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Preface

Representation theory is a very active research topic in mathematics nowadays.
There are representations associated to several algebraic structures, representa-

tions of algebras, groups (of finite or infinite cardinal). Roughly speaking, a represen-
tation is a vector space equipped with a linear action of the algebraic structure. For
example, the algebra of n× n matrices acts on the vector space Cn. A slightly more
complicated example is the action of the group GL(n,C) in the set of n×n-matrices,
the group acting by conjugation.

In the beginning, there was no tendency to classify all the representations of a
given object. The first result in this direction is due to Frobenius, who was interested
in the general theory of finite groups. Let G be a finite group, a representation V of
G is a complex vector space V together with a morphism of groups ρ : G→ GL(V ).
One says V is irreducible if there exists no proper subspace W ⊂ V such that W
is stable under all ρ(g), g ∈ G. Frobenius showed there is finitely many irreducible
representations of G and that they are completely determined by their characters:
the character of V is the complex function g ∈ G 7→ Tr(ρ(g)) where Tr is the trace of
the endomorphism. These characters form a basis of the complex valued functions on
G invariant under conjugation. Then Frobenius proceeded to compute the characters
of symmetric groups in general. His results inspired Schur, who was able to relate
them to the theory of complex finite dimensional representations of GL(n,C) through
the Schur-Weyl duality. In both cases, every finite dimensional representation of the
group is a direct sum of irreducible representations (we say that the representations
are completely reducible).

Most of the results about representations of finite groups can be generalized to
compact groups. In particular, once more, the complex finite dimensional represen-
tations of a compact groups are completely reducible, and the regular representation
in the space of continuous functions on the compact group has the similar struc-
ture. This theory was developed by H. Weyl and the original motivation came from
quantum mechanics. The first examples of compact groups are the group SO(2)
of rotations of the plane (the circle) and the group SO(3) of rotations of the 3-
dimensional space. In the former case, the problem of computing the Fourier series
for a function on the circle is equivalent to the decomposition of the regular repre-
sentation. More generally, the study of complex representations of compact groups
helps to understand Fourier analysis on such groups.
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6 PREFACE

If a topological group is not compact, for example, the group of real numbers
with operation of addition, the representation theory of such a group involves more
complicated analysis (Fourier transform instead of Fourier series). The representa-
tion theory of real non-compact groups was initiated by Harish-Chandra and by the
Russian school leaded by Gelfand. Here emphasis is on the classification of unitary
representations due to applications from physics. It is also worth mentioning that
this theory is closely related to harmonic analysis, and many special functions (such
as Legendre polynomials) naturally appear in the context of representation theory.

In the theory of finite groups one can drop the assumption that the characteristic
of the ground field is zero. This leads immediately to the loss of complete reducibility.
This representation theory was initiated by Brauer and it is more algebraic. If one
turns to algebras, a representation of an algebra is, by definition, the same as a
module over this algebra. Let k be a field. Let A be a k-algebra which is finite
dimensional as a vector space. It is a well-known fact that A-modules are not,
in general, completely reducible: for instance, if A = k[X]/X2 and M = A, the
module M contains kX as a submodule which has no A-stable complement. An
indecomposable A-module is a module which has no non-trivial decomposition as a
direct sum. It is also interesting to attempt a classification of A-modules. It is a
very difficult task in general. Nevertheless, the irreduducible A-modules are in finite
number. The radical R of A is defined as the ideal of A which annihilates each of
those irreducible modules, it is a nilpotent ideal. Assume k is algebraically closed,
the quotient ring A/R is a product of matrix algebras over k, A/R = ΠiEndk(Si)
where Si runs along the irreducible A-modules.

If G is a finite group, the algebra k(G) of k-valued functions on G, the composition
law being the convolution, is a finite dimensional k-algebra, with a zero radical as long
as the characteristic of the field k does not divide the cardinal of G. The irreducible
modules of k(G) are exactly the finite dimensional representations of the group G,
the action of G extends linearly to k(G). This shows that all k(G)-modules are
completely reducible (Maschke’s theorem).

In order to study finite dimensional k-algebras representations more generally,
it is useful to introduce quivers. Let A be a finite dimensional k-algebra, denote
S1, . . . , Sn its irreducible representations, and draw the following graph, called the
quiver associated to A: the vertices are labelled by the Sis and we put l arrows
between Si and Sj, pointing at Sj, if Ext1(Si, Sj) is of dimension l (the explicit
definition of Ext1 requires some homological algebra which is difficult to summarize
in such a short introduction).

More generally, a quiver is an oriented graph with any number of vertices. Let Q
be a quiver, a representation of Q is a set of vector spaces indexed by the vertices of
Q together with linear maps associated to the arrows of Q. Those objects were first
systematically used by Gabriel in the early 70’s, and studied by a lot of people ever
since. The aim is to characterize the finitely represented algebras, or in other terms
the algebras with a finite number of indecomposable modules (up to isomorphism).
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Today the representation theory has many flavors. In addition to the above
mentioned, one should add representations over non-archimedian local fields with its
applications to number theory, representations of infinite-dimensional Lie algebras
with applications to number theory and physics and representations of quantum
groups. However, in all these theories certain main ideas appear again and again
very often in disguise. Due to technical details it may be difficult for a neophyte to
recognize them. The goal of this book is to present some of these ideas in their most
elementary incarnation.

We will assume that the reader is familiar with usual linear algebra (including
the theory of Jordan forms and tensor products of vector spaces) and basic theory of
groups and rings.





CHAPTER 1

Introduction to representation theory of finite groups.

1. Definitions and examples

Let k be a field, V be a vector space over k. By GL (V ) we denote the group of
all invertible linear operators in V . If dimV = n, then GL (V ) is isomorphic to the
group of invertible n× n matrices with entries in k.

A (linear) representation of a group G in V is a group homomorphism

ρ : G→ GL (V ) ,

dimV is called the degree or the dimension of the representation ρ (it may be infinite).
For any g ∈ G we denote by ρg the image of g in GL (V ) and for any v ∈ V we
denote by ρgv the image of v under the action of ρg. The following properties are
direct consequences of the definition

• ρgρh = ρgh;
• ρ1 = Id;
• ρ−1g = ρg−1 ;
• ρg (xv + yw) = xρgv + yρhw.

Example 1.1. (1) Let us consider the abelian group of integers Z with op-
eration of addition. Let V be the plane R2 and for every n ∈ Z, we set

ρn =

(
1 n
0 1

)
. The reader can check that this defines a representation of

degree 2 of Z.
(2) LetG be the symmetric group Sn, V = kn. For every s ∈ Sn and (x1, . . . , xn) ∈

kn set
ρs (x1, . . . , xn) =

(
xs(1), . . . , xs(n)

)
.

In this way we obtain a representation of the symmetric group Sn which is
called the permutation representation.

(3) For any group G (finite or infinite) the trivial representation is the homo-
morphism ρ : G→ k∗ such that ρs = 1 for all s ∈ G.

(4) Let G be a group and

F (G) = {ϕ : G→ k}
be the space of functions on G with values in k. For any g, h ∈ G, ϕ ∈ F (G)
and let

ρgϕ (h) = ϕ (hg) .

9



10 1. INTRODUCTION TO REPRESENTATION THEORY OF FINITE GROUPS.

Then ρ : G→ GL (F (G)) is a linear representation.
(5) Recall that the group algebra k (G) is the vector space of all finite linear

combinations
∑
cgg, cg ∈ k with natural multiplication. We define the

regular representation R : G→ GL (k (G)) in the following way

Rs

(∑
cgg
)
=
∑

cgsg.

Definition 1.2. Two representations of a group G, ρ : G → GL(V ) and σ :
G → GL(W ) are called equivalent or isomorphic if there exists an invertible linear
operator T : V → W such that T ◦ ρg = σg ◦ T for any g ∈ G.

Example 1.3. If G is a finite group, then the representations in examples 4 and
5 are equivalent. Indeed, define T : F (G)→ k (G) by the formula

T (ϕ) =
∑

x∈G
ϕ (x) x−1.

Then for any ϕ ∈ F (G) and g ∈ G we have

T (ρgϕ) =
∑

x∈G
ρgϕ (x) x−1 =

∑

x∈G
ϕ (xg)x−1 =

∑

y∈G
ϕ (y) gy−1 = Rg (Tϕ) .

Let a group G act on a set X on the right. Let F(X) be the set of k-valued
functions on X. Then there is a representation of G in F(X) defined by

ρgϕ(x) := ϕ(x · g)

.

Exercise 1.4. Consider a left action l : G × X → X of G on X. For every
ϕ ∈ F(X), g ∈ G and x ∈ X set

σgϕ(x) = ϕ(g−1 · x).

(a) Prove that σ is a representation of G in F(X).
(b) Define a right action r : X ×G→ X by

x · g := g−1 · x,

and consider the representation ρ of G in F(X) associated with this action. Check
that ρ and σ are equivalent representations.

Remark 1.5. As one can see from the previous exercise, there is a canonical way
to go between right and left action and between corresponding representations.
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2. Ways to produce new representations

Let G be a group.
Restriction. If H is a subgroup of G and ρ : G → GL (V ) is a representation

of G, the restriction of homomorphism ρ to H gives a representation of H which we
call the restriction of ρ to H. We denote by ResH ρ the restriction of ρ on H.

Lift. Let p : G → H be a homomorphism of groups. Then for every represen-
tation ρ : H → GL (V ), the composite homomorphism ρ ◦ p : G → GL (V ) gives a
representation of G on V . This construction is frequently used in the following case:
let N be a normal subgroup of G, H denote the quotient group G/N and p be the
natural projection. In this case p is obviously surjective. Note that in the general
case we do not require p to be surjective.

Direct sum. If we have two representations ρ : G → GL (V ) and σ : G →
GL (W ), then we can define ρ⊕ σ : G→ GL (V ⊕W ) by the formula

(ρ⊕ σ)g (v, w) = (ρgv, σgw) .

Tensor product. The tensor product of two representations ρ : G → GL (V )
and σ : G→ GL (W ) is defined by

(ρ⊗ σ)g (v ⊗ w) = ρgv ⊗ σgw.

Exterior tensor product. Let G and H be two groups. Consider representa-
tions ρ : G → GL (V ) and σ : H → GL (W ) of G and H respectively. One defines
their exterior tensor product ρ⊠ σ : G×H → GL (V ⊗W ) by the formula

(ρ⊠ σ)(g,h) v ⊗ w = ρgv ⊗ σhw.

Exercise 2.1. If δ : G → G × G is the diagonal embedding, show that for any
representations ρ and σ of G

ρ⊗ σ = (ρ⊠ σ) ◦ δ.

Dual representation. Let V ∗ denote the dual space of V and 〈·, ·〉 denote the
natural pairing between V and V ∗. For any representation ρ : G→ GL (V ) one can
define the dual representation ρ∗ : G→ GL (V ∗) by the formula

〈ρ∗gϕ, v〉 = 〈ϕ, ρ−1g v〉

for every v ∈ V, ϕ ∈ V ∗.
Let V be a finite-dimensional representation of G with a fixed basis. Let Ag for

g ∈ G be the matrix of ρg in this basis. Then the matrix of ρ∗g in the dual basis of

V ∗ is equal to (Atg)
−1.

Exercise 2.2. Show that if G is finite, then its regular representation is self-dual
(isomorphic to its dual).
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More generally, if ρ : G→ GL (V ) and σ : G→ GL (W ) are two representations,
then one can naturally define a representation τ of G on Homk (V,W ) by the formula

τgϕ = σg ◦ ϕ ◦ ρ−1g , g ∈ G, ϕ ∈ Homk (V,W ) .

Exercise 2.3. Show that if V and W are finite dimensional, then the represen-
tation τ of G on Homk (V,W ) is isomorphic to ρ∗ ⊗ τ .

Intertwining operators. A linear operator T : V → W is called an intertwining
operator if T ◦ ρg = σg ◦ T for any g ∈ G. The set of all intertwining operators will
be denoted by HomG (V,W ). It is clearly a vector space. Moreover, if ρ = σ,
then EndG(V ) := HomG (V, V ) has a natural structure of associative k-algebra with
multiplication given by composition.

Exercise 2.4. Consider the regular representation of G in k(G). Prove that the
algebra of intertwiners EndG(k(G)) is isomorphic to k(G). (Hint: ϕ ∈ EndG(k(G))
is completely determined by ϕ(1).)

3. Invariant subspaces and irreducibility

3.1. Invariant subspaces and subrepresentations. Consider a representa-
tion ρ : G → GL (V ). A subspace W ⊂ V is called G-invariant if ρg (W ) ⊂ W for
any g ∈ G.

If W is a G-invariant subspace, then there are two representations of G naturally
associated with it: the representation in W which is called a subrepresentation and
the representation in the quotient space V/W wjich is called a quotient representation.

Exercise 3.1. Let ρ : Sn → GL (kn) be the permutation representation, then

W = {x(1, . . . , 1) | x ∈ k}

and

W ′ = {(x1, . . . , xn) | x1 + x2 + · · ·+ xn = 0}
are invariant subspaces.

Exercise 3.2. Let G be a finite group of order |G|. Prove that any representation
of G contains an invariant subspace of dimension less or equal than |G|.

3.2. Maschke’s theorem.

Theorem 3.3. (Maschke) Let G be a finite group such that char k does not divide
|G|. Let ρ : G→ GL (V ) be a representation and W ⊂ V be a G-invariant subspace.
Then there exists a complentary G-invariant subspace, i.e. a G-invariant subspace
W ′ ⊂ V such that V = W ⊕W ′.
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Proof. LetW ′′ be a subspace (not necessarily G-invariant) such thatW⊕W ′′ =
V . Consider the projector P : V → V onto W with kernel W ′′. One has P 2 = P .
Now we construct a new operator

P̄ :=
1

|G|
∑

g∈G
ρg ◦ P ◦ ρ−1g .

An easy calculation shows that ρg ◦ P̄ ◦ ρ−1g = P̄ for all g ∈ G, and therefore ρg ◦ P̄ =

P̄ ◦ ρg. In other words, P̄ ∈ EndG(V ).
On the other hand, P̄|W = Id and Im P̄ = W . Hence P̄ 2 = P̄ .
Let W ′ = Ker P̄ . First, we claim that W ′ is G-invariant. Indeed, let w ∈ W ′,

then P̄ (ρgw) = ρg
(
P̄w
)
= 0 for all g ∈ G, hence ρgw ∈ Ker P̄ = W ′.

Now we prove that V = W ⊕W ′. Indeed, W ∩W ′ = 0, since P̄|W = Id. On the
other hand, for any v ∈ V , we have w = P̄ v ∈ W and w′ = v − P̄ v ∈ W ′. Thus,
v = w + w′, and therefore V = W +W ′. �

Remarks. If char k divides |G| or G is infinite, the conclusion of Mashke’s
theorem does not hold anymore. Indeed, in the example of Exercise 3.1 W and W ′

are complementary if and only if char k does not divide n. Otherwise, W ⊂ W ′ ⊂ V ,
and one can show that neither W nor W ′ have a G-invariant complement.

In the case of an infinite group, consider the representation of Z in R2 as in the
first example of Section 1. The span of (1, 0) is the only G-invariant line. Therefore
it can not have a G-invariant complement in R2. direct sum of two proper invariant
subspaces.

3.3. Irreducible representations and Schur’s lemma.

Definition 3.4. A non-zero representation is called irreducible if it does not
contain any proper non-zero G-invariant subspace.

Exercise 3.5. Show that the dimension of any irreducible representation of a
finite group G is not bigger than its order |G|.

The following elementary statement plays a key role in representation theory.

Lemma 3.6. (Schur) Let ρ : G→ GL(V ) and σ : G→ GL(W ) be two irreducible
representations. If T ∈ HomG(V,W ), then either T = 0 or T is an isomorphism.

Proof. Note that KerT and ImT are G-invariant subspaces of V and W , re-
spectively. Then by irreducibility of ρ, either KerT = V or KerT = 0, and by
irreducibility of σ, either ImT = W or ImT = 0. Hence the statement. �

Corollary 3.7. (a) Let ρ : G→ GL(V ) be an irreducible representation. Then
EndG(V ) is a division ring.

(b) If the characteristic of k does not divide |G|, EndG(V ) is a division ring if and
only if ρ is irreducible.

(c) If k is algebraically closed and ρ is irreducible, then EndG(V ) = k
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Proof. (a) is an immediate consequence of Schur’s Lemma.
To prove (b) we use Maschke’s theorem. Indeed, if V is reducible, then V = V1⊕V2

for some proper subspaces V1 and V2. Let p1 be the projector on V1 with kernel V2 and
p2 be the projector onto V2 with kernel V1. Then p1, p2 ∈ EndG(V ) and p1 ◦ p2 = 0.
Hence EndG(V ) has zero divisors.

Let us prove (c). Consider T ∈ EndG(V ). Then T has an eigenvalue λ ∈ k and
T−λ Id ∈ EndG(V ). Since T−λ Id is not invertible, it must be zero by (a). Therefore
T = λ Id. �

3.4. Complete reducibility.

Definition 3.8. A representation is called completely reducible if it splits into a
direct sum of irreducible subrepresentations. (This direct sum might be infinite.)

Theorem 3.9. Let ρ : G → GL(V ) be a representation of a group G. The
following conditions are equivalent.

(a) ρ is completely reducible;
(b) For any G-invariant subspace W ⊂ V there exists a complementary G-

invariant subspace W ′.

Proof. This theorem is easier in the case of finite-dimensional V . To prove it for
arbitrary V and G we need Zorn’s lemma. First, note that if V is finite dimensional,
then it always contains an irreducible subrepresentation. Indeed, we can take a
subrepresentation of minimal positive dimension. If V is infinite dimensional then
this is not true in general.

Lemma 3.10. If ρ satisfies (b), any subrepresentation and any quotient of ρ also
satisfy (b).

Proof. To prove that any subrepresentation satisfies (b) consider a flag of G-
invariant subspaces U ⊂ W ⊂ V . Let U ′ ⊂ V and W ′ ⊂ V be G-invariant subspaces
such that U ⊕ U ′ = V and W ⊕W ′ = V . Let P be the projector on W with kernel
W ′. Then W = U ⊕ P (U ′).

The statement about quotients is dual and we leave it to the reader as an exercise.
�

Lemma 3.11. Let ρ satisfy (b). Then it contains an irreducible subrepresentation.

Proof. Pick up a non-zero vector v ∈ V and let V ′ be the span of ρgv for all
g ∈ G. Consider the set of G-invariant subspaces of V ′ which do not contain v, with
partial order given by inclusion. For any linearly ordered subset {Xi}i∈I there exists
a maximal element, given by the union

⋃

i∈I
Xi. Hence there exists a proper maximal

G-invariant subspace W ⊂ V ′, which does not contain v. By the previous lemma one
can find a G-invariant subspace U ⊂ V ′ such that V ′ = W⊕U . Then U is isomorphic
to the quotient representation V ′/W , which is irreducible by the maximality of W in
V ′. �
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Now we will prove that (a) implies (b). We write

V =
⊕

i∈I
Vi

for a family of irreducible G-invariant subspaces Vi. Let W ⊂ V be some G-invariant
subspace. By Zorn’s lemma there exists a maximal subset J ⊂ I such that

W ∩
⊕

j∈J
Vj = 0.

We claim that W ′ :=
⊕

j∈J
Vj is complementary to W . Indeed, it suffices to prove that

V = W +W ′. For any i /∈ J we have (Vi ⊕W ′) ∩W 6= 0. Therefore there exists
a non-zero vector v ∈ Vi equal to w + w′ for some w ∈ W and w′ ∈ W ′. Hence
Vi ∩ (W ′ +W ) 6= 0 and by irreducibility of Vi, we have Vi ⊂ W +W ′. Therefore
V = W +W ′.

To prove that (b) implies (a) consider the family of all irreducible subrepresen-

tations {Wk}k∈K of V . Note that
∑

k∈K
Wk = V because otherwise

∑

k∈K
Wk has a

G-invariant complement which contains an irreducible subrepresentation. Again due

to Zorn’s lemma one can find a minimal J ⊂ K such that
∑

j∈J
Wj = V Then clearly

V =
⊕

j∈J
Wj. �

The next statement follows from Maschke’s theorem and Theorem 3.9.

Proposition 3.12. Let G be a finite group and k be a field such that char k does
not divide |G|. Then every representation of G is completely reducible.

4. Characters

4.1. Definition and main properties. For a linear operator T in a finite-
dimensional vector space V we denote by trT the trace of T .

For any finite-dimensional representation ρ : G→ GL (V ) the function χρ : G→ k
defined by

χρ (g) = tr ρg.

is called the character of the representation ρ.

Exercise 4.1. Check the following properites of characters.

(1) χρ (1) = dim ρ;
(2) if ρ ∼= σ, then χρ = χσ;
(3) χρ⊕σ = χρ + χσ;
(4) χρ⊗σ = χρχσ;
(5) χρ∗ (g) = χρ (g

−1);
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(6) χρ (ghg
−1) = χρ (h).

Exercise 4.2. Calculate the character of the permutation representation of Sn
(see the first example of Section 1).

Example 4.3. If R is the regular representation of a finite group, then χR (g) = 0
for any s 6= 1 and χR (1) = |G|.

Example 4.4. Let ρ : G → GL (V ) be a representation of dimension n and
assume char k 6= 2. Consider the representation ρ⊗ρ in V ⊗V and the decomposition

V ⊗ V = S2V ⊕ Λ2V.

The subspaces S2V and Λ2V are G-invariant. Denote by sym and alt the subrepre-
sentations of G in S2V and Λ2V respectively. Let us compute the characters χsym

and χalt.
Let g ∈ G and denote by λ1, . . . , λn the eigenvalues of ρg (taken with multiplic-

ities). Then the eigenvalues of altg are the products λiλj for all i < j while the
eigenvalues of symg are λiλj for i ≤ j. This leads to

χsym (g) =
∑

i≤j
λiλj,

χalt (g) =
∑

i<j

λiλj.

Hence

χsym (g)− χalt (g) =
∑

i

λ2i = tr ρg2 = χρ
(
g2
)
.

On the other hand by properties (3) and (4)

χsym (g) + χalt (g) = χρ⊗ρ (g) = χ2
ρ (g) .

Thus, we get

(1.1) χsym (g) =
χ2
ρ (g) + χρ (g

2)

2
, χalt (g) =

χ2
ρ (g)− χρ (g2)

2
.

Lemma 4.5. If k = C and G is finite, then for any finite-dimensional representa-
tion ρ and any g ∈ G we have

χρ(g) = χρ(g−1).

Proof. Indeed, χρ(g) is the sum of all the eigenvalues of ρg. Since g has finite
order, every eigenvalue of ρg is a root of 1. Therefore the eigenvalues of ρg−1 are the
complex conjugates of the eigenvalues of ρg. �
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4.2. Orthogonality relations. In this subsection we assume that G is finite
and the characteristic of the ground field k is zero. Introduce a non-degenerate
symmetric bilinear form on the space of functions F (G) by the formula

(1.2) (ϕ, ψ) =
1

|G|
∑

g∈G
ϕ
(
s−1
)
ψ (s) .

If ρ : G → GL(V ) is a representation, then we denote by V G the subspace of
G-invariant vectors, i.e.

V G = {v ∈ V |ρg(v) = v, ∀g ∈ G}.
Lemma 4.6. If ρ : G→ GL(V ) is a representation, then

dimV G = (χρ, χtriv),

where χtriv denotes the character of the trivial representation, i.e. χtriv(g) = 1 for all
g ∈ G.

Proof. Consider the linear operator P ∈ EndG(V ) defined by the formula

P =
1

|G|
∑

g∈G
ρg.

Note that P 2 = P and ImP = V G. Thus, P is a projector on V G. Since char k = 0
we have

trP = dim ImP = dimV G.

On the other hand, by direct calculation we get trP = (χρ, χtriv), and the lemma
follows. �

Note that for two representations ρ : G→ GL(V ) and σ : G→ GL(W ) we have

(1.3) Homk(V,W )G = HomG(V,W ) = (V ∗ ⊗W )G.

Therefore we have the following

Corollary 4.7. One has

dimHomG(V,W ) = (χρ, χσ).

Proof. The statement is a consequence of the following computation:

(χρ, χσ) =
1

|G|
∑

g∈G
χρ(g

−1)χσ(g) =
1

|G|
∑

g∈G
χρ∗⊗σ(g) = (χρ∗⊗σ, χtriv).

�

The following theorem is usually called the orthogonality relations for characters.
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Theorem 4.8. Let ρ, σ be irreducible representations over a field of characteristic
zero.

(a) If ρ : G→ GL(V ) and σ : G→ GL(W ) are not isomorphic, then (χρ, χσ) = 0.
(b) Assume that the ground field is algebraically closed. If ρ and σ are equivalent,

then (χρ, χσ) = 1.

Proof. By Schur’s lemma

HomG(V,W ) = 0

Therefore Corollary 4.7 implies (a).
Assertion (b) follows form Corollary 3.7 (c) and Corollary 4.7. �

This theorem has several important corollaries.

Corollary 4.9. Let
ρ = m1ρ1 ⊕ · · · ⊕mrρr

be a decomposition into a sum of irreducible representations, where miρi is the direct

sum of mi copies of ρi. Then mi =
(χρ,χρi)
(χρi

,χρi)
.

The number mi is called the multiplicity of an irreducible representation ρi in ρ.

Corollary 4.10. Two finite-dimensional representations ρ and σ are equivalent
if and only if their characters coincide.

In the rest of this section we assume that the ground field is alge-
braically closed.

Corollary 4.11. A representation ρ is irreducible if and only if (χρ, χρ) = 1.

Exercise 4.12. Let ρ and σ be irreducible representations of finite groups G and
H respectively.

(a) If the ground field is algebraically closed, then the exterior product ρ ⊠ σ is
an irreducible representation of G×H.

(b) Give a counterexample to (a) in the case when the ground field is not alge-
braically closed.

Theorem 4.13. Every irreducible representation ρ appears in the regular repre-
sentation with multiplicity dim ρ.

Proof. The statement is a direct consequence of the following computation

(χρ, χR) =
1

|G|χρ (1)χR (1) = dim ρ.

�

Corollary 4.14. Let ρ1, . . . , ρr be all (up to isomorphism) irreducible represen-
tations of G and ni = dim ρi. Then

n2
1 + · · ·+ n2

r = |G|.
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Proof. Indeed,

dimR = |G| = χR(1) =
r∑

i=1

niχρi(1) =
r∑

i=1

n2
i .

�

Example 4.15. Let G act on a finite set X and

k (X) =

{∑

x∈X
bxx | bx ∈ k

}
.

Define ρ : G→ GL (k (X)) by

ρg

(∑

x∈X
bxx

)
=
∑

x∈X
bxg · x.

It is easy to check that ρ is a representation and

χρ (g) = | {x ∈ X | g · x = x} |.
Clearly, ρ contains the trivial subrepresentation. To find the multiplicity of the trivial
representation in ρ we have to calculate (1, χρ):

(1, χρ) =
1

|G|
∑

g∈G
χρ (g) =

1

|G|
∑

g∈G

∑

g·x=x
1 =

1

|G|
∑

x∈X

∑

g∈Gx

1 =
1

|G|
∑

x∈X
|Gx|,

where

Gx = {g ∈ G | g · x = x} .
Let X = X1 ∪ · · · ∪ Xm be the disjoint union of orbits. Then |Gx| = |G|

|Xi| for each

x ∈ Xi and therefore

(1, χρ) =
1

|G|

m∑

i=1

∑

x∈Xi

|G|
|Xi|

= m.

Now let us evaluate (χρ, χρ):

(χρ, χρ) =
1

|G|
∑

g∈G

(∑

g·x=x
1

)2

=
1

|G|
∑

g∈G

∑

g·x=x,g·y=y
1 =

1

|G|
∑

(x,y)∈X×X
|G(x,y)|.

Let σ be the representation associated with the action of G on X ×X. Then the
last formula implies

(χρ, χρ) = (1, χσ) .

Thus, ρ is irreducible if and only if |X| = 1, and ρ has two irreducible components if
and only if the action of G on X ×X with removed diagonal is transitive.
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4.3. The number of irreducible representations of a finite group.

Definition 4.16. Let

C (G) =
{
ϕ ∈ F (G) | ϕ

(
ghg−1

)
= ϕ (h)

}
.

Elements of C(G) are called class functions.

Exercise 4.17. Check that the restriction of (·, ·) on C (G) is non-degenerate.
Theorem 4.18. The characters of irreducible representations of G form an or-

thonormal basis of C (G).
Proof. We have to show that if ϕ ∈ C (G) and (ϕ, χρ) = 0 for any irreducible

representation ρ, then ϕ = 0. The following lemma is straightforward.

Lemma 4.19. Let ρ : G→ GL (V ) be a representation, ϕ ∈ C (G) and

T =
1

|G|
∑

g∈G
ϕ
(
g−1
)
ρg.

Then T ∈ EndG V and trT = (ϕ, χρ).

Thus, for any irreducible representation ρ we have

(1.4)
1

|G|
∑

g∈G
ϕ
(
g−1
)
ρg = 0.

But then the same is true for any representation ρ, since any representation is a direct
sum of irreducible representations. Apply (1.4) to the case when ρ = R is the regular
representation. Then

1

|G|
∑

g∈G
ϕ
(
g−1
)
Rg(1) =

1

|G|
∑

g∈G
ϕ
(
g−1
)
g = 0.

Hence ϕ (g−1) = 0 for all g ∈ G, i.e. ϕ = 0 �

Corollary 4.20. The number of isomorphism classes of irreducible representa-
tions equals the number of conjugacy classes in the group G.

Corollary 4.21. If G is a finite abelian group, then every irreducible represen-
tation of G is one-dimensional and the number of irreducible representations is the
order of the group G.

For any groupG (not necessarily finite) letG∗ denote the set of all one-dimensional
representations of G.

Exercise 4.22. (a) Show that G∗ is a group with respect to the operation of
tensor product.

(b) Show that the kernel of any ρ ∈ G∗ contains the commutator [G,G]. Hence
we have G∗ ≃ (G/[G,G])∗.
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(c) Show that if G is a finite abelian group, then G∗ ≃ G. (This isomorphism is
not canonical.)

Exercise 4.23. Consider the symmetric group Sn for n ≥ 2.
(a) Prove that the commutator [Sn, Sn] coincides with the subgroup An of all even

permutation.
(b) Show that Sn has two up to isomorphism one-dimensional representations:

the trivial and the sign representation ǫ : Sn → {1,−1}.

Exercise 4.24. Let ρ be a one-dimensional representation of a finite group G
and σ is some other representation of G. Show that σ is irreducible if and only if
ρ⊗ σ is irreducible.

4.4. Isotypic components. Consider the decomposition of some representation
ρ : G→ GL(V ) into a direct sum of irreducible representations

ρ = m1ρ1 ⊕ · · · ⊕mrρr.

The subspace Wi ≃ V ⊕mi

i of the representation miρi is called the isotypic component
of type ρi of V .

Lemma 4.25. Let ni denote the dimension of the irreducible representation ρi
and

πi :=
ni
|G|

∑

g∈G
χi(g

−1)ρg.

Then πi is the projector on the isotypic component Wi of type ρi.

Proof. Define a linear operator on Vj by the formula

πij :=
ni
|G|

∑

g∈G
χi(g

−1)(ρj)g.

By construction πij ∈ EndG(Vj). Corollary 3.7 (c) implies that πij = λ Id. By
Theorem 4.8

tr πij = ni(χi, χj) = niδij .

Now we write

πi =
r∑

j=1

πij.

Hence

πi|Wj
= δij Id .

The statement follows. �
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5. Examples.

In the examples below we assume that the ground field is C.

Example 5.1. Let G = S3. There are three conjugacy classes in G, each class
is denoted by some element in this class: 1,(12),(123). Therefore there are three
irreducible representations, denote their characters by χ1, χ2 and χ3. It is not difficult
to see that S3 has the following table of characters

1 (12) (123)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

The characters of one-dimensional representations are given in the first and the
second row (those are the trivial representation and the sign representation, see Ex-
ercise 4.23), the last character χ3 can be obtained by using the identity

(1.5) χperm = χ1 + χ3,

where χperm stands for the character of the permutation representation, see Exercise
4.2.

Example 5.2. Let G = S4. In this case we have the following character table (in
the first row we write the number of elements in each conjugacy class).

