REPRESENTATION THEORY. WEEK 3

VERA SERGANOVA

1. Examples.

Example 1. Let $G = S_3$. There are three conjugacy classes in G, which we denote by some element in a class:1,(12),(123). Therefore there are three irreducible representations, denote their characters by χ_1, χ_2 and χ_3 . It is not difficult to see that we have the following table of characters

$$\begin{array}{ccccc}
1 & (12) & (123) \\
\chi_1 & 1 & 1 & 1 \\
\chi_2 & 1 & -1 & 1 \\
\chi_3 & 2 & 0 & -1
\end{array}$$

The characters of one-dimensional representations are given in the first and the second row, the last character χ_3 can be obtained by using the identity

$$\chi_{\text{perm}} = \chi_1 + \chi_3,$$

where χ_{perm} stands for the character of the permutation representation.

Example 2. Let $G = S_4$. In this case we have the following character table (in the first row we write the number of elements in each conjugacy class).

First two rows are characters of one-dimensional representations. The third can be obtained again from (1.1), $\chi_4 = \chi_2 \chi_3$, the corresponding representation is obtained as the tensor product $\rho_4 = \rho_2 \otimes \rho_3$. The last character can be found from the orthogonality relation. Alternative way to describe ρ_5 is to consider S_4/V_4 , where

$$V_4 = \{1, (12) (34), (13) (24), (14) (23)\}$$

Date: February 1, 2011.

is the Klein subgroup. Observe that $S_4/V_4 \cong S_3$, and therefore the two-dimensional representation σ of S_3 can be extended to the representation of S_4 by the formula

$$\rho_5 = \sigma \circ p,$$

where $p: S_4 \to S_3$ is the natural projection.

Solution of the marcian problem. Recall that S_4 is isomorphic to the group of rotations of a cube. Hence it acts on the set of faces F, and therefore we have a representation

$$\rho \colon S_4 \to \mathrm{GL}\left(\mathbb{C}\left(F\right)\right).$$

It is not difficult to calculate χ_{ρ} using the formula

$$\chi_{\rho}(s) = |\{x \in F \mid s(x) = x\}|.$$

We obtain

$$\chi_{\rho}(1) = 6, \ \chi_{\rho}((12)) = \chi_{\rho}((123)) = 0, \ \chi_{\rho}((12)(34)) = \chi_{\rho}((1234)) = 2.$$

Furthermore,

$$(\chi_{\rho}, \chi_1) = (\chi_{\rho}, \chi_4) = (\chi_{\rho}, \chi_5) = 1, \ (\chi_{\rho}, \chi_2) = (\chi_{\rho}, \chi_3) = 0.$$

Hence $\chi_{\rho} = \chi_1 + \chi_4 + \chi_5$, and $\mathbb{C}(F) = W_1 \oplus W_2 \oplus W_3$ the sum of three invariant subspaces. The intertwining operator $T : \mathbb{C}(F) \to \mathbb{C}(F)$ of food redistribution must be a scalar operator on each W_i by Schur's Lemma. Note that

$$W_1 = \left\{ \sum_{x \in F} ax \mid a \in \mathbb{C} \right\},$$

$$W_2 = \left\{ \sum_{x \in F} a_x x \mid a_x = -a_{x_{op}} \right\},$$

$$W_3 = \left\{ \sum_{x \in F} a_x x \mid \sum a_x = 0, a_x = a_{x_{op}} \right\},$$

where x_{op} denotes the face opposite to the face x. A simple calculation shows that $T_{|W_1} = \text{Id}$, $T_{|W_2} = 0$, $T_{|W_3} = -\frac{1}{2}Id$. Therefore $T^n(v)$ approaches a vector in W_1 as $n \to \infty$, and eventually everybody will have the same amount of food.

