1. REPRESENTATIONS OF QUIVERS

I follow here Crawley-Boevey lectures trying to give more details concerning extensions and exact sequences.

A quiver is an oriented graph. If Q is a quiver, then we denote by Q_0 the set of vertices and by Q_1 the set of arrows. Usually we denote by n the number of vertices. If $\gamma: j \leftarrow i$ is an arrow then $i = s(\gamma)$, $j = t(\gamma)$.

Fix an algebraically closed field k. A representation V of a quiver is a collection of vector spaces $\{V_i\}_{i \in Q_0}$ and linear maps $\rho_\gamma: V_i \to V_j$ for each arrow $\gamma: i \to j$. For two representations of a quiver Q, ρ in V and σ in W define a homomorphism $\phi: V \to W$ as a set of linear maps $\phi_i: V_i \to W_i$ such that the diagram

\[
\begin{array}{ccc}
V_j & \xleftarrow{\rho_\gamma} & V_i \\
\downarrow \phi_j & & \downarrow \phi_i \\
W_j & \xleftarrow{\sigma_\gamma} & W_i
\end{array}
\]

is commutative. We say that two representations V and W are isomorphic if there is a homomorphism $\phi \in \text{Hom}_Q(V,W)$ such that each ϕ_i is an isomorphism. One can define a subrepresentation and a direct sum of representation of Q in the natural way. A representation is irreducible if it does not have non-trivial proper subrepresentation and indecomposable if it is not a direct sum of non-trivial subrepresentations.

Example 1.1. Let Q be the quiver $\bullet \to \bullet$. A representation of Q is a pair of vector spaces V and W and a linear operator $\rho: V \to W$. Let $V_0 = \text{Ker} \rho$, V_1 is such that $V = V_0 \oplus V_1$, $W_0 = \text{Im} \rho$, and W_1 is such that $W = W_0 \oplus W_1$. Then $V_0 \to 0$, $V_1 \to W_0$ and $0 \to W_1$ are subrepresentations and ρ is their direct sum. Furthermore, $V_0 \to 0$ is the direct sum of $\dim V_0$ copies of $k \to 0$, $V_1 \to W_0$ is the direct sum of $\dim V_1$ copies of $k \to k$ and finally $0 \to W_1$ is the direct sum of $\dim W_1$ copies of $0 \to k$. Thus, we see that there are exactly three isomorphism classes of indecomposable representations of Q, $0 \to k$, $k \to k$, $k \to 0$. The first and the last one are irreducible, $0 \to k$ is a subrepresentation of $k \to k$ and $k \to 0$ is a quotient of $k \to k$ by $0 \to k$.

Date: December 4, 2005.
2. Path algebra

Given a quiver Q. A path p is a sequence $\gamma_1 \ldots \gamma_k$ of arrows such that $s(\gamma_i) = t(\gamma_{i+1})$. Put $s(p) = s(\gamma_k)$, $t(p) = t(\gamma_1)$. Define a composition $p_1 p_2$ of two paths such that $s(p_1) = t(p_2)$ in the obvious way and we set $p_1 p_2 = 0$ if $s(p_1) \neq t(p_2)$. Introduce also elements e_i for each vertex $i \in Q_0$ and define $e_i e_j = \delta_{ij} e_i$, $e_i p = p$ if $i = t(p)$ and 0 otherwise, $p e_i = p$ if $i = s(p)$ and 0 otherwise. The path algebra $k(Q)$ is the set of k-linear combinations of all paths and e_i with composition extended by linearity from ones defined above.

One can easily check the following properties of a path algebra

1. $k(Q)$ is finite-dimensional if Q does not have oriented cycles;
2. If Q is a disjoint union of Q_1 and Q_2, then $k(Q) = k(Q_1) \times k(Q_2)$;
3. The algebra $k(Q)$ has a natural \mathbb{Z}-grading $\bigoplus_{n=0}^{\infty} k(Q)_n$ defined by $\deg e_i = 0$ and the degree of a path p being the length of the path;
4. Elements e_i are primitive idempotents of $k(Q)$, and hence $k(Q) e_i$ is an indecomposable projective $k(Q)$-module.

