1. Reflection functors

Let Q be a quiver. We say a vertex $i \in Q_0$ is \pm-admissible if all arrows containing i have i as a target. If all arrows containing i have i as a source, we call i $-$-admissible. By $\sigma_i (Q)$ we denote the quiver obtained from Q by inverting all arrows containing i.

Let i be a \pm-admissible vertex and $Q' = \sigma_i (Q)$. Let us introduce the functor $F_i^+ : \text{Rep}_Q \to \text{Rep}_{Q'}$. Let X be a representation of Q. Define $X' = F_i^+ X$ as follows. If $j \neq i$, then $X'_j = X_j$. Put $X'_i = \ker h$, where

$$h = \sum_{\gamma = (j \to i) \in Q_1} \rho_\gamma : \bigoplus X_j \to X_i,$$

for each $\gamma = (i \to j) \in Q'$ define $\rho'_\gamma : X'_i \to X_j = X'_j$ as the natural projection on the component $X_j \in \bigoplus X_j$.

If i is a $-$-admissible vertex and $Q' = \sigma_i (Q)$ one can define the functor $F_i^- : \text{Rep}_Q \to \text{Rep}_{Q'}$ as follows. Let $X' = F_i^- (X)$, where $X'_j = X_j$ for $i \neq j$, and $X'_i = \coker \tilde{h}$, where

$$\tilde{h} = \sum_{\gamma = (i \to j) \in Q_1} \rho_\gamma : X_i \to \bigoplus X_j,$$

and for each $\gamma = (j \to i) \in Q'$ define $\rho'_\gamma : X_j = X'_j \to X'_i$ by restriction of the projection $\bigoplus X_j \to \coker \tilde{h}$ to X_j.

Example. Let Q be the quiver $1 \to 2$, and X is the representation $k \to 0$, then $F_1^- (X) = 0$ and $F_2^+ (X)$ is $k \leftarrow k$.

It is easy to check that F_i^+ is left-exact (maps an injection to an injection) and F_i^- is right exact (maps a surjection to a surjection). Let L_i denote the representation of Q which has k in the vertex i and zero in all other vertices. Then $F_i^+ (L_i) = 0$ and $F_i^- (L_i) = 0$.

Theorem 1.1. Let X be an indecomposable representation of Q and i be a \pm-admissible vertex. Then $F_i^+ (X) = 0$ iff $X \cong L_i$. Otherwise $X' = F_i^+ (X)$ is indecomposable,

$$\dim X'_i = - \dim X_i + \sum_{j \to i} \dim X_j$$

and $F_i^- F_i^+ (X) \cong X$.

Date: April 27, 2011.
Lemma 1.2. Let Q be a connected graph without cycles, Q and Q' be two quivers on the same graph. Then there exists an enumeration of vertices such that $Q' = \sigma_k \circ \cdots \circ \sigma_1 (Q)$ and i is a $-$-admissible vertex for $\sigma_{i-1} \circ \cdots \circ \sigma_1 (Q)$. Therefore, one can define the natural injection h restricted to Coker h. In the similar way one can define the natural surjection $\psi : X \to F^{-i} F^{-i} X$ if i is a $-$-admissible vertex.

Finally let $Q' = \sigma_i (Q)$, X be a representation of Q' and Y be a representation of Q, $X' = F^{-i} X$ and $Y' = F^{-i} Y$. Let $\eta \in \text{Hom}_Q (X, Y')$, define $\chi \in \text{Hom}_{Q'} (X', Y)$ by putting $\chi_j = 1$ for $j \neq i$ and obtaining χ_i from following commutative diagram

\[
\begin{array}{c}
0 \to X' \xrightarrow{\tilde{h}} \bigoplus_{(j \to i) \in Q_1} X_j \xrightarrow{h} X_i \to 0 \\
0 \to Y' \xrightarrow{\tilde{h}} \bigoplus_{(j \to i) \in Q_1} Y_j \xrightarrow{h} Y_i \\
\text{(1.2)}
\end{array}
\]

Note for an arbitrary X the sequence (1.2) is not exact but \tilde{h} is injective and $h \circ \tilde{h} = 0$. Therefore one can define a natural injection $\phi : F^{-i} F^{-i} X \to X$, where $\phi_j = 1$ for all $j \neq i$ and ϕ_i coincides with h restricted to Coker \tilde{h}. In the similar way one can define the natural surjection $\psi : X \to F^{-i} F^{-i} X$ if i is a $-$-admissible vertex.