Example 3. Now let $G = A_5$. There are 5 irreducible representation of G over \mathbb{C} . Here is the character table

To obtain χ_2 use the permutation representation and (1.1) again. Let χ_{sym} and χ_{alt} be the characters of the second symmetric and the second exterior powers of ρ_2 respectively. Then we obtain

It is easy to check that

$$(\chi_{\text{sym}}, \chi_{\text{sym}}) = 3, \ (\chi_{\text{sym}}, \chi_1) = (\chi_{\text{sym}}, \chi_2) = 1.$$

Therefore

$$\chi_3 = \chi_{\text{sym}} - \chi_1 - \chi_2$$

is the character of an irreducible representation.

Furthermore,

$$(\chi_{\text{alt}}, \chi_{\text{alt}}) = 2, \ (\chi_{\text{alt}}, \chi_1) = (\chi_{\text{alt}}, \chi_2) = (\chi_{\text{alt}}, \chi_3) = 0.$$

Therefore $\chi_{\rm alt}=\chi_4+\chi_5$ is the sum of two irreducible characters. First we find the dimensions of ρ_4 and ρ_5 using

$$1^2 + 4^2 + 5^2 + n_4^2 + n_5^2 = 60.$$

We obtain $n_4 = n_5 = 3$. The equations

$$(\chi_4, \chi_1 + \chi_2) = 0, \ (\chi_4, \chi_3) = 0$$

imply

$$\chi_4((123)) = 0, \ \chi_4((12)(34)) = -1.$$

The same argument shows

$$\chi_5((123)) = 0, \ \chi_5((12)(34)) = -1.$$

Finally denote

$$x = \chi_4((12345)), y = \chi_4((12354))$$

and write down the equation $(\chi_4, \chi_4) = 1$. It is

$$\frac{1}{60} \left(9 + 15 + 12x^2 + 12y^2 \right) = 1,$$

or

$$(1.2) x^2 + y^2 = 3.$$

On the other hand, $(\chi_4, \chi_1) = 0$, that gives

$$3-15+12(x+y)=0$$
,

or

$$(1.3) x+y=1.$$

One can solve (1.2) and (1.3)

$$x = \frac{1 + \sqrt{5}}{2}, y = \frac{1 - \sqrt{5}}{2}.$$

The second solution

$$x = \frac{1 - \sqrt{5}}{2}, y = \frac{1 + \sqrt{5}}{2}$$

will give the last character χ_5 .

2. Modules

Let R be a ring, usually we assume that $1 \in R$. An abelian group M is called a (left) R-module if there is a map $\alpha \colon R \times M \to M$, (we write $\alpha(a, m) = am$) satisfying

- (1) (ab) m = a (bm);
- (2) 1m = m;
- (3) (a+b) m = am + bm;
- (4) a(m+n) = am + an.

Example 1. If R is a field then any R-module M is a vector space over R.

Example 2. If R = k(G) is a group algebra, then every R-module defines the representation $\rho: \to \operatorname{GL}(V)$ by the formula

$$\rho_s v = s v$$

for any $s \in G \subset k(G)$, $v \in V$. Conversely, every representation $\rho: G \to \operatorname{GL}(V)$ in a vector space V over k defines on V a k(G)-module structure by

$$\left(\sum_{s \in G} a_s s\right) v = \sum_{s \in G} a_s \rho_s v.$$

Thus, representations of G over k are k(G)-modules.

A *submodule* is a subgroup invariant under R-action. If $N \subset M$ is a submodule then the quotient M/N has the natural R-module structure. A module M is *simple* or (*irreducible*) if any submodule is either zero or M. A sum and an intersection of submodules is a submodule.

Example 3. If R is an arbitrary ring, then R is a left module over itself, where the action is given by the left multiplication. Submodules are left ideals.

For any two R-modules M and N one can define an abelian group $\operatorname{Hom}_R(M,N)$ and a ring $\operatorname{End}_R(M)$ in the manner similar to the group case. Schur's Lemma holds for simple modules in the following form.

Lemma 2.1. Let M and N be simple modules and $\varphi \in \operatorname{Hom}_R(M, N)$, then either φ is an isomorphism or $\varphi = 0$. For a simple module M, $\operatorname{End}_R(M)$ is a division ring.

