1. Characters

For any finite-dimensional representation $\rho : G \rightarrow \text{GL} (V)$ its character is a function $\chi_\rho : G \rightarrow k$ defined by

$$\chi_\rho (s) = \text{tr} \rho_s.$$

It is easy to see that characters have the following properties

1. $\chi_\rho (1) = \dim \rho$;
2. if $\rho \cong \sigma$, then $\chi_\rho = \chi_\sigma$;
3. $\chi_{\rho \oplus \sigma} = \chi_\rho + \chi_\sigma$;
4. $\chi_{\rho \otimes \sigma} = \chi_\rho \chi_\sigma$;
5. $\chi_{\rho^*} (s) = \chi_\rho (s^{-1})$;
6. $\chi_{\rho (sts^{-1})} = \chi_\rho (t)$.

Example 1. If R is a regular representation, then $\chi_R (s) = 0$ for any $s \neq 1$ and $\chi_R (1) = |G|$.

Example 2. Let $\rho : G \rightarrow \text{GL} (V)$ be a representation. Recall that $\rho \otimes \rho = \text{sym} \oplus \text{alt}$, where $\text{alt} : G \rightarrow \text{GL} (\Lambda^2 V)$ and $\text{sym} : G \rightarrow \text{GL} (S^2 V)$. Let us calculate χ_{sym} and χ_{alt}. For each $s \in G$ let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of ρ_s taken with multiplicities. Then the eigenvalues of alt_s are $\lambda_i \lambda_j$ for all $i < j$ and the eigenvalues of sym_s are $\lambda_i \lambda_j$ for $i \leq j$. Hence

$$\chi_{\text{sym}} (s) = \sum_{i \leq j} \lambda_i \lambda_j, \quad \chi_{\text{alt}} (s) = \sum_{i < j} \lambda_i \lambda_j,$$

and therefore

$$\chi_{\text{sym}} (s) - \chi_{\text{alt}} (s) = \sum_i \lambda_i^2 = \text{tr} \rho s^2 = \chi_\rho (s^2).$$

On the other hand by properties (3) and (4)

$$\chi_{\text{sym}} (s) + \chi_{\text{alt}} (s) = \chi_{\rho \otimes \rho} (s) = \chi_\rho^2 (s).$$

Thus, we get

$$\chi_{\text{sym}} (s) = \frac{\chi_\rho^2 (s) + \chi_\rho (s^2)}{2}, \quad \chi_{\text{alt}} (s) = \frac{\chi_\rho^2 (s) - \chi_\rho (s^2)}{2}.$$
Starting from this point we assume that G is finite and k is algebraically closed of characteristic 0.

Introduce the non-degenerate symmetric bilinear form on the space of functions $\mathcal{F}(G)$ by the formula

$$(f, g) = \frac{1}{|G|} \sum_{s \in G} f(s^{-1}) g(s).$$

Theorem 1.1. Let ρ, σ be irreducible. If ρ and σ are not isomorphic, then $(\chi_\rho, \chi_\sigma) = 0$. If ρ and σ are isomorphic, then $(\chi_\rho, \chi_\sigma) = 1$.

Proof. Let V be the space of the representation ρ and W be the space of σ. Denote $n = \dim V$, $m = \dim W$. Choose a basis v_1, \ldots, v_n in V, w_1, \ldots, w_m in W. Define $P(i, j): W \to W$ by

$$P(i, j) v_k = \delta_{jk} w_i.$$

Lemma 1.2. For any $T \in \text{Hom}_k(V, W)$ let

$$\bar{T} = \frac{1}{|G|} \sum_{s \in G} \sigma_s \circ T \circ \rho_s^{-1}.$$

Then $\bar{T} \in \text{Hom}_G(V, W)$. If $V = W$, then $\text{tr} T = \text{tr} \bar{T}$.

Proof. Direct calculations. \hfill \Box

For any $T \in \text{Hom}(V, W)$ let T_{kl} denote the corresponding matrix entry. For example, $P(i, j)_{kl} = \delta_{ik} \delta_{jl}$. Then

$$\bar{P}(i, j)_{kl} = \frac{1}{|G|} \sum_{s \in G} (\sigma_s)_{ki} (\rho_s^{-1})_{jl}.$$

If σ and ρ are not isomorphic, then by Schur’s Lemma

$$\bar{P}(i, j)_{kl} = 0$$

for all i, j, k, l. In particular, $\bar{P}(i, j)_{ij} = 0$ and therefore

$$\sum_{i=1}^m \sum_{j=1}^n \bar{P}(i, j)_{ij} = \frac{1}{|G|} \sum_{i=1}^m \sum_{j=1}^n \sum_{s \in G} (\sigma_s)_{ii} (\rho_s^{-1})_{jj} = 0.$$

But

$$\sum_{i=1}^m \sum_{j=1}^n (\sigma_s)_{ii} (\rho_s^{-1})_{jj} = \chi_\sigma(s) \chi_\rho(s^{-1}).$$

Hence

$$\frac{1}{|G|} \sum_{s \in G} \chi_\sigma(s) \chi_\rho(s^{-1}) = (\chi_\rho, \chi_\sigma) = 0.$$

Let now $\rho \cong \sigma$. The by Property (2), we may assume $\rho = \sigma$. Then by Schur’s Lemma

$$\bar{P}(i, j) = \lambda \text{Id}.$$
Since $\text{tr} \bar{P}(i, j) = \text{tr} P(i, j) = \delta_{ij}$, we have
\[
\bar{P}(i, j) = \frac{\delta_{ij}}{n} \text{Id}.
\]
Then
\[
\sum_{i=1}^{n} \sum_{j=1}^{n} \bar{P}(i, j)_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\delta_{ij}}{n} = 1,
\]
which implies $(\chi_\rho, \chi_\rho) = 1$. \hfill \Box

Corollary 1.3. Let $\rho = m_1 \rho_1 \oplus \cdots \oplus m_l \rho_l$ be decomposition into the sum of irreducibles. Then $m_i = (\chi_\rho, \chi_{\rho_i})$.