1 6 8 3 6
1 (12) (123) (12) (34) (1234)

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 3 1 0 −1 −1
χ4 3 −1 0 −1 1
χ5 2 0 −1 2 0

The first two rows are the characters of the one-dimensional representations. The
third one can again be obtained from (1.5). When we take the tensor product ρ4 :=
ρ2⊗ρ3 we get a new 3-dimensional irreducible representation, see Exercise 4.24 whose
character χ4 is equal to the product χ2χ3. The last character can be obtained through
Theorem 4.8. An alternative way to describe ρ5 is to consider S4/K4, where

K4 = {1, (12) (34) , (13) (24) , (14) (23)}
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is the Klein subgroup. Observe that S4/K4
∼= S3, and therefore the two-dimensional

representation σ of S3 can be lifted to a representation of S4 by

ρ5 = σ ◦ p,
where p : S4 → S3 is the natural projection.

Example 5.3. Now let G = A5. There are 5 irreducible representations of G over
C. Here is the character table

1 20 15 12 12
1 (123) (12) (34) (12345) (12354)

χ1 1 1 1 1 1
χ2 4 1 0 −1 −1
χ3 5 −1 1 0 0

χ4 3 0 −1 1+
√
5

2
1−
√
5

2

χ5 3 0 −1 1−
√
5

2
1+
√
5

2

To obtain χ2 we use the permutation representation and (1.5) once more. In order
to construct new irreducible representations we consider the characters χsym and χalt

of the second symmetric and the second exterior powers of ρ2 respectively. Using
(1.1) we compute

1 (123) (12) (34) (12345) (12354)
χsym 10 1 2 0 0
χalt 6 0 −2 1 1

It is easy to check that

(χsym, χsym) = 3, (χsym, χ1) = (χsym, χ2) = 1.

Therefore
χ3 = χsym − χ1 − χ2

is the character of another irreducible representation of dimension 5. We still miss
two.

To find then we use χalt. We have

(χalt, χalt) = 2, (χalt, χ1) = (χalt, χ2) = (χalt, χ3) = 0.

Therefore χalt = χ4 + χ5 is the sum of two irreducible characters. First we compute
the dimensions of ρ4 and ρ5 using

12 + 42 + 52 + n2
4 + n2

5 = 60.
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We obtain n4 = n5 = 3.
Next, we use Theorem 4.8 to compute some other values of χ4 and χ5. The

equations

(χ4, χ1 + χ2) = 0, (χ4, χ3) = 0

imply

χ4 ((123)) = 0, χ4 ((12) (34)) = −1.
The same argument applied to χ5 gives

χ5 ((123)) = 0, χ5 ((12) (34)) = −1.
Finally let us denote

x = χ4 ((12345)) , y = χ4 ((12354))

and write down the equation arising from (χ4, χ4) = 1:

1

60

(
9 + 15 + 12x2 + 12y2

)
= 1,

or more simply

(1.6) x2 + y2 = 3.

On the other hand, (χ4, χ1) = 0, which gives

3− 15 + 12 (x+ y) = 0,

or simply

(1.7) x+ y = 1.

The system (1.6), (1.7) has two solutions

x1 =
1 +
√
5

2
, y1 =

1−
√
5

2
, x2 =

1−
√
5

2
, y2 =

1 +
√
5

2
.

They give the characters χ4 and χ5.

Now that we have the character of A5 we would like to explain a geometric
construction related to it. First, we observe that the previous constructions work
over the grouond field R of real numbers. In particular, the representations ρ4 and ρ5
are defined over R. Indeed, they are subrepresentation of the second exterior power
of ρ2 and by Lemma 4.25 the corresponding projectors are defined over R. Therefore
we have an action of A5 in R3. Our next step is to show that this action preserves
the scalar product. In a more general context we have the following result.

Lemma 5.4. Let V be a finite-dimensional vector space over R and ρ be a repre-
sentation of some finite group G in V . There exists a positive definite scalar product
B : V × V → R such that B(ρgu, ρgv) = B(u, v) for any u, v ∈ V and g ∈ G.

Remark. Such a scalar product is called invariant.
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Proof. Let C : V × V → R be some positive definite scalar product. Set

B(u, v) :=
∑

g∈G
C(ρgu, ρgv).

Then B satisfies the conditions of the lemma. �

Dodecahedron. We have constructed two 3-dimensional irreducible represen-
tations of A5, wecan use any of them to construct a dodecahedron, i.e. a regular
polyhedron with 12 pentagonal faces and 20 vertices. For instance, let us take ρ = ρ4.
By Lemma 5.4 we may assume that for all g ∈ G, ρg acts on R3 by an orthogonal
matrix. We claim that ρg preserves the orientation in R3, in other words the deter-
minant det ρg is 1 fo all g ∈ G. We already know that det ρg = ±1. Therefore if g is
of odd order the determinant is necessarily 1. If g is of even order, it belongs to the
conjugacy class of (12)(34). Hence it is an involution with trace −1, thus a rotation
by 180◦. Recall that any isometry in R3 preserving orientation ia a rotation.

Let g = (123), then it is of order 3, hence ρg is a rotation by 120◦. Pick up a
non-zero x fixed by ρg. Consider its orbit S = {ρg(x)|g ∈ A5}. Since the stabilizer of
x in A5 is the cyclic group generated by ρg, we know that S has 20 points. Moreover,
all points of S lie on a sphere, and hence the convex hull ∆ of S is a polytope with
vertices in S. We will show that ∆ is a regular polytope whose faces are regular
pentagons.

Let h = (12345). Consider the subgroup H ⊂ A5 generated by h. Since ρh is a
rotation by 72◦. Without loss of generality we may assume the axis of ρh is vertical.
Hence the different orbits of H in S lie on 4 horizontal planes. The top and the
bottom plane sections are faces of ∆. Thus, we can conclude that at least some faces
of ∆ are regular pentagons.

Next, we claim that any vertex of ∆ belongs to exactly three pentagonal faces.
Indeed, it follows from the fact that the stabilizer of any s ∈ S has order three and
it acts on the set of pentagonal faces containing s.

Finally, assume there is a face f of ∆ which is not a regular pentagon. Then at
least one angle of f is not less than 60◦. Denote this angle by α and the corresponding
vertex by s. Consider the stabilizer of s in A5. It is a cyclic group of order 3 acting
on the set of faces containing s. Thus, there are at least three plane angles at s which
are equal to α. But then the total sum of all plane angles at s should be at least
3 × 72◦ + 3α which is bigger that 360◦, thus, a contradiction. Thus, all the faces of
∆ are regular pentagons. Hence the total number of faces is 12.

Note that we have also proved that the group of rotations of a dodecahedron is
isomorphic to A5.

Exercise 5.5. Let D4 denote the dihedral group of order 8 and H8 denote the
multiplicative subgroup of quaternions consisting of ±1,±i,±j,±k. Compute the
character tables of both groups and verify that those tables coincide.
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6. Invariant forms

We assume here that char k = 0. Recall that a bilinear form on a vector space V
is a map B : V × V → k satisfying

(1) B (cv, dw) = cdB (v, w);
(2) B (v1 + v2, w) = B (v1, w) + B (v2, w);
(3) B (v, w1 + w2) = B (v, w1) + B (v, w2).

One can also think about a bilinear form as a vector in V ∗ ⊗ V ∗ or as the homo-
morphism B : V → V ∗ given by the formula Bv (w) = B (v, w). A bilinear form is
symmetric if B (v, w) = B (w, v) and skew-symmetric if B (v, w) = −B (w, v). Every
bilinear form can be uniquely written as a sum B = B++B− where B+ is symmetric
and B− skew-symmetric form,

B± (v, w) =
B (v, w)± B (w, v)

2
.

Such a decomposition corresponds to the decomposition

(1.8) V ∗ ⊗ V ∗ = S2V ∗ ⊕ Λ2V ∗.

A bilinear form is non-degenerate if B : V → V ∗ is an isomorphism, in other words
if B (v, V ) = 0 implies v = 0.

Let ρ : G → GL (V ) be a representation. We say that a bilinear form B on V is
G-invariant if

B (ρgv, ρgw) = B (v, w)

for any v, w ∈ V , g ∈ G. If there is no possible confusion we use the word invariant
instead of G-invariant.

Exercise 6.1. Check the following

(1) If W ⊂ V is an invariant subspace, then W⊥ = {v ∈ V | B (v,W ) = 0} is
invariant. In particular, KerB is invariant.

(2) B : V → V ∗ is invariant if and only if B ∈ HomG (V, V ∗).
(3) If B is invariant, then B+ and B− are invariant.

Lemma 6.2. Let ρ : G→ GL(V ) be an irreducible representation of G, then any
invariant bilinear form on V is non-degenerate. If k is algebraically closed, then such
a bilinear form is unique up to scalar multiplication.

Remark. Lemma 6.2 holds for a field of arbitrary characteristic.

Proof. Follows from Exercise 6.1 (2) and Schur’s lemma. �

Lemma 6.3. Let ρ : G → GL(V ) be an irreducible representation of G. Then it
admits an invariant form if and only if χρ (g) = χρ (g

−1) for any g ∈ G.
Proof. Since every invariant bilinear form establishes an isomorphism between

ρ and ρ∗, the statement follows from Corollary 4.10. �



6. INVARIANT FORMS 27

Lemma 6.4. (a) If k is algebraically closed, then every non-zero invariant bilinear
form on an irreducible representation ρ is either symmetric or skew-symmetric.

(b) Define

mρ =
1

|G|
∑

g∈G
χρ
(
g2
)
.

Then mρ = 1, 0 or −1.
(c) If mρ = 0, then ρ does not admit an invariant form. If mρ = 1 (resp.

mρ = −1), then ρ admits a symmetric (resp. skew-symmetric) invariant form.

Proof. First, (a) is a consequence of Lemma 6.2 and Exercise 6.1.
Let us prove (b) and (c). Recall that ρ⊗ ρ = ρalt ⊕ ρsym. Using 1.1 we obtain

(χsym, χtriv) =
1

|G|
∑

g∈G

χ2
ρ (g) + χρ (g

2)

2
,

(χalt, χtriv) =
1

|G|
∑

g∈G

χ2
ρ (g)− χρ (g2)

2
.

Note that
1

|G|
∑

g∈G
χ2
ρ (g) = (χρ, χρ∗) .

Therefore

(χsym, χtriv) =
(χρ, χρ∗) +mρ

2
,

(χalt, χtriv) =
(χρ, χρ∗)−mρ

2
.

We have the folowing thrichotomy

• ρ does not have an invariant form, if and only if ρ is not isomorphic to ρ∗.
In this case (χρ, χρ∗) = 0 and (χsym, χtriv) = (χsym, χtriv) = 0. Therefore
mρ = 0.
• ρ has a symmetric invariant form if and only if (χρ, χρ∗) = 1 and (χsym, χtriv) =
1. This implies mρ = 1.
• ρ admits a skew-symmetric invariant if and only if (χρ, χρ∗) = 1 and (χalt, χtriv) =
1. This implies mρ = 1.

�

Let k = C. An irreducible representation of a finite group G is called real if
mρ = 1, complex if mρ = 0 and quaternionic if mρ = −1.

Remark. Since χρ (s
−1) = χ̄ρ (s), then χρ takes only real values for real and

quaternionic representations. If ρ is complex there is at least one g ∈ G such that
χρ (g) /∈ R. This terminology will become clear in Section 8.
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Exercise 6.5. Show that
(a) All irreducible representation of S4 are real.
(b) All non-trivial irreducible representations of Z3 are complex.
(c) The two-dimensional representation of the quaternionic group H8 is quater-

nionic (see Exercise 5.5).

Exercise 6.6. Assume that the order of G be odd. Show that all non-trivial
irreducible representation of G are complex. (Hint: prove that mρ = (χρ, χtriv).)

7. Representations over R

Let us recall that by Lemma 5.4 every representation of a finite group over R
admits an invariant scalar product. Assume the representation ρ : G → GL(V )
is irreducible. Denote by B(·, ·) an invariant scalar product and let Q(·, ·) denote
another invariant symmetric form on V . These two forms can be silmultaneously
diagonalized. Therefore there exists λ ∈ R, such that Ker (Q− λB) 6= 0. Since
Ker (Q− λB) 6= 0 is G-invariant and ρ is irreducible, this implies Q = λB. There we
have

Lemma 7.1. Let ρ : G → GL(V ) be an irreducible representation of G over R.
There is exactly one invariant symmetric form on V up to scalar multiplication.

Theorem 7.2. Let R ⊂ K be a division ring, which is finite-dimensional over R.
Then K is isomorphic to R,C or H.

Proof. If K is a field, then K ∼= R or C, because C = R̄ and [C : R] = 2.
Assume that K is not commutative. Then it contains a subfield isomorphic to C

obtained by taking x ∈ K\R and conidering R. Therefore without loss of generality
we may assume R ⊂ C ⊂ K.

Consider the involutive C-linear automoprhism of K defined by the formula

f (x) = ixi−1.

Look at the eigenspace decomposition of K with respect to f

K = K1 ⊕K−1,
where

K±1 = {x ∈ K | f (x) = ±x} .
One can easily check the following inclusions

K1K1 ⊂ K1, K−1K−1 ⊂ K1, K1K−1 ⊂ K−1, K−1K1 ⊂ K−1.

The eigenspace K1 coincides with the centralizer of C in K. Therefore K1 = C.
Choose a non-zero y ∈ K−. The left multiplication by y defines an isomorphism

of R vector spaces K1 and K−1. Hence dimRK1 = dimRK−1 = 2 and dimK = 4.
For any z = a+ bi ∈ K1 and any w ∈ K−1, we have

wz̄ = wa− wbi = aw + biw = zw.
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Since w2 ∈ C and commutes with w, we have w2 ∈ R. We claim that w2 is negative
since otherwise w2 = c2 for some real c and (w − c) (w + c) = 0, which is impossible,
since K is a division ring. Set j := w√

−w2 . Then j
2 = −1 and ij = −ji. So if we set

k := ij, then 1, i, j, k form the standard basis of H. �

Lemma 7.3. Let ρ : G → GL (V ) be an irreducible representation over R, then
there are three possibilities:

(1) EndG (V ) = R and (χρ, χρ) = 1;
(2) EndG (V ) ∼= C and (χρ, χρ) = 2;
(3) EndG (V ) ∼= H and (χρ, χρ) = 4.

Proof. Corollary 3.7 and Theorem 7.2 imply that EndG (V ) is isomorphic to
R,C or H, (χρ, χρ) = 1, 2 or 4 as follows from Corollary 4.7.

�

8. Relationship between representations over R and over C

Hermitian invariant form. Recall that a Hermitian form is a binary additive
form on a complex vector space satisfying the conditions

H (av, bw) = ābH (v, w) , H (w, v) = H̄ (v, w) .

The following Lemma can be proved exactly as Lemma 7.1.

Lemma 8.1. Every representation of a finite group over C admits a positive-
definite invariant Hermitian form. If the representation is irreducible, then any two
invariant Hermitian forms on it are proportional.

Let ρ : G → GL (V ) be a representation of dimension n over C. Denote by V R

the space V considered as a vector space over R of dimension 2n. Denote by ρR the
representation of G in V R.

Exercise 8.2. Show that
χρR = χρ + χ̄ρ.

The exercise implies that (χρR , χρR) is either 2 or 4. Hence dimEndG
(
V R
)
is

either 2 or 4. Moreover, C is a self-centralizing subalgebra in EndG
(
V R
)
. Therefore

EndG
(
V R
)
is isomorphic to C, H or to the ring M2(R) of real matrices of size 2× 2.

Proposition 8.3. Let ρ : G → GL (V ) be an irreducible representation over C.
Then one of the follwoing three cases occur.

(1) EndG
(
V R
)
≃M2(R). Then there exists a basis of V such that the matrices

ρg for all g ∈ G have real entries. In this case V admits an invariant scalar
product.

(2) EndG
(
V R
)
≃ C. Then ρ is complex, i.e. ρ does not admit any invariant

bilinear form.
(3) EndG

(
V R
)
≃ H. Then ρ admits an invariant skew-symmetric form.
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Proof. The statement (1) follows from Lemma 7.1. For (2) use Exercise 8.3.
Since

(
χρR , χρR

)
= 2 by Lemma 7.3, then χρ 6= χ̄ρ, and therefore ρ is complex.

Finally let us prove (3). Let j ∈ EndG
(
V R
)
= H, then j (bv) = b̄v for all b ∈ C.

Let H be a positive-definite invariant Hermitian form on V . Then

Q (v, w) = H (jw, jv)

is another invariant positive-definite Hermitian form. By Lemma 8.1 Q = λH and λ
should be positive because Q is also positive definite. Since j2 = −1, one has λ2 = 1
and therefore λ = 1. Thus,

H (v, w) = H (jw, jv) .

Set
B (v, w) = H (jv, w) .

Then B is a bilinear invariant form, and

B (w, v) = H (jw, v) = H
(
jv, j2w

)
= −H (jv, w) = −B (v, w) ,

hence B is skew-symmetric. �

Corollary 8.4. Let σ be an irreducible representation of G over R. There are
three possibilities for σ

(1) χσ = χρ for some real representation ρ of G over C;
(2) χσ = χρ + χ̄ρ for some complex representation ρ of G over C;
(3) χσ = 2χρ for some quaternionic representation ρ of G over C.

Theorem 8.5. Let G be a finite group, r denote the number of conjugacy classes
and s denote the number of classes which are stable under inversion. Then r+s

2
is the

number of irreducible representations of G over R.

Proof. Recall that C(G) is the space of complex valued class functions on G.
Consider the involution θ : C(G)→ C(G) given by

θϕ(g) = ϕ(g−1).

An easy calculation shows dim C(G)θ = r+s
2
.

Denote by χ1, . . . , χr the irreducible characters of G over C. Recall that χ1, . . . , χr
form a basis of C(G). Observe that for any character χρ

θ(χρ) = χρ∗ .

Therefore θ permutes irreducible characters χ1, . . . , χr. Corollary 8.4 implies that
the number of irreducible representations of G over R equals the number of self-
dual irreducible representations over C plus half the number of those which are not
self-dual. Therefore this number is exactly the dimension of C(G)θ. �



CHAPTER 2

Modules with applications to finite groups

1. Modules over associative rings

1.1. The notion of module.

Definition 1.1. Let R be an associative ring with identity element 1 ∈ R.
An abelian group M is called a (left) R-module if there is a map R × M → M ,
(a,m) 7→ am such that for all a, b ∈ R and m,n ∈M we have

(1) (ab)m = a (bm);
(2) 1m = m;
(3) (a+ b)m = am+ bm;
(4) a (m+ n) = am+ an.

One can define in the similar way a right R-module. Unless otherwise stated we
only consider left modules and we say module for left module.

Example 1.2. If R is a field then R-modules are vector spaces over R.

Example 1.3. Let G be a group and k (G) be its group algebra over k. Then
every k(G)-module V is a vector space over k equipped with a G-action. Set

ρgv := gv

for all g ∈ G ⊂ k (G), v ∈ V . This defines a representation ρ : G→ GL(V ).
Conversely, if V is a vector space over k and ρ : G→ GL (V ) is a representation,

the formula (∑

g∈G
agg

)
v :=

∑

g∈G
agρgv.

defines a k(G)-module structure on V .
In other words, to study representations of G over k is exactly the same as to

study k(G)-modules. Hence from now on we will talk indifferently of k(G)-modules,
representations of G over k or just simply G-modules over k.

Definition 1.4. Let M be an R-module. A submodule N ⊂ M is a subgroup
which is invariant under the R-action. If N ⊂ M is a submodule then the quotient
M/N has a naturalR-module structure. A non-zero moduleM is simple or irreducible
if all submodules are either zero or M .

Remark 1.5. Sums and an intersections of submodules are submodules.

31
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Example 1.6. If R is an arbitrary ring, then R is a left R-module with action
given by left multiplication. Its submodules are the left ideals.

Let {Mj}j∈J be a family of R-modules. We define the direct sum
⊕

j∈J
Mj and the

direct product
∏

j∈J
Mj in the obvious way. An R-module is free if it is isomophic to a

direct sum of I copies of R, (I can be infinite).

Exercise 1.7. If R is a division ring, then every non-zero R-module is free.

Exercise 1.8. Let R = Z be the ring of integers.
(a) Show that any simple Z-module is isomorphic to Z/pZ for some prime p.
(b) Let M be a Z-module. We call m ∈ M a torsion element if rm = 0 for some

non-zero r ∈ Z. Prove that the subset M tor of all torsion elements is a submodule.
(c) We say M is a torsion free if M tor = 0. Prove that M/M tor is torsion free.
(d) Give an example of a non-zero torsion free Z-module which is not free.

Let M and N be R-modules. In the same way as in the group case we define the
abelian group HomR (M,N) of R-invariant homomorphisms from M to N and the
ring EndR (M) of R-invariant endomorphisms of M . In particular if k is a filed and
V is an n-dimensional vector space, then Endk (V ) is the matrix ring Mn(k).

In this context we have the following formulation of Schur’s Lemma. Its proof is
the same as in the group case.

Lemma 1.9. LetM and N be simple R-modules. If ϕ ∈ HomR (M,N) is not zero
then it is an isomorphism.

If M is a simple module, then EndR (M) is a division ring.

1.2. A group algebra is a product of matrix rings. Recall that for every
ring R one defines Rop as the ring with the same abelian group structure together
with the new multiplication ∗ given by

a ∗ b = ba.

Lemma 1.10. The ring EndR (R) is isomorphic to Rop.

Proof. For all a ∈ R, define ϕa ∈ End (R) by the formula

ϕa (x) = xa.

It is easy to check that

• ϕa ∈ EndR (R),
• ϕba = ϕa ◦ ϕb.

In this way we have constructed a homomorphism

ϕ : Rop → EndR (R) .

All we have to show that this is an isomorphism.
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Injectivity: Assume ϕa = ϕb. Then ϕa (1) = ϕb (1), hence a = b.
Surjectivity: let γ ∈ EndR (R). One has for all x ∈ R

γ (x) = γ (x1) = xγ (1) .

Therefore γ = ϕγ(1). �

Lemma 1.11. Let ρi : G → GL (Vi), i = 1, . . . , l, be a finite set of pairwise non-
isomorphic irreducible representations of a finite group G over an algebraically closed
field k, and let

V = V ⊕m1
1 ⊕ · · · ⊕ V ⊕ml

l .

Then

EndG (V ) ∼= Mm1(k)× · · · ×Mml
(k).

Proof. If ϕ is an element of EndG (V ), then Schur’s Lemma implies that ϕ
preserves isotypic components. Therefore we have an isomorphism

EndG (V ) ∼= EndG
(
V ⊕m1
1

)
× · · · × EndG

(
V ⊕ml

l

)
.

Thus it suffices to prove the following

Lemma 1.12. Let G be a finite group, k be an algebraically closed field of char-
acteristic zero and W be a simple k(G)-module. Then EndG (W⊕m) is isomorphic to
the matrix ring Mm(k).

Proof. For all i, j = 1, . . . ,m denote by pj the canonical projection of W⊕m

onto its j-th factor and by qi the emebedding of W as the i-th factor into W⊕m.
Take ϕ ∈ EndG (W⊕m). For all i, j = 1, . . . ,m denote by ϕij the composition map

W
qi−→ W⊕m ϕ−→ W⊕m pj−→ W.

Since ϕij ∈ EndG(W ), Schur’s Lemma implies

ϕij = cij IdW

for some cij ∈ k. Thus we obtain a map

Φ : End
(
W⊕m)→Mm(k).

Moreover, ϕ can be written uniquely as

ϕ =
m∑

i,j=1

cijqi ◦ pj.

If ψ is another element in End (W⊕m) we write

ψ =
m∑

i,j=1

dijqi ◦ pj.
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Then we have, for the composition

ϕ ◦ ψ =
m∑

i,j,k=1

cikdkjqi ◦ pj.

This shows that Φ is a homomorphism of rings. Injectivity and surjectivity of Φ are
direct consequences of the definition. �

�

Theorem 1.13. Let G be a finite group. Assume k is algebraically closed and
char k = 0. Then

k (G) ∼= Mn1(k)× · · · ×Mnr
(k),

where n1, . . . , nr are the dimensions of all up to isomorphism irreducible representa-
tions.

Proof. By Lemma 1.10

Endk(G) (k (G)) ∼= k (G)op .

Moreover, g 7→ g−1 gives an isomorphism

k (G)op ∼= k (G) .

On the other hand, by Theorem 4.13 Chapter 1 one has

k (G) = V ⊕n1
1 ⊕ · · · ⊕ V ⊕nr

r ,

where V1, . . . , Vr are simple G-modules. Applying Lemma 1.11 we get the theorem.
�

2. Finitely generated modules and Noetherian rings.

Definition 2.1. An R-moduleM is finitely generated if there exist finitely many
elements x1, . . . , xn ∈M such that M = Rx1 + · · ·+Rxn.

Lemma 2.2. Let

0→ N
q−→M

p−→ L→ 0

be an exact sequence of R-modules.
(a) If M is finitely generated, then L is finitely generated.
(b) If N and L are finitely generated, then M is finitely generated.

Proof. The first assertion is obvious. For the second let

L = Rx1 + · · ·+Rxn, N = Ry1 + · · ·+Rym,

then one has M = Rp−1 (x1) + · · ·+Rp−1 (xn) +Rq (y1) + · · ·+Rq (ym). �

Lemma 2.3. Let R be a ring. The following conditions are equivalent
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(1) Every increasing chain of left ideals in R is finite, in other words for any
sequence I1 ⊂ I2 ⊂ . . . of left ideals, there exists n0 such that for all n > n0,
In = In0 .

(2) Every left ideal is a finitely generated R-module.

Proof. (1) ⇒ (2). Assume that some left ideal I is not finitely generated. Then
there exists an infinite sequence of xn ∈ I such that

xn+1 /∈ Rx1 + · · ·+Rxn.

But then In = Rx1 + · · ·+Rxn form an infinite increasing chain of ideals which does
not stabilize.

(2)⇒ (1). Let I1 ⊂ I2 ⊂ . . . be an increasing chain of ideals. Consider

I :=
⋃

n

In.

Then by (2) I is finitely generated. Therefore I = Rx1+· · ·+Rxs for some x1, . . . xs ∈
I. Then there exists n0 such that x1, . . . , xs ∈ In0 . Hence I = In0 and the chain
stabilizes. �

Definition 2.4. A ring satisfying the conditions of Lemma 2.3 is called (left)
Noetherian.

Lemma 2.5. Let R be a left Noetherian ring and M be a finitely generated R-
module. Then every submodule of M is finitely generated.

Proof. First, we prove the statement when M is free. Then M is isomorphic
to Rn for some n and we use induction on n. For n = 1 the statement follows from
definition. Consider the exact sequence

0→ Rn−1 → Rn → R→ 0.

Let N be a submodule of Rn. Consider the exact sequence obtained by restriction to
N

0→ N ∩Rn−1 → N → N ′ → 0.

By induction assumption N ∩ Rn−1 is finitely generated and N ′ ⊂ R is finitely
generated. Therefore by Lemma 2.2 (b), N is finitely generated.

In the general case M is a quotient of a free module of finite rank. We use the
exact sequence

0→ K → Rn p−→M → 0.

If N is a submodule of M , then p−1(N) ⊂ Rn is finitely generated. Therefore by
Lemma 2.2 (a), N is also finitely generated. �

Exercise 2.6. (a) A principal ideal domain is a Noetherian ring. In particular,
Z and the polynomial ring k[X] are Noetherian.

(b) Show that the polynomial ring k[X1, . . . , Xn, . . . ] of infinitely many variables
is not Noetherian.
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(c) A subring of a Noetherian ring is not automatically Noetherian. For example,
let R be a subring of C[X, Y ] consisting of polynomial functions constant on the cross
X2 − Y 2 = 0. Show that R is not Noetherian.

Let R be a commutative ring. An element r ∈ R is called integral over Z if there
exists a monic polynomial p(X) ∈ Z[X] such that p(r) = 0.

Exercise 2.7. Check that r is integral over Z if and only if Z[r] ⊂ R is a finitely
generated Z-module.

Remark. The complex numbers which are integral over Z are usually called
algebraic integers. All the rational numbers which are integral over Z belong to Z.

Lemma 2.8. Let R be a commutative ring and S be the set of elements integral
over Z. Then S is a subring of R.

Proof. Let x, y ∈ S. By assumption Z [x] and Z [y] are finitely generated Z-
modules. Then Z [x, y] is also finitely generated. Since Z is Noetherian ring, Lemma
2.5 implies that for every s ∈ Z [x, y] the Z-submodule Z [s] is finitely generated. �

3. The center of the group algebra k (G)

In this section we assume that k is algebraically closed of characteristic 0 and G
is a finite group. In this section we obtain some results about the center Z (G) of the
group ring k (G). It is clear that Z(G) can be identified with the subspace of class
functions:

Z (G) =

{∑

s∈G
f (s) s | f ∈ C (G)

}
.

Recall that if n1, . . . , nr are the dimensions of isomorphism classes of simple G-
modules, then by Theorem 1.13 we have an isomorphism

k (G) ≃Mn1(k)× · · · ×Mnr
(k).

If ei ∈ k(G) denotes the element corresponding to the identity matrix inMni
(K), the

e1, . . . , er form a basis of Z(G) and one has

eiej = δijei

1G = e1 + · · ·+ er.

If ρj : G→ GL (Vj) is an irreducible representation, then ej acts on Vj as the identity
element and we have

(2.1) ρj (ei) = δij IdVj .

Lemma 3.1. If χi is the character of the irreducible representation ρi of dimension
ni, then one has

(2.2) ei =
ni
|G|

∑

g∈G
χi
(
g−1
)
g.
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Proof. We have to check (2.1). Since ρj (ei) belongs to EndG (Vj), Schur’s
Lemma implies ρj (ei) = λ Id for some λ. Now we use orthogonality relations, Theo-
rem 4.8

tr ρj (ei) =
ni
|G|

∑
χi
(
g−1
)
χj (g) =

ni
|G| (χi, χj) = δijni.

Therefore we have njλ = δijni which implies λ = δij . �

Exercise 3.2. Define ωi : Z (G)→ k by the formula

ωi

(∑
ass
)
=

1

ni

∑
asχi (s) .

and ω : Z(G)→ kr by
ω = (ω1, . . . , ωr) .

Check that ω is an isomorphism of rings. Hint: check that ωi (ej) = δij using again
the orthogonality relations.

For any conjugacy class C in G let

ηC :=
∑

g∈C
g.

Clearly, the set ηC for C running the set of conjugacy classes is a basis in Z(G).

Lemma 3.3. For any conjugacy class C ⊂ G we have

ηC = |C|
r∑

i=1

χi(g)

ni
ei,

where g is any element of C.

Proof. If we extend by linearity χ1, ...χr to linear functionals on k(G), then
(2.1) implies χj(ei) = niδi,j . Thus, χ1, . . . , χr form a basis in the dual space Z(G)∗.
Therefore it suffices to check that

χj(ηc) = |C|
r∑

i=1

χi(g)

ni
χj(ei) = |C|χj(g).

�

Lemma 3.4. If g, h ∈ G lie in the same conjugacy class C, we have
r∑

i=1

χi(g)χi(h
−1) =

|G|
|C| .

If g and h are not conjugate we have
r∑

i=1

χi(g)χi(h
−1) = 0.
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Proof. The statement follows from Lemma 3.1 and Lemma 3.3. Indeed, if g is
in the congugacy class C, we have

ηc = |C|
r∑

i=1

χi(g)

ni
ei =

|C|
|G|

r∑

i=1

∑

h∈G
χi(g)χi(h

−1)h.

The coefficient of h in the last expression is 1 if h ∈ C and zero otherwise. This
implies the lemma. �

Lemma 3.5. Let u =
∑

g∈G agg ∈ Z (G). If all ag are algebraic integers, then u
is integral over Z.

Proof. Consider the basis ηC of Z(G). Every ηC is integral over Z since the
subring generated by all ηC is a finitely generated Z-module. Now the statement
follows from Lemma 2.8. �

Theorem 3.6. Let ρ be an n-dimenisonal irreducible representation of G. Then
n divides |G|.

