any $y \in \operatorname{End}_G(k(G))$ is a right multiplication on some $u \in k(G)$ (see lecture notes 3). Then we have $u^2 = u$, $W = \mathcal{A}u$, in particular $u \in W$. If $W \neq 0$, then $u \neq 0$ and $u^2 = u \neq 0$. Hence $W^2 \neq 0$.

Corollary 5.6. Ac_{λ} is a minimal left ideal.

Proof. Let $W \subset \mathcal{A}c_{\lambda}$ be a left ideal. Then either $c_{\lambda}W = \mathbb{Q}c_{\lambda}$ or $c_{\lambda}W = 0$ by Corollary 5.4. In the former case $W = \mathcal{A}c_{\lambda}W = \mathcal{A}c_{\lambda}$. In the latter case $W^2 \subset \mathcal{A}c_{\lambda}W = 0$, and W = 0 by Lemma 5.5.

Corollary 5.7. $c_{\lambda}^2 = n_{\lambda} c_{\lambda}$, where $n_{\lambda} = \frac{n!}{\dim V_{\lambda}}$.

Proof. From the proof of Lemma 5.5, $c_{\lambda} = n_{\lambda}u$ for some idempotent $u \in \mathbb{Q}(S_n)$. Therefore $c_{\lambda} = n_{\lambda}u$. To find n_{λ} note that $\operatorname{tr}_{k(G)} u = \dim V_{\lambda}$, $\operatorname{tr}_{k(G)} c_{\lambda} = |S_n| = n!$. \square

Lemma 5.8. Order partitions lexicographically. If $\lambda > \mu$, then there exists i, j in the same row of λ and in the same column of μ .

Proof. Check yourself. \Box

Corollary 5.9. If $\lambda < \mu$, then $c_{\lambda} \mathcal{A} c_{\mu} = 0$.

Proof. Sufficient to check that $c_{\lambda}sc_{\mu}=0$ for any $s\in S_n$, which is equivalent to

$$c_{\lambda}sc_{\mu}s^{-1} = c_{\lambda}c_{s(\mu)} = 0.$$

Let $(ij) \in Q_{\lambda} \cap P_{s(\mu)}$. Then

$$c_{\lambda}\left(ij\right)\left(ij\right)c_{s(\mu)} = c_{\lambda}c_{s(\mu)} = -c_{\lambda}c_{s(\mu)} = 0.$$

Lemma 5.10. V_{λ} and V_{μ} are isomorphic iff λ and μ have the same Young diagram.

Proof. If λ and μ have the same diagram, then $\lambda = s(\mu)$ for some $s \in S_n$ and $Ac_{\lambda} = Asc_{\mu}s^{-1} = Ac_{\mu}s^{-1}$. Assume $\lambda > \mu$, then $c_{\lambda}Ac_{\mu} = 0$ and $c_{\lambda}Ac_{\lambda} \neq 0$. Therefore Ac_{λ} and Ac_{μ} are not isomorphic.

Corollary 5.11. If λ and μ have different diagrams, then $c_{\lambda} \mathcal{A} c_{\mu} = 0$.

Proof. If $c_{\lambda} \mathcal{A} c_{\mu} \neq 0$, then $\mathcal{A} c_{\lambda} \mathcal{A} c_{\mu} = \mathcal{A} c_{\mu}$. On the other hand $\mathcal{A} c_{\lambda} \mathcal{A}$ has only components isomorphic to V_{λ} . Contradiction.

Lemma 5.12. Let $\rho: S_n \to \operatorname{GL}(V)$ be an arbitrary representation. Then the multiplicity of V_{λ} in V equals the rank of $\rho(c_{\lambda})$.

Proof. The rank of c_{λ} is 1 in V_{λ} and 0 in any V_{μ} with another Young diagram.