Proof. Note that if $X \not\cong \sigma_i (Q)$, then h must be surjective because of indecomposability of X, hence the formula (1.1) holds. Furthermore, we have the following exact sequence

Note that for an arbitrary X the sequence (1.2) is not exact but \tilde{h} is injective and $h \circ \tilde{h} = 0$. Therefore one can define a natural injection $\phi : F^{-i} F^{-i} X \to X$, where $\phi_j = 1$ for all $j \neq i$ and ϕ_i coincides with h restricted to Coker \tilde{h}. In the similar way one can define the natural surjection $\psi : X \to F^{-i} F^{-i} X$ if i is a $-$-admissible vertex.

Note that for an arbitrary X the sequence (1.2) is not exact but \tilde{h} is injective and $h \circ \tilde{h} = 0$. Therefore one can define a natural injection $\phi : F^{-i} F^{-i} X \to X$, where $\phi_j = 1$ for all $j \neq i$ and ϕ_i coincides with h restricted to Coker \tilde{h}. In the similar way one can define the natural surjection $\psi : X \to F^{-i} F^{-i} X$ if i is a $-$-admissible vertex.

Note for an arbitrary X the sequence (1.2) is not exact but \tilde{h} is injective and $h \circ \tilde{h} = 0$. Therefore one can define a natural injection $\phi : F^{-i} F^{-i} X \to X$, where $\phi_j = 1$ for all $j \neq i$ and ϕ_i coincides with h restricted to Coker \tilde{h}. In the similar way one can define the natural surjection $\psi : X \to F^{-i} F^{-i} X$ if i is a $-$-admissible vertex.

Note that for an arbitrary X the sequence (1.2) is not exact but \tilde{h} is injective and $h \circ \tilde{h} = 0$. Therefore one can define a natural injection $\phi : F^{-i} F^{-i} X \to X$, where $\phi_j = 1$ for all $j \neq i$ and ϕ_i coincides with h restricted to Coker \tilde{h}. In the similar way one can define the natural surjection $\psi : X \to F^{-i} F^{-i} X$ if i is a $-$-admissible vertex.

Note that for an arbitrary X the sequence (1.2) is not exact but \tilde{h} is injective and $h \circ \tilde{h} = 0$. Therefore one can define a natural injection $\phi : F^{-i} F^{-i} X \to X$, where $\phi_j = 1$ for all $j \neq i$ and ϕ_i coincides with h restricted to Coker \tilde{h}. In the similar way one can define the natural surjection $\psi : X \to F^{-i} F^{-i} X$ if i is a $-$-admissible vertex.
Proof. It is sufficient to prove the statement for two quivers Q and Q' different at one arrow. So let $\gamma \in Q_1$. After removing γ, Q splits in two connected components; let Q'' be the component which contains $t(\gamma)$. Enumerate vertices of Q'' in such a way that if $i \to j \in Q''$, then $i > j$. This is possible since Q'' does not have cycles. Check that $Q' = \sigma_k \circ \cdots \circ \sigma_1 (Q)$ (here k is the number of all vertices in Q'') and i is a $+$-admissible vertex for $\sigma_{i-1} \circ \cdots \circ \sigma_1 (Q)$. □

Theorem 2.2. Let i be a $+$-admissible vertex for Q and $Q' = \sigma_i (Q)$. Then F_i^+ and F_i^- establish a bijection between indecomposable representations of Q (non-isomorphic to L_i) and indecomposable representations of Q' (non-isomorphic to L_i).

Theorem 2.2 follows from 1.1. Together with Lemma 2.1 it allows to change an orientation on a quiver if the quiver does not have cycles.