Proof. For every g ∈ G, all eigenvalues of ρ(g) are roots of 1. Therefore χρ (g)
is an algebraic integer. By Lemma 3.5 u =

∑
g∈G χρ (g) g is integral over Z. Recall

the homomorphism ωi from Exercise 3.2. Since ωi (u) is an algebraic integer we have

ωi (u) =
1

ni

∑
χi (s)χi

(
s−1
)
=
|G|
ni

(χi, χi) =
|G|
ni
.

Therefore |G|
ni
∈ Z. �

Theorem 3.7. Let Z be the center of G and ρ be an irreducible n-dimensional

representation of G. Then n divides |G||Z| .

Proof. Let Gm be the direct product of m copies of G and ρm be the exterior
product of m copies of ρ. The dimension of ρm is nm. Furthermore, ρm is irreducible
by Exercise 4.12. Consider the normal subgroup N of Gm defined by

N = {(z1, . . . , zm) ∈ Zm | z1z2 . . . zm = 1} .
We have |N | = |Z|m−1. Furthermore, N lies in the kernel of ρm. Therefore ρm is a
representation of the quotient group H = G/N . Hence, by Theorem 3.6, nm divides
|G|m
|Z|m−1 for every m > 0. It follows from prime factorization that n divides |G||Z| . �

4. Generalities on induced modules

Let A be a ring, B be a subring of A and M be a B-module. Consider the
abelian group A⊗BM defined by generators and relations in the following way. The



4. GENERALITIES ON INDUCED MODULES 39

generators are all elements of the Cartesian product A×M and the relations:

(a1 + a2)×m− a1 ×m− a2 ×m, a1, a2 ∈ A,m ∈M,(2.3)

a× (m1 +m2)− a×m1 − a×m2, a ∈ A,m1,m2 ∈M,(2.4)

ab×m− a× bm, a ∈ A, b ∈ B,m ∈M.(2.5)

This group has a structure of A-module, A acting on it by left multiplication. For
every a ∈ A and m ∈M we denote by a⊗m the corresponding element in A⊗BM .

Definition 4.1. The A-module A⊗B M is called the induced module.

Exercise 4.2. (a) Show that A⊗B B is isomoprhic to A.
(b) Show that if M1 and M2 are two B-modules, then there exists a canonical

isomorphism of A-modules

A⊗B (M1 ⊕M2) ≃ A⊗B M1 ⊕ A⊗B M2.

(c) Check that for any n ∈ Z one has

Q⊗Z (Z/nZ) = 0.

Theorem 4.3. (Frobenius reciprocity.) For every B-module M and for every
A-module N , there is an isomorphism of abelian groups

HomB (M,N) ∼= HomA (A⊗B M,N) .

Proof. LetM be aB-module andN be an A-module. Consider j :M → A⊗BM
defined by

j (m) := 1⊗m,
which is a homomorphism of B-modules.

Lemma 4.4. For every ϕ ∈ HomB (M,N) there exists a unique ψ ∈ HomA (A⊗B M,N)
such that ψ ◦ j = ϕ. In other words, the following diagram is commutative

M

ϕ
$$I

IIIIIIIII

j
// A⊗B M

ψ

��

N

Proof. We define ψ by the formula

ψ(a⊗m) := aϕ(m),

for all a ∈ A and m ∈ M . The reader can check that ψ is well defined, i.e. the
relations defining A⊗B M are preserved by ψ. That proves the existence of ψ

To check uniqueness we just note that for all a ∈ A and m ∈ M , ψ must satisfy
the relation

ψ (a⊗m) = aψ (1⊗m) = aϕ (m) .

�
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To prove the theorem we observe that by the above lemma the map ψ 7→ ϕ := ψ◦j
gives an isomorphism between HomA (A⊗B M,N) and HomB (M,N). �

Remark 4.5. For readers familiar with category theory the former theorem can
be reformulated as follows. Since any A-module M is automatically a B-module,
we have a natural functor Res from the category of A-modules to the category of B-
modules. This functor is usually called the restriction functor. The induction functor
Ind from the category of B-modules to the category of A-modules which sends M to
A⊗B M is left adjoint of Res.

Example 4.6. Let k ⊂ F be a field extension. For any vector space M over k,
F ⊗kM is a vector space of the same dimension over F . If we have an exact sequence
of vector spaces

0→ N →M → L→ 0,

then the sequence

0→ F ⊗k N → F ⊗k M → F ⊗k L→ 0

is also exact. In other words the induction in this situation is an exact functor.

Exercise 4.7. Let A be a ring and B be a subring of A.
(a) Show that if a sequence of B-modules

N →M → L→ 0

is exact, then the sequence

A⊗B N → A⊗B M → A⊗B L→ 0

of induced modules is also exact. In other words the induction functor is right exact.
(b) Assume that A is a free right B-module, then the induction functor is exact.

In other words, if a sequence

0→ N →M → L→ 0

of B-modules is exact, then the sequence

0→ A⊗B N → A⊗B M → A⊗B L→ 0

is also exact.
(c) Let A = Z[X]/(X2, 2X) and B = Z. Consider the exact sequence

0→ Z
ϕ−→ Z→ Z/2Z→ 0,

where ϕ is the multiplication by 2. Check that after applying induction we get a
sequence of A-modules

0→ A→ A→ A/2A→ 0,

which is not exact.

Later we discuss general properties of induction but now we are going to study
induction for the case of groups.
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5. Induced representations for groups.

Let G be a finite group. Let H be a subgroup of G and ρ : H → GL (V ) be a
representation of H with characater χ. Then the induced representation IndGH ρ is by
definition the k (G)-module

k (G)⊗k(H) V.

The following lemma has a straightforward proof.

Lemma 5.1. The dimension of IndGH ρ equals the product of dim ρ by the index
[G : H] of H. More precisely, let S be a set of representatives of left cosets in G/H,
i.e.

G =
∐

s∈S
sH,

then

(2.6) k (G)⊗k(H) V =
⊕

s∈S
s⊗ V.

Moreover, for any g ∈ G, s ∈ S there exists a unique s′ ∈ S such that (s′)−1gs ∈ H.
Then the action of g on s⊗ v for all v ∈ V is given by

(2.7) g (s⊗ v) = s′ ⊗ ρ(s′)−1gsv.

Example 5.2. Let ρ be the trivial representation of H. Then IndGH ρ is the
permutation representation of G obtained from the natural left action of G on the
set of left cosets G/H, see Example 3 in Section 4.2 Chapter 1.

Lemma 5.3. We keep the notations of the previous lemma. Denote by IndGH χ
the character of the induced representation. Then one has for g ∈ G
(2.8) IndGH χ (g) =

∑

s∈S,s−1gs∈H
χ
(
s−1gs

)
.

Proof. (2.6) and (2.7) imply

IndGH χ (g) =
∑

s∈S
δs,s′ tr ρ(s′)−1gs.

�

Corollary 5.4. In the notations of Lemma 5.3 we have

IndGH χ (g) =
∑

u∈G,u−1gu∈H
χ
(
u−1gu

)
.

Proof. If s−1gs ∈ H, then for all u ∈ sH we have χ(u−1gu) = χ(s−1gs). There-
fore

χ(s−1gs) =
1

|H|
∑

u∈sH
χ
(
u−1gu

)
.

Hence the statement follows from (2.8). �
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Corollary 5.5. Let H be a normal subgroup in G. Then IndGH χ (g) = 0 for
any g /∈ H.

Exercise 5.6. (a) Let G = S3 and H = A3 be its normal cyclic subgroup.
Consider, a one-dimensional representation of H such that ρ(123) = ε, where ε is a
primitive 3-d root of 1. Show that then

IndGH χρ (1) = 2,

IndGH χρ (12) = 0,

IndGH χρ (123) = −1.
Therefore IndGH ρ is the irreducible 2-dimensional representation of S3.

(b) Next, consider the 2-element subgroup K of G = S3 generated by the trans-
position (12), and let σ be the (unique) non-trivial one-dimensional representation of
K. Show that

IndGK χσ (1) = 3,

IndGK χσ (12) = −1,
IndGH χρ (123) = 0.

Therefore IndGK σ is the direct sum of the sign representation and the 2-dimensional
irreducible representation.

Now we assume that k has characteristic zero. Let us recall that, in Section 4.2
Chapter 1, we defined a scalar product on the space C(G) of class functions by (1.2).
When we consider several groups at the same time we specify the group by the a
lower index.

Theorem 5.7. Consider two representations ρ : G → GL (V ) and σ : H →
GL (W ). Then we have the identity

(2.9)
(
IndGH χσ, χρ

)
G
= (χσ,ResH χρ)H .

Proof. The statement follows from Frobenius reciprocity (Theorem 4.3) and
Corollary 4.7 in Chapter 1, since

dimHomG

(
IndGHW,V

)
= dimHomH (W,V ) .

�

Exercise 5.8. Prove Theorem 5.7 directly from Corollary 5.4. Define two maps

ResH : C (G)→ C (H) , IndGH : C (H)→ C (G) ,
the former is the restriction on a subgroup, the latter is defined by (2.8). Then for
any ϕ ∈ C (G) , ψ ∈ C (H)

(
IndGH ϕ, ψ

)
G
= (ϕ,ResH ψ)H .
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6. Double cosets and restriction to a subgroup

IfK and H are subgroups of G one can define the equivalence relation on G : s ∼ t
if and only if s ∈ KtH. The equivalence classes are called double cosets. We can choose
a set of representative T ⊂ G such that

G =
∐

t∈T
K tH .

We define the set of double cosets by K\G/H. One can identify K\G/H with K-
orbits on S = G/H in the obvious way and with G-orbits on G/K × G/H by the
formula

KtH → G (K, tH) .

Example 6.1. Let F be a field. Let G = GL2 (F) be the group of all invertible
2× 2 matrices with coefficients in F. Consider the natural action of G on F2. Let B
be the subgroup of upper-triangular matrices in G. We denote by P1 the projective
line which is the set of all one-dimensional linear subspaces of F2. Clearly, G acts on
P1.

Exercise 6.2. Prove that G acts transitively on P1 and that the stabilizer of any
point in P1 is isomorphic to B.

By the above exercise one can identify G/B with the set of lines P1. The set of
double cosets B\G/B can be identified with the set of G-orbits in P1 × P1 or with
the set of B-orbits in P1 .

Exercise 6.3. Check that G has only two orbits on P1 × P1: the diagonal and
its complement. Thus, |B\G/B| = 2 and

G = B ∪ BsB,
where

s =

(
0 1
1 0

)

Theorem 6.4. Let T ⊂ G such that G =
∐

s∈T KsH. Then

ResK IndGH ρ = ⊕s∈T IndKK∩sHs−1 ρs,

where

ρsh
def
= ρs−1hs,

for any h ∈ sHs−1.
Proof. Let s ∈ T and W s = k (K) (s⊗ V ). Then by construction, W s is K-

invariant and

k (G)⊗k(H) V = ⊕s∈TW s.
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Thus, we need to check that the representation ofK inW s is isomorphic to IndKK∩sHs−1 ρs.
We define a homomorphism

α : IndKK∩sHs−1 V → W s

by α (t⊗ v) = ts⊗ v for any t ∈ K, v ∈ V . It is well defined

α (th⊗ v − t⊗ ρshv) = ths⊗ v − ts⊗ ρs−1hsv = ts
(
s−1hs

)
⊗ v − ts⊗ ρs−1hsv = 0

and obviously surjective. Injectivity can be proved by counting dimensions. �

Example 6.5. Let us go back to our example B ⊂ SL2 (F) (see Exercise 6.3).
We now assume that F = Fq is the finite field with q elements. Theorem 6.4 tells us
that for any representation ρ of B

IndGB ρ = ρ⊕ IndGH ρ
′,

where H = B ∩ sBs−1 is a subgroup of diagonal matrices and

ρ′
(
a 0
0 b

)
= ρ

(
b 0
0 a

)

Corollary 6.6. If H is a normal subgroup of G, then

ResH IndGH ρ = ⊕s∈G/Hρs.

7. Mackey’s criterion

In order to compute
(
IndGH χ, Ind

G
H χ
)
, we use Frobenius reciprocity and Theo-

rem 6.4. One has:
(
IndGH χ, Ind

G
H χ
)
G
=
(
ResH IndGH χ, χ

)
H
=
∑

s∈T

(
IndHH∩sHs−1 χs, χ

)
H
=

=
∑

s∈T
(χs,ResH∩sHs−1 χ)H∩sHs−1 = (χ, χ)H +

∑

s∈T\{1}
(χs,ResH∩sHs−1 χ)H∩sHs−1 .

We call two representation disjoint if they do not have any irreducible component
in common, or in other words if their characters are orthogonal.

Theorem 7.1. (Mackey’s criterion) The representation IndGH ρ is irreducible if
and only if ρ is irreducible and ρs and ρ are disjoint representations of H ∩ sHs−1
for all s ∈ T\ {1}.

Proof. Write the condition
(
IndGH χ, Ind

G
H χ
)
G
= 1

and use the above formula. �

Corollary 7.2. Let H be a normal subgroup of G. Then IndGH ρ is irreducible
if and only if ρs is not isomorphic to ρ for any s ∈ G/H, s /∈ H.
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Remark 7.3. Note that if H is normal, then G/H acts on the set of representa-
tions of H. In fact, this is a part of the action of the group AutH of automorphisms
of H on the set of representation of H. Indeed, if ϕ ∈ AutH and ρ : H → GL (V ) is
a representation, then ρϕ : H → GL (V ) defined by

ρϕt = ρϕ(t),

is a new representation of H.

8. Hecke algebras, a first glimpse

Definition 8.1. Let G be a group, H ⊂ G a subgroup, considerH(G,H) ⊂ k(G)
defined by:

H(G,H) := EndG(Ind
G
H triv).

This is the Hecke algebra associated to the pair (G,H).

Define the projector

ΠH :=
1

|H|
∑

h∈H
h ∈ k(G).

Exercise 8.2. Show that

IndGH triv = k(G)ΠH .

Applying Frobenius reciprocity, one gets:

EndG IndGH triv = HomH(triv, Ind
G
H triv).

We can identify the Hecke algebra with ΠHk(G)ΠH . Therefore a basis of the Hecke
algebra can be enumerated by the double cosets, i.e. elements of H\G/H.

Set, for g ∈ G,
ηg := ΠHgΠH .

it is clear that those functions are constant on double cosets and give a basis of the
Hecke algebra. Then, the multiplication is given by the formula

(2.10) ηgηg′ =
∑

g′′∈G

1

|H| |gHg
′ ∩Hg′′H|ηg′′ .

Exercise 8.3. Consider the pair G = GL2(Fq), H = B the subgroup of upper
triangular matrices. Then by Exercise 6.3 we know that the Hecke algebra H(G,B)
is 2-dimensional. The identity element ηe corresponds to the double coset B. The
second element of the basis is ηs. Let us compute η2s using (2.10). We have

η2s = aηe + bηs,

where

a =
|sBs ∩B|
|B| , b =

sBs ∩ BsB
|B| .
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Since sBs is the subgroup of the lower triangular matrices in G, the intersection
subgroup sBs ∩B is the subgroup of diagonal matrices. Therefore we have

|B| = (q − 1)2q, |sBs ∩ B| = (q − 1)2, a =
1

q
, b = 1− a =

q − 1

q
.

Definition 8.4. We say that a G-module V is multiplicity free if any simple
G-module appears in V with multiplicity either 0 or 1.

Proposition 8.5. Assume that k is algebraically closed. The following conditions
on the pair H ⊂ G are equivalent

(1) The G-module IndGH triv is multiplicity free;
(2) For any G-module M the dimension of subspace MH of H-invariants is at

most one;
(3) The Hecke algebra H(G,H) is commutative.

Proof. (1) is equivalent to (2) by Frobenius reciprocity. Equivalence of (1) and
(3) follows from Lemma 1.11. �

Lemma 8.6. Let G be a finite group and H ⊂ G be a subgroup. Let ϕ : G→ G
be antiautomorphism of G such that for any g ∈ G we have ϕ(g) ⊂ HgH. Then
H(G,H) is commutative.

Proof. Extend ϕ to the whole group algebra k(G) by linearity. Then ϕ is an
antiautomorphism of k(G) and for all g ∈ G we have ϕ(ηg) = ηg. Therefore for any
g, h ∈ H\G/H we have

ηgηh =
∑

cug,hηu =
∑

u∈H\G/H
cug,hϕ(ηu) = ϕ(ηgηh) = ϕ(ηh)ϕ(ηg) = ηhηg.

�

Exercise 8.7. Let G be the symmetric group Sn and H = Sp×Sn−p. Prove that
H(G,H) is abelian. Hint: consider ϕ(g) = g−1 and apply Lemma 8.6.

9. Some examples

Let H be a subgroup of G of index 2. Then H is normal and G = H ∪ sH for
some s ∈ G\H. Suppose that ρ is an irreducible representation of H. There are two
possibilities

(1) ρs is isomorphic to ρ;
(2) ρs is not isomorphic to ρ.

Hence there are two possibilities for IndGH ρ :

(1) IndGH ρ = σ ⊕ σ′, where σ and σ′ are two non-isomorphic irreducible repre-
sentations of G;

(2) IndGH ρ is irreducible.
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For instance, let G = S5, H = A5 and ρ1, . . . , ρ5 be the irreducible representations
of H introduced in Example 5.3. 3. Then for i = 1, 2, 3

IndGH ρi = σi ⊕ (σi ⊗ sgn) ,

where sgn denotes the sign representation. Furthermore, the induced modules IndGH ρ4
and IndGH ρ5 are isomorphic and irreducible. Thus in dimensions 1, 4 and 5, S5 has
two non-isomorphic irreducible representations and only one in dimension 6.

Now let G be the subgroup of GL2 (Fq) consisting of matrices of shape
(

a b
0 1

)
,

where a ∈ F∗q and b ∈ Fq. Let us classify complex irreducible representations of G.

One has |G| = q2 − q. Furtheremore G has q conjugacy classes with the following
representatives (

1 0
0 1

)
,

(
1 1
0 1

)
,

(
a 0
0 1

)
,

(in the last case a 6= 1). Note that

H = {
(

1 b
0 1

)
, b ∈ Fq}

is a normal subgroup of G and the quotient G/H is isomorphic to F∗q which is cyclic
of order q − 1.

Therefore G has q − 1 one-dimensional representations which can be lifted from
G/H. That leaves one more representation, its dimension must be q−1. Let us try to
obtain it using induction from H. Let σ be a non-trivial irreducible representation of
H, its dimension is automatically 1. Then the dimension the induced representation
IndGH σ is equal to q − 1 as required. We claim that it is irreducible. Indeed, if ρ is
a one-dimensional representation of G, then by Frobenius reciprocity, Theorem 5.7,
we have (

IndGH σ, ρ
)
G
= (σ,ResH ρ)H = 0,

since ResH ρ is trivial. Therefore IndGH σ is irreducible.

Exercise 9.1. Compute the character of this representation.

Exercise 9.2. Let G′ denote the commutator of G, namely the subgoup of G
generated by ghg−1h−1 for all g, h ∈ G. Show that all one-dimensional representations
of G are obtained by lifting from one-dimensional representations of G/G′.

10. Some generalities about field extension

Lemma 10.1. If char k = 0 and G is finite, then a representation ρ : G→ GL (V )
is irreducible if and only if EndG (V ) is a division ring.
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Proof. In one direction it is Schur’s Lemma. In the opposite direction if V is
not irreducible, then V = V1 ⊕ V2 and the projectors p1 and p2 are intertwiners such
that p1 ◦ p2 = 0. �

For any extension F of k and any representation ρ : G→ GL (V ) over k we denote
by ρF the representation G→ GL (F ⊗k V ).

For any representation ρ : G → GL (V ) we denote by V G the subspace of G-
invariants in V , i.e.

V G = {v ∈ V | ρsv = v, ∀s ∈ G} .
Lemma 10.2. One has (F ⊗k V )G = F ⊗k V G.

Proof. The embedding F ⊗k V G ⊂ (F ⊗k V )G is trivial. On the other hand, V G

is the image of the operator

p =
1

|G|
∑

s∈G
τs,

in particular dimV G equals the rank of p. Since rank p does not depend on the base
field, we have

dimF ⊗k V G = dim (F ⊗k V )G .

�

Corollary 10.3. Let ρ : G→ GL (V ) and σ : G→ GL (W ) be two representa-
tions over k. Then

HomG (F ⊗k V, F ⊗k W ) = F ⊗ HomG (V,W ) .

In particular,

dimk HomG (V,W ) = dimF HomG (F ⊗k V, F ⊗k W ) .

Proof.

HomG (V,W ) = (V ∗ ⊗W )G .

�

Corollary 10.4. The formula

dim HomG (V,W ) = (χρ, χσ)

holds even if the field is not algebraically closed.

A representation ρ : G → GL (V ) over k is called absolutely irreducible if it
remains irreducible after any extension of k. This property is equivalent to the
egality (χρ, χρ) = 1.

A field K is called splitting for a group G if every irreducible representation of G
over K is absolutely irreducible. It is not difficult to see that for a finite group G,
there exists a finite extension of Q which is a splitting field for G.



CHAPTER 3

Representations of compact groups

1. Compact groups

Let G be a group which is also a topological space. We say that G is a topological
group if both the multiplication from G × G to G and the inverse from G to G are
continuous maps. Naturally, we say that G is compact (respectively, locally compact)
if it is a compact (resp., locally compact) topological space.

Examples.

• The circle

S1 = {z ∈ C | |z| = 1} .
• The torus T n = S1 × · · · × S1.

Note that in general, the direct product of two compact groups is com-
pact.
• The unitary group

Un =
{
X ∈ GLn(C) | X̄ tX = 1n

}
.

To see that Un is compact, note that a matrix X = (xij) ∈ Un satisfies the
equations

∑n
j=1 |xij|2 = 1 for j = 1, . . . , n. Hence Un is a closed subset of

the product of n spheres of dimension (2n− 1).
• The special unitary group

SUn = {X ∈ Un | detX = 1} .
• The orthogonal group

On =
{
x ∈ GLn (R) | X tX = 1n

}
.

• The special orthogonal group

SOn = {X ∈ On | detX = 1} .

1.1. Haar measure. A measure dg on a locally compact group G is called right-
invariant if, for every integrable function f on G and every h in G, one has:

∫

G

f (gh) dg =

∫

G

f (g) dg.

49
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Similarly, a measure d′g on G is called left-invariant if for every integrable function
f on G and every h in G, one has:

∫

G

f (hg) d′g =

∫

G

f (g) d′g.

Theorem 1.1. Let G be compact group. There exists a unique right-invariant
measure dg on G such that ∫

G

dg = 1.

In the same way there exists a unique left-invariant measure d′g such that
∫

G

d′g = 1.

Moreover, dg = d′g.

Definition 1.2. The measure dg is called the Haar measure on G.

We do not give the proof of this theorem in general. In this sketch of proof, we
assume general knowledge of submanifolds and of the notion of vector bundle. All
examples we consider here are smooth submanifolds in GLk(R) or GLk(C).

Exercise 1.3. Assume that G is a subgroup of GLk(R) or GLk(C) and G is the
set of zeros of smooth functions f1, . . . , fk. Then G is a smooth submanifold in GLk.
Hint: consider the map mg : G→ G given by left multiplication by g ∈ G. Then its
differential (mg)∗ : TeG → TgG is an isomorphism between tangent spaces at e and
g.

To define the invariant measure we just need to define a volume form on the
tangent space at identity TeG and then use right (left) multiplication to define it on
the whole group. More precisely, let γ ∈ ΛtopT ∗eG. Then the map

g 7→ γg := m∗g (γ) ,

where mg : G → G is the right (left) multiplication by g and m∗g is the induced
differential map ΛtopT ∗eG → ΛtopT ∗gG, is a section of the bundle ΛtopT ∗G. This
section is a right (left) invariant differential form of maximal degree on the group G,
i.e. an invariant volume form. One can normalize γ to satisfy

∫
G
γ = 1.

Remark 1.4. If G is locally compact but not compact, there are still left-invariant
and right-invariant measures on G, each is unique up to scalar multiplication, but the
left-invariant ones are not necessarily proportional to the right-invariant ones. We
speak of left-Haar measure or right-Haar measure.
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1.2. Continuous representations. Consider a vector space V over C equipped
with a topology such that addition and multiplication by a scalar are continuous. We
always assume that a topological vector space satisfies the following conditions

(1) for any v ∈ V \ 0 there exists a neighbourhood of 0 which does not contain
v;

(2) there is a base of convex neighbourhoods of zero.

Topological vector spaces satisfying the above conditions are called locally convex.
We do not go into the theory of such spaces. All we need to know is the fact that
there is a non-zero continuous linear functional on a locally convex space.

Definition 1.5. A representation ρ : G→ GL (V ) is called continuous if the map
G×V → V given by (g, v) 7→ ρgv is continuous. Two continuous representations are
equivalent or isomorphic if there is a bicontinuous invertible intertwining operator
between them. In this chapter we consider only continuous representations.

A representation ρ : G → GL (V ), V 6= {0} is called topologically irreducible if
the only G-invariant closed subspaces of V are V and 0.

1.3. Unitary representations. Recall that a Hilbert space is a vector space
over C equipped with a positive definite Hermitian form 〈, 〉, which is complete with
respect to the topology defined by the norm

‖v‖ = 〈v, v〉1/2 .
We will use the following facts about Hilbert spaces:

(1) A Hilbert space V has an orthonormal topological basis, i.e. an orthonormal

system of vectors {ei}i∈I such that
⊕

i∈I
Cei is dense in V . Two Hilbert spaces

are isomorphic if and only if their topological orthonormal bases have the
same cardinality.

(2) If V ∗ denotes the space of all continuous linear functionals on V , then we
have an isomorphism V ∗ ≃ V given by v 7→ 〈v, ·〉.

Definition 1.6. A continuous representation ρ : G → GL (V ) is called unitary
if V is a Hilbert space and

〈v, w〉 = 〈ρgv, ρgw〉
for any v, w ∈ V and g ∈ G. If U(V ) denotes the group of all unitary operators in
V , then ρ defines a homomorphism G→ U(V ).

The following is an important example of a unitary representation.
Regular representation. Let G be a compact group and L2 (G) be the space

of all complex valued functions ϕ on G such that
∫
|ϕ (g) |2dg
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exists. Then L2 (G) is a Hilbert space with respect to the Hermitian form

〈ϕ, ψ〉 =
∫

G

ϕ̄ (g)ψ (g) dg.

Moreover, the representation R of G in L2 (G) given by

Rgϕ (h) = ϕ (hg)

is continuous and the Hermitian form is G-invariant. This representation is called
the regular reprensentation of G.

1.4. Linear operators in a Hilbert space. We will recall certain facts about
linear operators in a Hilbert space. We only sketch the proofs hiding technical details
in exercises. The enthusiastic reader is encouraged to supply those details and the less
enthusiastic reader can find those details in textbooks on the subject, for instance,???.

Definition 1.7. A linear operator T in a Hilbert space is called bounded if there
exists C > 0 such that for any v ∈ V we have ‖Tv‖ ≤ C‖v‖.

Exercise 1.8. Let B(V ) denote the set of all bounded operators in a Hilbert
space V .

(a) Check that B(V ) is an algebra over C with multiplication given by composi-
tion.

(b) Show that T ∈ B(V ) if and only if the map T : V → V is continuous.
(c) Introduce the norm on B(V ) by setting

‖T‖ = sup‖v‖=1 ‖Tv‖.
Check that ‖T1T2‖ ≤ ‖T1‖‖T2‖ and ‖T1 + T2‖ ≤ ‖T1‖ + ‖T2‖ for all T1, T2 ∈ B(V )
and that B(V ) is complete in the topology defined by this norm. Thus, B(V ) is a
Banach algebra.

Theorem 1.9. Let T ∈ B(V ) be invertible. Then T−1 is also bounded.

Proof. Consider the unit ball

B := {x ∈ V | ‖x‖ < 1}.
For any k ∈ N denote by Sk the closure of T (kB) = kT (B) and let Uk = V \ Sk.
Note that

V =
⋃

k∈N
kB.

Since T is invertible, it is surjective, and therefore
⋃

k∈N
Sk = V.

We claim that there exists k such that Uk is not dense. Indeed, otherwise there exists
a sequence of embedded balls Bk ⊂ Uk, Bk+1 ⊂ Bk, which has a common point by
completeness of V . This contradicts to the fact that the intersection of all Uk is
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empty. Then Sk contains a ball x + εB for some x ∈ V and ε > 0. It is not hard to
see that for any r > k

ε
+ ‖x‖, Sr contains B.

Now we will prove the inclusion B ⊂ T (2rB) for r as above. Indeed, let y ∈ B ⊂
Sr. There exists x1 ∈ rB such that ‖y − Tx1‖ < 1

2
. Note that y − Tx1 ∈ 1

2
B ⊂ 1

2
Sr.

Then one can find x2 ∈ r
2
B such that ‖y − Tx1 − Tx2‖ < 1

4
. Proceeding in this way

we can construct a sequence {xn ∈ 1
2n−1B} such that ‖y − T (x1 + · · · + xn)‖ < 1

2n
.

Consider w =
∞∑

i=1

xi, which is well defined due to completeness of V . Then w ∈ 2rB

and Tw = y. That implies B ⊂ T (2rB).
Now we have T−1B ⊂ 2rB and hence ‖T−1‖ ≤ 2r. �

Bounded operators have a nice spectral theory, see ???.

Definition 1.10. Let T be bounded. The spectrum σ(T ) of T is the subset of
complex numbers λ such that T − λ Id is not invertible.

In a finite-dimensional Hilbert space σ(T ) is the set of eigenvalues of T . In the
infinite-dimensional case a point of the spectrum is not necessarily an eigenvalue. We
need the following fundamental result.

Theorem 1.11. If T is bounded, then σ(T ) is a non-empty closed bounded subset
of C.

Proof. The main idea is to consider the resolvent R(λ) = (T − λ Id)−1 as a
function of λ. If T is invertible, then we have the decomposition

R(λ) = T−1(Id+T−1λ+ T−2λ2 + . . . ),

which converges for |λ| < 1
‖T−1‖ . Thus, R(λ) is analytic in a neighbourhood of 0.

Using shift R(λ)→ R(λ+ c) we obtain that R(λ) is analytic in its domain which is
C \ σ(T ). The domain of R(λ) is an open set. Hence σ(T ) is closed.

Furthermore, we can write the series for R(λ) at infinity:
(3.1) R(λ) = −λ−1(Id+λ−1T + λ−2T 2 + . . . ).

This series converges for |λ| > ‖T‖. Therefore σ(λ) is a subset of the circle |λ| ≤ ‖T‖.
Hence σ(T ) is bounded.

Finally, (3.1) also implies lim
λ→∞
R(λ) = 0. Suppose that σ(T ) = ∅, then R(λ) is

analytic and bounded. By Liouville’s theorem R(λ) is constant, which is impossible.
�

Definition 1.12. For any linear operator T in a Hilbert space V we denote by
T ∗ the adjoint operator. Since V ∗ ≃ V , we can consider T ∗ as a linear operator in V
such that for any x, y ∈ V

〈x, Ty〉 = 〈T ∗x, y〉 .
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An operator T is self-adjoint if T ∗ = T . A self-adjoint operator T defines on V a Her-
mitian form 〈x, y〉T = 〈x, Ty〉. We call T (semi)positive if this form is (semi)positive
definite. For any operator X the operator X∗X is semipositive self-adjoint.

Exercise 1.13. (a) If T is bounded, then T ∗ is bounded and σ(T ∗) is the complex
conjugate of σ(T ).

(b) If T is bounded self-adjoint, then σ(T ) ⊂ R.

Lemma 1.14. Let T be a self-adjoint operator in a Hilbert space. Then ‖T 2‖ =
‖T‖2.

Proof. For any bounded operator A the Cauchy–Schwartz inequality implies
that for all v ∈ V

〈Av, v〉 ≤ ‖Av‖‖v‖ ≤ ‖A‖‖v‖2.
For a self-adjoint T we have 〈

T 2v, v
〉
= ‖Tv‖2.

Therefore
‖T 2‖ ≥ sup‖v‖=1

〈
T 2v, v

〉
= sup‖v‖=1 ‖Tv‖2 = ‖T‖2.

On the other hand ‖T 2‖ ≤ ‖T‖2. Hence ‖T 2‖ = ‖T‖2. �

Lemma 1.15. Let T be a self-adjoint operator in a Hilbert space V such that
σ(T ) = {µ} is a single point. Then T = µ Id.