Recall that for every ring R one defines R^{op} as the same abelian group with new multiplication * given by

$$a * b = ba$$
.

Lemma 2.2. The ring $\operatorname{End}_{R}(R)$ is isomorphic to R^{op} .

Proof. For each $a \in R$ define $\varphi_a \in \text{End}(R)$ by the formula

$$\varphi_a(x) = xa.$$

It is easy to check that $\varphi_a \in \operatorname{End}_R(R)$ and $\varphi_{ba} = \varphi_a \circ \varphi_b$. Hence we constructed a homomorphism $\varphi : R^{\operatorname{op}} \to \operatorname{End}_R(R)$. To prove that φ is injective let $\varphi_a = \varphi_b$. Then $\varphi_a(1) = \varphi_b(1)$, i.e. a = b. To prove surjectivity of φ , note that for any $\gamma \in \operatorname{End}_R(R)$ one has

$$\gamma(x) = \gamma(x1) = x\gamma(1).$$

Therefore $\gamma = \varphi_{\gamma(1)}$.

Lemma 2.3. Let $\rho_i: G \to \operatorname{GL}(V_i)$, $i = 1, \ldots, l$ be pairwise non-isomorphic irreducible representations of a group G over algebraically closed field k, and

$$V = V_1^{\oplus m_1} \oplus \cdots \oplus V_l^{\oplus m_l}.$$

Then

$$\operatorname{End}_{G}(V) \cong \operatorname{End}_{k}(k^{m_{1}}) \times \cdots \times \operatorname{End}_{k}(k^{m_{l}}).$$

Proof. First, note that the Schur's Lemma implies that $\varphi\left(V_i^{\oplus m_i}\right) \subset V_i^{\oplus m_i}$ for any $\varphi \in \operatorname{End}_G(V)$, $i = 1, \ldots, l$. Hence

$$\operatorname{End}_{G}(V) \cong \operatorname{End}_{G}(V_{1}^{\oplus m_{1}}) \times \cdots \times \operatorname{End}_{G}(V_{l}^{\oplus m_{l}}).$$

Therefore it suffices to prove the following

Lemma 2.4. For an irreducible representation of G in W

$$\operatorname{End}_{G}\left(W^{\oplus m}\right)\cong\operatorname{End}_{k}\left(k^{m}\right).$$

Proof. Let $p_i: W^{\oplus m} \to W$ denotes the projection onto the *i*-th component and $q_j: W \to W^{\oplus m}$ be the embedding of the *j*-th component. Let $\varphi \in \operatorname{End}_G(W^{\oplus m})$. Then by Schur's Lemma $p_i \circ \varphi \circ q_j = \varphi_{ij} \operatorname{Id}$ for some $\varphi_{ij} \in k$. Therefore we have the map $\Phi : \operatorname{End}_G(W^{\oplus m}) \to \operatorname{End}_k(k^m)$, (the latter is just the matrix ring) defined by $\Phi(\varphi) = (\varphi_{ij})$. Check yourself that Φ is an isomorphism.

Theorem 2.5. Let k be algebraically closed, char k=0. Then

$$k(G) \cong \operatorname{End}_{k}(k^{n_{1}}) \times \cdots \times \operatorname{End}_{k}(k^{n_{l}}),$$

where n_1, \ldots, n_l are dimensions of irreducible representations.

Proof. By Lemma 2.2

$$\operatorname{End}_{k(G)}(k(G)) \cong k(G)^{\operatorname{op}} \cong k(G)$$
,

since $k(G)^{\text{op}} \cong k(G)$ via $g \to g^{-1}$. On the other hand

$$k(G) = V_1^{\oplus n_1} \oplus \cdots \oplus V_l^{\oplus n_l},$$

since every irreducible $\rho_i: G \to \operatorname{GL}(V_i)$ appears with the multiplicity $n_i = \dim V_i$. Therefore Lemma 2.3 implies theorem.