The first three properties are trivial, let us check the last one. Suppose e_i is not primitive, then one can find an idempotent $\varepsilon \in k(Q) e_i$. Let $\varepsilon = c_0 e_i + c_1 p_1 + \cdots + c_k p_k$, where $s(p_j) = i$ for all $j \leq k$. Then $\varepsilon^2 = \varepsilon$ implies $c_0 = 0$ or 1. Let $c_0 = 0, \varepsilon = \varepsilon_l + \cdots$, where $\deg \varepsilon_l = l$ and other terms have degree greater than l. But then ε^2 starts with degree greater than $2l$, hence $\varepsilon = 0$. If $c_0 = 1$, apply the same argument to the idempotent $(e_i - \varepsilon)$.

Given a representation ρ of Q one can construct a $k(Q)$-module

$$V = \bigoplus_{i \in Q_0} V_i, \quad e_i V_j = \delta_{ij} \text{Id}_{V_j}, \quad \gamma v = \rho_\gamma v \text{ if } v \in V_{s(\gamma)}, \gamma(v) = 0 \text{ otherwise.}$$

For any path $p = \gamma_1 \ldots \gamma_k$ and $v \in V$ put $p v = \rho_{\gamma_1} \circ \cdots \circ \rho_{\gamma_k} (v)$.

On the other hand, every $k(Q)$-module V defines a representation ρ of Q if one puts $V_i = e_i V$.

The following theorem is straightforward.

Theorem 2.1. The category of representations of Q and the category of $k(Q)$-modules are equivalent.

Lemma 2.2. The radical of $k(Q)$ is spanned by all paths p satisfying the property that there is no return paths, i.e. back from $t(p)$ to $s(p)$.

Proof. It is easy to see that the paths with no return span a two-sided ideal R. Note that $R^n = 0$, where n is the number of vertices. Thus, $R \subseteq \text{rad } k(Q)$. On the other hand, let $y \notin R$ and p be a shortest path in decomposition of y which has a return path. Choose a shortest path s such that $\tau = sp$ is an oriented cycle. Consider the representation of Q which has k in each vertex of τ and 0 in all other vertices. Let $\rho_\gamma = \text{Id}$, if γ is included in τ and $\rho_\gamma = 0$ otherwise. Let V be the corresponding $k(Q)$-module. Then V is simple, $s y (V) \neq 0$. Hence $y \notin \text{rad } k(Q)$. Contradiction. \(\square\)
Example 2.3. If Q has one vertex and n loops then $k(Q)$ is a free associative algebra with n generators. If Q does not have cycles, then $k(Q)$ is the subalgebra in $\text{Mat}_n(k)$ generated by elementary matrices E_{ii} for each $i \in Q_0$ and E_{ij} for each arrow $i \to j$.

3. Standard resolution

Theorem 3.1. Let Q be a quiver, $A = k(Q)$ and V be an A-module. Then the sequence

$$0 \to \bigoplus_{\gamma = (i \to j) \in Q_1} Ae_j \otimes V_i \xrightarrow{f} \bigoplus_{i \in Q_0} Ae_i \otimes V_i \xrightarrow{g} V \to 0,$$

where $f(ae_j \otimes v) = ae_j \gamma \otimes v - ae_j \otimes \gamma v$, $g(ae_i \otimes v) = av$ for any $v \in V_i$, is exact. It is a projective resolution.

