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LECTURE NOTES

VERA SERGANOVA

1. Some problems involving representation theory

Hungry knights. There are n hungry knights at a round table. Each of them
has a plate with certain amount of food. Instead of eating every minute each knight
takes one half of his neighbors servings. They start at 10 in the evening. What can
you tell about food distribution in the morning?

Solution. Denote by xi the amount of food on the plate of the i-th knight. The
distribution of food at the table can be described by a vector x = (x1, x2, . . . , xn) ∈
R

n. Every minute a certain linear operator Φ is applied to a distribution x. Thus, we
have to find lim Φm as m approaches infinity. To find the limit we need to diagonalize
Φ, and the easiest way to do this is to write

Φ =
T + T−1

2
,

where T is the rotation operator:

T (x1, . . . , xn) = (xn, x1, . . . , xn−1) .

It is easy to see that the eigenvalues of T are the n-th roots of 1. Hence the eigenvalues

of Φ are εk+ε−k

2
, where ε is a primitive root of 1, k = 1, . . . , n. The set of eigenvalues

of Φ is
{

cos
2πk

n
| k = 1, . . . , n

}

.

Let us chose a new basis {v1, . . . , vn} in Cn such that

Φvk = cos
2πk

n
vk.

For example, we can put vk =
(

ε−k, ε−2k, . . . , ε−nk
)

.
If n is odd all eigenvalues of Φ except 1 have the absolute value less than 1.

Therefore if x = a1v1 + · · · + anvn, then

lim
m→∞

Φmx = lim
m→∞

n
∑

k=1

ak

(

cos
2πk

n

)m

vk = anvn.
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But vn = (1, . . . , 1). Therefore eventually all knights will have the same amount of
food equal to the average x1+···+xn

n
.

In case when n is even the situation is different, since there are two eigenvalues
with absolute value 1, they are 1 and −1. Hence as m → ∞,

Φmx → (−1)m an/2vn/2 + anvn.

Recall that vk = (−1, 1,−1, . . . , 1). Thus, eventually food alternates between even

and odd knights, the amount on each plate is approximately
an±an/2

2
, where

an =
x1 + · · · + xn

n
, an/2 =

x1 − x2 + · · · − xn

n
.

Slightly modifying this problem we will have more fun.
Breakfast at Mars. It is well known that marsians have four arms, a standard

family has 6 persons and a breakfast table has a form of a cube with each person
occupying a face on a cube. Do the analog of round table problem for the family of
marsians.

Supper at Venus. They have five arms there, 12 persons in a family and sit on
the faces of a dodecahedron (a regular polyhedron whose faces are pentagons).

Tomography problem. You have a solid in 3-dimensional space of unknown
shape. You can measure the area of every plane cross-section which passes through
the origin. Can you determine the shape of the solid? The answer is yes, if the solid
in question is convex and centrally symmetric with respect to the origin.

In all four problems above the important ingredient is a group of symmetries.
In the first case this is a cyclic group of rotations of the table, in the second one
the group of rotations of a cube, in the Venus problem the group of rotations of
a dodecahedron (can you describe these groups?). Finally, in the last problem the
group of all rotations in R3 appears. In all cases the group acts on a vector space via
linear operators, i.e. as we have a linear representation of a group. The main part of
this course deals with representation of groups.

Linear algebra problems. Every standard course of linear algebra discusses the
problem of classification of all matrices in a complex vector space up to equivalence.
(Here A is equivalent to B if A = XBX−1 for some invertible X.) Indeed, there exists
some basis in Cn, in which A has a canonical Jordan form. The following problem is
less known.

Kronecker problem. Let V and W be finite-dimensional vector spaces over
algebraically closed field k, A and B : V → W be two linear operators. Classify
all pairs (A, B) up to the change of bases in V and W . In other words we have to
classify pairs of matrices up to the following equivalence relation: (A, B) is equivalent
to (C, D) if there are invertible square matrices X and Y such that

C = XAY , D = XBY.
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Theorem 1.1. There exist decompositions

V = V1 ⊕ · · · ⊕ Vk, W = W1 ⊕ · · · ⊕ Wk,

such that A (Vi) ⊂ Wi, B (Vi) ⊂ Wi and for each i ≤ k there exist bases in Vi and Wi

such that the matrices for A and B have one of the following forms (here 1n denotes
the identity matrix of size n, Jn the nilpotent Jordan block of size n ):

A =
(

1n
0

)

, B =
(

0
1n

)

, n ≥ 0;

A = (1n, 0) , B = (0, 1n) , n ≥ 0;

A = 1n, B = Jn, n ≥ 1;

A = t1n + Jn, B = 1n, n ≥ 1, t ∈ k.