3. Weyl group and reflection functors.

Given any graph Γ, one can associate with it a certain linear group, which is called a Weyl group of Γ. We denote by $\alpha_1, \ldots, \alpha_n$ vectors in the standard basis of $\mathbb{Z}^\Gamma_0 = \mathbb{Z}^n$, α_i corresponds to the vertex i. These vectors are called simple roots. For each simple root α_i put

$$r_i(x) = x - 2 \frac{(x, \alpha_i)}{(\alpha_i, \alpha_i)} \alpha_i.$$

One can check that r_i preserves the scalar product and $r_i^2 = id$. The linear transformation r_i is called a simple reflection. If Γ has no loops, r_i also preserves the lattice generated by simple roots. Hence r_i maps roots to roots. If Γ is Dynkin, the scalar product is positive-definite, and r_i is a reflection in the hyperplane orthogonal to α_i.

The Weyl group W is a group generated by r_1, \ldots, r_n. For a Dynkin diagram W is finite (since the number of roots is finite).

Example. Let $\Gamma = A_n$. Let $\varepsilon_1, \ldots, \varepsilon_{n+1}$ be an orthonormal basis in \mathbb{R}^{n+1}. Then one can take the roots of Γ to be $\varepsilon_i - \varepsilon_j$, simple roots to be $\varepsilon_1 - \varepsilon_2, \varepsilon_2 - \varepsilon_3, \ldots, \varepsilon_n - \varepsilon_{n+1}$, $r_i(\varepsilon_j) = 0$ if $j \neq i, i+1$, and $r_i(\varepsilon_i) = \varepsilon_{i+1}$. Therefore W is isomorphic to the permutation group S_{n+1}.

One can check by direct calculation, that (1.1) implies

Lemma 3.1. If X is an indecomposable representation of Q and $\dim X = x \neq \alpha_i$, then $\dim F_i^\pm X = r_i(x)$.

An element $c = r_1 \ldots r_n \in W$ is called a Coxeter transformation. It depends on the enumeration of simple roots.

Example. In the case $\Gamma = A_n$ a Coxeter element is always a cycle of length $n + 1$.

Lemma 3.2. If $c(x) = x$, then $(x, \alpha_i) = 0$ for all i. In particular for a Dynkin graph $c(x) = x$ implies $x = 0$.

1We will denote by the same letter L_i the representations of quivers with different orientation.
Proof. By definition,
\[c(x) = x + a_1\alpha_1 + \cdots + a_n\alpha_n, \quad a_i = -\frac{2(\alpha_i, x + a_1\alpha_1 + \cdots + a_{i-1}\alpha_{i-1})}{(\alpha_i, \alpha_i)}. \]

The condition \(c(x) = x \) implies all \(a_i = 0 \). Hence \((x, \alpha_i) = 0 \) for all \(i \).

4. Coxeter Functor.

Let \(Q \) be a graph without oriented cycles. We call an enumeration of vertices admissible if \(i > j \) for any arrow \(i \to j \). Such an enumeration always exists. One can easily see that every vertex \(i \) is a \(+\)-admissible for \(\sigma_{i-1} \circ \cdots \circ \sigma_1 (Q) \) and \(-\)-admissible for \(\sigma_{i+1} \circ \cdots \circ \sigma_n (Q) \). Furthermore,
\[Q = \sigma_n \circ \sigma_{n-1} \circ \cdots \circ \sigma_1 (Q) = \sigma_1 \circ \cdots \circ \sigma_n (Q). \]

Define Coxeter functors
\[\Phi^+ = F_n^+ \circ \cdots \circ F_2^+ \circ F_1^+, \quad \Phi^- = F_n^- \circ F_{n-1}^- \circ \cdots \circ F_1^- . \]

Lemma 4.1.
1. \(\text{Hom}_Q (\Phi^- X, Y) \cong \text{Hom}_Q (X, \Phi^+ Y) \);
2. If \(X \) is indecomposable and \(\Phi^+ X \neq 0 \), then \(\Phi^- \Phi^+ X \cong X \);
3. If \(X \) is indecomposable of dimension \(x \) and \(\Phi^+ X \neq 0 \), then \(\dim \Phi^+ X = c(x) \);
4. If \(Q \) is Dynkin, then for any indecomposable \(X \) there exists \(k \) such that
\[(\Phi^+)^k X = 0. \]

Proof. (1) follows from Lemma 1.2, (2) follows from Theorem 1.1, (3) follows from Lemma 3.1. Let us prove (4). Since \(W \) is finite, \(c \) has finite order \(h \). It is sufficient to show that for any \(x \) there exists \(k \) such that \(c^k (x) \) is not positive. Assume that this is not true. Then \(y = x + c(x) + \cdots + c^{h-1} (x) > 0 \) is \(c \) invariant. Contradiction with Lemma 3.2. \(\square \)

Lemma 4.2. \(\Phi^\pm \) does not depend on a choice of admissible enumeration.