Proof. Without loss of generality we may assume µ = 0. Then the series (3.1)
converges for all λ 6= 0. Therefore by the root test we have

lim
n→∞

sup ‖T n‖ = 0.

By Lemma 1.14 if n = 2k, then ‖T n‖ = ‖T‖n. This implies ‖T‖ = 0. Hence
T = 0. �

Exercise 1.16. Let X be a self-adjoint bounded operator.
(a) If f ∈ R[x] is a polynimial with real coefficients, then σ(f(X)) = f(σ(X)).
(b) Let f : R → R be a continuous function. Show that one can define f(X) by

approximating f by polynomials fn on the interval |x| ≤ ‖X‖ and setting f(X) =
lim
n→∞

fn(X) and the result does not depend on the choice of approximation.

(c) For a continuous function f we still have σ(f(X)) = f(σ(X)).

Definition 1.17. An operator T in a Hilbert space V is called compact if the
closure of the image T (S) of the unit sphere S = {x ∈ V | ‖x‖ = 1} is compact.

Clearly, any compact operator is bounded.

Exercise 1.18. Let C(V ) be the subset of all compact operators in a Hilbert
space V .

(a) Show that C(V ) is a closed ideal in B(V ).
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(b) Let F(V ) be the ideal in B(V ) of all operators with finite-dimensional image.
Prove that C(V ) is the closure of F(V ).

Lemma 1.19. Let A be a compact self-adjoint operator in V . Then

λ := sup
u∈S
〈Au, u〉

is either zero or an eigenvalue of A.

Proof. Consider the hermitian form x 7→ λ 〈x, x〉 − 〈Ax, x〉 on V , it is positive
therefore the Cauchy–Schwarz inequality gives

(3.2) |λ 〈x, y〉 − 〈Ax, y〉 |2 ≤ (λ 〈x, x〉 − 〈Ax, x〉)(λ 〈y, y〉 − 〈Ay, y〉)
Let (xn) be a sequence in S such that 〈Axn, xn〉 converges to λ. Since A is a compact
operator, after extracting a subsequence we may assume that Axn converges to z ∈ V .
By the inequality 3.2, we get that 〈λxn − Axn, y〉 tends to 0 uniformly in y ∈ S.
Hence, ‖λxn−Axn‖ tends to 0. Therefore, (xn) converges to 1

λ
z and z is a eigenvector

for A with eigenvalue λ, if λ > 0. �

1.5. Schur’s lemma for unitary representations.

Theorem 1.20. Let ρ : G → U(V ) a topologically irreducible unitary represen-
tation of G and T ∈ B(V ) be a bounded intertwining operator. Then T = λ Id for
some λ ∈ C.

Proof. First, by Theorem 1.11, the spectrum σ(T ) is not empty. Therefore by
adding a suitable scalar operator we may assume that T is not invertible. Note that
T ∗ is also an interwiner, and therefore S = TT ∗ is an interwiner as well. Moreover,
S is not invertible. If σ(S) = {0}, then S = 0 by Lemma 1.15. Then we claim
that KerT 6= 0. Indeed, if T is injective, then ImT ∗ ⊂ KerT = 0. That implies
T ∗ = T = 0. Since KerT is a closed G-invariant subspace of V , we obtain T = 0.

Now we assume that σ(S) consists of more than one point. We will use Exer-
cise 1.16. One can always find two continuous functions f, g : R → R such that
fg(σ(S)) = 0, but f(σ(S)) 6= 0 and g(σ(S)) 6= 0. Then Exercise 1.16(3) together
with Lemma 1.15 implies f(X)g(X) = 0. Both f(X) and g(X) are non-zero inter-
twiners. At least one of Ker f(X) and Ker g(X) is a proper non-zero G-invariant
subspace of V . Contradiction. �

Corollary 1.21. Let ρ : G → U(V ) and ρ′ : G → U(V ′) be two topologically
irreducible unitary representations and T : V → V ′ be a continuous intertwining
operator. Then either T = 0 or there exists c > 0 such that cT : V → V ′ is an
isometry of Hilbert spaces.

Proof. Let T 6= 0. By Theorem 1.20 we have T ∗T = TT ∗ = λ Id for some
positive real λ. Set c = λ−1/2 and U = cT . Then U∗ = U−1, hence U is an
isometry. �
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Corollary 1.22. Every topologically irreducible unitary representation of an
abelian topological group G is one-dimensional.

1.6. Irreducible unitary representations of compact groups.

Proposition 1.23. Every non-zero unitary representation of a compact group G
contains a non-zero finite dimensional invariant subspace.

Proof. Let ρ : G → GL (V ) be an irreducible unitary representation. Choose
v ∈ V , ‖v‖ = 1. Define an operator T : V → V by the formula

Tx = 〈v, x〉 v.
One can check easily that T is a semipositive self-adjoint operator of rank 1.
Define the operator

Qx =

∫

G

ρgT
(
ρ−1g x

)
dg.

Exercise 1.24. Check Q : V → V is a compact semipositive intertwining oper-
ator.

Lemma 1.19 implies thatQ has a positive eigenvalue λ. ConsiderW = Ker (Q− λ Id).
Then W is an invariant subspace of V . Note that for any orthonormal system of vec-
tors e1, . . . , en ∈ W , one has

n∑

i=1

〈ei, T ei〉 ≤ 1.

Hence
n∑

i=1

〈ei, Qei〉 =
n∑

i=1

∫

G

〈ρgei, Tρgei〉 ≤ 1.

That implies λn ≤ 1. Hence dimW ≤ 1
λ
. �

Corollary 1.25. Every irreducible unitary representation of a compact group
G is finite-dimensional.

Lemma 1.26. Every topologically irreducible representation of G is isomorphic
to a subrepresentation of the regular representation in L2 (G).

Proof. Let ρ : G → GL (V ) be irreducible. Pick a non-zero continuous linear
functional ϕ on V and define the map Φ : V → L2 (G) which sends v to the ma-
trix coefficient fv,ϕ (g) = 〈ϕ, ρgv〉. The continuity of ρ and ϕ implies that fv,ϕ is a
continuous function on G, therefore fv,ϕ ∈ L2 (G). Furthermore

Rgfv,ϕ(h) = fv,ϕ(hg) = 〈ϕ, ρhgv〉 = 〈ϕ, ρhρgv〉 = fρgv,ϕ(h).

Hence Φ is a continuous intertwining operator and the irreducibility of ρ implies
KerΦ = 0. The bicontinuity assertion follows from Corollary 1.25. �
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Corollary 1.27. Every topologically irreducible representation of a compact
group G is equivalent to some unitary representation.

Corollary 1.28. Every irreducible continuous representation of a compact group
G is finite-dimensional.

Theorem 1.29. If ρ : G→ GL(V ) is a unitary representation, then for any closed
invariant subspace W ⊂ V there exists a closed invariant subspace U ⊂ V such that
V = U ⊕W .

Proof. Take U = W⊥. �

Let Ĝ denotes the set of isomorphism classes of irreducible unitary representations
of G. This set is called the unitary dual of G.

Lemma 1.30. Let V be a unitary representation of a compact group G. Then it
has a unique dense semi-simple G-submodule, namely ⊕ρ∈ĜHomG(Vρ, V )⊗ Vρ.

Proof. Let M = ⊕ρ∈ĜHomG(Vρ, V )⊗ Vρ, and M̄ denote the closure of M . We

claim that M̄ = V . Indeed, if M̄⊥ is not zero, then it contains an irreducible finite-
dimensional subrepresentation by Proposition 1.23, but any such representation is
contained in M .

On the other hand, if N is a dense semisimple submodule of V , then N must
contain all finite-dimensional irreducible subrepresentations of V . Therefore N =
M . �

2. Orthogonality relations and Peter–Weyl Theorem

2.1. Matrix coefficients. Let ρ : G→ GL (V ) be a unitary representation of a
compact group G. The function G→ C defined by the formula

fv,w (g) = 〈w, ρgv〉 .
for v, w in V is called a matrix coefficient of the representation ρ.

Since ρ is unitary, one has:

(3.3) fv,w
(
g−1
)
= f̄w,v (g) .

Theorem 2.1. For every irreducible unitary representation ρ : G→ GL (V ), one
has:

〈fv,w, fv′,w′〉 =
1

dim ρ
〈v, v′〉 〈w′, w〉 .

Moreover, the matrix coefficients of two non-isomorphic representations of G are
orthogonal in L2 (G).

Proof. Take v and v′ in V . Define T ∈ EndC (V ) by

Tx := 〈v, x〉 v′
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and let

Q =

∫

G

ρgTρ
−1
g dg.

As follows from Schur’s lemma, since ρ is irreducible, Q is a scalar multiplication.
Since

trQ = trT = 〈v, v′〉 ,
we obtain

Q =
〈v, v′〉
dim ρ

Id .

Hence

〈w′, Qw〉 = 1

dim ρ
〈v, v′〉 〈w′, w〉 .

On the other hand,

〈w′, Qw〉 =
∫

G

〈
w′,
〈
v, ρ−1g w

〉
ρgv

′〉 dg =
∫

G

fw,v
(
g−1
)
fv′,w′ (g) dg =

=

∫

G

f̄v,w (g) fv′,w′ (g) dg =
1

dim ρ
〈fv,w, fv′,w′〉 .

If fv,w and fv′,w′ are matrix coefficients of two non-isomorphic representations, then
Q = 0, and the calculation is even simpler. �

Corollary 2.2. Let ρ : G → GL(V ) and σ : G → GL(W ) be two irreducible
unitary representations, then 〈χρ, χσ〉 = 1 if ρ is isomorphic to σ and 〈χρ, χσ〉 = 0
otherwise.

Proof. Let v1, . . . , vn be an orthonormal basis in V and w1, . . . , wm be an or-
thonormal basis in W . Then

〈χρ, χσ〉 =
n∑

i=1

m∑

j=1

〈
fvi,vi , fwj ,wj

〉
.

Therefore the statement follows from Theorem 2.1. �

Lemma 2.3. Let ρ : G → GL(V ) be an irreducible unitary representation of G.
Then the map V → HomG(V, L

2(G)) defined by

w 7→ ϕw, ϕw(v) := fv,w for all v, w ∈ V
is an isomorphism of vector spaces.

Proof. It is easy to see that ϕw ∈ HomG(V, L
2(G)). Moreover, the value of

ϕw(w) at e equals 〈w,w〉. Hence ϕw 6= 0 if w 6= 0. Thus, the map is injective. To check
surjectivity note that HomG(V, L

2(G)) is the subspace of functions f : G × V → C
satisfying the condition

f(gh, v) = f(g, ρhv) for all v ∈ V, g, h ∈ G.
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For any such f there exists w ∈ V such that f(e, v) = 〈w, v〉. The above condition
implies f(g, v) = 〈w, ρgv〉, i.e. f = ϕw. �

Theorem 2.4. (Peter–Weyl) Matrix coefficients of all irreducible unitary repre-
sentations span a dense subspace in L2 (G) for a compact group G.

Proof. We apply Lemma 1.30 to the regular representation of G. Let ρ ∈ Ĝ.
Lemma 2.3 implies that Vρ⊗HomG(Vρ, L

2(G)) coincides with the space of all matrix
coefficients of ρ. Hence the span of matrix coefficients is the unique semisimple
G-submodule in L2(G). �

2.2. Convolution algebra. For a group G we define by L1(G) the set of all
complex valued functions ϕ on G such that

‖f‖1 :=
∫

G

|ϕ(g)|dg

is finite.

Definition 2.5. The convolution product of two continuous complex valued func-
tions ϕ and ψ on G is defined by the formula:

(3.4) (ϕ ∗ ψ)(g) :=
∫

G

ϕ(h)ψ(h−1g)dh.

Exercise 2.6. The following properties are easily checked:

(1) ‖ϕ ∗ ψ‖1 ≤ ‖ϕ‖1‖ψ‖1
(2) The convolution product extends uniquely as a continuous bilinear map

L1(G)× L1(G)→ L1(G).
(3) The convolution is an associative product.
(4) Let V be a unitary representation of G, show that we can see it as a L1(G)-

module by setting ϕ.v :=
∫
G
ϕ(g)g−1vdg.

Corollary 2.7. Let G be a compact group and R denote the representation of
G×G in L2 (G) given by the formula

Rs,tf (x) = f
(
s−1xt

)
.

Then

L2 (G) ∼=
⊕̂

ρ∈Ĝ
V ∗ρ ⊠ Vρ,

where the direct sum is in the sense of Hilbert spaces.
Moreover, this isomorphism is actually an isomorphism of algebras (without unit)

between L2(G) equipped with the convolution and
⊕̂

ρ∈ĜEnd(Vρ).

Proof. For any ρ ∈ Ĝ consider the map Φρ : V
∗
ρ ⊠ Vρ → L2(G) defined by

Φρ(v ⊗ w)(g) = 〈v, ρgw〉 .
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It is easy to see that Φρ defines an embedding of the irreducible G×G-representation
ρ∗ ⊠ ρ in L2(G). Moreover, by orthogonality relation 〈ImΦρ, ImΦσ〉 = 0 if ρ and
σ are not isomorphic. The direct sum

⊕
ρ∈Ĝ ImΦρ coincides with the span of all

matrix coefficients of all irreducible representations of G. Hence it is dense in L2(G).
That implies the first statement. The final statement is clear by applying item (4) of
Exercise 2.6. �

Remark 2.8. A finite group G is a compact group in discrete topology and
L2(G) with convolution product is the group algebra C(G). Therefore Theorem 1.13
of Chapter II is a particular case of Corollary 2.7 when the ground field is C.

Corollary 2.9. The characters of irreducible representations form an orthonor-
mal basis in the subspace of class function in L2 (G).

Proof. Let C(G) denote the subspace of class functions in L2(G), it is clearly
the center of L2(G). On the other hand, the center of End(Vρ) is C and its image
in L2(G) is Cχρ (χρ denotes as usual the character of ρ). The assertion is a direct
consequence of Corollary 2.7. �

Exercise 2.10. Let r : G → U(V ) be a unitary representation of a compact
group G and ρ be an irreducible representation with character χρ. Then the linear
operator

Pρ(x) :=
1

dim ρ

∫

G

χρ(g
−1)rgxdg

is a projector onto the corresponding isotypic component.

Exercise 2.11. Let E be a faithful finite-dimensional representation of a compact
group G. Show that all irreducible representations of G appear in T (E)⊗ T (E∗) as
subrepresentations. Hint: Note that G is a subgroup in GL(E). Using Weierstrass
theorem prove that matrix coefficient of E and E∗ generate a dense subalgebra in
L2(G) (with usual pointwise multiplication).

3. Examples

3.1. The circle. Let T = S1 = {z ∈ C | |z| = 1}, if z ∈ S1, one can write
z = eiθ with θ in R/2πZ. The Haar measure on S1 is equal to dθ

2π
. All irreducible

representations of S1 are one-dimensional since S1 is abelian. They are given by the

characters χn : S1 → C∗, χn (θ) = einθ, n ∈ Z. Hence Ŝ1 = Z and

L2
(
S1
)
= ⊕n∈ZCeinθ.

This is a representation-theoretic explanation of the Parseval theorem, meaning that
every square integrable periodic function is the sum (with respect to the L2 norm)
of its Fourier series.
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3.2. The group SU2. Consider the compact group G = SU2. Then G consists
of all matrices (

a b
−b̄ ā

)
,

satisfying the relations |a|2+ |b|2 = 1. Thus, as a topological space, SU2 is isomorphic
to the 3-dimensional sphere S3.

Exercise 3.1. Check that SU2 is isomorphic to the multiplicative subgroup of
quaternions with norm 1 by identifying the quaternion a+bi+cj+dk = a+bi+j(c+di)

with the matrix

(
a+ bi c+ di
−c+ di a− di

)
.

To find the irreducible representations of SU2, consider the polynomial ring
C [x, y], with the action of SU2 given by the formula

ρg (x) = ax+ by, ρg (y) = −b̄x+ āy, if g =

(
a b
−b̄ ā

)
.

Let ρn be the representation of G in the space Cn [x, y] of homogeneous polynomi-
als of degree n. The monomials xn, xn−1y, . . . , yn form a basis of Cn [x, y]. Therefore
dim ρn = n+1. We claim that all ρn are irreducible and that every irreducible repre-
sentation of SU2 is isomorphic to ρn for some n ≥ 0. We will show this by checking
that the characters χn of ρn form an orthonormal basis in the Hilbert space of class
functions on G.

Recall that every unitary matrix is diagonal in some orthonormal basis, therefore

every conjugacy class of SU2 intersects the diagonal subgroup. Moreover,

(
z 0
0 z̄

)

and

(
z̄ 0
0 z

)
are conjugate. Hence the set of conjugacy classes can be identified with

the quotient of S1 by the equivalence relation z ∼ z̄. Let z = eiθ, then

(3.5) χn (z) = zn + zn−2 + · · ·+ z−n =
zn+1 − z−n−1
z − z−1 =

sin (n+ 1) θ

sin θ
.

First, let us compute the Haar measure for G.

Exercise 3.2. Let G = SU2.
(a) Using Exercise 3.1 show that the action of G×G given by the multiplication

on the right and on the left coincides with the standard action of SO(4) on S3. Use
it to prove that SO(4) is isomorphic to the quotient of G × G by the two element
subgroup {(1, 1), (−1,−1)}.

(b) Prove that the Haar measure on G is proportional to the standard volume
form on S3 invariant under the action of the orthogonal group SO4.

More generally: let us compute the volume form on the n-dimensional sphere Sn ⊂
Rn+1 which is invariant under the action SOn+1. We use the spherical coordinates in
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Rn+1,

x1 = r cos θ, x2 = r sin θ cosϕ1, x3 = r sin θ sinϕ1 cosϕ2,
. . .
xn−1 = r sin θ sinϕ1 sinϕ2 . . . sinϕn−2 cosϕn−1,
xn = r sin θ sinϕ1 sinϕ2 . . . sinϕn−2 sinϕn−1,

where r > 0, θ, ϕ1, . . . , ϕn−2 vary in [0, π] and ϕn−1 ∈ [0, 2π]. The Jacobian relating
spherical and Euclidean coordinates is equal to

rn sinn−1 θ sinn−2 ϕ1 . . . sinϕn−2,

thus when we restrict to the sphere r = 1 we obtain the volume

sinn−1 θ sinn−2 ϕ1 . . . sinϕn−2dθdϕ1 . . . dϕn−1,

which is SOn+1-invariant. It is not normalized.
Let us return to the case G = SU2 ≃ S3. After normalization the invariant

volume form is
1

2π2
sin2 θ sinϕ1dθdϕ1dϕ2.

The conjugacy class C (θ) of all matrices with eigenvalues eiθ, e−iθ (θ ∈ [0, π]) is
the set of points in S3 with spherical coordinates (1, θ, ϕ1, ϕ2): indeed, the minimal
polynomial on R of the quaternion with those coordinates is

t2 − 2t cos θ + 1

which is also the characteristic polynomial of the corresponding matrix in SU2, so it
belongs to C(θ).

Hence, one gets that, for a class function ψ on G
∫

G

ψ (g) dg =
1

2π2

∫ π

0

ψ (θ) sin2 θdθ

∫ π

0

sinϕ1dϕ1

∫ 2π

0

dϕ2 =
2

π

∫ π

0

ψ (θ) sin2 θdθ.

Exercise 3.3. Prove that the functions χn form an orthonormal basis of the
space L2([0, π]) with the measure 2

π
sin2 θdθ and hence of the space of class functions

on G.

3.3. The orthogonal group G = SO3. Recall that SU2 can be realized as
the set of quaternions with norm 1. Consider the representation γ of SU2 in the
space of quaternions H defined by the formula γg (α) = gαg−1. One can see that
the 3-dimensional space Him of pure imaginary quaternions is invariant and (α, β) =
Re
(
αβ̄
)
is an invariant positive definite scalar product on Him. Therefore ρ defines

a homomorphism γ : SU2 → SO3.

Exercise 3.4. Check that Ker γ = {1,−1} and that γ is surjective. Hence SO3
∼=

SU2/ {1,−1}. Thus, we can see that as a topological space SO3 is a 3-dimensional
sphere with opposite points identified, or the real 3-dimensional projective space.
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Therefore every representation of SO3 can be lifted to the representations of SU2,
and a representation of SU2 factors to the representation of SO3 if and only if it
is trivial on −1. One can check easily that ρn (−1) = 1 if and only if n is even.
Thus, any irreducible representations of SO3 is isomorphic to ρ2m for some m > 0
and dim ρ2m = 2m + 1. Below we give an independent realization of irreducible
representation of SO3.

3.4. Harmonic analysis on a sphere. Consider the sphere S2 in R3 defined
by the equation

x21 + x22 + x23 = 1.

The action of SO3 on S2 induces the representation of SO3 in the space L2(S2) of
complex-valued squre integrable functions on S2. This representation is unitary. We
would like to decompose it into a sum of irreducible representations of SO3. We
note first that the space C[S2] obtained by restriction of the polynomial functions
C[x1, x2, x3] to S2 is the invariant dense subspace in L2(S2). Indeed, it is dense in
the space of continuous functions on S2 by the Weierstrass theorem and the latter
space is dense in L2(S2).

Let us introduce the following differential operators in R3:

e := −1

2

(
x21 + x22 + x23

)
, h := x1

∂

∂x1
+x2

∂

∂x2
+x3

∂

∂x3
+
3

2
, f :=

1

2

(
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)
,

note that e, f , and h commute with the action of SO3 and satisfy the relations

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f,
where [a, b] = ab− ba.

Let Pn be the space of homogeneous polynomial of degree n and Hn = Ker f ∩Pn.
The polynomials of Hn are called harmonic polynomials since they are annihilated
by the Laplace operator f . For any ϕ ∈ Pn we have

h (ϕ) =

(
n+

3

2

)
ϕ.

If ϕ ∈ Hn, then

fe (ϕ) = ef (ϕ)− h (ϕ) = −
(
n+

3

2

)
ϕ,

and by induction

fek (ϕ) = efek−1 (ϕ)− hek−1 (ϕ) = −
(
nk + k (k − 1) +

3k

2

)
ek−1ϕ.

In particular, this implies that

(3.6) fek (Hn) = ek−1 (Hn) .

We will prove now that

(3.7) Pn = Hn ⊕ e (Hn−2)⊕ e2 (Hn−4) + . . .
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by induction on n. Indeed, by the induction assumption

Pn−2 = Hn−2 ⊕ e (Hn−4) + . . . .

Furthermore, (3.6) implies fe (Pn−2) = Pn−2. Hence Hn ∩ ePn−2 = 0. On the
other hand, f : Pn → Pn−2 is surjective, and therefore dimHn + dimPn−2 = dimPn.
Therefore

(3.8) Pn = Hn ⊕ ePn−2,
which implies (3.7). Note that after restriction to S2, the operator e acts as the
multiplication on −1

2
.

Hence (3.7) implies that

C
[
S2
]
=
⊕

n≥0
Hn.

To calculate the dimension of Hn use (3.8)

dimHn = dimPn − dimPn−2 =
(n+ 1) (n+ 2)

2
− n (n− 1)

2
= 2n+ 1.

Finally, we will prove that the representation of SO3 in Hn is irreducible and
isomorphic to ρ2n. Consider the subgroup D ⊂ SO3 consisting of all rotations about
x3-axis. Then D is the image under γ : SU2 → SO3 of a diagonal subgroup of SU2.
Let Rθ denotes the rotation by the angle θ.

Exercise 3.5. Let V2n be the space of the representation ρ2n. Check that the set
of eigenvalues of Rθ in the representation V2n equals {ekθi | − n ≤ k ≤ n}.

Let ϕ = (x1 + ix2)
n. It is easy to see that ϕn ∈ Hn and Rθ(ϕn) = enθiϕn. By

Exercise 3.5 this implies that Hn contains a subrepresentation isomorphic to ρ2k for
some k ≥ n. By comparing dimensions we see that this implies Hn = V2n. Thus, we
obtain the following decompositions

C[S2] =
⊕

n∈N
Hn, L

2(S2) =
⊕̂

n∈N
Hn.

Now, we are able to prove the following geometrical theorem.

Theorem 3.6. A convex centrally symmetric solid in R3 is uniquely determined
by the areas of the plane cross-sections through the origin.

Proof. A convex solid B can be defined by an even continuous function on S2.
Indeed, for each unit vector v let

ϕ (v) = sup
{
t2 ∈ R | tv ∈ B

}
.

Define a linear operator T in the space of all even continuous functions on S2 by the
formula

Tϕ (v) =
1

2

∫ 2π

0

ϕ (w) dθ,
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where w runs the set of unit vectors orthogonal to v, and θ is the angular parameter
on the circle S2 ∩ v⊥. Check that Tϕ (v) is the area of the cross section by the plane
v⊥. We have to prove that T is invertible.

Obviously T commutes with the SO3-action. Therefore T can be diagonalized by
using Schur’s lemma and the decomposition

L2(G)even =
⊕̂

n∈N
H2n.

Indeed, T acts on H2n as the scalar operator λnId. We have to check that λn 6= 0 for
all n. Consider again ϕ2n ∈ H2n. Then ϕ2n (1, 0, 0) = 1 and

Tϕ2n (1, 0, 0) =
1

2

∫ 2π

0

(iy)2n dθ =
(−1)n

2

∫ 2π

0

sin2n θdθ,

here we take the integral over the circle x22+x
2
3 = 1, and assume x2 = sin θ, x3 = cos θ.

Since Tϕ = λnϕ, we obtain

λn =
(−1)n

2

∫ 2π

0

sin2n θdθ 6= 0.

�





CHAPTER 4

Some results about unitary representations

In this chapter, we consider unitary representations of groups which are locally
compact but no longer compact. We do not intend to go very far in this deep subject,
but we want to give three examples in order to show how the structure of the dual
of the group changes.

1. Unitary representations of Rn and Fourier transform

1.1. Unitary dual of an abelian group. Let G be an abelian topological
group. Then by Corollary 1.22 of Chapter III, every unitary representation of G is

one-dimensional. Therefore the unitary dual Ĝ is the set of continuous homomor-

phisms ρ : G→ S1. Moreover, Ĝ is an abelian group with multiplication defined by
the tensor product.

For example, as we have seen Section 3.1 chapter III, if G = S1 is a circle, then

Ĝ is isomorphic to Z. In general, if G is compact, then Ĝ is discrete. If G is not

compact, one can define a topology on Ĝ in such a way that the natural homomorphim

s : G→ ̂̂
G, defined by s(g)(ρ) = ρ(g), is an isomorphism. This fact is usually called

the Pontryagin duality.
Let us concentrate on the case when G = V is a real vector space of finite

dimension n. Let us fix an invariant volume form dx on V . The unitary dual of V is
isomorphic to the usual dual V ∗ via identification

ρξ(x) = e2iπ<ξ,x> for all x ∈ V, ξ ∈ V ∗,
where < ξ, x > is the duality evaluation.

We immediately see that, in contrast with the compact case, ρξ /∈ L2(V ). We
still can try to write down the formula for the projector Pξ from L2(V ) onto the
irreducible representation ρξ as in Exercise 2.10 Chapter III. For f ∈ L2(V ), y ∈ V
and ξ ∈ V ∗ we set

Pξ(f)(y) :=

∫

V

f(x+ y)e−2iπ<ξ,x>dx = (

∫

V

f(z)e−2iπ<ξ,z>dz)ρξ(y).

The coefficient
∫
V
f(z)e−2iπ<ξ,z>dz is nothing else but the value f̂(ξ) of the Fourier

transform f̂ . However, the integral defining f̂ is in general divergent for f ∈ L2(V ).
In this section we explain how to overcome this difficulty, see Plancherel Theorem
1.12.

67
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We also would like to claim that every f ∈ L2(V ) is “a sum” of its projections,
which leads to the formula

f(x) =

∫

V

f̂(y)e2iπ<ξ,x>dξ.

This is involutivity of the Fourier transfrom, see Theorem 1.7 below.

1.2. Fourier transform: generalities. Let L1(V ) be the set of integrable
complex-valued functions on V .

Definition 1.1. Let f ∈ L1(V ), the Fourier transform of f is the function on V ∗

f̂(ξ) :=

∫

V

f(x)e−2iπ<ξ,x>dx,

Remark 1.2. (1) One checks that lim
ξ→∞

f̂(ξ) = 0 and that f̂ is continuous on

V ∗.
(2) Nevertheless, there is no reason for f̂ to belong to L1(V ∗) (check on the

characteristic function of an interval in R).
(3) The Fourier transform of the convolution (cf Definition 2.5 Chapter III) of

two functions is the product of the Fourier transforms of the two factors.
(4) (Adjunction formula for Fourier transforms), let f ∈ L1(V ) and ϕ ∈ L1(V ∗),

then ∫

V

f(x)ϕ̂(x)dx =

∫

V ∗
f̂(ξ)ϕ(ξ)dξ.

Exercise 1.3. Let γ ∈ GL(V ), show that the Fourier transform of the function

γ.f defined by (γ.f)(x) = f(γ−1(x)) is det(γ)tγ−1.f̂ .

Let us consider the generalized Wiener algebra W(V ) consisting of integrable
functions on V whose Fourier transform is integrable on V ∗.

Proposition 1.4. The subspace W(V ) ⊂ L1(V ) is a dense subset (for the L1-
norm).

Proof. Let Q be a positive definite quadratic form on V , denote by B its polar-
ization and by Q−1 the quadratic form on V ∗ whose polarization is B−1. Let Disc(Q)
denote the discriminant of Q in a basis of V of volume 1.

Lemma 1.5. The Fourier transform of the function φ : x 7→ e−πQ(x) on V is the
function ξ 7→ Disc(Q)−1/2e−πQ

−1(ξ) on V ∗.

Proof. (of the lemma) One can reduce this lemma to the case n = 1 by using an
orthogonal basis for Q and Fubini’s theorem. We just need to compute the Fourier
transform of the function ǫ(x) := x 7→ e−πx

2
on the line R.

One has

ǫ̂(ξ) =

∫

R

e−πx
2−2iπξxdx = e−πξ

2

∫

R

e−π(x+iξ)
2

dx.
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By complex integration, the integral factor in the far-right-hand side does not depend
on ξ and its value for ξ = 0 is the Gauss integral

∫
R
e−πx

2
dx = 1. Hence the

lemma. �

To finish the proof of Proposition let us takeQ such thatDisc(Q) = 1. The lemma
implies that φ belongs to W(V ). For every λ ∈ R>0, we set φλ(x) := λnφ(λx).

Exercise 1.6. Check that φλ(x) is a positive-valued function and
∫
V
φλ(x)dx =

1. Prove that when λ tends to infinity φλ(x) converges uniformally to 0 in the
complement of any neighbourhood of 0 ∈ V .

Now take any function f ∈ L1(V ). By Remark 1.2 the convolution product
fλ := f ∗φλ belongs toW(V ). By the exercise fλ converges to f for the L1-norm. �

Theorem 1.7. (Fourier reciprocity) Let f ∈ W(V ), one has, for all x ∈ V :

ˆ̂
f(x) = f(−x).

Proof. By Proposition 1.4 the set of continuous bounded functions is dense in
W(V ). Hence it suffices to prove the statement for continuous bounded f . We use a
slight extension of the adjunction formula (Remark 1.2, (4)): let λ ∈ R>0, one has,
for all f ∈ L1(V ) and ϕ ∈ L1(V ∗),

(4.1)

∫

V

f(λx)ϕ̂(x)dx =

∫

V ∗
f̂(ξ)ϕ(λξ)dξ =

∫∫

V×V ∗
f(x)ϕ(ξ)e−2iπλ<ξ,x>dxdξ.

If λ goes to 0, the function x 7→ f(λx) tends to f(0) and remains bounded by sup | f |.
By dominated convergence, we obtain the equality

(4.2) f(0) ˆ̂ϕ(0) =
ˆ̂
f(0)ϕ(0).

We know that, if ϕ(ξ) = φ(ξ) (see Lemma 1.5) ˆ̂ϕ = ϕ, thus
ˆ̂
f(0) = f(0).

We use the actions of the additive group V on W(V ) given by

τy(f) : (x 7→ f(x− y))
and on W(V ∗) given by

µy(ϕ) : ξ 7→ e−2iπ<ξ,y>ϕ(ξ)

for all y ∈ V .