2. Representations of groups. Definition and examples.

Let k denote a field, V be a vector space over k. By GL (V ) we denote the group
of all invertible linear operators in V . If dimV = n, then GL (V ) is isomorphic to
the group of invertible n × n matrices with entries in k.

A (linear) representation of a group G in V is a homomorphism

ρ : G → GL (V ) .

The dimension of V is called the degree or the dimension of a representation ρ and
it may be infinite. For any s ∈ G we denote by ρs the image of s in GL (V ) and for
any v ∈ V we denote by ρsv the image of v under the action of ρs. The following
properties are obvious:

ρsρt = ρst, ρ1 = Id , ρ−1
s = ρs−1 , ρs (xv + yw) = xρsv + yρsw.

Examples.

1. Let G = Z with operation +, V = R2, ρn is given by the matrix

1 n
0 1

for n ∈ Z.
2. Permutation representation. Let G = Sn, V = kn. For each s ∈ Sn put

ρs (x1, . . . , xn) =
(

xs(1), . . . , xs(n)

)

.

3. Trivial representation. For any group G the trivial representation is the homo-
morphism ρ : G → k∗ such that ρs = 1 for all s ∈ G.

4. Let G be a group and

F (G) = {f : G → k}

be the space of functions on G with values in k. For any s ∈ G, f ∈ F (G) and t ∈ G
let

ρsf (t) = f (ts) .

Then ρ : G → GL (F (G)) is a linear representation.
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5. Regular representation. Recall that the group algebra k (G) is the vector space of
all finite linear combinations

∑

cgg, cg ∈ k with natural multiplication. The regular
representation R : G → GL (k (G)) is defined in the following way

Rs

(

∑

cgg
)

=
∑

cgsg.

Two representations ρ : G → GL (V ) and σ : G → GL (W ) are equivalent (or
isomorphic) if there exists an isomorphism T : V → W such that for all s ∈ G

T ◦ ρs = σs ◦ T.

Example. If G is finite then the representations in examples 4 and 5 are equivalent.
Indeed, define T : F (G) → k (G) by the formula

T (f) =
∑

g∈G

f (g) g−1.

Then for any f ∈ F (G) we have

T (ρsf) =
∑

g∈G

ρsf (g) g−1 =
∑

g∈G

f (gs) g−1 =
∑

h∈G

f (h) sh−1 = Rs (Tf) .

3. Operations with representations

Restriction on a subgroup: Let H be a subgroup of G. For any ρ : G → GL (V )
we denote by ResH ρ the restriction of ρ on H.

Lift. Let p : G → H be a homomorphism of groups. For every representation
ρ : H → GL (V ), ρ ◦ p : G → GL (V ) is also a representation. We often use
this construction in case when H = G/N is a quotient group and p is the natural
projection.

Direct sum. If we have two representations ρ : G → GL (V ) and σ : G → GL (W ),
then we can define ρ ⊕ σ : G → GL (V ⊕ W ) by the formula

(ρ ⊕ σ)s (v, w) = (ρsv, σsw) .

Tensor product. The tensor product of ρ : G → GL (V ) and σ : G → GL (W ) is
defined by the formula

(ρ ⊗ σ)s v ⊗w = ρsv ⊗ σsw.

Exterior tensor product. Let ρ : G → GL (V ) and σ : H → GL (W ) be representa-
tions of two different groups, then their exterior product ρ⊠σ : G×H → GL (V ⊗ W )
is defined by

(ρ ⊠ σ)(s,t) v ⊗ w = ρsv ⊗ σtw.