Proof. Note that if \(i \) and \(j \) are disjoint and both \(+\,-\)-admissible, then
\[F_i^+ \circ F_j^+ = F_j^+ \circ F_i^+. \]
If a sequence \(i_1, \ldots, i_n \) gives another admissible enumeration of vertices, and \(i_k = 1 \), then \(1 \) is disjoint with \(i_1, \ldots, i_{k-1} \), hence
\[F_1^+ \circ F_{i_{k-1}}^+ \circ \cdots \circ F_{i_1}^+ = F_{i_{k-1}}^+ \circ \cdots \circ F_{i_1}^+ \circ F_1^+. \]

Now proceed by induction. Similarly for \(\Phi^- \). \(\square \)

Corollary 4.3. Let \(Q \) be a Dynkin quiver, \(X \) be an indecomposable representation of dimension \(x \), and \(k \) be the minimal number such that \(c^{k+1} (x) \) is not positive. There exists a unique vertex \(i \) such that
\[x = c^{-k} r_1 \cdots r_{i-1} (\alpha_i), \quad X \cong (\Phi^-)^k \circ F_i^- \circ \cdots \circ F_{i-1}^- (L_i). \]
In particular, x is a positive root and for each positive root x, there is a unique (up to an isomorphism) indecomposable representation of dimension x.

Proof. Follows from Theorem 1.1 and Lemma 3.1.

5. Further properties of Coxeter functors

Here we assume again that Q is a quiver without oriented cycles and the enumeration of vertices is admissible. We discuss the properties of the bilinear form $\langle \cdot, \cdot \rangle$. Since we plan to change an orientation of Q we use a subindex $\langle \cdot, \cdot \rangle_Q$, where it is needed to avoid ambiguity.

Lemma 5.1. Let i be a $+$-admissible vertex, $Q' = \sigma_i(Q)$, and $\langle \cdot, \cdot \rangle_Q$, $\langle \cdot, \cdot \rangle_{Q'}$ the corresponding bilinear forms. Then

$$\langle r_i(x), y \rangle_{Q'} = \langle x, r_i(y) \rangle_Q.$$

Proof. It suffices to check the formula for a subquiver containing i and all its neighbors. Let $x' = r_i(x)$ and $y' = r_i(y)$. Then

$$x_i' = -x_i + \sum_{i \neq j} x_j, \quad y_i' = -y_i + \sum_{i \neq j} y_j,$$

$$\langle x', y \rangle_{Q'} = x_i' y_i - x_i' \sum_{i \neq j} y_j + \sum_{i \neq j} x_j y_j = -x_i y_i' + \sum_{i \neq j} x_j y_j,$$

$$\langle x, y' \rangle_Q = x_i y_i' - y_i' \sum_{i \neq j} x_j = -x_i' y_i' + \sum_{i \neq j} x_j y_j.$$

Corollary 5.2. For a Coxeter element c we have

$$\langle c^{-1}(x), y \rangle = \langle x, c(y) \rangle.$$

If $\Phi^+(Y) \neq 0$, $\Phi^-(X) \neq 0$, then

$$\dim \text{Ext}^1(X, \Phi^+(Y)) = \dim \text{Ext}^1(\Phi^-(X), Y).$$

Proof. First statement follows directly from Lemma 5.1. The second statement follows from the first statement, Lemma 1.2 and the identity

$$\langle x, y \rangle_Q = \dim \text{Hom}_Q(X, Y) - \dim \text{Ext}^1(X, Y).$$

Let $A = k(Q)$ be the path algebra. Recall that any indecomposable projective module is isomorphic to Ae_i.

Lemma 5.3. $F_i^+ \circ \cdots \circ F_i^+ (Ae_i) = 0$, $F_i^{-1} \circ \cdots \circ F_1^+ (Ae_i) \cong L_i$.