Exercise 1.8. Check that

(1) τ̂y(f) = µy(f̂) for all f ∈ L1(V ),

(2) µ̂y(ϕ) = τ−y(ϕ̂) for all ϕ ∈ L1(V ∗).

We apply τy to f , Exercise 1.8 shows that
̂̂
τy(f) = τ−y

ˆ̂
f , hence the result. �
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Remark 1.9. Fourier reciprocity is equivalent to the following statement

(4.3)
¯̄̂
f̂ = f

where f̄ denotes the complex conjugate of f .

Corollary 1.10. The space W(V ) is a dense subspace in L2(V ).

Proof. By Theorem 1.7 and Remark 1.2, W(V ) is a subset of the set C0(V ) of
continuous functions on V which tend to 0 at infinity. Here we need a reference,
Rudin? Therefore W(V ) is included in L2(V ). The proof of Proposition 1.4 can be
adapted to prove the density of W(V ) in L2(V ) (using that φ ∈ L2(V )). �

Corollary 1.11. The Fourier transform is an injective map from L1(V ) to
C0(V ∗).

Proof. We first notice that W(V ) is dense in C0(V ) by the same argument as
in the proof of the Proposition 1.4.

Hence, if f ∈ L1(V ) is such that f̂ = 0, to show that f = 0 it suffices to prove
that ∫

V

f(x)g(x)dx = 0

for any g ∈ W(V ). By Theorem 1.7, g is the Fourier transform of ξ 7→ ĝ(−ξ) and by
Remark 1.2(4), one has

∫

V

f(x)g(x)dx =

∫

V ∗
f̂(ξ)ĝ(−ξ)dξ = 0

. �

Theorem 1.12. (Plancherel) The Fourier transform extends to an isometry from
L2(V ) to L2(V ∗).

Proof. Since W(V ) is dense in L2(V ), all we have to show is that for f and g
in W(V ), one has

(4.4)

∫

V

f̄(x)g(x)dx =

∫

V ∗

¯̂
f(ξ)ĝ(ξ)dξ.

By Remark 1.2 (4), the right-hand side is equal to
∫

V

ˆ̂̄
f(x)g(x)dx.

But, by Remark 1.9 (4.3),
ˆ̂̄
f = f̄ , QED. �

Remark 1.13. This result amounts to saying that the Fourier transform in gen-
eralized Wiener algebras changes the usual product into the convolution product.
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1.3. The link between Fourier series and Fourier transform on R. Let f
be a function over the interval [−1

2
, 1
2
]. The Fourier series of f is

(4.5)
∑

n∈Z
cn(f)e

2iπnx

where

cn :=

∫ 1
2

− 1
2

f(t)e−2iπntdt.

Now, for λ ∈ R>0, if g is a function defined over the interval [−λ
2
, λ
2
], changing the

variable by y := λx, the corresponding Fourier series is written

(4.6)
∑

n∈Z

(∫ λ
2

−λ
2

1

λ
g(u)e−2iπn

u
λdu

)
e2iπn

y
λ .

We consider that, formally, g is the sum of its Fourier series on [−λ
2
, λ
2
].

Now if we consider g as a function defined on R with compact support by extend-
ing by 0 outside the interval [−λ

2
, λ
2
], we may interpret the n-th Fourier coefficient as

1
λ
ĝ(n

λ
) and the Fourier series as the sum

(4.7)
1

λ

∑

n∈Z
ĝ(
n

λ
)e2iπ

ny
λ .

Formally, this series is exactly the Riemann sum, corresponding to the partition of
R associated to the intervals [n

λ
, n+1

λ
], of the infinite integral

∫
R
f̂(t)e2iπntdt.

If now g is compactly supported and λ tends to +∞, this formal expression of
the sum suggests the equality

g(t) =

∫

R

ĝ(u)e2iπtudu.

2. Heisenberg groups and the Stone-von Neumann theorem

2.1. The Heisenberg group and some examples of its unitary represen-
tation. Let V be a vector space over R of finite even dimension n = 2g together
with a non-degenerate symplectic form ω : (x, y) 7→ (x|y). Let T = S1 be the group
of complex numbers of modulus 1. We define the Heisenberg group H as the set
theoretical product T× V with the composition law

(t, x)(t′, x′) := (tt′eiπ(x|x
′), x+ x′).

The centre of H is T, imbedded in H by t 7→ (t, 0). There is non split exact sequence

1→ T→ H → V → 0.

The commutator of elements of H naturally factorises as the map V × V → T

(x, y) 7→ e2iπ(x|y).
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Exercise 2.1. Define a representation r of the group H in the space L2(V ) by
the formula

r(t,x)f(y) := tf(y − x)eiπ(x|y) for all t ∈ T, x, y ∈ V, f ∈ L2(V ).

Check that r is a unitary representation of H.

Exercise 2.2. Consider in V two maximal isotropic subspaces with zero inter-
section. If we denote one of them by W , then the second one can be identified by ω
with the dual space W ∗. Since the restriction of ω to both W and W ∗ is zero, the
map x 7→ (1, x) from V to H induces groups homomorphisms on both W and W ∗.

The Schrödinger representation σ of H in the Hilbert space L2(W ) is defined by

σ(t,w+η)f(x) = tf(x− w)e2iπ(η|x) for all t ∈ T, x, w ∈ W, η ∈ W ∗, f ∈ L2(W ).

Prove that σ is an irreducible unitary representation of H. To show irreducibility
it suffices to check that any bounded operator T in L2(W ) commuting with the action
of H is a scalar multiplication. First, since T commutes with the action of W ∗, it
commutes also with multiplication by any continuous function with compact support.
Making use of partitions of unity, show that this implies that T is the multiplication
by some bounded measurable function g on W . Moreover, since T commutes with
the action of W , the function g is invariant under translations, hence is a constant
function.

2.2. The Stone–von Neumann theorem. The aim of this subection is to
show

Theorem 2.3. (Stone–von Neumann) Let ρ be a unitary representation ofH such
that ρt = t Id for all t ∈ T. Then ρ is isomorphic to the Schrödinger representation.

Let H be a Hilbert space together with an action ρ of the Heisenberg group H:
we assume that the hypotheses of the theorem are satisfied by (ρ,H). To simplify
the notations, we identify x ∈ V with (1, x) ∈ H, although it is not a group ho-
momorphism. We set ρ(x) := ρ(1,x) for all x ∈ V . Then the condition that ρ is a
representation is equivalent to

(4.8) ρ(x)ρ(y) = eiπ(x|y)ρ(x+ y).

We denote by A the minimal closed subalgebra of the algebra B(H) of bounded
operators on H, which contains the image ρH . Let C0c (V ) be the space of compactly
supported continuous complex valued functions on V . For every ϕ ∈ C0c (V ), set

Tϕ :=

∫

V

ϕ(x)ρ(x)dx,

where dx is the Lebesgue measure on V . It is easy to see that Tϕ ∈ A. We have

TϕTψ =

∫∫

V×V
ϕ(x)ψ(y)ρ(x)ρ(y)dxdy
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TϕTψ =

∫∫

V×V
ϕ(x)ψ(y)eiπ(x|y)ρ(x+ y)dxdy

TϕTψ =

∫∫

V×V
ϕ(x)ψ(u− x)eiπ(x|u−x)ρ(u)dxdu

TϕTψ = Tϕ>ψ,

where ϕ> ψ is defined by the formula

(4.9) ϕ> ψ(u) =

∫

V

ϕ(x)ψ(u− x)eiπ(x|u−x)dx.

Since clearly ||Tϕ|| ≤ ‖ϕ‖1(=
∫
V
|ϕ(x)|dx), we get the following statements:

• The map ϕ 7→ Tϕ extends by continuity to L1(V ), the space of integrable
complex valued functions on V .
• The product (ϕ, ψ) 7→ ϕ> ψ extends to a product L1(V )× L1(V )→ L1(V )
• The formula (4.9) remains valid for ϕ and ψ in L1(V ) for almost every u ∈ V .

Lemma 2.4. The map ϕ 7→ Tϕ is injective on L1(V ).

Proof. Denote by N the kernel of this map. We notice the equality

ρ(y)Tϕρ(−y) =
∫

V

ϕ(x)ρ(y)ρ(x)ρ(−y)dx =

∫

V

ϕ(x)e2iπ(y|x)ρ(x)dx.

It shows that if ϕ(x) is in N then ϕ(x)e2iπ(y|x) lies in N for every y ∈ V . For a, b in
H, consider the matrix coefficient function

χa,b(x) =< ρ(x)a, b >,

where <,> is the scalar product on H. It is a continuous bounded function of x ∈ V .
Moreover, for any x, there exists at least one coefficient function which doesn’t vanish
at x.

If ϕ belongs to N , we have ∫

V

ϕ(x)χa,b(x)dx = 0,

and therefore ∫

V

ϕ(x)χa,b(x)e
2iπ(x|y)dx = 0

for all y ∈ V . This means that the Fourier transform of the function ϕχa,b ∈ L1(V )
is identically zero, hence ϕχa,b = 0 for all a, b, therefore ϕ = 0. �

We will also use the following equality:

(4.10) T ∗ϕ = Tϕ∗ ,

with ϕ∗(x) := ϕ(−x).
Our ultimate goal is to construct a continuous intertwiner τ : L2(V ) → H. The

following observation is crucial for this construction.
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Lemma 2.5. (a) For all f ∈ C0c (V ) and h ∈ H we have Trhf = ρhTf .
(b) For any u ∈ H the map πu := C0c (V ) → H defined by f 7→ Tfu is H-

equivariant.

Proof. It suffices to check (a) for h = (1, y) with y ∈ V . Then using (4.8) and
making the substitution z = x− y we have

Trhf =

∫

V

f(x−y)ρ(x)eiπ(y|x)dx =

∫

V

f(x−y)ρ(y)ρ(x−y)dx = ρ(y)

∫

V

f(z)ρ(z)dz = ρ(y)Tf .

(b) follows immediately from (a). �

Thus we have an equivariant map πu : C0c (V )→ H. It remains to show that for a
suitable choice of u ∈ H we are able to extend πu to a continuous map L2(V )→ H.

Lemma 2.6. Let ϕ be a continuous bounded function on V which lies in the
intersection L1(V ) ∩ L2(V ). Assume that Tϕ is an orthogonal projection onto a line
Cεφ for some vector εϕ in H of norm 1. Then the map πεϕ : C0c (V ) → H extends to
a continuous linear H-equivariant map τ : L2(V )→ H.

Proof. Observe that for any f ∈ L2(V ) the convolution f > ϕ lies in L1(V ).
Hence we can use

Tfεϕ = TfTϕεϕ = Tf>ϕεϕ.

�

The next step is to look for a function ϕ such that Tϕ is an orthogonal projector
of rank 1.

Lemma 2.7. Let P ∈ B(H) be a self-adjoint bounded operator and P 6= 0. Then
P is a scalar multiple of an orthogonal projector of rank 1 if and only if for any x ∈ V
we have

(4.11) Pρ(x)P ∈ CP

Proof. Note that if P is a multiple of an orthogonal projector of rank 1, then
clearly Pρ(x)P ∈ CP for all x ∈ V .

Assume now that P satisfies the latter condition. First, we have P 2 = λP for
some non-zero λ. Hence after normalization we can assume P 2 = P . Hence P is a
projector. It is an orthogonal projector since P is self-adjoint.

It remains to prove that P has rank 1. Let u be a non-zero vector in P (H) andM
be the span of ρ(x)u for all x ∈ V . The assumption on P implies that M is included
in Cu ⊕ KerP . Irreducibility of H implies that M is dense in H. Hence we have
H = Cu⊕KerP . Hence P has rank 1. �

Lemma 2.8. Let ϕ be an element in L1(V ) and ϕ = ϕ∗. Then Tϕ is a multiple of
an orthogonal projection on a line if and only if for all u ∈ V , the function

x 7→ ϕ(u+ x)ϕ(u− x)
is its own Fourier transform.
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Remark 2.9. Note that the Fourier transform is defined on the dual V ∗ of V ,
and those spaces are identitified through the symplectic form ω. We will refer to this
characterisation of ϕ as the functional equation.

Proof. We use Lemma 2.7. Let v ∈ V . We compute

Tϕρ(v)Tϕ =

∫∫

V×V
ϕ(x)ϕ(y)ρ(x)ρ(v)ρ(y)dxdy

=

∫∫

V×V
ϕ(x)ϕ(y)eiπ((x|v)+(x|y)+(v|y))ρ(x+ v + y)dxdy

=

∫∫

V×V
ϕ(x)ϕ(z − v − x)eiπ((x|v)+(x|z)+(v|z))ρ(z)dxdz.

For almost every value of z, this operator is Tψ for

ψ(v, z) =

∫

V

ϕ(x)ϕ(z − v − x)eiπ((x|v)+(x|z)+(v|z))dx

by Fubini’s theorem. The relation (4.11) is equivalent to the fact that for every v,
ψ = C(v)ϕ. So (4.11) is equivalent to:

∫

V

ϕ(x)ϕ(z − v − x)eiπ((x|v)+(x|z)+(v|z))dx = C(v)ϕ(z).

In the left hand side, we set x = −y and use ϕ∗ = ϕ. Then we obtain
∫

V

ϕ(y)ϕ(v − z − y)e−iπ((y|v)+(y|z)+(z|v))dy = C(v)ϕ(z) = C(z)ϕ(v).

Hence

(4.12)
ϕ(z)

C(z)
=
ϕ(v)

C(v)

so that ϕ(z)

C(z)
does not depend on z, moreover it is equal to its complex conjugate hence

belongs to R. We set C = ϕ(z)

C(z)
, and get C(z) = Cϕ(−z).

Finally,
∫

V

ϕ(x)ϕ(z − v − x)eiπ((x|v)+(x|z)+(v|z))dx = Cϕ(−v)ϕ(z).

Now we set t := x− 1
2
(z − v) and we get

∫

V

ϕ(
z − v
2

+ t)ϕ(
z − v
2
− t)eiπ(t|z+v)dt = Cϕ(−v)ϕ(z).

The left hand side is precisely the value at z+v
2

of the Fourier transform of t 7→
ϕ( z−v

2
+ t)ϕ( z−v

2
− t), now Fourier reciprocity implies C2 = 1 and C is a positive real

number as can be seen by setting z = v in (4.12), hence the Lemma. �
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In order to find a non-trivial solution of the functional equation, we choose a
positive definite quadratic form Q on V , denote by B : V → V ∗ the morphism
induced by the polarization of Q. We recall (Lemma 1.5) that the Fourier transform

of the function z 7→ e−πQ(z) on V is the function w 7→ Disc(Q)−
1
2 e−πQ

−1(w) on V ∗.
Let Ω : V → V ∗ be the isomorphism induced by the symplectic form ω.

Lemma 2.10. The function x 7→ ψ(x) = e−πQ(x) is its own Fourier transform if
and only if one has

(Ω−1B)2 = −IdV .
Proof. Straightforward computation. �

Lemma 2.11. The function

ϕ(x) := e−π
Q(x)

2

satisfies the functional equation of Lemma 2.8.

Proof. This is easily shown using the fact that ϕ(u+ x)ϕ(u− x) = ϕ2(u)ϕ2(x).
�

Now by application of Lemma 2.6 we obtain a boundedH-invariant linear operator
τ : L2(V ) → H. Consider the dual operator τ ∗ : H → L2(V ). The composition
ττ ∗ is a bounded intertwiner in H. Hence Theorem 1.20 Chapter III implies that
ττ ∗ = λ IdH for some positive real λ (since ττ ∗ is self-adjoint positive). Next we will
show that λ = 1.

Lemma 2.12. We have τ ∗(εϕ) = ϕ and ττ ∗ = IdH.

Proof. Consider the operator Y : L2(V )→ L2(V ) defined by Y (f) := ϕ>f>ϕ.
Lemma 2.4 and relations ϕ > ϕ = ϕ, TϕTfTϕ ∈ CTϕ imply that Y is an orthogonal
projection on the line Cϕ. Hence Y (f) = 〈ϕ, f〉L2(V ) ϕ. If f is orthogonal to τ ∗(εϕ),
then

〈τ ∗(εϕ), f〉L2(V ) = 〈εϕ, τ(f)〉H = 〈εϕ, Tf (εϕ)〉H = 0.

This is equivalent to TϕTfTϕ = TY (f) = 0. Hence f is orthogonal to ϕ. We obtain
that τ ∗(εϕ) = cϕ for some c ∈ C. But

c = 〈cϕ, ϕ〉L2(V ) = 〈τ ∗(εϕ), ϕ〉L2(V ) = 〈εϕ, τ(ϕ)〉H = 〈εϕ, εϕ〉H = 1.

The first assertion is proved.
Now

〈ττ ∗(εϕ), εϕ〉H = 〈τ ∗(εϕ), τ ∗(εϕ)〉L2(V ) = 〈ϕ, ϕ〉L2(V ) = 1.

Hence the second assertion. �

Thus, we have shown that an arbitrary irreducible unitary representation H is

equivalent to the subrepresentation of L2(V ) generated by ϕ(x) = e−π
Q(x)

2 . Hence
the Stone-von Neumann theorem is proved.
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2.3. Fock representation. Let us continue with a lovely avatar of this repre-
sentation, the Fock representation. We would like to characterize the image τ ∗(H)
inside L2(V ).

Just before Lemma 2.10, we chose a quadratic form Q on V such that (Ω−1B)2 =
−IdV , and this equips V with a structure of complex vector space of dimension g for
which Ω−1B is the scalar multiplication by the imaginary unit i. We denote by J
this complex structure and by VJ the corresponding complex space.

Furthermore B + iΩ : VJ → V ∗J is a sesiquilinear isomorphism, we denote by A
the corresponding Hermitian form on VJ .

In this context, for a given x ∈ V we have:

(4.13) r(1,x)ϕ(y) = ϕ(y − x)eiπ(x|y) = e−π
Q(y−x)

2
+iπ(x|y) = e−π(

Q(x)+Q(y)
2

−A(x,y))

which is the product of ϕ(y) with a holomorphic function of f(y) = e−π(
Q(x)

2
−A(x,y)).

The Fock representation associated to the complex structure J is the subspace
FJ ⊂ L2(V ) consisting of the products fϕ where ϕ was defined before and f is
a holomorphic function on VJ . We have just proven that this space is stable un-
der the H-action. Moreover, it is closed in L2(V ) since holomorphy is preserved
under uniform convergence on compact sets. Let us choose complex coordinates
z = (z1, . . . , zg) in VJ so that the Hermitiam product has the form A(w, z) =

∑
w̄izi.

The scalar product (·, ·)F in FJ is given by

(fϕ, gϕ)F =

∫

V

f̄(z)g(z)e−π|z|
2

dz̄dz,

where |z|2 =
∑g

i=1 |zi|2. If m = (m1, . . . ,mg) ∈ Zg we denote by zm the monomial
function zm1

1 . . . z
mg
g . Any analytic function f(z) can be represented by a convergent

series

(4.14) f(z) =
∑

m∈Zg

amz
m.

Exercise 2.13. Check that if f(z)ϕ ∈ FJ then the series

f(z)ϕ =
∑

m∈Zg

amz
mϕ

is convergent in the topology defined by the norm in FJ . Furthermore, prove that
{zm |m ∈ Zg} is an orthogonal topological basis of FJ .

Lemma 2.14. The image τ ∗(H) is equal to FJ . Hence the representation of H in
FJ is irreducible.

Proof. Recall that τ ∗(εϕ) = ϕ. Therefore taking into account (4.13) it is suf-
ficient to show that the set {e−πA(x,y)ϕ(y) | x ∈ V } is dense in FJ . Let fϕ ∈ FJ .
Assume that

(f(y)ϕ(y), e−πA(x,y))F = 0 for all x ∈ V.
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In the z-coordinates it amounts to saying that

F (w) =

∫

V

f̄(z)e
∑g

i=1 wizie−π|z|
2

dz̄dz

is identically zero. Note that then the partial derivative

∂F

∂wi
=

∫

V

zif̄(z)e
∑g

i=1 wizie−π|z|
2

dz̄dz,

is also zero. Hence for every monomial zm and w ∈ VJ we have
∫

V

zmf̄(z)e
∑g

i=1 wizie−π|z|
2

dz̄dz = 0.

Consider the Taylor series (4.14). By Exercise 2.13 we have for any w ∈ VJ
∫

V

f(z)f̄(z)e
∑g

i=1 wizie−π|z|
2

dz̄dz = 0,

in particular, ∫

V

f(z)f̄(z)dz̄dz = 0,

which implies f(z) = 0. Hence the set {e−πA(x,y)ϕ(y) | x ∈ V } is dense in FJ . �

Exercise 2.15. Check that f > ϕ ∈ FJ for any f ∈ L2(V ). Therefore the map
f 7→ f > ϕ from L2(V ) to L2(V ) is an orthogonal projection onto FJ .

2.4. Unitary dual of H. Now it is not hard to classify unitary irreducible
representations of the Heisenberg group H. If ρ is an irreducible representation of
H in a Hilbert space H, then by Theorem 1.20 Chapter III, for every t ∈ T we have

ρt = χt IdH for some character χ ∈ T̂. In other words, using the description of T̂,
ρt = tn IdH for some n ∈ Z. Hence we have defined the map Φ : Ĥ → Z = T̂.

We know that the fiber Φ−1(1) = {σ} is a single point due to the Stone–von
Neumann theorem. We claim that for any n 6= 0 the fiber Φ−1(n) is also a single
point. Indeed, consider a linear transformation γ of V such that 〈γ(x)|γ(y)〉 = n 〈x|y〉.
Then we can define a homomorphism γ̃ : H → H by setting γ̃(t, x) = (tn, γ(x)). We
have the exact sequence of groups

1→ Z/nZ→ H
γ̃−→ H → 1.

If ρ lies in the fiber over n, then Ker ρ ⊂ Ker γ̃. Hence ρ = γ̃ ◦ ρ′, where ρ′ lies in
Φ−1(1). Thus, ρ ≃ γ̃ ◦ σ.

Finally, Φ−1(0) consists of all representations which are trivial on T. Therefore
Φ−1(0) coincides with the unitary dual of V = H/T and hence isomorphic to V ∗.
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3. Representations of SL2 (R)

In this section we give a construction of all up to isomorphism unitary irreducible
representations of the group SL2(R). We do non provide a proof that our list is
complete and refer to ?? for this.

3.1. Geometry of SL2(R). In this section we use the notation

G = SL2 (R) = {g ∈ GL2 (R) | det g = 1} .

Exercise 3.1. (a) Since G = {
(
a b
c d

)
| ad − bc = 1}, topologically G can be

described as a non-compact 3-dimensional quadric in R4.
(b) Conjugacy classes in G are given by the equations tr g = c, where c ∈ R, with

exception of the case tr g = ±2.
(c) The only proper non-trivial normal closed subgroup of G is the center {1,−1}.
Let us start with the following observation.

Lemma 3.2. Let ρ : G → GL(V ) be a unitary finite-dimensiona representation
of G. Then ρ is trivial.

Proof. Let g =

(
1 1
0 1

)
. Then gk is congugate to g for every non-zero integer

k. Hence tr ρg = tr ρgk . Note that ρg is unitary and hence diagonalizable in V . Let
λ1, . . . , λn be the eigenvalues of ρg (taken with muliplicities). Then for any k 6= 0 we
have

λ1 + · · ·+ λn = λk1 + · · ·+ λkn.

Hence λ1 = · · · = λn = 1. Then g ∈ Ker ρ. By Exercise 3.1 we have G = Ker ρ. �

Let K be the subgroup of matrices

gθ =

(
cos θ sin θ
− sin θ cos θ

)
.

The groupK is a maximal compact subgroup of G, clearlyK is isomorphic to T = S1.
If ρ : G → GL (V ) is a unitary representation of G in a Hilbert space then the re-
stricted K-representation ResK ρ splits into the sum of 1-dimensional representations
of K. In particular, one can find v ∈ V such that, for some n, ρgθ (v) = einθv. We
define the matrix coefficient function f : G→ C by the fomula

f (g) = 〈v, ρgv〉 .
Then f satisfies the condition

f (ggθ) = einθf (g) .

Thus, one can consider f as a section of a line bundle on the space G/K (if n = 0,
then f is a function). Thus, it is clear that the space G/K is an important geometric
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object, on which the representations of G are “realized”. To be a trifle more precise,
consider the quotient (G× C)/K where K acts on G by right multiplication and on
C by einθ. It is a topological line bundle on G/K, and one can see f as a section of
this bundle.

Consider the Lobachevsky plane

H = {z = x+ iy ∈ C | y > 0}

equipped with the Riemannian metric defined by the formula dx2+dy2

y2
and the corre-

sponding volume form dxdy
y2

. Then G coincides with the group of rigid motions of H

preserving orientation. The action of the matrix

(
a b
c d

)
∈ G on H is given by the

formula

z 7→ az + b

cz + d
.

Exercise 3.3. Check that G acts transitively on H, preserves the metric and the
volume. Moreover, the stabilizer of i ∈ H coincides with K. Thus, we identify H
with G/K.

3.2. Discrete series. Those are the representations with matrix coefficients in
L2 (G). For n ∈ Z>1, let H+

n be the space of holomorphic densities on H, i.e. the

set of formal expressions ϕ (z) (dz)n/2, where ϕ (z) is a holomorphic function on H
satisfying the condition that the integral

∫

H

|ϕ|2yn−2dzdz̄

is finite. Define a representation of G in H+
n by the formula

ρg

(
ϕ (z) (dz)n/2

)
= ϕ

(
az + b

cz + d

)
1

(cz + d)n
(dz)n/2 ,

and a Hermitian product on Hn by the formula

(4.15)
〈
ϕ (dz)n/2 , ψ (dz)n/2

〉
=

∫

H

ϕ̄ψyn−2dzdz̄,

for n > 1. For n = 1 the product is defined by

(4.16)
〈
ϕ (dz)n/2 , ψ (dz)n/2

〉
=

∫ ∞

−∞
ϕ̄ψdx,

in this case H+
1 consists of all densities which converge to L2-functions on the bound-

ary (real line).

Exercise 3.4. Check that this Hermitian product is invariant.
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To show that H+
n is irreducible it is convenient to consider the Poincaré model of

the Lobachevsky plane using the conformal map

w =
z − i
z + i

,

that maps H to the unit disk |w| < 1. Then the group G acts on the unit disk by
linear-fractional maps w 7→ aw+b

b̄w+ā
for all complex a, b satisfying |a|2 − |b|2 = 1, and

K is defined by the condition b = 0. If a = eiθ, then ρgθ (w) = e2iθw. The invariant
volume form is dwdw̄

1−w̄w .

It is clear that wk (dw)n/2 for all k ≥ 0 form an orthogonal basis in H+
n , each

vector wk (dw)n/2 is an eigen vector with respect to K, namely

ρgθ

(
wk (dw)n/2

)
= e(2k+n)iθwk (dw)n/2 .

It is easy to check now thatH+
n is irreducible. Indeed, every invariant closed subspace

M in H+
n has a topological basis consisting of eigenvectors of K, in other words

wk (dw)n/2 for some positive k must form a topological basis of M . Without loss of

generality assume that M contains (dw)n/2, then by applying ρg one can get that
1

(bw+a)n
(dw)n/2, and in Taylor series for 1

(bw+a)n
all elements of the basis appear with

non-zero coefficients. That implies wk (dw)n/2 ∈M for all k ≥ 0, hence M = H+
n .

One can construct another series H−n by considering holomorphic densities in the
lower half-plane Re z < 0.

Exercise 3.5. Check that all representations in the discrete series H±n are pair-
wise non-isomorphic.

3.3. Principal series. These representations are parameterized by a continu-
ous parameter s ∈ Ri (s 6= 0). Consider now the action of G on the real line by
linear fractional transformations x 7→ ax+b

cx+d
. Let P+

s denotes the space of densities

ϕ (x) (dx)
1+s
2 with G-action given by

ρg

(
ϕ (x) (dx)

1+s
2

)
= ϕ

(
ax+ b

cx+ d

)
|cx+ d|−s−1.

The Hermitian product given by

(4.17) 〈ϕ, ψ〉 =
∫ ∞

−∞
ϕ̄ψdx

is invariant. The property of invariance justify the choice of weight for the density as

(dx)
1+s
2 (dx)

1+s̄
2 = dx, thus the integration is invariant. To check that the represen-

tation is irreducible one can move the real line to the unit circle as in the example

of discrete series and then use eikθ (dθ)
1+s
2 as an orthonormal basis in P+

s . Note that
the eigen values of ρgθ in this case are e2kiθ for all integer k.
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The second principal series P−s can be obtained if instead of densities we consider
the pseudo densities which are transformed by the law

ρg

(
ϕ (x) (dx)

1+s
2

)
= ϕ

(
ax+ b

cx+ d

)
|cx+ d|−s−1 sgn (cx+ d) dx

1+s
2 .

3.4. Complementary series. Those are representations which do not appear
in the regular representation L2 (G). They can be realized as the representations in

Cs of all densities ϕ (x) (dx)
1+s
2 for real 0 < s < 1 and have an invariant Hermitian

product

(4.18) 〈ϕ, ψ〉 =
∫ ∞

−∞

∫ ∞

−∞
ϕ̄ (x)ψ (y) |x− y|s−1dxdy.



CHAPTER 5

On algebraic methods

1. Introduction

Say a few words about infinite direct sums and products, talk about Zorn’s lemma.
Emphasize that we are now in full generality.

2. Semisimple modules and density theorem

2.1. Semisimplicity. Let R be a unital ring. We will use indifferently the terms
R-module and module whenever the context is clear.

Definition 2.1. An R-module M is semisimple if for any submodule N ⊂ M
there exists a submodule N ′ of M such that M = N ⊕N ′.

Recall that an R-module M is simple if any submodule of M is either M or 0.
Clearly, a simple module is semi-simple.

Exercise 2.2. Show that if M a semisimple R-module and if N is a quotient of
M , then N is isomorphic to some submodule of M .

Lemma 2.3. Every submodule, every quotient of a semisimpleR-module is semisim-
ple.

Proof. Let N be a submodule of a semisimple module M , and let P be a sub-
module of N . By semisimplicity of M , there exists a submodule P ′ ⊂ M such that
M = P ⊕ P ′, then there exists an R-invariant projector p : M → P with kernel P ′.
The restriction of p to N defines the projector N → P and the kernel of this projector
is the complement of P in N . Apply Exercise 2.2 to complete the proof. �

For what comes next, it is essential that the ring R is unital. Indeed it is necessary
to have this property to ensure that R has a maximal left ideal and this can be proved
using Zorn’s Lemma.

Lemma 2.4. Any semisimple R-module contains a simple submodule.

Proof. Let M be semisimple, m ∈M . Let I be a maximal left ideal in R. Then
Rm is semisimple by Lemma 2.3 and Rm = Im ⊕ N . We claim that N is simple.
Indeed, every submodule of Rm is of the form Jm for some left ideal J ⊂ R. If N ′

is a submodule of N , then N ′ ⊕ Im = Jm and hence I ⊂ J . But, by maximality of
I, J = I or R, therefore N ′ = 0 or N . �

83
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Lemma 2.5. Let M be an R-module. The following conditions are equivalent:

(1) M is semisimple;

(2) M =
∑

i∈I
Mi for a family of simple submodules Mi of M indexed by a set I;

(3) M =
⊕

j∈J0

Mj for a family of simple submodules Mj of M indexed by a set

J0.

Proof. (1) ⇒ (2) Let {Mi}i∈I be the collection of all simple submodules of
M . We want to show that N =

∑
i∈IMi. Let N =

∑
i∈IMi and assume that N

is a proper submodule of M . Then M = N ⊕ N ′ by the semisimplicity of M . By
Lemma 2.4, N ′ contains a simple submodule which can not be contained in the family
{Mi}i∈I . Contradiction.

Let us prove (2) ⇒ (3). We consider all possible families {Mj}j∈J of simple

submodules of M such that
∑

j∈JMj = ⊕j∈JMj. First, we note the set of such
families satisfies the conditions of Zorn’s lemma, namely that any totally ordered
subset of such families has a maximal element, where the order is the inclusion order.
(To check this just take the union of all sets in the totally ordered subset.) Hence
there is a maximal subset J0 and the corresponding maximal family {Mj}j∈J0 such

that
∑

j∈J0 Mj is direct. We claim that M = ⊕j∈J0Mj . Indeed, if this is not true,
there exists a simple submodule Mi which is not contained in ⊕j∈J0Mj. Since Mi

simple, that means Mi ∩ ⊕j∈J0Mj = 0. Hence

Mi +
⊕

j∈J0

Mj =Mi ⊕
⊕

j∈J0

Mj.