If δ : G → G × G is the diagonal embedding, then

ρ ⊗ σ = (ρ ⊠ σ) ◦ δ.
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Dual representation. For any representation ρ : G → GL (V ) one can define the
dual representation ρ∗ : G → GL (V ∗) by the formula

< ρ∗
sϕ, v >=< ϕ, ρ−1

s v >

for any v ∈ V, ϕ ∈ V ∗. Here <, > denotes the natural pairing between V and V ∗.
More generally, if ρ : G → GL (V ) and σ : G → GL (W ) are two representations,

then one can naturally define the representation τ of G in Homk (V, W ) by the formula

τsϕ = σs ◦ ϕ ◦ ρ−1
s , s ∈ G, ϕ ∈ Homk (V, W ) .

4. Invariant subspaces and irreducibility

Given a representation ρ : G → GL (V ). A subspace W ⊂ V is called invariant if
ρs (W ) ⊂ W for any s ∈ G. One can define naturally the subrepresentation

ρW : G → GL (W )

and the quotient representation

σ : G → GL (V/W ) .

Example. Let ρ : Sn → GL (kn) be the permutation representation, then

W = {(x1, . . . , xn) | x1 = x2 = · · · = xn}

and

W ′ = {(x1, . . . , xn) | x1 + x2 + · · · + xn = 0}

are invariant subspaces.

Theorem 4.1. (Maschke) Let G be a finite group and char k do not divide |G|. Let
ρ : G → GL (V ) be a representation and W be an invariant subspace. Then there
exists another invariant subspace W ′ such that V = W ⊕ W ′.

Proof. Let W ′′ be a subspace (not invariant) such that V = W ⊕W ′′. Let P : V → V
be the linear operator such that P|W = Id and P (W ′′) = 0. Then P 2 = P . Such
operator is called a projector. Let

P̄ =
1

|G|

∑

g∈G

ρg ◦ P ◦ ρ−1
g .

Check that ρs ◦ P̄ ◦ ρ−1
s = P̄ , and hence ρs ◦ P̄ = P̄ ◦ ρs for any s ∈ G. Check also

that P̄|W = Id and Im P̄ = W . Hence P̄ 2 = P̄ .
Let W ′ = Ker P̄ . First, we claim that W ′ is invariant. Indeed, let w ∈ W ′, then

P̄ (ρsw) = ρs

(

P̄w
)

= 0, hence ρsw ∈ Ker P̄ = W ′.

Now we prove that V = W ⊕ W ′. Indeed, W ∩ W ′ = 0, since P̄|W = Id. On the
other hand, for any v ∈ V , we have w = P̄ v ∈ W and w′ = v − P̄ v ∈ W ′. Thus,
v = w + w′, and therefore V = W + W ′. �
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In the previous example V = W ⊕ W ′ if char k does not divide n. Otherwise,
W ⊂ W ′, and the theorem is not true.

If G is infinite group, theorem is not true. Consider the representation of Z in R2

from Example 1. It has the unique one-dimensional invariant subspace, therefore R2

does not split into a direct sum of two invariant subspaces.
A representation is called irreducible if it does not contain a proper non-zero in-

variant subspace.
Exercise. Show that if char k does not divide n, then the subrepresentation W ′

of the permutation representation is irreducible.

Lemma 4.2. Let G be a finite group, ρ : G → GL (V ) be an irreducible representa-
tion. Then dim V ≤ |G|.

Proof. Take any non-zero v ∈ V , then the set {ρsv}s∈G spans an invariant subspace
which must coincide with V . Hence dim V ≤ |G|. �

Example. Let ρ : G → GL (V ). We claim that ρ ⊗ ρ is irreducible if and only if
dim V = 1. Indeed the subspaces S2V, Λ2V ⊂ V ⊗ V are invariant and Λ2V = {0}
only in case when dimV = 1.

A representation is called completely reducible if it splits into a direct sum of
irreducible subrepresentations.

Corollary 4.3. Let G be a finite group and k be a field such that char k does not
divide |G|. Then every finite-dimensional representation of G is completely reducible.

Proof. By induction on dim V . �

5. Schur’s Lemma

For any two representations ρ : G → GL (V ), σ : G → GL (W ) let

HomG (V, W ) = {T ∈ Homk (V, W ) | σs ◦ T = T ◦ ρs, s ∈ G} .

An operator T ∈ HomG (V, W ) is called an intertwining operator. It is clear that
HomG (V, W ) is a vector space. Moreover, if ρ = σ, then HomG (V, V ) = EndG (V ) is
closed under operation of composition, and therefore it is a k-algebra.