Proof. One can check by direct calculation that for each component \(e_j A e_i \), \(e_j A e_i = 0 \) for \(j > i \), and
\[
F^+_k \circ \cdots \circ F^+_1 (e_j A e_i) = e_j A e_i \text{ for } k < j, \quad F^+_j \circ \cdots \circ F^+_1 (e_j A e_i) = 0.
\]
\[\square\]

Corollary 5.4. \(\Phi^+ (P) = 0 \) for any projective module \(P \). For any indecomposable projective \(A e_i \) we have
\[
(5.1) \quad A e_i = F^-_1 \circ \cdots \circ F^-_{i-1} (L_i).
\]

Proof. The first statement follows from Lemma 5.3 immediately. For the second use Theorem 1.1 and Lemma 5.3. \[\square\]

An injective module is a module \(I \) such that for any injective homomorphism \(i : X \to Y \) and any homomorphism \(\varphi : X \to I \), there exists a homomorphism \(\psi : Y \to I \) such that \(\varphi = \psi \circ i \). A module \(I \) is injective iff \(\text{Ext}^1 (X, I) = 0 \) for any \(X \). One can see analogy with projective modules, however in general there is no nice description of injective (like a summand of a free module).

Exercise. Check that \(\mathbb{Q} \) is an injective \(\mathbb{Z} \)-module.

In case when \(A \) is a finite-dimensional algebra, injective modules are easy to describe. Indeed, the functor \(D : A \to \text{mod} \to \text{mod} \to A \) such that \(D(X) = X^* \) maps left projective modules to right injective and vice versa. Therefore any indecomposable injective module is isomorphic to \((e_j A)^* \). Since \(D \circ \Phi^+ = \Phi^- \circ D \), one can see easily that \(\Phi^- (I) = 0 \) for any injective module \(I \). Moreover, one can prove similarly to the projective case that
\[
(e_j A)^* \cong F^+_n \circ \cdots \circ F^+_{j+1} (L_j).
\]

Let \(P (j) = A e_j \) and \(I (j) = (e_j A)^* \) and \(p (j) = \dim P (j), i (j) = \dim I (j) \). Then
\[
(5.2) \quad c (p (j)) = r_n \cdots r_1 (p (j)) = r_n \cdots r_{j+1} (-\alpha_j) = -i (j).
\]

Note that \(\text{Ext}^1 (A e_j, X) = 0 \) for any \(X \) and \(\dim \text{Hom}_Q (A e_j, X) = x_j \). Hence
\[
(5.3) \quad \langle p (j), x \rangle = x_j.
\]

On the other hand, \(\text{Ext}^1 (X, (e_j A)^*) = 0 \) and
\[
\text{Hom}_Q (X, (e_j A)^*) \cong \text{Hom}_Q (e_j A, X^*),
\]
which implies \(\dim \text{Hom}_Q (X, (e_j A)^*) = x_j \). Thus, we obtain
\[
(5.4) \quad \langle x, i (j) \rangle = x_j.
\]

Combine together (5.2), (5.3), (5.4) and get
\[
\langle p (j), x \rangle + \langle x, c (p (j)) \rangle = 0.
\]
Since \(p(1), \ldots, p(n) \) form a basis, the last equation implies that for arbitrary \(x \) and \(y \)
\[
(y, x) + (x, c(y)) = 0.
\]

6. Affine root system

Let \(\Gamma \) be an affine Dynkin graph. Then the kernel of bilinear symmetric form in \(\mathbb{Z}^n \) is one-dimensional and generated by
\[
\delta = a_0\alpha_0 + a_1\delta_1 + \cdots + a_n\delta_n.
\]
We assume without loss of generality that the vertex \(\alpha_0 \) is such that \(a_0 = 1 \). By removing 0 from \(\Gamma \) we get a Dynkin graph which we denote by \(\Gamma^0 \). In affine case roots can be of two kinds: real, if \(q(\alpha) = 1 \), or imaginary, \(q(\alpha) = 0 \).