This contradicts maximality of J0.
Finally, let us prove (3) ⇒ (1). Let N ⊂ M be a submodule and S ⊂ J0 be

a maximal subset such that N ∩ (⊕j∈SMj) = 0 (Zorn’s lemma once more). Let
M ′ = N ⊕ (⊕j∈SMj). We claim that M ′ =M . Indeed, otherwise there exists k ∈ J0
such that Mk does not belong to M ′. Then Mk ∩M ′ = 0 by simplicity of Mk, and
therefore N ∩ (⊕j∈S∪kMj) = 0. Contradiction. �

Exercise 2.6. If R is a field, after noticing that an R-module is a vector space,
show that every simple R-module is one-dimensional, and therefore, through the
existence of bases, show that every module is semisimple.

Exercise 2.7. If R = Z, then some R-modules which are not semisimple, for
instance Z itself.

Lemma 2.8. Let M be a semisimple module. Then M is simple if and only if
EndR (M) is a division ring.

Proof. In one direction this is Schur’s lemma. In the opposite direction let
M = M1 ⊕M2 for some proper submodules M1 and M2 of M . Let p1, p2 be the
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canonical projections onto M1 and M2 respectively. Then p1 ◦ p2 = 0 and therefore
p1, p2 can not be invertible. �

2.2. Jacobson density theorem. LetM be anyR-module. SetK := EndR (M),
then set S := EndK (M). There exists a natural homomorphism R → S. In general
it is neither surjective nor injective. In the case whenM is semisimple it is very close
to being surjective.

Theorem 2.9. (Jacobson density theorem). Assume thatM is semisimple. Then
for any m1, . . . ,mn ∈ M and s ∈ S there exists r ∈ R such that rmi = smi for all
i = 1, . . . , n.

Proof. First let us prove the statement for n = 1. We just have to show that
Rm1 = Sm1. The inclusion Rm1 ⊂ Sm1 is obvious. We will prove the inverse
inclusion. The semisimplicity of M implies M = Rm1 ⊕ N for some submodule N
of M . Let p be the projector M → N with kernel Rm1. Then p ∈ K and therefore
p ◦ s = s ◦ p for every s ∈ S. Hence Ker p is S-invariant. So Sm1 ⊂ Rm1.

For arbitrary n we use the following lemma.

Lemma 2.10. Let K̂ := EndR (M⊕n) and Ŝ := EndK̂ (M⊕n) ∼= S. Then K̂

is isomorphic to the matrix ring Matn (K) and Ŝ is isomorphic to S. The latter
isomorphism is given by the diagonal action

s (m1, . . . ,mn) = (sm1, . . . , smn) .

Exercise 2.11. Adapt the proof of Lemma 1.12 to check the above lemma.

�

Corollary 2.12. Let M be a semisimple R-module, which is finitely generated
over K. Then the natural map R→ EndK (M) is surjective.

Proof. Let m1, . . . ,mn be generators of M over K, apply Theorem 2.9. �

Corollary 2.13. Let R be an algebra over a field k, and ρ : R → Endk (V ) be
an irreducible finite-dimensional representation of R. Then

• There exists a division ring D containing k such that ρ (R) ∼= EndD (V ).
• If k is algebraically closed, then D = k and therefore ρ is surjective.

Proof. Apply Schur’s lemma. �

Exercise 2.14. Let V be an infinite-dimensional vector space over C and R be
the span of Id and all linear operators with finite-dimensional image. Check that R is
a ring and V is a simple R-module. Then K = C, S is the ring of all linear operators
in V and R is dense in S but R does not coincide with S.
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3. Wedderburn–Artin theorem

A ring R is called semisimple if every R-module is semisimple. For example, a
group algebra k (G), for a finite group G such that char k does not divide |G|, is
semisimple by Maschke’s Theorem 3.3.

Lemma 3.1. Let R be a semisimple ring. Then as a module over itself R is
isomorphic to a finite direct sum of minimal left ideals.

Proof. Consider R as an R-module. By definition the simple submodules of R
are exactly the minimal left ideals of R. Hence since R is semisimple we can write R
as a direct sum ⊕i∈ILi of minimal left ideals Li. It remains to show that this direct
sum is finite. Indeed, let li ∈ Li be the image of the identity element 1 under the
projection R → Li. But R as a module is generated by 1. Therefore li 6= 0 for all
i ∈ I. Hence I is finite. �

Corollary 3.2. A direct product of finitely many semisimple rings is semisimple.

Exercise 3.3. Let D be a division ring, and R = Matn(D) be a matrix ring over
D.

(a) Let Li be the subset of R consisting of all matrices which have zeros everywhere
outside the i-th column. Check that Li is a minimal left ideal of R and that R =
L1 ⊕ · · · ⊕ Ln. Therefore R is semisimple.

(b) Show that Li and Lj are isomorphic R-modules and that any simple R-module
is isomorphic to Li.

(c) Using Corollary 2.12 show that F := EndR(Li) is isomorphic to Dop, and that
R is isomorphic to EndF (Li).

By the above exercise and Corollary 3.2 a direct product Matn1 (D1) × · · · ×
Matnk

(Dk) of finitely many matrix rings is semisimple. In fact any semisismple ring
is of this form.

Theorem 3.4. (Wedderburn-Artin) Let R be a semisimple ring. Then there exist
division rings D1, . . . , Dk such that R is isomorphic to a finite product of matrix rings

Matn1 (D1)× · · · ×Matnk
(Dk) .

Furthermore, D1, . . . , Dk are unique up to isomorphism and this presentation of R is
unique up to permutation of the factors.

Proof. Take the decomposition of Lemma 3.1 and combine isomorphic factors
together. Then the following decomposition holds

R = L⊕n1
1 ⊕ · · · ⊕ L⊕nk

k ,

where Li is not isomorphic to Lj if i 6= j. Set Ji = L⊕ni

i . We claim that Ji is
actually a two-sided ideal. Indeed Lemma 1.10 and simplicity of Li imply that Lir
is isomorphic to Li for any r ∈ R such that Lir 6= 0. Thus, Lir ⊂ Ji.
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Now we will show that each Ji is isomorphic to a matrix ring. Let Fi := EndJi(Li).
The natural homomorphism Ji → EndFi

(Li) is surjective by Corollary 2.12. This
homomorphism is also injective since rLi = 0 implies rJi = 0 for any r ∈ R. Then,
since Ji is a unital ring r = 0. On the other hand, Fi is a division ring by Schur’s
lemma. Threfore we have an isomorphism Ji ≃ EndFi

(Li). By Exercise 1.7 Li is a
free Fi-module. Moreover, Li is finitely generated over Fi as Ji is a sum of finitely
many left ideals. Thus, by Exercise 3.3 (c), Ji is isomorphic to Matni

(Di) where
Di = F op

i .
The uniqueness of presentation follows easily from Krull-Schmidt theorem (Theo-

rem 4.19) which we prove in the next section. Indeed, let S1, . . . , Sk be a complete list
of non-isomorphic simple R-modules. Then both Di and ni are defined intrinsically,
since Dop

i ≃ EndR(Si) and ni is the multiplicity of the indecomposable module Si in
R. �

4. Jordan-Hölder theorem and indecomposable modules

Let R be a unital ring.

4.1. Artinian and Noetherian modules.

Definition 4.1. We say that an R-module M is Noetherian or satisfies the
ascending chain condition (ACC for short) if every increasing sequence

M1 ⊂M2 ⊂ . . .

of submodules of M stabilizes.
Similarly, we say that M is Artinian or satisfies the descending chain condition

(DCC) if every decreasing sequence

M1 ⊃M2 ⊃ . . .

of submodules of M stabilizes.

Exercise 4.2. Consider Z as a module over itself. Show that it is Noetherian
but not Artinian.

Exercise 4.3. (a) A submodule or a quotient of a Noetherian (respectively,
Artinian) module is always Noetherian (resp. Artinian).

(b) Let

0→ N →M → L→ 0

be an exact sequence of R-modules. Assume that both N and L are Noetherian
(respectively, Artinian), then M is also Noetherian (respectively, Artinian).

Exercise 4.4. Let M be a semisimple module. Prove that M is Noetherian if
and only if it is Artinian.
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4.2. Jordan-Hölder theorem.

Definition 4.5. Let M be an R-module. A finite sequence of submodules of M

M =M0 ⊃M1 ⊃ · · · ⊃Mk = 0

such thatMi/Mi+1 is a simple module for all i = 0, . . . , k−1 is called a Jordan-Hölder
series of M .

Lemma 4.6. An R-module M has a Jordan-Hölder series if and only if M is both
Artinian and Noetherian.

Proof. Let M be an R-module which is both Artinian and Noetherian. Then it
is easy to see that there exists a finite sequence of properly included submodules of
M

M =M0 ⊃M1 ⊃ · · · ⊃Mk = 0

which can not be refined. Then Mi/Mi+1 is a simple module for all i = 0, . . . , k − 1.
Conversely, assume that M has a Jordan-Hölder series

M =M0 ⊃M1 ⊃ · · · ⊃Mk = 0.

We prove that M is both Noetherian and Artinian by induction on k. If k = 1, then
M is simple and hence both Noetherian and Artinian. For k > 1 consider the exact
sequence

0→M1 →M →M/M1 → 0

and use Exercise 4.3 (b). �

We say that two Jordan-Hölder series of M

M =M0 ⊃M1 ⊃ · · · ⊃Mk = 0

and

M = N0 ⊃ N1 ⊃ · · · ⊃ Nl = 0

are equivalent if k = l and for some permutation s of indices 1, . . . , k − 1 we have
Mi/Mi+1

∼= Ms(i)/Ms(i)+1.

Theorem 4.7. Let M be an R-module which is both Noetherian and Artinian.
Let

M =M0 ⊃M1 ⊃ · · · ⊃Mk = 0

and

M = N0 ⊃ N1 ⊃ · · · ⊃ Nl = 0

be two Jordan-Hölder series of M . Then they are equivalent.
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Proof. First note that if M is simple, then the statement is trivial. We will
prove that if the statement holds for any proper submodule of M then it is also true
for M . If M1 = N1, then the statement is obvious. Otherwise, M1 +N1 =M , hence
we have two isomorphisms M/M1

∼= N1/ (M1 ∩N1) and M/N1
∼= M1/ (M1 ∩N1).

Like the second isomorphism theorem for groups. Now let

M1 ∩N1 ⊃ K1 ⊃ · · · ⊃ Ks = 0

be a Jordan-Hölder series for M1 ∩ N1. This gives us two new Jordan-Hölder series
of M

M =M0 ⊃M1 ⊃M1 ∩N1 ⊃ K1 ⊃ · · · ⊃ Ks = 0

and
M = N0 ⊃ N1 ⊃ N1 ∩M1 ⊃ K1 ⊃ · · · ⊃ Ks = 0.

These series are obviously equivalent. By our assumption on M1 and N1 the first
series is equivalent to M = M0 ⊃ M1 ⊃ · · · ⊃ Mk = 0, and the second one is
equivalent to M = N0 ⊃ N1 ⊃ · · · ⊃ Nl = {0}. Hence the original series are also
equivalent. �

Thus, we can now give two definitions:

Definition 4.8. First, we define the length l (M) of an R-module M which
satsfies ACC and DCC as the length of any Jordan-Hölder series of M . Note that
we can easily see that if N is a proper submodule of M , then l (N) < l (M).

Furthermore, this gives rise to a notion of finite length R-module.

Remark 4.9. Note that in the case of infinite series with simple quotients, we
may have many non-equivalent series. For example, consider Z as a Z-module. Then
the series

Z ⊃ 2Z ⊃ 4Z ⊃ . . .

is not equivalent to
Z ⊃ 3Z ⊃ 9Z ⊃ . . . .

4.3. Indecomposable modules and Krull–Schmidt theorem. A moduleM
is indecomposable if M =M1 ⊕M2 implies M1 = 0 or M2 = 0.

Example 4.10. Every simple module is indecomposable. Furthermore, if a semisim-
ple module M is indecomposable then M is simple.

Definition 4.11. An element e ∈ R is called an idempotent if e2 = e.

Lemma 4.12. An R-moduleM is indecomposable if and only if every idempotent
in EndR(M) is either 1 or 0.

Proof. If M is decomposable, then M =M1 ⊕M2 for some proper submodules
M1 and M2. Then the projection e : M → M1 with kernel M2 is an idempotent
in EndRM , which is neither 0 nor 1. Conversely, any non-trivial idempotent e ∈
EndRM gives rise to a decomposition M = Ker e⊕ Im e. �
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Exercise 4.13. Show that Z is an indecomposable module over itself, although
it is not simple.

Lemma 4.14. Let M and N be indecomposable R-modules, α ∈ HomR (M,N),
β ∈ HomR (N,M) be such that β ◦ α is an isomorphism. Then α and β are isomor-
phisms.

Proof. We claim that N = Imα⊕Ker β. Indeed, since Imα∩Ker β ⊂ Ker β ◦α,
we have Imα ∩Ker β = 0. Furthermore, for any x ∈ N set y := α ◦ (β ◦ α)−1 ◦ β (x)
and z = x − y. Then β(y) = β(x). One can write x = y + z, where z ∈ Ker β and
y ∈ Imα.

Since N is indecomposable, Imα = N , Ker β = 0, hence N is isomorphic to
M . �

Lemma 4.15. Let M be an indecomposable R-module of finite length and ϕ ∈
EndR (M), then either ϕ is an isomorphism or ϕ is nilpotent.

Proof. SinceM is of finite length and Kerϕn, Imϕn are submodules, there exists
n > 0 such that Kerϕn = Kerϕn+1, Imϕn = Imϕn+1. Then Kerϕn ∩ Imϕn = 0.
The latter implies that the exact sequence

0→ Kerϕn →M → Imϕn → 0

splits. Thus, M = Kerϕn ⊕ Imϕn. Since M is indecomposable, either Imϕn = 0,
Kerϕn = M or Kerϕn = 0, Imϕn = M . In the former case ϕ is nilpotent. In the
latter case ϕn is an isomorphism and hence ϕ is also an isomorphism. �

Lemma 4.16. Let M be as in Lemma 4.15 and ϕ, ϕ1, ϕ2 ∈ EndR (M) such that
ϕ = ϕ1 + ϕ2. Then if ϕ is an isomorphism, at least one of ϕ1 and ϕ2 is also an
isomorphism.

Proof. Without loss of generality we may assume that ϕ = id (otherwise multi-
ply by ϕ−1). In this case ϕ1 and ϕ2 commute. If both ϕ1 and ϕ2 are nilpotent, then
ϕ1 + ϕ2 is nilpotent, but this is impossible as ϕ1 + ϕ2 = id. �

Corollary 4.17. LetM be as in Lemma 4.15. Let ϕ = ϕ1+· · ·+ϕk ∈ EndR (M).
If ϕ is an isomorphism then ϕi is an isomorphism at least for one i.

Exercise 4.18. Let M be of finite length. Show that M has a decomposition

M =M1 ⊕ · · · ⊕Mk,

where all Mi are indecomposable.

Theorem 4.19. (Krull-Schmidt) Let M be an R-module of finite length. Con-
sider two decompositions

M =M1 ⊕ · · · ⊕Mk and M = N1 ⊕ · · · ⊕Nl

such that all Mi and Nj are indecomposable. Then k = l and there exists a permu-
tation s of indices 1, . . . , k such that Mi is isomorphic to Ns(i).
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Proof. We prove the statement by induction on k. The case k = 1 is clear since
in this case M is indecomposable.

Let

p
(1)
i :M →Mi, p

(2)
j :M → Nj

denote the natural projections, and

q
(1)
i :Mi →M, q

(2)
j : Nj → N

denote the injections. We have

l∑

j=1

q
(2)
j ◦ p(2)j = idM ,

hence
l∑

j=1

p
(1)
1 ◦ q(2)j ◦ p(2)j ◦ q(1)1 = idM1 .

By Corollary 4.17 there exists j such that p
(1)
1 ◦ q(2)j ◦ p(2)j ◦ q(1)1 is an isomorphism.

After permuting indices we may assume that j = 1. Then Lemma 4.14 implies that

p
(2)
1 ◦ q(1)1 is an isomorphism between M1 and N1. Set

M ′ :=M2 ⊕ · · · ⊕Mk, N ′ := N2 ⊕ · · · ⊕Nl.

Since M1 intersects trivially N ′ = Ker p
(2)
1 we have M = M1 ⊕ N ′. But we also

M = M1 ⊕M ′. Therefore M ′ is isomorphic to N ′. By induction assumption the
statement holds for M ′ ≃ N ′. Hence the statement holds for M . �

Come up with examples of modules for which Krull–Schmidt does not hold.

5. A bit of homological algebra

Let R be a unital ring.

5.1. Complexes. Let C• = ⊕i≥0Ci be a graded R-module. An R-morphism f
from C• to D• is of degree k (k ∈ Z) if f maps to Ci to Di+k for all i. An R-differential
on C• is an R-morphism d from C• to C• of degree −1 such that d2 = 0.

An R-module C• together with a differential d is called a complex.
We usually represent C• the following way:

. . .
d−→ Ci

d−→ . . .
d−→ C1

d−→ C0 → 0.

Remark 5.1. It will be convenient to look at similar situations for an R-morphism
δ of degree +1 on a graded R-module such that δ2 = 0. In this case, we will use
upper indices C i (instead of Ci) and represent the complex the following way:

0→ C0 δ−→ C1 δ−→ . . .
δ−→ C i δ−→ . . .
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Exercise 5.2. (Koszul complex) The following example is very important.
Let V be a finite-dimensional vector space over a field k and denote by V ∗ its

dual space. By S(V ) =
⊕

Si(V ) and Λ(V ) =
⊕

Λi(V ) we denote the symmetric
and the exterior algebras of V respectively.

Choose a basis e1, . . . , en of V and let f1, . . . , fn be the dual basis in V ∗, i.e.
fi(ej) = δij . For any x ∈ V ∗ we define the linear derivation ∂x : S(V )→ S(V ) given
by ∂x(v) := x(v) for v ∈ V and extend it to the whole S(V ) via the Leibniz relation

∂x(u1u2) = ∂x(u1)u2 + u1∂x(u2) for all u1, u2 ∈ S(V ).

Now set Ck := S(V )⊗ Λk(V ) and C• := S(V )⊗ Λ(V ). Define δ : C• → C• by

δ(u⊗ w) :=
n∑

j=1

dfj(u)⊗ (ej ∧ w) for all u ∈ S(V ), w ∈ Λ(V ).

(a) Show that δ does not depend on the choice of basis in V .
(b) Prove that δ2 = 0, and therefore (C•, δ) is a complex. It is called the Koszul

complex.
(c) Let p(w) denote the parity of the degree of w if w is homogeneous in Λ(V ).

For any x ∈ V ∗ define the linear map ∂x : Λ(V )→ Λ(V ) by setting ∂x(v) := x(v) for
all v ∈ V and extend it to the whole Λ(V ) by the Z2-graded version of the Leibniz
relation

∂x(w1 ∧ w2) = ∂x(w1) ∧ w2 + (−1)p(w1)w1 ∧ ∂x(w2) for all w1, w2 ∈ Λ(V ).

Check that one can construct a differential d of degree −1 on the Koszul complex by

d(u⊗ w) :=
n∑

j=1

(uej)⊗ ∂fj(w) for all u ∈ S(V ), w ∈ Λ(V ).

5.2. Homology and Cohomology. Since in any complex d2 = 0, we have
Im d ⊂ Ker d (in every degree). The complex (C•, d) is exact if Im d = Ker d. The
key notion of homological algebra is defined below. This notion expresses how far a
given complex is from being exact.

Definition 5.3. Let (C•, d) be a complex of R-modules (with d of degree −1).
Its i-th homology, Hi (C•), is the quotient

Hi (C•) = (Ker d ∩ Ci) / (Im d ∩ Ci) .
A complex (C•, d) is exact if and only if Hi (C•) = 0 for all i ≥ 0.

If (C•, δ) is a complex with a differential δ of degree +1 we use the term coho-
mology instead of homology and we consistently use upper indices in the notation:

H i (C•) =
(
Ker δ ∩ C i

)
/
(
Im δ ∩ C i

)
.

Definition 5.4. Given two complexes (C•, d) and (C ′•, d
′), a homomorphism

f : C• → C ′• of R-modules of degree 0 which satisfies the relation f ◦ d = d′ ◦ f is
called a morphism of complexes.
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Exercise 5.5. Let f : C• → C ′• be a morphism of complexes. Check that
f(Ker d) ⊂ Ker d′ and f(Im d) ⊂ Im d′. Therefore f induces a homomorphism

f∗ : Hi (C•)→ Hi (C
′
•)

between homology groups of the complexes.

Let (C•, d), (C
′
•, d
′), (C ′′• , d

′′) be complexes and f : C ′• → C ′′• and g : C• → C ′• be
morphisms such that the sequence

0→ Ci
g−→ C ′i

f−→ C ′′i → 0

is exact for all i ≥ 0.

Exercise 5.6. (Snake Lemma) One can define a homomorphism δ : Hi(C
′′
• )→

Hi−1(C•) as follows. Let x ∈ Ker d′′∩C ′′i and y be an arbitrary element in the preimage
f−1(x) ⊂ C ′i. Check that d′(y) lies in the image of g. Pick up z ∈ g−1(d′(y)) ⊂ Ci−1.
Show that z ∈ Ker d. Moreover, show that for a different choice of y′ ∈ f−1(x) ⊂ C ′i
and of z′ ∈ g−1(d′(y′)) ⊂ Ci−1 the difference z− z′ lies in the image of d : Ci → Ci−1.
Thus, x 7→ z gives a well-defined map δ : Hi(C

′′
• )→ Hi−1(C•).

Why is it called “snake lemma”? Look at the following diagram

Ci
g−−−→ C ′i

f−−−→ C ′′i

d

y d′

y d′′

y

Ci−1
g−−−→ C ′i−1

f−−−→ C ′′i−1

In this diagram δ = g−1 ◦ d′ ◦ f−1 goes from the upper right to the lower left corners.

Theorem 5.7. (Long exact sequence). The following sequence

δ−→ Hi (C•)
g∗−→ Hi (C

′
•)

f∗−→ Hi (C
′′
• )

δ−→ Hi−1 (C•)
g∗−→ . . .

is actually an exact complex.

We skip the proof of this theorem. The enthusiastic reader might verify it as an
exercise or read the proof in Weibel, MacLane.

5.3. Homotopy.

Definition 5.8. Consider complexes (C•, d), (C
′
•, d
′) of R-modules and let f, g :

C• → C ′• be morphisms. We say that f and g are homotopically equivalent if there
exists a map h : C• → C ′• of degree 1 such that

f − g = h ◦ d+ d′ ◦ h.
Lemma 5.9. If f and g are homotopically equivalent then f∗ = g∗.
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Proof. Let φ := f − g and x ∈ Ci such that dx = 0. Then

φ (x) = h (dx) + d′ (hx) = d′ (hx) ∈ Im d′.

Hence f∗ − g∗ = 0. �

We say that complexes C• and C ′• are homotopically equivalent if there exist
f : C• → C ′• and g : C ′• → C• such that f ◦ g is homotopically equivalent to idC′
and g ◦ f is homotopically equivalent to idC . Lemma 5.9 implies that homotopically
equivalent complexes have isomorphic homology.

Let (C•, d) be a complex of R-modules and M be an R-module. Then we have a
complex of abelian groups

0→ HomR(C0,M)
δ−→ HomR(C1,M)

δ−→ . . .
δ−→ HomR(Ci,M)

δ−→ . . . ,

where δ : HomR(Ci,M)→ HomR(Ci+1,M) is defined by

(5.1) δ(ϕ)(x) := ϕ(dx) for all ϕ ∈ HomR(Ci,M) and x ∈ Ci+1.

Note that the differential δ on HomR (C•,M) has degree 1. The following Lemma
will be used in the next section. The proof is straightforward and we leave it to the
reader.

Lemma 5.10. Let (C•, d) and (C ′•, d
′) be homotopically equivalent complexes

and M be an arbitrary R-module. Then the complexes (HomR (C•,M) , δ) and
(HomR (C ′•,M) , δ′) are also homotopically equivalent.

The following lemma is useful for calculating cohomology.

Lemma 5.11. Let (C•, d) be a complex of R-modules and h : C• → C• be a map
of degree 1. Set f := d ◦h+h ◦d. Then f is a morphism of complexes. Furthermore,
if f : Ci → Ci is an isomorphism for all i ≥ 0, then C• is exact.

Proof. First, f has degree 0 and since d2 = 0 we have

d ◦ f = d ◦ h ◦ d = f ◦ d.
Thus, f is a morphism of complexes.

Now let f be an isomorphism. Then f∗ : Hi(C•)→ Hi(C•) is also an isomorphism
for all i. On the other hand, f is homotopically equivalent to 0. Hence, by Lemma
5.9, f∗ = 0. Therefore Hi(C•) = 0 for all i. �

Exercise 5.12. Recall the Koszul complex (C•, δ) from Exercise 5.2. Assume
the field k has characteristic zero. Show that H i(C•) = 0 for i ≥ 0 and H0(C•) = k.

Hint. For every m ≥ 0 consider the subcomplex C•m with graded components

C i
m := Sm−i(V )⊗ Λi(V ).

Check that d(C i
m) ⊂ C i−1

m , δ(C i
m) ⊂ C i+1

m and that the relation

d ◦ δ + δ ◦ d = m id

holds on C•m. Then use Lemma 5.11 and the decomposition C• =
⊕

m≥0C
•
m.
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6. Projective modules

Let R be a unital ring.

6.1. Projective modules. An R-module P is projective if for any surjective
morphism ϕ : M → N of R-modules and any morphism ψ : P → N there exists a
morphism f : P →M such that ψ = ϕ ◦ f .

P
f

//___

ψ

  A
AA

AA
AA

A M

ϕ
����

N

Example 6.1. A free R-module F is projective. Indeed, let {ei}i∈I be a set of
generators of F . Define f : F →M by f (ei) = ϕ−1 (ψ (ei)).

Lemma 6.2. Let P be an R-module, the following conditions are equivalent

(1) P is projective;
(2) There exists a free module F such that F is isomorphic to P ⊕ P ′;
(3) Any exact sequence of R-modules

0→ N →M → P → 0

splits.

Proof. (1)⇒ (3)
Consider the exact sequence

0→ N →M
ϕ−→ P → 0.

Set ψ = idP . Since ϕ is surjective and P is projective, there exists f : P → M such
that ψ = idP = ϕ ◦ f .

(3)⇒ (2) Every module is a quotient of a free module. Therefore we just have to
apply (3) to the exact sequence

0→ N → F → P → 0

for a free module F .
(2) ⇒ (1) Choose a free module F such that F = P ⊕ P ′. Let ϕ : M → N be a

surjective morphism of R-modules and ψ a morphism ψ : P → N . Now extend ψ to
ψ̃ : F → N such that the restriction of ψ̃ to P (respectively, P ′) is ψ (respectively,

zero). There exists f : F →M such that ϕ ◦ f = ψ̃. After restriction to P we get

ϕ ◦ f|P = ψ̃|P = ψ.

�
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Exercise 6.3. Recall that a ring A is called a principal ring if A is commutative,
has no zero divisors and every ideal of A is principal, i.e. generated by a single
element.

(a) Let F be a free A-module. Show that every submodule of F is free. For
finitely generated F this can be done by induction on the rank of F . In the infinite
case one has to use transfinite induction, see Rotman(651).

(b) Let P be a projective A-module. Show that P is free.

6.2. Projective cover.

Definition 6.4. Let M be an R-module. A submodule N of M is small if for
any submodule L ⊂M such that L+N =M , we have L =M .

Exercise 6.5. Let f : P → M be a surjective morphism of modules such that
Ker f is a small submodule of P . Assume that f = f ◦ γ for some homomorphism
γ : P → P . Show that γ is surjective.

Definition 6.6. Let M be an R-module. A projective cover of M is a projective
R-module P equipped with a surjective morphism f : P → M such that Ker f ⊂ P
is small.

Lemma 6.7. Let f : P → M and g : Q → M be two projective covers of M .
Then there exists an isomorphism ϕ : P → Q such that g ◦ ϕ = f .

Proof. The existence of ϕ such that g ◦ϕ = f follows immediately from projec-
tivity of P . Similarly, we obtain the existence of a homomorphism ψ : Q → P such
that f ◦ ψ = g. Therefore we have g ◦ ϕ ◦ ψ = g.. By Exercise 6.5 ϕ ◦ ψ is surjective.
This implies surjectivity of ϕ : P → Q. Since Q is projective we have an isomorphism
P ≃ Q⊕Kerϕ. Since Kerϕ ⊂ Ker f , we have P = Q+Ker f . Recall that Ker f ⊂ P
is a small. Hence P = Q and Kerϕ = 0. Thus ϕ is an isomorphism. �

6.3. Projective resolutions.

Definition 6.8. Let M be an R-module. A complex (P•, d) of R-modules

. . .
d−→ Pi

d−→ . . .
d−→ P1

d−→ P0 → 0

such that Pi is projective for all i ≥ 0, H0(P•) = M and Hi(P•) = 0 for all i ≥ 1, is
called a projective resolution of M .

It is sometimes useful to see a projective resolution as the exact complex

· · · → Pi → · · · → P1 → P0
p−→M → 0,

where p : P0 →M is the lift of the identity map between H0(P•) and M .

Exercise 6.9. Show that for every R-module M , there exists a resolution of M

· · · → Fi → · · · → F1 → F0 → 0

such that all Fi are free. Such a resolution is called a free resolution.
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This exercise immediately implies:

Proposition 6.10. Every R-module has a projective resolution.

Example 6.11. Let R = k[x1, ..., xn] be a polynomial ring over a field k. Con-
sider the simple R-module M := R/(x1, . . . , xn). One can use the Koszul complex,
introduced in Exercise 5.2, to construct a projective resolution of M . First, we iden-
tify R with the symmetric algebra S(V ) of the vector space V = kn. Let Pi denote
the free R-module R ⊗ Λi(V ) and recall d : Pi → Pi−1 from Exercise 5.2 (c). Then
H0(P•) =M and Hi(P•) = 0 for i ≥ 1. Hence (P•, d) is a free resolution of M .

Lemma 6.12. Let (P•, d) and (P•, d
′) be two projective resolutions of an R-module

M . Then there exists a morphism of complexes f : P• → P ′• such that f∗ : H0 (P•)→
H0 (P

′
•) induces the identity idM . Moreover, f is unique up to homotopy equivalence.

Proof. We use an induction procedure to construct a morphism fi : Pi → P ′i .
For i = 0, we denote by p : P0 →M and p′ : P ′0 →M the natural projections. Since
P0 is projective there exists a morphism f0 : P0 → P ′0 such that p′ ◦ f0 = p:

// P1
d // P0

f0
��
�

�

�

p
// M

id

��

// 0

// P ′1
d′ // P ′0

p′
// M // 0

then we have f(Ker p) ⊂ Ker p′. We construct f1 : P1 → P ′1 using the following
commutative diagram:

// P1

f1
��
�

�

�

d // Ker p

f0
��

// 0

// P ′1
d′ // Ker p′ // 0.

The existence of f1 follows from projectivity of P1 and surjectivity of d′.
We repeat the procedure to construct fi : Pi → Pi for all i.
Suppose now that f and g are two morphisms satisfying the assumptions of the

lemma. Let us prove that f and g are homotopically equivalent. Let ϕ = f − g. We
have to prove the existence of maps hi : Pi → Pi+1 such that hi ◦ d = d′ ◦ hi+1. Let
us explain how to construct h0 and h1 using the following diagram

// P2

ϕ2

��

d // P1
d //

ϕ1

��h1~~~
~

~
~

P0

h0~~~
~

~
~

ϕ0

��

p
// M

0

��

// 0

// P ′2
d′ // P ′1

d′ // P ′0
p′

// M // 0.

Since the morphism ϕ∗ : H0(P•) → H0(P
′
•) is zero, we get p′ ◦ ϕ0 = 0, and hence

Imϕ0 ⊂ Im d′. Recall that P0 is projective, therefore there exists h0 : P0 → P ′1 such
that d′ ◦ h0 = ϕ0.
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To construct the map h1, set ψ := ϕ1 − h0 ◦ d. The relation

d′ ◦ h0 ◦ d = ϕ0 ◦ d = d′ ◦ ϕ1

implies d′ ◦ ψ = 0. Since H1(P
′
•) = 0, the image of ψ belongs to d′(P ′2), and by

projectivity of P1 there exists a morphism h1 : P1 → P ′2 such that

d′ ◦ h1 = ψ = ϕ1 − h0 ◦ d.
The construction of hi for i > 1 is similar to the one for i = 1. The collection of

the maps hi gives the homotopy equivalence. �

The following proposition expresses in what sense a projective resolution is unique.

Proposition 6.13. LetM be an R-module, and (P•, d), (P
′
•, d
′) be two projective

resolutions of M . Then (P•, d) and (P ′•, d
′) are homotopically equivalent.

Proof. By Lemma 6.12 there exist f : P• → P ′• and g : P
′
• → P• such that g ◦ f

is homotopically equivalent to idP• and f ◦ g is homotopically equivalent to idP ′• . �

6.4. Extensions.

Definition 6.14. Let M and N be two R-modules and P• be a projective reso-
lution of M . Consider the complex of abelian groups

0→ HomR (P0, N)
δ−→ HomR (P1, N)

δ−→ . . . ,

where δ is defined by (5.1). We define the i-th extension group ExtiR (M,N) as the
i-th cohomology group of this complex. Lemma 5.10 ensures that ExtiR (M,N) does
not depend on the choice of a projective resolution of M .

Exercise 6.15. Check that Ext0R(M,N) = HomR(M,N).

Let us give an interpretation of Ext1R(M,N). Consider an exact sequence of R-
modules

(5.2) 0→ N
α−→ Q

β−→M → 0

and a projective resolution

(5.3) . . .
d−→ P2

d−→ P1
d−→ P0

ϕ−→M → 0

ofM . Then by projectivity of P• there exist ψ ∈ HomR(P0, Q) and γ ∈ HomR(P1, N)
which make the following diagram

// P2

0

��

d // P1
d //

γ

��

P0

ψ
��

ϕ

  A
AA

AA
AA

A

0 // N
α // Q

β
// M // 0

commutative. Let δ be the differential of degree +1 in Definition 6.14. The commuta-
tivity of this diagram implies that γ ◦d = 0 and hence δ(γ) = 0. The choice of ψ and
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γ is not unique. If we choose another pair ψ′ ∈ HomR(P0, Q) and γ
′ ∈ HomR(P1, N),

then there exists θ ∈ HomR(P0, N) such that ψ′−ψ = α ◦ θ as in the diagram below

// P2

0

��

d // P1
d //

��

P0

��

ϕ

  A
AA

AA
AA

A
θ

~~}}
}}

}}
}}

0 // N
α // Q

β
// M // 0.

Furthermore, γ′ − γ = θ ◦ d or, equivalently, γ′ − γ = δ(θ). Thus, we can associate
the class [γ] ∈ Ext1R (M,N) to the exact sequence (5.2).

Conversely, if we start with resolution (5.3) and a class [γ] ∈ Ext1R (M,N), we
may consider some lift γ ∈ HomR(P1, N). Then we can associated the following short
exact sequence to [γ]

0→ P1/Ker γ → P0/d(Ker γ)→M → 0.

The reader may check that this exact sequence splits if and only if [γ] = 0.

Example 6.16. Let R be C [x]. Since C is algebraically closed, every simple R-
module is one-dimensional over C and isomorphic to Cλ := C [x] / (x− λ). It is easy
to check

0→ C [x]
d−→ C [x]→ 0,

where d (1) = x− λ is a projective resolution of Cλ. We can compute Ext• (Cλ,Cµ).
It amounts to calculating the cohomology of the complex

0→ C
δ−→ C→ 0

where δ is the multiplication by λ− µ. Hence

Ext0R(Cλ,Cµ) = Ext1R(Cλ,Cµ) =

{
0 if λ 6= µ
C if λ = µ

Example 6.17. Let R = C [x] / (x2). Then R has only one (up to isomorphism)
simple module, which we denote C0. Then

. . .
d−→ R

d−→ R→ 0,

where d (1) = x is a projective resolution for C0 and Exti (C0,C0) = C for all i ≥ 0.

7. Representations of artinian rings

7.1. Idempotents, nilpotent ideals and Jacobson radical. A (left or right)
ideal N of a ring R is called nilpotent if there exists p > 0 such that Np = 0. The
smallest such p is called the degree of nilpotency of N . The following lemma is
sometimes called “lifting of an idempotent”.

Lemma 7.1. Let N be a left (or right) nilpotent ideal of R and take r ∈ R
such that r2 ≡ r mod N . Then there exists an idempotent e ∈ R such that e ≡ r
mod N .
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Proof. Let N be a left ideal. We prove the statement by induction on the degree
of nilpotency d(N). The case d(N) = 1 is trivial. Let d(N) > 1. Set n = r2− r, then
n belongs to N and rn = nr. Therefore we have

(r + n− 2rn)2 ≡ r2 + 2rn− 4r2n mod N2.

We set s = r + n− 2rn. Then we have

s2 ≡ s mod N2, s ≡ r mod N.

Since d(N2) < d(N), the induction assumption ensures that there exists an idempo-
tent e ∈ R such that e ≡ s mod N2, hence e ≡ r mod N . �

For an R-module M let

AnnM = {x ∈ R | xM = 0} .
Definition 7.2. The Jacobson radical radR of a ring R is the intersection of

AnnM for all simple R-modules M .

Exercise 7.3. (a) Prove that radR is the intersection of all maximal left ideals
of R as well as the intersection of all maximal right ideals.

(b) Show that x belongs radR if and only if 1 + rx is invertible for any r ∈ R.
(c) Show that if N is a nilpotent left ideal of R, then N is contained in radR.

Lemma 7.4. Let e ∈ radR such that e2 = e. Then e = 0.

Proof. By Exercise 7.3 (b) we have that 1 − e is invertible. But e(1 − e) = 0
and therefore e = 0. �

7.2. The Jacobson radical of an Artinian ring.

Definition 7.5. A ring R is artinian if it satisfying the descending chain condi-
tion for left ideals.

A typical example of artinian ring is a finite-dimensional algebra over a field. It
follows from the definition that any left ideal in an Artinian ring contains a minimal
(non-zero) ideal.

Lemma 7.6. Let R be an artinian ring, I ⊂ R be a left ideal. If I is not nilpotent,
then I contains a non-zero idempotent.

Proof. Since R is Artinian, one can can find a minimal left ideal J ⊂ I among
all non-nilpotent ideals of I. Then J2 = J . We will prove that J contains a non-zero
idempotent.

Let L ⊂ J be some minimal left ideal such that JL 6= 0. Then there exists x ∈ L
such that Jx 6= 0. By minimality of L we have Jx = L. Therefore there exists r ∈ J
such that rx = x. Hence (r2 − r) x = 0. Let N = {y ∈ J | yx = 0}. Note that N is
a proper left ideal of J and therefore N is nilpotent. Thus, we have r2 ≡ r mod N .
By Lemma 7.1 there exists an idempotent e ∈ R such that e ≡ r mod N , and we
are done. �
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Theorem 7.7. If R is artinian then radR is the unique maximal nilpotent ideal
of R.

Proof. By Exercise 7.3 every nilpotent ideal of R lies in radR. It remains to
show that radR is nilpotent. Indeed, otherwise by Lemma 7.6, radR contains a
non-zero idempotent. This contradicts Lemma 7.4. �

Lemma 7.8. An Artinian ring R is semisimple if and only if radR = 0.

Proof. If R is semisimple and Artinian, then by Wedderburn-Artin theorem it
is a direct product of matrix rings, which does not have non-trivial nilpotent ideals.

If R is Artinian with trivial radical, then by Lemma 7.6 every minimal left ideal
L of R contains an idempotent e such that L = Re. Hence R is isomorphic to
L⊕R(1− e). Therefore R is a direct sum of its minimal left ideals. �

Corollary 7.9. If R is Artinian, then R/ radR is semisimple.

Proof. By Theorem 7.7 the quotient ring R/ radR does not have non-zero nilpo-
tent ideals. Hence it is semisimple by Lemma 7.8. �

7.3. Modules over Artinian rings.

Lemma 7.10. LetR be an Artinian ring andM be anR-module. ThenM/(radR)M
is the maximal semisimple quotient of M .

Proof. Since R/ radR is a semisimple ring and M/(radR)M is an R/ radR-
module, we obtain that M/(radR)M is semisimple. To prove maximality, observe
that radR acts by zero on any semisimple quotient of M . �

Corollary 7.11. Assume that R is Artinian and M is an R-module. Consider
the filtration

M ⊃ (radR)M ⊃ (radR)2M ⊃ · · · ⊃ (radR)kM = 0,

where k is the degree of nilpotency of radR. Then all quotients (radR)iM/(radR)i+1M
are semisimple R-modules. In particular, M always has a simple quotient.

Proposition 7.12. Let R be Artinian. Consider it as a module over itself. Then
R is a finite length module. Hence R is a Noetherian ring.

Proof. Apply Corollary 7.11 toM = R. Then every quotient (radR)i/(radR)i+1

is a semisimple Artinian R-module. By Exercise 4.4 (radR)i/(radR)i+1 is a Noether-
ian R-module. Hence R is a Noetherian module over itself. �

Let us apply the Krull–Schmidt theorem to an Artinian ring R considered as a left
module over itself. Then R has a decomposition into a direct sum of indecomposable
submodules

R = L1 ⊕ · · · ⊕ Ln.
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Recall that EndR (R) = Rop. Therefore the canonical projection on each compo-
nent Li is given by multiplication (on the right) by some idempotent element ei ∈ Li.

In other words R has a decomposition

(5.4) R = Re1 ⊕ · · · ⊕Ren.
Moreover, eiej = δijei. Once more by Krull-Schmidt theorem this decomposition is
unique up to multiplication by some invertible element on the right.

Definition 7.13. An idempotent e ∈ R is called primitive if it can not be written
e = e′ + e′′ for some non-zero idempotents e′, e′′ such that e′e′′ = e′′e′ = 0.

Exercise 7.14. Prove that the idempotent e ∈ R is primitive if and only if Re
is an indecomposable R-module.

In the decomposition (5.4) the idempotents e1, . . . , en are primitive.

Lemma 7.15. Assume R is Artinian, N = radR and e ∈ R is a primitive idem-
potent. Then Ne is a unique maximal submodule of Re.

Proof. Due to Corollary 7.11 it is sufficient to show that Re/Ne is a simple
R-module. Since e is primitive, the left ideal Re is an indecomposable R-module.
Assume that Re/Ne is not simple. Then Re/Ne = Ree1 ⊕ Ree2 for some non-zero
idempotent elements e1 and e2 in the quotient ring R/N . By Lemma 7.1 there exist
idempotents f1, f2 ∈ R such that fi ≡ ei mod N . Then Re = Rf1 ⊕ Rf2 which
contradicts indcomposability of Re. �

Theorem 7.16. Assume R is Artinian.

(1) Every simple R-module S has a projective cover which is isomorphic to Re
for some primitive idempotent e ∈ R.

(2) Let P be an indecomposable projective R-module. There exists a primitive
idempotent e ∈ R such that P is isomorphic to Re. Furthermore, P has a
unique simple quotient.

Proof. Let S be a simple R-module. There exists a surjective homomorphism
f : R → S. Consider the decomposition (5.4). There exists i ≤ n such that the
restriction of f on Rei is non-zero. By the simplicity of S the restriction f : Rei → S
is surjective. It follows from Lemma 7.15 that Rei is a projective cover of S.

Let P be an indecomposable projective module. By Lemma 7.10 the quotient
P/(radRP ) is semisimple. Let S be a simple submodule of P/(radRP ). Then we
have a surjection f : P → S. Let g : Q → S be a projective cover of S. There
exists a morphism ϕ : P → Q such that f = g ◦ ϕ. Since Q has a unique simple
quotient, the morphism ϕ is surjective. Then P is isomorphic to Q ⊕ Kerϕ. The
indecomposability of P implies that P is isomorphic to Q. �

Example 7.17. Consider the group algebra R = F3 (S3). First let us classify
simple and indecomposable projective R-modules.
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Let r be a 3-cycle and s be a transposition. Since s and r generate S3, one can
see easily that the elements r − 1, r2 − 1, sr − s and sr2 − s span a nilpotent ideal
N , which turns out to be maximal. The quotient R/N is a semisimple R-module
with two simple components L1 and L2, where L1 (resp. L2) is the trivial (resp. the
sign) representation of S3. Set e1 = −s− 1 and e2 = s− 1. Then e1, e2 are primitive
idempotents of R such that 1 = e1 + e2 and e1e2 = 0. Hence R has exactly two
indecomposable projective modules, namely P1 = Re1 and P2 = Re2. Those modules
can be seen as induced modules

Re1 ∼= IndS3
S2
(triv) , Re2 ∼= IndS3

S2
(sgn) .

Thus P1 is the 3-dimensional permutation representation of S3, and P2 = P1 ⊗ sgn.

Exercise 7.18. Compute explicitly the radical filtration of P1 and P2. Show that

P1/(radR)P1 ≃ L1, (radR)P1/(radR)
2P1 ≃ L2, (radR)2P1 ≃ L1

and

P2/(radR)P2 ≃ L2, (radR)P2/(radR)
2P2 ≃ L1, (radR)2P2 ≃ L2.

Now we will calculate the extension groups between the simple modules. The
above exercise implies the following exact sequences

0→ L2 → P2 → P1 → L1 → 0, 0→ L1 → P1 → P2 → L2 → 0.

By gluing these sequences together we obtain a projective resolution for L1

· · · → P1 → P2 → P2 → P1 → P1 → P2 → P2 → P1 → 0

and for L2

· · · → P2 → P1 → P1 → P2 → P2 → P1 → P1 → P2 → 0.

Using the following obvious relation

Hom(Pi, Pj) =

{
F3, if i = j

0, if i 6= j

we obtain

Extp (Li, Li) =





0, if p ≡ 1, 2 mod 4, i = j

F3, if p ≡ 0, 3 mod 4, i = j

0, if p ≡ 0, 3 mod 4, i 6= j

F3, if p ≡ 1, 2 mod 4, i 6= j

Exercise 7.19. Let Bn denote the algebra of upper triangular n×n matrices over
a field F. Denote by Eij the elementary matrix. Show that Eii for i = 1, . . . , n, are
primitive idempotents of Bn. Furthermore, show that Bn has n up to isomorphism
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simple modules L1, . . . , Ln associated with those idempotents and that the dimension
of every Li over F is 1. Finally check that

Extp (Li, Lj) =

{
F, if i = j, p = 0 or i = j + 1, p = 1

0, otherwise
.

8. Abelian categories

An abelian category is a generalization of categories of modules over a ring.
Let us start with definition of an additive category.

Definition 8.1. A category C is called additive if for any two objects A and B,

(1) The set of morphisms HomC(A,B) is an abelian group.
(2) There exist an object A ⊕ B, called a direct sum, and a pair of morphisms

iA : A→ A⊕B and iB : B → A⊕B such that for any morphisms ϕ : A→M
and ψ : B → M there exists a unique morphism τ : A⊕ B → M such that
τ ◦ iA = ϕ and τ ◦ iB = ψ.

(3) There exist an object A×B called a direct product and a pair of morphisms
pA : A×B → A and iB : A×B → B such that for any morphisms α :M → A
and β : M → M there exists a unique morphism θ : M → A× B such that
pA ◦ θ = α and pB ◦ θ = β.

(4) The induced morphism A⊕B → A×B is an isomorphism.

Definition 8.2. An abelian category is an additive category C such that, for
every morphism ϕ ∈ HomC(A,B)

(1) There exist an object and a morphism Kerϕ
i−→ A such that for any mor-

phism γ : M → A such that, ϕ ◦ γ = 0, there exists a unique morphism
δ :M → Kerϕ such that γ = i ◦ δ.

(2) There exist an object and morphism B
p−→ Cokerϕ such that for any mor-

phism τ : B → M such that, τ ◦ ϕ = 0, there exists a unique morphism
σ : Cokerϕ→M such that τ = σ ◦ p.

(3) There is an isomorphism Coker i→ Ker p.

Exercise 8.3. Let R be a ring, show that the category of finitely generated R-
modules is abelian. Show that the category of projective R-modules is additive but
not abelian in general. Finally show that the category of projective R-modules is
abelian if and only if R is a semisimple ring.

In an abelian category we can define the image of a morphism, a quotient object,
exacts sequences, projective and injective objects. All the results of Sections 4, 5 and
6 can be generalized for abelian categories. If we want to define extension groups we
have to assume the existence of projective covers.
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Definition 8.4. Let C be an abelian category. Its Grothendieck group KC is the
abelian group defined by generators and relations in the following way. For every
object M of C there is one generator [M ]. For every exact sequence

0→ N →M → K → 0

in C we have the relation [M ] = [K] + [N ].

Exercise 8.5. Let C be the category of finite-dimensional vector spaces. Show
that KC is isomorphic to Z.

Exercise 8.6. Let G be a finite group and k be a field of characteristic 0. Let
C be the category of finite-dimensional k(G)-modules. Then KC is isomorphic to the
abelian subgroup of C(G) generated by the characters of irreducible representations.
Furthermore, the tensor product equips KC with a structure of commutative ring.





CHAPTER 6

Symmetric groups, Schur–Weyl duality and PSH algebras

This chapter was written with Laurent Gruson

Though this be madness, yet there is method in it (Hamlet, Act II scene 2)

In which we revisit the province of representations of symmetric groups with a vision enriched by

our journeys, encounter Schur-Weyl duality and PSH algebras, and put a bit of order in this mess. Not

to mention the partitions, Young tableaux and related combinatorics.

In this chapter (from section 3), we will rely on a book by Andrei Zelevinsky, Rep-
resentations of finite classical groups, a Hopf algebra approach (LNM 869, Springer
1981), which gives a very efficient axiomatisation of the essential properties of the
representations of symmetric groups and general linear groups over finite fields. In
this book lies the first appearance of the notion of categorification which has become
an ubiquitous tool in representation theory.

1. Representations of symmetric groups

Consider the symmetric group Sn. In this section we classify irreducible repre-
sentations of Sn over Q. We will see that any irreducible representation over Q is
absolutely irreducible, in other words Q is a splitting field for Sn. We will realize the
irreducible representations of Sn as minimal left ideals in the group algebra Q(Sn).

Definition 1.1. A partition λ of n is a sequence of positive integers (λ1, . . . , λk)
such that λ1 ≥ · · · ≥ λk and λ1 + · · ·+ λk = n. We use the notation λ ⊢ n when λ is
a partition of n. Moreover, the integer k is called the length of the partition λ.

Remark 1.2. Recall that two permutations lie in the same conjugacy class of
Sn if and only if there is a bijection between their sets of cycles which preserves the
lengths. Therefore we can parametrize the conjugacy classes in Sn by the partitions
of n.

Definition 1.3. To every partition λ = (λ1, . . . , λk) we associate a table, also
denoted λ, consisting of n boxes with rows of length λ1, . . . , λk, it is called a Young
diagram. A Young tableau t(λ) is a Young diagram λ with entries 1, . . . , n in its
boxes such that every number occurs in exactly one box. We say that two Young
tableaux have the same shape if they are obtained from the same Young diagram.
The number of tableaux of shape λ equals n!.

107
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Example 1.4. Let n = 7, λ = (3, 2, 1, 1). The corresponding Young diagram is

and a possible example of tableau t(λ) is

1 2 3
4 5
6
7 .

Given a Young tableau t(λ), we denote by Pt(λ) the subgroup of Sn preserving the
rows of t(λ) and by Qt(λ) the subgroup of permutations preserving the columns.

Example 1.5. Consider the tableau t(λ) from Example 1.4. Then Pt(λ) is iso-
morphic to S3 × S2, which is the subgroup of S7 permuting {1, 2, 3} and {4, 5}, and
Qt(λ) is isomorphic to S4 × S2 which permutes {1, 4, 6, 7} and {2, 5}.

Exercise 1.6. Check that Pt(λ) ∩Qt(λ) = {1} for any tableau t(λ).

Introduce the following elements in Q(Sn):

at(λ) =
∑

p∈Pt(λ)

p, bt(λ) =
∑

q∈Qt(λ)

(−1)qq, ct(λ) = at(λ)bt(λ),

where (−1)q stands for ǫ(q).
The element ct(λ) is called a Young symmetrizer.

Theorem 1.7. Let t(λ) be a Young tableau.

(1) The left ideal Q(Sn)ct(λ) is minimal, therefore it is a simple Q(Sn)-module.
(2) Two Q(Sn)-modules Q(Sn)ct(λ) and Q(Sn)ct′(µ) are isomorphic if and only if

µ = λ.
(3) Every simple Q(Sn)-module is isomorphic to Vt(λ) := Q(Sn)ct(λ) for some

Young tableau t(λ).

Remark 1.8. Note that assertion (3) of the Theorem follows from the first two,
since the number of Young diagrams is equal to the number of conjugacy classes (see
Remark 1.2).

Example 1.9. Consider the partition (of length 1) λ = (n). Then the corre-
sponding Young diagram consists of one row with n boxes. For any tableau t(λ) we
have Pt(λ) = Sn, Qt(λ) is trivial and therefore

ct(λ) = at(λ) =
∑

s∈Sn

s.

The corresponding representation of Sn is trivial.
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Example 1.10. Consider the partition λ = (1, . . . , 1) whose Young diagram con-
sists of one column with n boxes. Then Qt(λ) = Sn, Pt(λ) is trivial and

ct(λ) = bt(λ) =
∑

s∈Sn

(−1)s s.

Therefore the corresponding representation of Sn is the sign representation.

Example 1.11. Let us consider the partition λ = (n−1, 1) and the Young tableau
t(λ) which has entries 1, . . . , n − 1 in the first row and n in the second row. Then
Pt(λ) is isomorphic to Sn−1 and consists of all permutations which fix n, and Qt(λ) is
generated by the transposition (1n). We have

ct(λ) =


 ∑

s∈Sn−1

s


 (1− (1n)) .

Let E denote the permutation representation of Sn. Let us show that Q(Sn)ct(λ) is
the n − 1 dimensional simple submodule of E. Indeed, at(λ)ct(λ) = ct(λ), therefore
the restriction of Vt(λ) to Pt(λ) contains the trivial representation of Pt(λ). Recall
that the permutation representation can be obtained by induction from the trivial
representation of Sn−1:

E = IndSn

Pλ
triv .

By Frobenius reciprocity Q(Sn)ct(λ) is a non-trivial submodule of E. .

In the rest of this Section we prove Theorem 1.7.
First, let us note that Sn acts simply transitively on the set of Young tableaux of

the same shape by permuting the entries, and for any s ∈ Sn we have

ast(λ) = sat(λ)s
−1, bst(λ) = sbt(λ)s

−1, cst(λ) = sct(λ)s
−1.

Therefore if we have two tableaux t(λ) and t′(λ) of the same shape, then

Q(Sn)ct(λ) = Q(Sn)ct′(λ)s
−1

for some s ∈ Sn. Hence Q(Sn)ct(λ) and Q(Sn)ct′(λ) are isomorphic Q(Sn)-modules.
In what follows we denote by Vλ a fixed representative of the isomorphism class

of Q(Sn)ct(λ) for some tableau t(λ). As we have seen this does not depend on the
tableau but only on its shape.

Exercise 1.12. Let t(λ) be a Young tableau and s ∈ Sn. Show that if s does
not belong to the set Pt(λ)Qt(λ), then there exist two entries i, j which lie in the same
row of t(λ) and in the same column of st(λ). In other words, the transposition (ij)
lies in the intersection Pt(λ) ∩Qst(λ). Hint: Assume the opposite, and check that one
can find s′ ∈ Pt(λ) and s′′ ∈ Qt(λ) such that s′t(λ) = s′′st(λ).

Next, observe that for any p ∈ Pλ and q ∈ Qλ we have

pct(λ)q = (−1)q ct(λ).
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Lemma 1.13. Let t(λ) be a Young tableau and y ∈ Q(Sn). Assume that for all
p ∈ Pt(λ) and q ∈ Qt(λ) we have

pyq = (−1)q y.
Then y = act(λ) for some a ∈ Q.

Proof. Let T be a set of representatives of the double cosets Pt(λ)\Sn/Qt(λ).
Then Sn is the disjoint union

⊔
s∈T Pt(λ)sQt(λ) and we can write y in the form

∑

s∈T
ds

∑

p∈Pt(λ),q∈Qt(λ)

(−1)q psq =
∑

s∈T
dsat(λ)sbt(λ).

It suffices to show that if s /∈ Pt(λ)Qt(λ) then at(λ)sbt(λ) = 0. This follows from Exercise
1.12. Indeed, there exists a transposition τ in the intersection Pt(λ)∩Qst(λ). Therefore

at(λ)sbt(λ)s
−1 = at(λ)bst(λ) = (at(λ)τ)(τbst(λ)) = −at(λ)bst(λ) = 0.

�

This lemma implies

Corollary 1.14. We have ct(λ)Q(Sn)ct(λ) ⊂ Qct(λ).

Now we are ready to prove the first assertion of Theorem 1.7.

Lemma 1.15. The ideal Q(Sn)ct(λ) is a minimal left ideal of Q(Sn).

Proof. Consider a left ideal W ⊂ Q(Sn)ct(λ). Then by Corollary 1.14 either
ct(λ)W = Qct(λ) or ct(λ)W = 0.

If ct(λ)W = Qct(λ), then Q(Sn)ct(λ)W = Q(Sn)ct(λ). Hence W = Q(Sn)ct(λ). If
ct(λ)W = 0, then W 2 = 0. But Q(Sn) is a semisimple ring, hence W = 0. �

Note that Corollary 1.14 also implies that Vλ is absolutely irreducible because

EndSn
(Q(Sn)ct(λ)) = ct(λ)Q(Sn)ct(λ) ≃ Q.

Corollary 1.16. For every Young tableau t(λ) we have c2t(λ) = nλct(λ), where

nλ =
n!

dimVλ
.

Proof. By Corollary 1.14 we know that ct(λ) = nλct(λ) for some nλ ∈ Q. More-
over, there exists a primitive idempotent e ∈ Q(Sn) such that ct(λ) = nλe. To find nλ
note that the trace of e in the regular representation equals dimVλ, and the trace of
ct(λ) in the regular representation equals n!. �

Exercise 1.17. Introduce the lexicographical order on partitions by setting λ > µ
if there exists i such that λj = µj for all j < i and λi > µi. Show that if λ > µ, then
for any two Young tableaux t(λ) and t′(µ) there exist entries i and j which lie in the
same row of t(λ) and in the same column of t′(µ).

Lemma 1.18. Let t(λ) and t′(µ) be two Young tableaux such that λ < µ. Then
ct(λ)Q(Sn)ct′(µ) = 0.
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Proof. We have to check that ct(λ)sct′(µ)s = 0 for any s ∈ Sn, which is equivalent
to ct(λ)cst′(µ) = 0. Therefore it suffices to prove that ct(λ)ct′(µ) = 0. By Exercise 1.17
there exists a transposition τ which belongs to the intersection Qt(λ) ∩ Pt′(µ). Then,
repeating the argument from the proof of Lemma 1.13, we obtain

ct(λ)ct′(µ) = ct(λ)τ
2ct′(µ) = −ct(λ)ct′(µ).

�

Now we show the second statement of Theorem 1.7.

Lemma 1.19. Two irreducible representations Vλ and Vµ are isomorphic if and
only if λ = µ.

Proof. It suffices to show that if λ 6= µ, then Vλ and Vµ are not isomorphic.
Without loss of generality we may assume λ < µ and take some Young tableaux t(λ)
and t′(µ). By Lemma 1.18 we obtain that ct(λ) acts by zero on Vµ. On the other
hand, by Corollary 1.16, ct(λ) does not annihilate Vλ. Hence the statement. �

By Remark 1.8 the proof of Theorem 1.7 is complete.

Remark 1.20. Note that in fact we have proved that if λ 6= µ then ct(λ)Q(Sn)ct′(µ) =
0 for any pair of tableaux t(λ), t′(µ). Indeed, if ct(λ)Q(Sn)ct′(µ) 6= 0, then

Q(Sn)ct(λ)Q(Sn)ct′(µ) = Q(Sn)ct′(µ).

But this is impossible since Q(Sn)ct(λ)Q(Sn) has only components isomorphic to Vλ.

Lemma 1.21. Let ρ : Sn → GL (V ) be a finite-dimensional representation of Sn.
Then the multiplicity of Vλ in V equals the rank of ρ

(
ct(λ)

)
.

Proof. The rank of ct(λ) in Vλ is 1 and ct(λ)Vµ = 0 for all µ 6= λ. Hence the
statement. �

Exercise 1.22. Let λ be a partition and χλ denote the character of Vλ.

(1) Prove that χλ(s) ∈ Z for all s ∈ Sn.
(2) Prove that χλ(s) = χλ(s

−1) for all s ∈ Sn and hence Vλ is self-dual.
(3) For a tableau t(λ) let c̄t(λ) = bt(λ)at(λ). Prove that Q(Sn)ct(λ) and Q(Sn)c̄t(λ)

are isomorphic Q(Sn)-modules.

Exercise 1.23. Let λ be a partition. We define the conjugate partition λ⊥ by
setting λ⊥i to be equal to the length of the i-th row in the Young diagram λ. For

example, if λ = , then λ⊥ = .
Prove that for any partition λ, the representation Vλ⊥ is isomorphic to the tensor

product of Vλ with the sign representation.

Since Q is a splitting field for Sn, Theorem 1.7 provides classification of irreducible
representations of Sn over any field of characteristic zero.
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2. Schur–Weyl duality.

2.1. Dual pairs. We will start the following general statement.

Theorem 2.1. Let G and H be two groups and ρ : G × H → GL (V ) be a
representation in a vector space V . Assume that V has a decomposition

V =
m⊕

i=1

Vi ⊗ HomG(Vi, V )

for some aboslutely irreducible representations V1, . . . , Vm of G, and the subalgebra
generated by ρ(H) equals EndG(V ). Then every Wi := HomG(Vi, V ) is an absolutely
irreduicble representation of H and Wi is not isomorphic to Wj if i 6= j.

Proof. Since every Vi is an absolutely irreducible representation of G, we have

EndG(V ) =
m∏

i=1

Endk(Wi).

By our assumption the homomorphism

ρ : k(H)→
m∏

i=1

Endk(Wi)

is surjective. Hence the statement. �

Remark 2.2. In general, we say that G and H satisfying the conditions of The-
orem 2.1 form a dual pair.

Example 2.3. Let k be an algebraically closed field, G be a finite group. Let ρ
be the regular representation of G in k(G) and σ be the representation of G in k(G)
defined by

σg(h) = hg−1

for all g, h ∈ G. Then k(G) has the structure of a G × G-module and we have a
decomposition

k(G) =
r⊕

i=1

Vi ⊠ V ∗i ,

where V1, . . . , Vr are all up to isomorphism irreducible representations of G.

2.2. Duality between GL(V ) and Sn. Let V be a vector space over a field k
of characteristic zero. Then it is an irreducible representation of the group GL(V ).
We would like to understand V ⊗n as a GL(V )-module. Is it semisimple? If so, what
are its simple component?

Let us define the representation ρ : Sn → GL (V ⊗n) by setting

s (v1 ⊗ · · · ⊗ vn) := vs(1) ⊗ · · · ⊗ vs(n),
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for all v1, . . . , vn ∈ V and s ∈ Sn. One can easily check that the actions of GL(V )
and Sn in the space V ⊗n commute. We will show that GL(V ) and Sn form a dual
pair.

Theorem 2.4. (Schur–Weyl duality) Let m = dimV and Γn,m denote the set of
all Young diagrams with n boxes such that the number of rows of λ is not bigger
than m. Then

V ⊗n =
⊕

λ∈Γn,m

Vλ ⊗ Sλ(V ),

where Vλ is the irreducible representation of Sn associated to λ and

Sλ := HomSn
(Vλ, V )

is an irreducible representation of GL(V ). Moreover, Sλ(V ) and Sµ(V ) are not iso-
morphic if λ 6= µ.