Proof. First, check that $g \circ f = 0$. Indeed,

$$g(f(ae_j \otimes v)) = g(ae_j \gamma \otimes v - ae_j \otimes \gamma v) = ae_j \gamma v - ae_j \gamma v = 0.$$

Since $V = \bigoplus e_i V_i$, g is surjective. To check that f is injective, introduce the grading on $A \otimes V$ using $\deg V = 0$. By grf denote the homogeneous part of highest degree for f. Note that the grf increases the degree by one and

$$grf = \bigoplus_{\gamma \in Q_1} f_\gamma,$$

where $f_\gamma : Ae_j \otimes V_i \to A \gamma \otimes V_i$ is defined by

$$f_\gamma(ae_j \otimes v_i) = ae_j \gamma \otimes v_i,$$

for $\gamma : i \to j$. One can see from this formula that f_γ is injective, therefore grf is injective and hence f is injective.

To prove that $\text{Im} f = \text{Ker} g$ note that

$$ae_j \gamma \otimes v \equiv ae_j \otimes \gamma v \mod \text{Im} f,$$

therefore for any $x \in \bigoplus_{i \in Q_0} Ae_i \otimes V_i$

$$x \equiv x_0 \mod \text{Im} f$$

for some x_0 of degree 0. In other words $x_0 \in \bigoplus_{i \in Q_0} ke_i \otimes V_i$. If $g(x) = 0$, then $g(x_0) = 0$, and if $g(x_0) = 0$, then obviously $x_0 = 0$. Hence $x \equiv 0 \mod \text{Im} f$. □

Theorem 3.1 implies that $\text{Ext}^1(X, Y)$ can be calculated as $\text{coker} d$ of the following complex

$$(3.1) \quad 0 \to \bigoplus_{i \in Q_0} \text{Hom}_k(X_i, Y_i) \xrightarrow{d} \bigoplus_{\gamma = (i \to j) \in Q_1} \text{Hom}_k(X_i, Y_j) \to 0,$$

where

$$(3.2) \quad d\phi(x) = \phi(\gamma x) - \gamma \phi(x)$$

for any $x \in X_i$, $\gamma = (i \to j)$.

Lemma 3.2. Every $\psi \in \text{Ext}^1(X,Y)$ induces a non-split exact sequence
$$0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0.$$
If $\text{Ext}^1(X,Y) = 0$, then every exacts sequence as above splits.

Proof. Let
$$0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0$$
be an exact sequence of representations of Q. Then Z_i can be identified with $X_i \oplus Y_i$ for every i. For every arrow $\gamma: i \rightarrow j$ the action on Z is defined by
$$\gamma(x,y) = (\gamma x, \gamma y + \psi_{\gamma}(x)),$$
for some $\psi_{\gamma} \in \text{Hom}_k(X_i,Y_j)$. Thus, ψ can be considered as an element in the second non-zero term of (3.1). If the exact sequence splits, then there is $\eta \in \text{Hom}_Q(X,Z)$ such that for each $i \in Q_0$, $x \in X_i$
$$\eta(x) = (x, \phi_i(x)),$$
for some $\phi_i \in \text{Hom}_k(X_i,Y_i)$. Furthermore, $\eta \in \text{Hom}_Q(X,Z)$ iff for each $\gamma: i \rightarrow j$
$$\gamma(x, \phi_i(x)) = (\gamma x, \gamma \phi_i(x) + \psi_{\gamma}(x)) = (\gamma x, \phi_j(\gamma x)),$$
which implies
$$\psi_{\gamma}(x) = \phi_j(\gamma x) - \gamma \phi_i(x).$$
In other words, $\psi = d\phi$. Thus, $\text{Ext}^1(X,Y)$ parameterizes the set of non-split exact sequences
$$0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0.$$
\qed

Corollary 3.3. In the category of representations of Q, $\text{Ext}^i(X,Y) = 0$ for $i \geq 2$.

Corollary 3.4. Let
$$0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0$$
be a short exact sequence of representations of Q, then
$$\text{Ext}^1(V,Z) \rightarrow \text{Ext}^1(V,X), \; \text{Ext}^1(Z,V) \rightarrow \text{Ext}^1(Y,V)$$
are surjective.

Lemma 3.5. If X and Y are indecomposable and $\text{Ext}^1(Y,X) = 0$, then every non-zero $\varphi \in \text{Hom}_Q(X,Y)$ is either surjective or injective.