3. Finitely generated modules and Noetherian rings.

A module M is finitely generated if there exist $x_1, \ldots, x_n \in M$ such that $M = Rx_1 + \cdots + Rx_n$.

Lemma 3.1. Let

$$0 \to N \xrightarrow{q} M \xrightarrow{p} L \to 0$$

be an exact sequence of R-modules. If M is finitely generated, then L is finitely generated. If N and L are finitely generated, then M is finitely generated.

Proof. First assertion is obvious. For the second let

$$L = Rx_1 + \dots + Rx_n, \ N = Ry_1 + \dots + Ry_m,$$

then
$$M = Rp^{-1}(x_1) + \dots + Rp^{-1}(x_n) + Rq(y_1) + \dots + Rq(y_m)$$
.

Lemma 3.2. The following conditions on a ring R are equivalent

- (1) Every increasing chain of left ideals is finite, in other words for any sequence $I_1 \subset I_2 \subset \ldots$, $I_n = I_{n+1} = I_{n+2} = \ldots$ starting from some n;
- (2) Every left ideal is finitely generated R-module.

Proof. (1) \Rightarrow (2). Assume that some left ideal I is not finitely generated. Then there exists an infinite sequence of $x_n \in I$ such that

$$x_{n+1} \notin Rx_1 + \dots + Rx_n.$$

But then $I_n = Rx_1 + \dots Rx_n$ form an infinite increasing chain of ideals.

 $(2) \Rightarrow (1)$. Let $I_1 \subset I_2 \subset ...$ be an increasing chain of ideals. Let $I = \bigcup_n I_n$. Then $I = Rx_1 + ... Rx_s$, where $x_j \in I_{n_j}$. Let m be maximal among $n_1, ..., n_s$. Then $I = I_m$, and therefore the chain is finite.

A ring satisfying the conditions of Lemma 3.2 is called *left Noetherian*.

Lemma 3.3. Let R be a left Noetherian ring and M be a finitely generated R-module. Then every submodule of M is finitely generated.

Proof. Let $M = Rx_1 + ... Rx_n$, the there exists a surjective homomorphism $p: R \oplus \cdots \oplus R \to M$, such that

$$p(r_1,\ldots,r_n)=r_1s_1+\cdots+r_ns_n.$$

As follows from the first part of Lemma 3.1, it suffices to prove the statement for a free module. It can be done by induction using the second part of Lemma 3.1.

Let R be a commutative ring. An element $x \in R$ is called *integral over* \mathbb{Z} if $x^n + a_{n-1}x + \cdots + a_0 = 0$ for some $a_i \in \mathbb{Z}$. This condition is equivalent to the condition that $\mathbb{Z}[x] \subset R$ is finitely generated \mathbb{Z} -module. Complex numbers integral over \mathbb{C} are usually called algebraic integers. Obviously, if a rational number z is algebraic integer, then $z \in \mathbb{Z}$.

Lemma 3.4. The set of integral elements in a commutative ring R is a subring.

Proof. If $\mathbb{Z}[x]$ and $\mathbb{Z}[y]$ are finitely generated over \mathbb{Z} , then $\mathbb{Z}[x,y]$ is also finitely generated. Let $s \in \mathbb{Z}[x,y]$, then $\mathbb{Z}[s]$ is finitely generated since \mathbb{Z} is Noetherian ring and we can apply Lemma 3.3.