Lemma 5.1. Let T ∈ HomG (V, W ), then KerT and ImT are invariant subspaces.

Proof. Let v ∈ KerT , then T (ρsv) = ρs (Tv) = 0, hence ρsv ∈ KerT .
Let w ∈ ImT . Then w = Tv for some v ∈ V and ρsw = ρs (Tv) = T (ρsv) ∈

Im T . �

Corollary 5.2. (Schur’s lemma) Let ρ : G → GL (V ) and σ : G → GL (W ) be
irreducible representations of G, then any T ∈ HomG (V, W ) is either isomorphism
or zero.

Proof. Since both V and W do not have proper invariant subspaces, then either
Im T = W , KerT = {0} or Im T = {0}. �
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Corollary 5.3. If ρ : G → GL (V ) is irreducible then EndG (V ) is a division ring. If
the field k is algebraically closed and V is finite-dimensional, then EndG (V ) = k Id.

Proof. The first assertion follows immediately from the Corollary 5.2. To prove the
second, let T ∈ EndG (V ) and T 6= 0. Then T is invertible. Let λ be an eigenvalue of
T and S = T − λId. Since S ∈ EndG (V ) and KerS 6= {0}, by Corollary 5.2, S = 0.
Thus, T = λ Id. �

Corollary 5.4. Let G be an abelian group, ρ : G → GL (V ) be an irreducible finite-
dimensional representation of G over algebraically closed field k. Then dimV = 1.

Irreducible representations of a finite cyclic group over C. Let G be a
cyclic group of order n and g be a generator. By Corollary 5.4 every irreducible
representation of G is one-dimensional. Thus, we have to classify homomorphisms
ρ : G → C∗. Let ρg = ε. Then clearly ε is an n-th root of 1. Therefore we have
exactly n non-equivalent irreducible representations.

Irreducible representations of a finite abelian group over C. Any finite
abelian group is a direct product G1×· · ·×Gk of cyclic groups. Let gi be a generator
of Gi. Then any irreducible ρ : G → C∗ is determined by its values ρgi = εi, where

ε
|Gi|
i = 1. Hence the number of isomorphism classes of irreducible representations of

G equals |G|.

Remark 5.5. It is not difficult to see that the set of one-dimensional representations
of G is a group with respect to the operation of tensor product. In case when G is
finite and abelian and k is algebraically closed, all irreducible representations are one
dimensional and form a group. We denote this group by G∨. As easily follows from
above G∨ ∼= G when k = C, however this isomorphism is not canonical.

Here is another application of Schur’s Lemma.

Theorem 5.6. Let ρ ∼= ρ1 ⊕ · · · ⊕ ρk
∼= σ1 ⊕ · · · ⊕ σm, where ρi, σj are irreducible.

Then m = k and there exists s ∈ Sk such that ρj
∼= σs(j).

Proof. Let V be the space of a representation ρ. There are two decompositions of V
into the direct sum of irreducible decomposable subspaces

V = V1 ⊕ · · · ⊕ Vk = W1 ⊕ · · · ⊕ Wm.

Let pi : V → Wi be the projection which maps Wj to zero for j 6= i, qj : Vj → V be
the embedding. Then pi ∈ HomG (V, Wi) and qj ∈ HomG (Vj, W ). The map

F =
m

∑

i=1

k
∑

j=1

pi ◦ qj : ⊕k
j=1Vj → ⊕m

i=1Wi

is an isomorphism. There exists i such that pi ◦ q1 6= 0. (Otherwise F (V1) = 0
which is impossible.) Put s (1) = i and note that pi ◦ q1 is an isomorphism by Schur’s
Lemma. We continue inductively. For each j there exists i such that pi ◦ qj is an
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isomorphism and i 6= s (r) for any r < j. (Indeed, otherwise F (V1 ⊕ · · · ⊕ Vj) ⊂
Ws(1) ⊕ · · · ⊕ Ws(j−1) which is impossible because F is an isomorphism.) We put
i = s (j). Thus, we can construct an injective map

s : {1, . . . , k} → {1, . . . , m}

such that ρj
∼= σs(j). In particular, k ≤ m. But by exchanging ρi and σj we can prove

that m ≤ k. Hence k = m and s is a permutation. �


