Due November 4.

1. Let \(R \) be the algebra of polynomial differential operators. In other words \(R \) is generated by \(x \) and \(\frac{\partial}{\partial x} \) with relation

\[
\frac{\partial}{\partial x} x - x \frac{\partial}{\partial x} = 1.
\]

(The algebra \(R \) is called the Weyl algebra.) Let \(M = \mathbb{C}_x \) have a structure of \(R \)-module in the natural way. Show that \(\text{End}_R(M) = \mathbb{C} \), \(M \) is an irreducible \(R \)-module and the natural map \(R \to \text{End}_\mathbb{C}(M) \) is not surjective.

2. Let \(R \) be a subalgebra of upper triangular matrices in \(\text{Mat}_n(\mathbb{C}) \). Classify simple and indecomposable projective modules over \(R \) and evaluate \(\text{Ext}_R(M,N) \) for all simple \(M \) and \(N \).

\textit{Date:} October 27, 2005.