4. The center of the group algebra k(G)

We have assumptions char k=0, $\bar{k}=k$, G is a finite group. Let Z(G) denote the center of k(G). It is obvious that

$$Z(G) = \left\{ \sum_{s \in G} f(s) \mid f \in \mathcal{C}(G) \right\}.$$

On the other hand, by Theorem 2.5 we have

$$k(G) = \operatorname{End}_k(k^{n_1}) \times \cdots \times \operatorname{End}_k(k^{n_l}).$$

Therefore Z(G) is isomorphic to k^l as a commutative ring. Let e_i denote the identity element in $\operatorname{End}_k(k^{n_i})$. Then e_1, \ldots, e_l form a basis in Z(G) and

$$e_i e_j = \delta_{ij} e_i, \ 1 = e_1 + \dots + e_l.$$

For an irreducible representation $\rho_j: G \to \operatorname{GL}(V_j)$ we have

$$\rho_j (e_i) = \delta_{ij} \operatorname{Id}.$$

Lemma 4.1. If $\chi_i = \chi_{\rho_i}$, $n_i = \dim V_i$, then

(4.2)
$$e_i = \frac{n_i}{|G|} \sum \chi_i \left(s^{-1} \right) s.$$

Proof. We need to check (4.1). Since $\rho_j(e_i) \in \operatorname{End}_G(V_j)$, we have $\rho_j(e_i) = \lambda Id$. To find λ calculate

$$\operatorname{tr} \rho_{j}\left(e_{i}\right) = \frac{n_{i}}{|G|} \sum \chi_{i}\left(s^{-1}\right) \chi_{j}\left(s\right) = \frac{n_{i}}{|G|} \left(\chi_{i}, \chi_{j}\right) = \delta_{ij} n_{i}.$$

Lemma 4.2. Define $\omega_i: Z(G) \to k$ by the formula

$$\omega_i \left(\sum a_s s \right) = \frac{1}{n_i} \sum a_s \chi_i \left(s \right).$$

Then ω_i is a homomorphism of rings and

$$\omega = (\omega_1, \dots, \omega_l) : Z(G) \to k^l$$

is an isomorphism.

Proof. Check that $\omega_i(e_j) = \delta_{ij}$ using again the orthogonality relation.

Lemma 4.3. Let $u = \sum a_s s \in Z(G)$. If all a_s are algebraic integers, then u is integral over \mathbb{Z} .

Proof. Let $c \subset G$ be some conjugacy class and let

$$\delta_c = \sum_{s \in c} s.$$

If c_1, \ldots, c_l are disjoint conjugacy classes, then clearly $\mathbb{Z}\delta_{c_1} + \cdots + \mathbb{Z}\delta_{c_l}$ is a subring in Z(G). On the other hand, it is clearly a finitely generated \mathbb{Z} -module, and therefore every element of it is integral over \mathbb{Z} . But then for any set of algebraic integers b_1, \ldots, b_l the element $\sum b_i \delta_{c_i}$ is integral over \mathbb{Z} , which proves Lemma. \square

Theorem 4.4. The dimension of an irreducible representation divides |G|.

Proof. For every $s \in G$, $\chi_i(s)$ is an algebraic integer. Therefore by Lemma 4.3 $u = \sum_{s \in G} \chi_i(s^{-1}) s$ is integral over \mathbb{Z} . Hence $\omega_i(u)$ is an algebraic integer. But

$$\omega_i\left(u\right) = \frac{1}{n_i} \sum \chi_i\left(s\right) \chi_i\left(s^{-1}\right) = \frac{|G|}{n_i} \left(\chi_i, \chi_i\right) = \frac{|G|}{n_i}.$$

Therefore $\frac{|G|}{n_i} \in \mathbb{Z}$.

Theorem 4.5. Let Z be the center of G. The dimension n of an irreducible representation divides $\frac{|G|}{|Z|}$.

Proof. Consider

$$\rho_m = \rho^{\boxtimes m} : G \times \cdots \times G \to \operatorname{GL}(V^{\otimes m}).$$

Then Ker ρ_m contains a subgroup

$$Z'_m = \{(z_1, \dots, z_m) \in Z^m \mid z_1 z_2 \dots z_m = 1\}.$$

If ρ is irreducible, then ρ_m is irreducible, and dim $\rho_m = (\dim \rho)^m$ divides $|G^m/Z'_m| = \frac{|G|^m}{|Z|^{m-1}}$. Since this is true for any m, then dim ρ divides $\frac{|G|}{|Z|}$ (check yourself using prime factorization).