The number m_i is called the **multiplicity** of an irreducible representation ρ_i in ρ.

Corollary 1.4. A representation ρ is irreducible iff $(\chi_\rho, \chi_\rho) = 1$.

Corollary 1.5. Every irreducible representation ρ appears in the regular representation with multiplicity $\dim \rho$.

Proof.
\[
(\chi_\rho, \chi_R) = \frac{1}{|G|} \chi_\rho(1) \chi_R(1) = \dim \rho.
\]
\hfill \Box

Corollary 1.6. Let ρ_1, \ldots, ρ_l be all (up to isomorphism) irreducible representations of G and $n_i = \dim \rho_i$. Then
\[
n_1^2 + \cdots + n_l^2 = |G|.
\]

Example 3. Let G act on a finite set X and
\[
k(X) = \left\{ \sum_{x \in X} b_x x \mid b_x \in k \right\}.
\]
Define $\rho : G \to \text{GL}(k(X))$ by
\[
\rho_s \sum_{x \in X} b_x x = \sum_{x \in X} b_x s(x).
\]
It is easy to check that ρ is a representation and
\[
\chi_\rho(s) = |\{ x \in X \mid s(x) = x \}|.
\]
Clearly, ρ contains a trivial subrepresentation. To find the multiplicity of a trivial representation in ρ we have to calculate $(1, \chi_\rho)$.
\[
(1, \chi_\rho) = \frac{1}{|G|} \sum_{s \in G} \chi_\rho(s) = \frac{1}{|G|} \sum_{s \in G} \sum_{s(x) = x} 1 = \frac{1}{|G|} \sum_{x \in X} \sum_{s \in G_x} 1 = \frac{1}{|G|} \sum_{x \in X} |G_x|,
\]
where
\[G_x = \{ s \in G \mid s(x) = x \}. \]

Let \(X = X_1 \cup \cdots \cup X_m \) be the disjoint union of orbits. Then \(|G_x| = \frac{|G|}{|X_i|}\) for each \(x \in X_i \) and therefore
\[
(1, \chi) = \frac{1}{|G|} \sum_{i=1}^{m} \sum_{x \in X_i} \frac{|G|}{|X_i|} = m.
\]

Now let us evaluate \((\chi_\rho, \chi_\rho)\).
\[
(\chi_\rho, \chi_\rho) = \frac{1}{|G|} \sum_{s \in G} \left(\sum_{s(x)=x} 1 \right)^2 = \frac{1}{|G|} \sum_{s \in G} \sum_{s(x)=x, s(y)=y} 1 = \frac{1}{|G|} \sum_{(x,y) \in X \times X} |G_x \cap G_y|.
\]

Let \(\sigma \) be the representation associated with the action of \(G \) on \(X \times X \). Then the last formula implies
\[
(\chi_\rho, \chi_\rho) = (1, \chi_\sigma).
\]

Thus, \(\rho \) is irreducible iff \(|X| = 1\), and \(\rho \) has two irreducible components iff the action of \(G \) on \(X \times X \) with removed diagonal is transitive or \(|X| = 2\).

Let
\[
C(G) = \{ f \in \mathcal{F}(G) \mid f(sts^{-1}) = f(t) \}.
\]

It is easy to check that the restriction of \((,) \) on \(C(G) \) is non-degenerate.

Theorem 1.7. The characters of irreducible representations of \(G \) form an orthonormal basis in \(C(G) \).

Proof. We have to show that if \(f \in C(G) \) and \((f, \chi_\rho) = 0\) for any irreducible \(\rho \), then \(f = 0\). The following lemma is straightforward.

Lemma 1.8. Let \(\rho : G \to \text{GL}(V) \) be a representation, \(f \in C(G) \) and
\[
T = \frac{1}{|G|} \sum_{s \in G} f(s^{-1}) \rho_s.
\]

Then \(T \in \text{End}_G V \) and \(\text{tr} T = (f, \chi_\rho) \).

Thus, for any irreducible \(\rho \) we have
\[
(1.1) \quad \frac{1}{|G|} \sum_{s \in G} f(s^{-1}) \rho_s = 0.
\]

But then the same is true for any representation \(\rho \), since any representation is a direct sum of irreducibles. Apply \((?\text{equ}?)\) for the case when \(\rho = R \) is the regular representation. Then
\[
\frac{1}{|G|} \sum_{s \in G} f(s^{-1}) R_s 1 = \frac{1}{|G|} \sum_{s \in G} f(s^{-1}) s = 0.
\]

Hence \(f(s^{-1}) = 0 \) for all \(s \in G \), i.e. \(f = 0\) \(\square \).
Corollary 1.9. The number of isomorphism classes of irreducible representations equal the number of the conjugacy classes.