Lemma 6.1. Imaginary roots are all proportional to \(\delta \), real roots can be written as \(\alpha + m\delta \) for some root \(\delta \) of \(\Gamma^0 \). Every real root can be obtained from a simple root by the action of the Weyl group \(W \).

Proof. The first statement is obvious, the second follows from the fact that \(q(\alpha) = q(\alpha + m\delta) \), hence the projection on the hyperplane generated by \(\alpha_1, \ldots, \alpha_n \) maps a root to a root. To prove the last statement, note that \(r_i \) maps every positive root different from \(\alpha_i \) to a positive root. Let \(\alpha \) be a positive real root, \(\alpha = a_0\alpha_0 + \cdots + a_n\alpha_n \), and \(h(\alpha) = a_0 + a_1 + \cdots + a_n \). Then \((\alpha, \alpha_i) > 0 \) at least for one \(i \). But then \(h(r_i(\alpha)) < h(\alpha) \). Thus, one can decrease \(h(\alpha) \) by application of simple reflection. In the end one can get a root of height 1, which is a simple root. Similarly for negative roots.

7. Kronecker quiver

In this section we use Coxeter functors to classify indecomposable representation of the quiver \(\hat{A}_1 = \bullet \Rightarrow \bullet \). The admissible enumeration of vertices is \(1 \Rightarrow 0 \), \(\delta = \alpha_0 + \alpha_1 \). Positive real roots are
\[
ma_1 + (m + 1)\alpha_0 = -\alpha_1 + (m + 1)\delta, \quad (m + 1)\alpha_1 + ma_0 = \alpha_1 + m\delta, \quad m \geq 0.
\]

The Coxeter element \(c = r_1r_0 \) satisfies
\[
c(\alpha_1) = \alpha_1 + 2\delta, \quad c(\delta) = \delta.
\]

Let \(x = ma_1 + l\delta \). If \(m > 0 \) then \(c^{-s}(x) \) is not positive for sufficiently large \(s \). Hence if \(X \) is indecomposable of dimension \(x \), then \((\Phi^-)^s X = 0 \). If \(m < 0 \), then \((\Phi^+)^s X = 0 \). Thus if \(m \neq 0 \), then as in the case of Dynkin quiver, \(X \) can be obtained from some \(L_i \) by application of reflection functor. In particular, we obtain that the dimension of an indecomposable representation is always a root and if this root is real, then the indecomposable with this dimension is unique up to an isomorphism. Indeed, we have either
\[
k^m \Rightarrow_A k^{m+1},
\]
where $A = (1_m, 0)$, $B = (0, 1_m)$, or

$$k^{m+1} \Rightarrow \mathcal{C} \mathcal{D} k^m,$$

where $C = A^t, D = B^t$.

Classification of indecomposables of dimension $m\delta$ is equivalent to classification of pairs of linear operators $(A, B) : k^m \to k^m$ up to equivalence $(A, B) \sim (PAQ^{-1}, PBQ^{-1})$. Assume that A is invertible, then one may assume that $A = \text{Id}$, and then classify B up to conjugation. Indecomposability of the representation implies that B is equivalent to the Jordan block with some eigenvalue μ. Denote the corresponding representation by ρ_μ. If B is invertible, then A is equivalent to a Jordan block. Denote such representation by σ_μ. One can see that ρ_μ is isomorphic to $\sigma_{\mu-1}$ if $\mu \neq 0$. Now let us prove that at least one of A and B is invertible. Indeed, indecomposability implies that $\text{Ker} \ A \cap \text{Ker} \ B = 0$. Hence $A + tB$ is invertible for some t. Without loss of generality one can assume that $A + tB = \text{Id}$. But then either A or B must be invertible. Thus, we proved that indecomposable representation of dimension $(m, m) = \delta$ are parameterized by a projective line.

For other affine quivers, the situation is more complicated, as there are real roots which remain positive under Coxeter transformation. For example consider the quiver \hat{D}_4

```
  5
 / \  \\
2   1 \ 4
 \ /  \\
  3
```

Then $c(\alpha_1 + \alpha_2 + \alpha_3) = \alpha_4 + \alpha_1 + \alpha_5$, $c^2(\alpha_1 + \alpha_2 + \alpha_3) = \alpha_1 + \alpha_2 + \alpha_3$.