Proof. Use the exact sequences
$$0 \rightarrow \text{Ker} \varphi \rightarrow X \rightarrow \text{Im} \varphi \rightarrow 0,$$
(3.3) $$0 \rightarrow \text{Im} \varphi \rightarrow Y \rightarrow S \cong Y/\text{Im} \varphi \rightarrow 0.$$
The exact sequence (3.3) can be considered as an element \(\psi \in \text{Ext}^1 (S, \text{Im} \varphi) \) by use of Lemma 3.2. By Corollary 3.3 we have an isomorphism \(g: \text{Ext}^1 (S, \text{Im} \varphi) \cong \text{Ext}^1 (S, X) \). Then \(g(\psi) \) induces the exact sequence

\[
0 \to X \to Z \to S \to 0,
\]

and this exact sequence together with (3.3) form the following commutative diagram

\[
\begin{array}{ccc}
0 & \to & X \\
\downarrow{\beta} & & \downarrow{\gamma} \\
0 & \to & \text{Im} \varphi \\
\end{array}
\]

\[
\begin{array}{ccc}
& Z & \to S \\
\downarrow{\gamma} & & \downarrow{\gamma} \\
& Y & \to S \to 0 \\
\end{array}
\]

here \(\beta \) and \(\gamma \) are surjective. We claim that the sequence

\[
0 \to X \xrightarrow{\alpha + \beta} Z \oplus \text{Im} \varphi \xrightarrow{\gamma - \delta} Y \to 0
\]

is exact. Indeed, \(\alpha + \beta \) is obviously injective and \(\gamma - \delta \) is surjective. Finally, \(\dim Z = \dim X + \dim S, \dim \text{Im} \varphi = \dim Y - \dim S \). Therefore,

\[
\dim (Z \oplus \text{Im} \varphi) = \dim X + \dim Y,
\]

and therefore \(\text{Ker} (\gamma - \delta) = \text{Im} (\alpha + \beta) \).

But \(\text{Ext}^1 (Y, X) = 0 \). Hence the last exact sequence splits, \(Z \oplus \text{Im} \varphi \cong X \oplus Y \) and by Krull-Schmidt theorem either \(X \cong \text{Im} \varphi \) or \(Y \cong \text{Im} \varphi \). \(\square \)

Introduce \(\dim X \) as a vector \(x = (x_1, \ldots, x_n) \in \mathbb{Z}^n \) where \(n \) is the number of vertices and \(x_i = \dim X_i \). Define the bilinear form

\[
\langle x, y \rangle = \sum_{i \in Q_0} x_i y_i - \sum_{(i-j) \in Q_1} x_i y_j = \dim \text{Hom}_Q (X, Y) - \dim \text{Ext}^1 (X, Y)
\]

(the equality follows from (3.1)). We also introduce the symmetric form

\[
(x, y) = \langle x, y \rangle + \langle y, x \rangle
\]

and the quadratic form

\[
q(x) = \langle x, x \rangle.
\]

4. Bricks

Here we discuss further properties of finite-dimensional representations of \(A = k(Q) \).

Recall that if \(X \) is indecomposable and has finite length, then \(\varphi \in \text{End}_Q (X) \) is either isomorphism or nilpotent. Since we assumed that \(k \) is algebraically closed, \(\varphi = \lambda \text{Id} \) for any invertible \(\varphi \in \text{End}_Q (X) \). A representation \(X \) is a brick, if \(\text{End}_Q (X) = k \). If \(X \) is a brick, then \(X \) is indecomposable. If \(X \) is indecomposable and \(\text{Ext}^1 (X, X) = 0 \), then \(X \) is a brick due to Lemma 3.5.
Example 4.1. Consider the quiver $\bullet \to \bullet$. Then every indecomposable is a brick. For the Kronecker quiver $\bullet \Rightarrow \bullet$ the representation $k^2 \Rightarrow k^2$ with $\alpha = \text{Id}$, $\beta = (01 \atop 00)$ is not a brick. Indeed, $\varphi = (\varphi_1, \varphi_2)$ where φ_1, φ_2 are matrices $(01 \atop 00)$, belongs to $\text{End}_Q(X)$.

Lemma 4.2. Let X be indecomposable and not a brick, then X contains a brick W such that $\text{Ext}^1(W, W) \neq 0$.

Proof. Choose $\varphi \in \text{End}_Q(X)$, $\varphi \neq 0$ of minimal rank. Since $\text{rk} \varphi^2 < \text{rk} \varphi$, $\varphi^2 = 0$. Let $Y = \text{Im} \varphi$, $Z = \text{Ker} \varphi$. Let $Z = Z_1 \oplus \cdots \oplus Z_p$ be a sum of indecomposables. Let $p_i : Z \to Z_i$ be the projection. Choose i so that $p_i(Y) \neq 0$ and let $\eta = p_i \circ \varphi \in \text{End}_Q(X)$ (well defined since $\text{Im} \varphi \in \text{Ker} \varphi$). Note that by our assumption $\text{rk} \eta = \text{rk} \varphi$, therefore $p_i : Y \to Z_i$ is an embedding. Let $Y_i = p_i(Y)$. Then $\text{Ker} \eta = Z$, $\text{Im} \eta = Y_i$.

We claim now that $\text{Ext}^1(Z_i, Z_i) \neq 0$. Indeed, $\text{Ext}^1(Y_i, Z) \neq 0$ by exact sequence

$$0 \to Z \to X \overset{\eta}{\to} Y_i \to 0$$

and indecomposability of X. Then the induced exact sequence

$$0 \to Z_i \to X_i \overset{\eta}{\to} Y_i \to 0$$

does not split also. (If it splits, then Z_i is a direct summand of X, which is impossible). Therefore $\text{Ext}^1(Y_i, Z_i) \neq 0$. But Y_i is a submodule of Z_i. By Corollary 3.4 we have the surjection

$$\text{Ext}^1(Z_i, Z_i) \to \text{Ext}^1(Y_i, Z_i).$$

If Z_i is not a brick, we repeat the above construction for Z_i e.t.c. Finally, we get a brick. □

Corollary 4.3. Assume that the quadratic form q is positive definite. Then every indecomposable X is a brick with trivial $\text{Ext}^1(X, X)$; moreover, if $x = \dim X$, then $q(x) = 1$.

Proof. Assume that X is not a brick, then it contains a brick Y such that $\text{Ext}^1(Y, Y) \neq 0$. Then

$$q(Y) = \dim \text{End}_Q(Y) - \dim \text{Ext}^1(Y, Y) = 1 - \dim \text{Ext}^1(Y, Y) \leq 0,$$

but this is impossible. Therefore X is a brick. Now

$$q(x) = \dim \text{End}_Q(X) - \dim \text{Ext}^1(X, X) = 1 - \dim \text{Ext}^1(X, X) \geq 0,$$

hence $q(x) = 1$ and $\dim \text{Ext}^1(X, X) = 0$. □

5. Orbits in representation variety

Fix a quiver Q, recall that n denotes the number of vertices. Let $x = (x_1, \ldots, x_n) \in \mathbb{Z}_{\geq 0}^n$. Define

$$\text{Rep}(x) = \prod_{(i \to j) \in Q_1} \text{Hom}_k(k^{x_i}, k^{x_j}).$$
It is clear that every representation of Q of dimension x is a point in $\text{Rep}(x)$. Let
\[G = \prod_{i \in Q_0} \text{GL}(k^i) \, . \]

Then G acts on $\text{Rep}(x)$ by the formula $g \varphi_{ij} = g_i \varphi_j g_{ij}^{-1}$, for each arrow $i \to j$. Two representations of Q are isomorphic iff they belong to the same orbit of G. For a representation X we denote by O_X the corresponding G-orbit in $\text{Rep}(x)$.

Note that
\[\dim \text{Rep}(x) = \sum_{(i \to j) \in Q_1} x_i x_j, \quad \dim G = \sum_{i \in Q_0} x_i^2, \]
therefore
\[(5.1) \quad \dim \text{Rep}(x) - \dim G = -q(x) \, . \]

Since G is an affine algebraic group acting on an affine algebraic variety, we can work in Zariski topology. Then each orbit is open in its closure, if O and O' are two orbits and $O' \subset O$, $O \neq O'$, then $\dim O' < \dim O$. Finally, we need the formula
\[\dim O_X = \dim G - \dim \text{Stab}_X, \]
here Stab_X stands for the stabilizer of X. Also note that in our case the group G is connected, therefore each G-orbit is irreducible.

Lemma 5.1. $\dim \text{Stab}_X = \dim \text{Aut}_Q(X) = \dim \text{End}_Q(X)$.

Proof. The condition that $\phi \in \text{End}_Q(X)$ is not invertible is given by the polynomial equations $\det \phi_i = 0$. Since $\text{Aut}_Q(X)$ is not empty, we are done. \square

Corollary 5.2.
\[\text{codim} O_X = \dim \text{Rep}(x) - \dim G + \dim \text{Stab}_X = -q(x) + \dim \text{End}_Q(X) = \dim \text{Ext}^1(X, X) \, . \]

Lemma 5.3. Let Z be a nontrivial extension of Y by X, i.e. there is a non-split exact sequence
\[0 \to X \to Z \to Y \to 0. \]
Then $O_{X \oplus Y} \subset \bar{O}_Z$ and $O_{X \oplus Y} \neq O_Z$.

Proof. Write each Z_i as $X_i \oplus Y_i$ and define $g_i^\lambda|_{X_i} = \text{Id}, g_i^\lambda|_{Y_i} = \lambda \text{Id}$ for any $\lambda \neq 0$. Then obviously $X \oplus Y$ belongs to the closure of $g_i^\lambda(Z)$. It is left to check that $X \oplus Y \not\subset Z$. But the sequence is non-split, therefore
\[\dim \text{Hom}_Q(Y, Z) < \dim \text{Hom}_Q(Y, X \oplus Y) \, . \]

Corollary 5.4. If O_X is closed then X is semisimple.
6. DYNKIN AND AFFINE GRAPHS

Let Γ be a connected graph with n vertices, then Γ defines a symmetric bilinear form (\cdot, \cdot) on \mathbb{Z}^n:
\[(x, y) = \sum_{i \in \Gamma_0} 2x_i y_i - \sum_{(i, j) \in \Gamma_1} x_i y_j.\]

If Γ is equipped with orientation then the symmetric form coincides with the introduced earlier symmetric form of the corresponding quiver. The matrix of the form (\cdot, \cdot) in the standard basis is called the \textit{Cartan matrix} of Γ.

\textbf{Example 6.1.} The Cartan matrix of $\bullet - \bullet$ is $\left(\begin{smallmatrix} 2 & -1 \\ -1 & 2 \end{smallmatrix} \right)$.

\textbf{Theorem 6.2.} Given a connected graph Γ, exactly one of the following conditions holds:

1. The symmetric (\cdot, \cdot) form is positive definite, then Γ is called \textit{Dynkin graph}.
2. The symmetric form (\cdot, \cdot) is positive semidefinite, there exist $\delta \in \mathbb{Z}^n_{\geq 0}$ such that $(\delta, x) = 0$ for any $x \in \mathbb{Z}^n$. The kernel of (\cdot, \cdot) is $\mathbb{Z}\delta$. In this case Γ is called \textit{affine} or \textit{Euclidean}.
3. There is $x \in \mathbb{Z}^n_{\geq 0}$ such that $(x, x) < 0$. Then Γ is called of \textit{indefinite type}.

A Dynkin graphs is one of A_n, D_n, E_6, E_7, E_8. An affine graphs is one of $\tilde{A}_n, \tilde{D}_n, \tilde{E}_6, \tilde{E}_7, \tilde{E}_8$. Every affine graph is obtained from a Dynkin graph by adding one vertex.

\textit{Proof.} First, we check that A_n, D_n, E_6, E_7, E_8 define a positive definite form using the Sylvester criterion and the fact that every subgraph of a Dynkin graph is Dynkin. One can calculate the determinant of the Cartan matrix inductively. It is $n + 1$ for A_n, 4 for D_n, 3 for E_6, 2 for E_7 and 1 for E_8. In the same way one can check that the Cartan matrices of affine graphs have determinant 0 and corank 1. The rows are linearly dependent with positive coefficients. Any other graph Γ has an affine graph Γ' as a subgraph, hence either $(\delta, \delta) < 0$ or $(2\delta + \alpha_i, 2\delta + \alpha_i) < 0$, if α_i is the basis vector corresponding to a vertex i which does not belong to Γ' but is connected to some vertex of Γ'.

A vector $\alpha \in \mathbb{Z}^n$ is called a \textit{root} if $q(\alpha) = \frac{(\alpha, \alpha)}{2} \leq 1$. It is clear that $\alpha_1, \ldots, \alpha_n$ are roots. They are called \textit{simple roots}.

\textbf{Lemma 6.3.} Let Γ be Dynkin or affine. If α is a root and $\alpha = m_1 \alpha_1 + \cdots + m_n \alpha_n$, then either all $m_i \geq 0$ or all $m_i \leq 0$.

\textit{Proof.} Let $\alpha = \beta - \gamma$, where $\beta = \sum_{i \in I} m_i \alpha_i$, $\gamma = \sum_{j \notin I} m_j \alpha_j$ for some $m_i, m_j \geq 0$, then $q(\alpha) = q(\beta) + q(\gamma) - (\beta, \gamma)$. Since Γ is Dynkin or affine, then $q(\beta) \geq 0$, $q(\gamma) \geq 0$. On the other hand $(\beta, \gamma) \leq 0$. Since $q(\alpha) \leq 1$, only one of three terms $q(\beta), q(\gamma), -(\beta, \gamma)$ can be positive, which is possible only if β or γ is zero. A root α is positive if $\alpha = m_1 \alpha_1 + \cdots + m_n \alpha_n$, $m_i \geq 0$ for all i.

A quiver has \textit{finite type} if there are finitely many isomorphism classes of indecomposable representations.
Theorem 6.4. (Gabriel) A connected quiver Q has finite type iff the corresponding graph is Dynkin. For a Dynkin quiver there exists a bijection between positive roots and isomorphism classes of indecomposable representations.

Proof. If Q is of finite type, then $\text{Rep}(x)$ has finitely many orbits for each $x \in \mathbb{Z}_{\geq 0}^n$. If Q is not Dynkin, then there exists $x \in \mathbb{Z}_{\geq 0}^n$ such that $q(x) \leq 0$. If Q has finite type, then $\text{Rep}(x)$ must have an open orbit O_X. By Corollary 5.2

\begin{equation}
\text{codim } O_X = \dim \text{End}_Q(X) - q(x) > 0.
\end{equation}

Contradiction.

Now suppose that Q is Dynkin. Every indecomposable representation X is a brick with trivial self-extensions by Corollary 4.3. Hence $q(x) = 1$, i.e. x is a root. By (6.1) O_X is the unique open orbit in $\text{Rep}(x)$. What remains is to show that for each root x there exists an indecomposable representation of dimension x. Indeed, let X be such that $\dim O_X$ in $\text{Rep}(x)$ is maximal. We claim that X is indecomposable. Indeed, let $X = X_1 \oplus \cdots \oplus X_s$ be a sum of indecomposable bricks. Then by Lemma 5.3 $\text{Ext}^1(X_i, X_j) = 0$. Therefore $q(x) = s = 1$. Hence X is indecomposable. \qed