Remark 2.5. If λ ∈ Γn,m and t(λ) is arbitrary Young tableau of shape λ, then the
image of the Young symmetrizer ct(λ) in V

⊗n is a simple GL(V )-module isomorphic
to Sλ(V ).

Example 2.6. Let n = 2. Then we have a decomposition V ⊗V = S2(V )⊕Λ2(V ).
Theorem 2.4 implies that S2(V ) = S(2)(V ) and Λ2(V ) = S(1,1)(V ) are irreducible rep-
resentations ofGL(V ). More generally, S(n)(V ) is isomorphic to Sn(V ) and S(1,...,1)(V )
is isomorphic to Λn(V ).

Let us prove Theorem 2.4.

Lemma 2.7. Let σ : k(GL(V ))→ Endk(V
⊗n) be the homomorphism induced by

the action of GL(V ) on V ⊗n. Then

EndSn

(
V ⊗n

)
= σ(k(GL(V )).

Proof. Let E = Endk (V ). Then we have an isomorphism of algebras

Endk
(
V ⊗n

)
≃ E⊗n.

We define the action of Sn on E⊗n by setting

s(X1 ⊗ · · · ⊗Xn) := Xs(1) ⊗ · · · ⊗Xs(n)

for all s ∈ S and X1, . . . , Xn ∈ E. Then EndSn
(V ⊗n) coincides with the subalgebra

of Sn-invariants in E
⊗n that is with the n-th symmetric power Sn(E) of E. Therefore

it suffices to show that Sn(E) is the linear span of σ(g) for all g ∈ GL(V ).
We will need the following

Exercise 2.8. Let W be a vector space. Prove that for all n ≥ 2 the following
identity holds in the symmetric algebra S (W )

2n−1n!x1 . . . xn =
∑

i2=0,1,...,in=0,1

(−1)i2+···+in
(
x1 + (−1)i2 x2 + · · ·+ (−1)in xn

)n
.
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Let us choose a basis e1, . . . , em2 of E such that all non-zero linear combinations
a1e1+· · ·+am2em2 with coefficients ai ∈ {−n, . . . , n} belong toGL(V ). (The existence
of such basis follows from density of GL(V ) in E in Zariski topology.) By the above
exercise the set

{(a1ei1 + · · ·+ anein)
⊗n | ai = ±1, i1, . . . in ≤ N}

spans Sn(E). On the other hand, every non-zero (a1ei1 + · · · + anein) belongs to
GL(V ). Therefore we have

(a1ei1 + · · ·+ anein)
⊗n = σ(a1ei1 + · · ·+ anein).

Hence Sn(E) is the linear span of σ(g) for g ∈ GL(V ). �

Lemma 2.9. Let λ = (λ1, . . . , λp) be a partition of n. Then Sλ(V ) 6= 0 if and
only if λ ∈ Γn,m.

Proof. Consider the tableau t(λ) with entries 1, . . . , n placed in increasing order
from top to bottom of the Young diagram λ starting from the first column. For

instance, for λ = we consider the tableau t(λ) =

1 3 5
2 4 . By Remark 2.5

Sλ(V ) 6= 0 if and only if ct(λ)(V
⊗n) 6= 0.

If λ⊥ = µ = (µ1, . . . , µr), then

bt(λ)(V
⊗n) = ⊗ri=1Λ

µi(V ).

If λ is not in Γn,m, then µ1 > m and bt(λ)(V
⊗n) = 0. Hence ct(λ)(V

⊗n) = 0.
Let λ ∈ Γn,m. Choose a basis v1, . . . , vm in V , then

B := {vi1 ⊗ · · · ⊗ vin | 1 ≤ i1, . . . , in ≤ m}
is a basis of V ⊗n. Consider the particular basis vector

u := v1 ⊗ . . . vµ1 ⊗ · · · ⊗ v1 ⊗ . . . vµr ∈ B.
One can easily see that in the decomposition of ct(λ)(u) in the basis B, u occurs with

coefficient

p∏

i=1

λi!. In particular, ct(λ)(u) 6= 0. Hence the statement. �

Lemma 2.7, Lemma 2.9 and Theorem 2.1 imply Theorem 2.4. Furthermore, Theo-
rem 2.4 together with the Jacobson density theorem (Theorem 2.9 Chapter V) implies
the double centralizer property:

Corollary 2.10. Under assumptions of Theorem 2.4 we have

EndGL(V )(V
⊗n) = ρ(k(Sn)).

Definition 2.11. Let λ be a partition of n. The Schur functor Sλ is the functor
from the category of vector spaces to itself defined by

V 7→ Sλ(V ) = HomSn
(Vλ, V

⊗n).
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Note that Sλ is not an additive functor, in particular,

Sλ(V ⊕W ) 6= Sλ(V )⊕ Sλ(W ).

Schur–Weyl duality holds for an infinite-dimensional space in the following form.

Proposition 2.12. Let V be an infinite-dimensional vector space and Γn be the
set of all partitions of n. Then we have the decomposition

V ⊗n =
⊕

λ∈Γn

Vλ ⊗ Sλ(V ),

each Sλ(V ) is a simple GL(V )-module and Sλ(V ) is not isomorphic to Sµ(V ) if λ 6= µ.

Proof. The existence of the decomposition is straightforward. For any finite-
dimensional subspaceW of V we have the embedding Sλ(W ) →֒ Sλ(V ). Furthermore,
Sλ(W ) 6= 0 if dimW ≥ λ⊥1 . Hence Sλ(V ) 6= 0 for all λ ∈ Γn.

Furthermore, Sλ(V ) is the union of Sλ(W ) for all finite-dimensional subspaces
W ⊂ V . Since Sλ(W ) is a simple GL(W )-module for sufficiently large dimW , we
obtain that Sλ(V ) is a simple GL(V )-module.

To prove the last assertion we notice that Corollary 2.10 holds by the Jacobson
density theorem, hence Sλ(V ) is not isomorphic to Sµ(V ) if λ 6= µ. �

Schur–Weyl duality provides a link between tensor product of GL(V )-modules
and induction-restriction of representations of symmetric groups.

Definition 2.13. Let λ be a partition of p and µ a partition of q. Note that
Sλ(V )⊗Sµ(V ) is a submodule in V ⊗(p+q), hence it is a semisimple GL(V )-module and
can be written as a direct sum of Sν(V ) with some multiplicities. These multiplicities
are called Littlewood-Richardson coefficients. More precisely, we define N ν

λ,µ as the
function of three partitions λ, µ and ν given by

N ν
λ,µ := dimHomGL(V )(Sν(V ), Sλ(V )⊗ Sµ(V )).

Clearly, N ν
λ,µ 6= 0 implies that ν is a partition of p+ q.

Proposition 2.14. Let λ be a partition of p and µ a partition of q, n = p + q
and dimV ≥ n. Consider the injective homomorphism Sp×Sq →֒ Sn which sends Sp
to the permutations of 1, . . . , p and Sq to the permutations of p+ 1, . . . , n. Then for
any partition ν of n we have

N ν
λ,µ = dimHomSn

(Vν , Ind
Sn

Sp×Sq
(Vλ ⊠ Vµ)) = dimHomSp×Sq

(Vν , Vλ ⊠ Vµ).

Proof. Let us choose three tableaux t(ν), t′(λ) and t′′(µ). We use the identifi-
cation

Sν(V ) ≃ ct(ν)(V
⊗n), Sν(V ) ≃ ct′(λ)(V

⊗p), Sν(V ) ≃ ct′′(µ)(V
⊗q).

Since V ⊗n is a semisimple GL(V )-module we have

HomGL(V )(ct(ν)(V
⊗n), ct′(λ) ⊗ ct′′(µ)(V ⊗n)) = ct(ν)k(Sn)ct′(λ)ct′′(µ).
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Now we use an isomorphism of Sn-modules

IndSn

Sp×Sq
(Vλ ⊠ Vµ)) = k(Sn)ct′(λ)ct′′(µ).

Then by Lemma 1.21 we obtain

N ν
λ,µ = dimHomSn

(Vν , Ind
Sn

Sp×Sq
(Vλ ⊠ Vµ)) = dim ct(ν)k(Sn)ct′(λ)ct′′(µ).

The second equality follows by Frobenius reciprocity. �

3. Generalities on Hopf algebras

Let Z be a commutative unital ring.
Let A be a unital Z-algebra, we denote by m : A⊗A→ A the Z-linear multipli-

cation. Since A is unital, there is an Z-linear map e : Z → A. Moreover, we assume
we are given two Z-linear maps m∗ : A → A ⊗ A (called the comultiplication) and
e∗ : A→ Z (called the counit) such that the following axioms hold:

• (A): the multiplication m is associative, meaning the following diagram is
commutative

m⊗ idA
A⊗ A⊗ A −→ A⊗ A

idA ⊗m ↓ ↓ m
A⊗ A −→ A

m

• (A∗): the comultiplication is coassociative, namely the following diagram
commutes:

m∗

A −→ A⊗ A
m∗ ↓ ↓ idA ⊗m∗

A⊗ A −→ A⊗ A⊗ A
m∗ ⊗ idA

Note that this is the transpose of the diagram of (A).
• (U): The fact that e(1) = 1 can be expressed by the commutativity of the
following diagrams:

Z ⊗ A ≃ A
e⊗ 1 ↓ ↓ Id,

A⊗ A −→ A
m

A⊗ Z ≃ A
1⊗ e ↓ ↓ Id

A⊗ A −→ A
m

• (U∗): similarly, the following diagrams commute

A ≃ A⊗ Z
Id ↑ ↑ 1⊗ e∗,

A −→ A⊗ A
m∗

A ≃ Z ⊗ A
Id ↑ ↑ e∗ ⊗ 1,

A −→ A⊗ A
m∗
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• (Antipode): there exists a Z-linear isomorphism S : A → A such that the
following diagrams commute:

S ⊗ IdA
A⊗ A −→ A⊗ A

m∗ ↑ ↓ m,
A −→ A

e ◦ e∗

IdA ⊗ S
A⊗ A −→ A⊗ A

m∗ ↑ ↓ m,
A −→ A

e ◦ e∗

Definition 3.1. This set of data is called a Hopf algebra if the following property
holds:

(H): the map m∗ : A→ A⊗ A is an homomorphism of Z-algebras.
Moreover, if the antipode axiom is missing, then we call it a bialgebra.

Exercise 3.2. Show that if an antipode exists, then it is unique. Moreover, if S
is a left antipode and S ′ is a right antipode, then S = S ′.

Remark 3.3. Assume that A is a commutative algebra, for any commutative
algebra B, set XB := HomZ−alg(A,B), then the composition with m∗ induces a map
XB × XB = HomZ−alg(A ⊗ A,B) → XB which defines a group law on XB. This
property characterizes commutative Hopf algebras.

Example 3.4. IfM is a Z-module, then the symmetric algebra S•(M) has a Hopf
algebra structure, for the comultiplication m∗ defined by: if ∆ denotes the diagonal
map M → M ⊕ M , then m∗ : S•(M ⊕ M) = S•(M) ⊗ S•(M) is the canonical
morphism of Z-algebras induced by ∆.

Exercise 3.5. Find m∗ when Z is a field and M is finite dimensional.

Definition 3.6. Let A be a bialgebra, an element x ∈ A is called primitive if
m∗(x) = x⊗ 1 + 1⊗ x.

Exercise 3.7. Show that if k is a field of characteristic zero and if V is a finite
dimensional k-vector space, then the primitive elements in S•(V ) are exactly the
elements of V .

We say that a bialgebra A is connected graded if

(1) A =
⊕

n∈NAn is a graded algebra;
(2) m∗ : A→ A⊗ A is a homomorphism of graded algebras, where the grading

on A⊗ A is given by the sum of gradings;
(3) A0 = Z;
(4) the counit e∗ : A→ Z is a homomorphism of graded rings.

Lemma 3.8. Let A be a graded connected bialgebra, I =
⊕

n>0An. Then for any
x ∈ I, m∗(x) = x⊗ 1 + 1⊗ x +m∗+(x) for some m∗+(x) ∈ I ⊗ I. In particular every
element of A of degree 1 is primitive.
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Proof. From the properties (3) and (4) we have that I = Ker e∗. Write

m∗(x) = y ⊗ 1 + 1⊗ z +m∗+(x).

We have to check that y = z = x. But this immediately follows from the counit
axiom. �

Proposition 3.9. Let A be a connected graded bialgebra and P be the set of
primitive elements of A. Assume that I2 ∩ P = 0. Then A is commutative and has
the antipode.

Proof. Let us prove first that A is commutative. Assume the opposite. Let
x ∈ Ak, y ∈ Al be some homogeneous element of A such that [x, y] 6= 0 and k + l
minimal possible. Then m∗([x, y]) = [m∗(x),m∗(y)]. By minimality of k + l we have
that [m∗+(x),m

∗
+(y)] = 0, hence [x, y] is primitive. On the other hand, [x, y] ∈ I ⊗ I,

hence [x, y] = 0. A contradiction.
Next, let us prove the existence of antipode. For every x ∈ An we construct

S(x) ∈ An recursively. We set

S(x) := −x for n = 1, S(x) = −x−m ◦ (Id⊗S) ◦m∗+(x) for n > 1.

Exercise 3.10. Check that S satisfies the antipode axiom.

�

4. The Hopf algebra associated to the representations of symmetric
groups

Let us consider the free Z-module A = ⊕n∈NA(Sn) where A(Sn) is freely gener-
ated by the characters of the irreducible representations (in C-vector spaces) of the
symmetric group Sn. (Note that since every Sn-module is semi-simple, A(Sn) is the
Grothendieck group of the category Sn−mod of finite dimensional representations of
Sn). It is a N-graded module, where the homogeneous component of degree n is equal
to A(Sn) if n ≥ 1 and the homogeneous part of degree 0 is Z by convention. More-
over, we equip it with a Z-valued symmetric bilinear form, denoted 〈; 〉, for which
the given basis of characters is an orthonormal basis, and with the positive cone A+

generated over the non-negative integers by the orthonormal basis.
In order to define the Hopf algebra structure on A, we use the induction and

restriction functors:

Ip,q : (Sp × Sq)−mod −→ Sp+q −mod,
Rp,q : Sp+q −mod −→ (Sp × Sq)−mod.

Remark 4.1. Frobenius (see Theorem 4.3) observed that the induction functor
is left adjoint to the restriction.

Since the restriction and induction functors are exact, they define maps in the
Grothendieck groups. Moreover, the following lemma holds:
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Exercise 4.2. Show that we have an group isomorphism

A(Sp × Sq) ≃ A(Sp)⊗Z A(Sq).
We deduce, from the collections of functors Ip,q, Rp,q, p, q ∈ N, two maps:

m : A⊗A −→ A,
m∗ : A −→ A⊗A.

More explicitely, if M (resp N) is an Sp (resp. Sq) module and if [M ] (resp. [N ])
denotes its class in the Grothendieck group,

m([M ]⊗ [N ]) = [Ip,q(M ⊗N)],

and if P is an Sn-module,

m∗([P ]) =
∑

p+q=n

[Rp,q(P )].

Exercise 4.3. Show that m is associative and hence m∗ is coassociative (use
adjunction), m is commutative and m∗ is cocommutative (use adjunction).

The tricky point is to show the following lemma:

Lemma 4.4. The map m∗ is an algebra homomorphism.

Proof. (Sketch) We will use Theorem 6.4 Chapter II to compute

ResSn

Sp×Sq
IndSn

Sk×Sl
M ⊗N,

where p + q = k + l = n, M and N are representations of Sk and Sl respectively.
The double cosets Sp× Sq\Sn/Sk × Sl are enumerated by quadruples (a, b, c, d) ∈ N4

satisfying a+ b = p, c+ d = q, a+ c = k, b+ d = l. So we have

ResSn

Sp×Sq
IndSn

Sk×Sl
M ⊗N =

=
⊕

a+b=p,c+d=q,a+c=k,b+d=l

Ind
Sp×Sq

Sa×Sb×Sc×Sd
ResSk×Sl

Sa×Sb×Sc×Sd
M ⊗N.

and
ResSk×Sl

Sa×Sb×Sc×Sd
M ⊗N = ResSk

Sa×Sc
M ⊗ ResSl

Sb×Sd
N.

If
Ra,c(M)⊗Rb,dN = ⊕iAi ⊗Bi ⊗ Ci ⊗Di,

then

(6.1) Rp,qIk,l(M ⊗N) =
∑

a+b=p,c+d=q,a+c=k,b+d=l

∑

i

Ia,b(Ai ⊗ Ci)⊗ Ic,d(Bi ⊗Di).

The relation (6.1) is the condition

m∗m(a, b) =
∑

i,j

m(ai, bj)⊗m(ai, bj),
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where m∗(a) =
∑

i ai⊗ai, m∗(b) =
∑

j bj⊗ bj, in terms of homogeneous components.
�

The axiom (U) corresponds to the inclusion A0 ⊂ A and (U∗) is its adjoint, and
finally the antipode of the class of a simple Sn-module [M ] is the virtual module
(−1)n[ε⊗M ], where ε is the sign representation of Sn.

Hence we have a structure of Hopf algebra on A, and the following properties are
easily checked:
• positivity: the cone A+ is stable under multiplication (for m),
• self-adjointness: The maps m and m∗ are mutually adjoint with respect to the

scalar product on A and the corresponding scalar product on A⊗A.
Definition 4.5. A graded connected bialgebra A over Z together with a homo-

geneous basis Ω, equipped with a scalar product 〈 , 〉 for which Ω is orthonormal,
which is positive (for the cone A+ generated over N by Ω) and self-adjoint is called
a positive self-adjoint Hopf algebra, PSH algebra for short.

Moreover, the elements of Ω are called basic elements of A.

Remark 4.6. Note that a PSH algebra is automatically commutative and co-
commutative Hopf algebra by Proposition 3.9.

We have just seen that:

Proposition 4.7. The algebra A with the basis Ω given by classes of all irre-
ducible representations is a PSH algebra.

Exercise 4.8. Show that for any a1, . . . , an in A, the matrix Gram(a1, . . . , an) =
((aij)) such that ai,j := 〈ai, aj〉 (called the Gram matrix) is invertible in Mn(Z) (i.e.
the determinant is ±1) if and only if the ai’s form a basis of the sublattice of A
generated by some subset of cardinal n of Ω. Note that if the Gram matrix is the
identity, then, up to sign, the ai’s belong to Ω..

Exercise 4.9. Assume H is a Hopf algebra with a scalar product and assume H
is commutative and self-adjoint. Let x be a primitive element in H and consider the
map

dx : H −→ H, y 7→
∑

i

〈yi, x〉yi

where m∗(y) =
∑

i yi ⊗ yi.
• Show that dx is a derivation (for all a, b in H, dx(ab) = adx(b) + dx(a)b).
• Show that if x and y are primitive elements in H, then dx(y) = 〈y, x〉.

5. Classification of PSH algebras part 1: Zelevinsky’s decomposition
theorem

In this section we classify PSH algebras following Zelevinsky. Let A be a PSH
with the specified basis Ω and positive cone A+. Let us denote by Π the set of basic
primitive elements of A that is primitive elements belonging to Ω.
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A multi-index α is a finitely supported function from Π to N. For such an α we
denote by πα the monomial

∏
p∈Π p

α(p). We denote by M the set of such monomials.

For a ∈ A we denote by Supp(a) (and call support of a) the set of basic elements
which appear in the decomposition of a.

Lemma 5.1. The supports of πα and πβ are disjoint whenever α 6= β.

Proof. Since the elements of M belong to A+, we just have to show that the
scalar product 〈πα, πβ〉 is zero when α 6= β. We prove this by induction on the total
degree of the monomial πα. Write πα = π1π

γ for some π1 such that α(π1) 6= 0. Then
(recall Exercise 4.9)

〈πα, πβ〉 = 〈πγ, dπ1(πβ)〉.
Since the total degree of πγ is less than the degree of πα. If the scalar product is not
zero, we obtain by the induction assumption that dπ1(π

β) is a multiple of πγ. This
implies πβ = π1π

γ = πα. �

For every monomial πα ∈M , denote by Aα the Z-span of Supp(πα).

Lemma 5.2. For all πα, πβ in M , one has:

AαAβ ⊂ Aα+β.

Proof. We consider the partial ordering ≤ in A whose positive cone is A+ (i.e.
x ≤ y if and only if y − x ∈ A+). Note that if 0 ≤ x ≤ y then Supp(x) ⊂ Supp(y).
Therefore if we pick up ω in Supp(πα) and η ∈ Supp(πβ) then ωη ≤ πα+β, hence the
result. �

Let I be the ideal spanned by all elements of positive degree.

Exercise 5.3. (1) Show that if x ∈ A is primitive, then x ∈ I.
(2) Show that if x ∈ I then m∗(x)− 1⊗ x− x⊗ 1 belongs to I ⊗ I.
Moreover, x ∈ I is primitive if and only if x is orthogonal to I2. Indeed for y and

z in I, 〈m∗(x)− 1⊗ x− x⊗ 1, y ⊗ z〉 = 〈x, yz〉, hence the result by Exercise 5.3.

Lemma 5.4. One has:
A =

⊕

πα∈M
Aα.

Proof. Assume the equality doesn’t hold, then there exists an ω ∈ Ω which does
not belong to this sum. We choose such an ω with minimal degree k. Since ω is not
primitive, it is not orthogonal to I2 and therefore belongs to the support of some
ηη′ with η, η′ belonging to Ω. Hence k = k′ + k′′ where k′ (resp. k′′) is degree of η
(resp. η′). By minimality of k, η and η′ lie in the direct sum, thus, by Lemma 5.2, a
contradiction. �

Lemma 5.5. Let πα and πβ be elements in M which are relatively prime. Then
the restriction of the multiplication induces an isomorphism Aα ⊗ Aβ ≃ Aα+β given
by a bijection between Supp(πα)× Supp(πβ) and Supp(πα+β).
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Proof. We will prove that the Gram matrix (see Exercise 4.8)

Gram((ωη)ω∈Supp(πα),η∈Supp(πβ))

is the identity. This will be enough since it implies that the products ωη are distinct
elements of Ω (again, see Exercise 4.8), and they exhaust the support of πα+β which
belongs to their linear span.

Let ω1, ω2 (resp. η1, η2) be elements of Supp(πα) (resp. Supp(πβ)), one has

〈ω1η1, ω2η2〉 = 〈m∗(ω1η1), ω2 ⊗ η2〉 = 〈m∗(ω1)m
∗(η1), ω2 ⊗ η2〉.

One has m∗(ω1) ∈
⊕

α′+α′′=αA
α′ ⊗ Aα′′ and m∗(η1) ∈

⊕
β′+β′′=β A

β′ ⊗ Aβ′′ (this is

just a transposed version of Lemma 5.2), hence

m∗(ω1)m
∗(η1) ∈

∑

α′+α′′=α,β′+β′′=β

Aα
′+β′ ⊗ Aα′′+β′′ .

On the other hand, ω2⊗ η2 belongs to Aα⊗Aβ. We must understand in which cases
Aα
′+β′ ⊗ Aα′′+β′′ = Aα ⊗ Aβ and this occurs if and only if α′ + β′ = α, α′′ + β′′ = β.

Since πα and πβ are relatively prime, this occurs if and only if β′ = 0 = α′′.
The component of m∗(ω1) in A

α ⊗ A0 is ω1 ⊗ 1 and the component of m∗(η1) in
A0 ⊗ Aβ is 1⊗ η1 (see Exercise 5.3), therefore

〈ω1η1, ω2η2〉 = 〈(ω1 ⊗ 1)(1⊗ η1), ω2 ⊗ η2〉 = 〈ω1 ⊗ η1, ω2 ⊗ η2〉 = 〈ω1η1, ω2η2〉.
Hence the result. �

The following Theorem is a direct consequence of Lemmas 5.1, 5.2, 5.4, 5.5.

Theorem 5.6. (Zelevinsky’s decomposition theorem). Let A be a PSH algebra
with basis ω, and let Π be the set of basic primitive elements of A. For every π ∈ Π
we set Aπ :=

⊕
n∈NA

πn

. Then

(1) Aπ is a PSH algebra and its unique basic primitive element is π,
(2) A =

⊗
π∈ΠAπ.

Remark 5.7. In the second statement, the tensor product might be infinite: it
is defined as the span of tensor monomials with a finite number of entries non-equal
to 1.

Definition 5.8. The rank of the PSH algebra A is the cardinal of the set Π of
basic primitive elements in A.

6. Classification of PSH algebras part 2: unicity for the rank 1 case

By the previous section, understanding a PSH algebra is equivalent to under-
standing its rank one components. Therefore, we want to classify the rank one cases.

Let A be PSH algebra of rank one with marked basis Ω, and denote π its unique
basic primitive element. We assume that we have chosen the graduation of A so that
π is of degree 1. We will construct a sequence (ei)i∈N of elements of Ω such that:
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(1) e0 = 1, e1 = π and en is of degree n (it is automatically homogeneous since
it belongs to Ω),

(2) A ≃ Z[e1, e2, . . . , en, . . .] as graded Z-algebras,
(3) m∗(en) =

∑
i+j=n ei ⊗ ej.

Actually, we will find exactly two such sequences and we will denote the second one
(hi)i∈N. The antipode map exchanges those two sequences.

We denote by d the derivation of A which is adjoint to the multiplication by π
(see Exercise 4.9).

Lemma 6.1. There are exactly two elements in Ω of degree 2 and their sum is
equal to π2.

Proof. One has

〈π2, π2〉 = 〈π, d(π2)〉 = 2〈π, π〉 = 2.

On the other hand, if we write π2 in the basis Ω, π2 =
∑

ω∈Ω〈π2, ω〉ω, we get

〈π2, π2〉 =
∑

ω∈Ω
〈π2, ω〉2,

but 〈π2, ω〉 is a non negative integer, hence the result. �

We will denote by e2 one of those two basic elements and h2 the other one.
Furthermore, we set e∗2 (resp. h∗2) to be the linear operator on A of degree −2 which
is adjoint to the multiplication by e2 (resp. h2).

Exercise 6.2. Show that the operator e∗2 satisfies the identities

(6.2) m∗(e2) = e2 ⊗ 1 + π ⊗ π + 1⊗ e2,

(6.3) e∗2(ab) = e∗2(a)b+ ae∗2(b) + d(a)d(b).

Lemma 6.3. There is exactly one element en of degree n in Ω such that h∗2(en) = 0.
This element satisfies d(en) = en−1.

Proof. We prove this by induction on n. For n = 2, h∗2(e2) is the scalar product
〈h2, e2〉 which is zero because e2 and h2 are two distinct elements of Ω. We assume
that the statement of the lemma holds for all i < n. If x is of degree n and satisfies
h∗2(x) = 0, then d(x) (which is of degree n−1) is proportional to en−1 by the induction
hypothesis, since h∗2 and d commute. The scalar is equal to 〈d(x), en−1〉 = 〈x, πen−1〉
since d is the adjoint of the multiplication by π. As in Lemma 6.1, we prove next that
〈πen−1, πen−1〉 = 2: indeed 〈πen−1, πen−1〉 = 〈d(πen−1), en−1〉 = 〈en−1 + πen−2, en−1〉
= 1 + 〈πen−2, en−1〉 = 1 + 〈en−2, d(en−1)〉 = 2.

Therefore πen−1 decomposes as the sum of two distinct basic elements ω1 + ω2.
Besides, using Exercise 6.2 equation (6.3), we have h∗2(πen−1) = en−2. Since h∗2 is a
positive operator (i.e. preserves A+), h∗2(ω1) + h∗2(ω2) = en−2 implies that one of the
factors h∗2(ωi) (i = 1 or 2) is zero, so that ωi can be choosen for x = en. �
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Proposition 6.4. One has, for every n ≥ 1,

m∗(en) =
n∑

k=0

ek ⊗ en−k.

Proof. If ω belongs to Ω, we denote by ω∗ the adjoint of the multiplication by
ω. We just need to show that ω∗(en) = 0 except if ω = ek for some 0 ≤ k ≤ n, in
which case ω∗(en) = en−k.

Indeed, we can write πk =
∑

ω∈Ω,deg(ω)=k Cωω where the coefficients Cω are positive

integers, hence dk =
∑

ω∈Ω,deg(ω)=k Cωω
∗. Since

∑
ω∈Ω,deg(ω)=k Cωω

∗(en) = dk(en) =

en−k, all the terms in the sum are zero except one (by integrity of the coefficients).
It remains to show that the non-zero term comes from the element ek of Ω. But this
is clear since dn−ke∗k(en) = e∗kd

n−k(en) = e∗k(ek) = 1. �

Exercise 6.5. (1) Show that for every n ≥ 0, e∗n(ab) =
∑

0≤k≤n e
∗
k(a)e

∗
n−k(b).

(2) We make the convention that h−1 = 0. Prove the following equality for any
positive integer n and i1, . . . , ir non negative integers:

(6.4) e∗r(hi1 . . . hir) = hi1−1 . . . hir−1.

Proposition 6.6. Let t be an indeterminate, the two formal series
∑

i≥0 eit
i and∑

i≥0(−1)ihiti are mutually inverse.

Proof. Since A is a graded bialgebra over Z, we know that it is equipped with
a unique antipode S. Let us show that it exchanges en and (−1)nhn:

First, let us show that S is an isometry for the scalar product of A. Indeed, we
have the following commutative diagram

(6.5)

IdA ⊗ S
A⊗ A −→ A⊗ A

m∗ ↑ ↓ m,
A −→ A

e ◦ e∗

where e : Z → is the unit of A (see section 3). By considering the adjoint of
this diagram, we understand that S∗ is also an antipode, and by uniqueness of the
antipode, S = S−1 = S∗ hence S is an isometry and so for ω ∈ Ω, S(ω) = ±η,
for some η ∈ Ω (ω and η have the same degree). Applying the diagram (6.5) to π,
who is primitive, we check that S(π) = −π. In the same way, we obtain S(π2) = π2

and (e2) = h2. Since en is the unique basic element of degree n satisfying the
relation h∗2(en) = 0,we have S(en) = ±hn and the sign coincides is (−1)n since
S(πn) = (−1)nπn.

The diagram (6.5) implies that (m◦IdA⊗S◦m∗)(en) = 0 for all n ≥ 1. By Proposi-
tion 6.4, one hasm∗(en) =

∑
0≤k≤n ek⊗en−k and so we have

∑
0≤k≤n(−1)n−kekhn−k =

0. The result follows. �
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We will now use the definitions and notations for partitions introduced in Section
1. For a partition λ = (λ1, . . . , λn), we denote by eλ the product eλ = eλ1 . . . eλn and
set a similar definition for hλ. Note that in general, the elements eλ, hλ do not belong
to Ω.

Definition 6.7. Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be two partitions of
the same integer n. We say that λ is greater or equal than µ for the dominance order
and denote it λ � µ if, for every k ≤ inf(r, s), λ1 + . . .+ λk ≥ µ1 + . . .+ µk.

Lemma 6.8. Let λ and µ be partitions of a given integer n, define Mλ,µ as the
number of matrices with entries belonging to {0, 1} such that the sum of the entries
in the i-th row (resp. column) is λi (resp. µi). Then one has:

(1) 〈eλ, hµ〉 =Mλ,µ,
(2) Mλ,λ⊥ = 1,
(3) Mλ,µ 6= 0 implies λ � µ⊥

Proof. (Sketch) We write λ = (λ1, . . . , λr) and µ = (µ1 . . . µs). By Exercise 6.5,
we have

e∗λ1(hµ1 . . . hµs) =
∑

νi=0,1
∑
νi=λ1

hµ1−ν1 . . . hµs−νs .

Next, we apply e∗λ2 to this sum, e∗λ3 to the result, and so on. We obtain:

〈eλ, hµ〉 = e∗λ(hµ) =
∑

νij∈{0,1},
∑

j νij=λi

hµ1−
∑

i ν1i
. . . hµs−

∑
i νsi

.

The terms in the sum of the right-hand side are equal to 0 except when µi =
∑

j νij
for all i, in which case the value is 1. The statement (1) follows.

For statement (2), we see easily that the only matrix N = (νi,j) with entries in
{0, 1} such that

∑
j νij = λi and

∑
i νij = λ⊥j is the one such that the entries decrease

along both the rows and the columns, hence the result.
Finally, consider a matrix N = (νij) with entries in {0, 1} such that

∑
j νij = λi

and
∑

i νij = µj. The sum λ1 + . . . + λi is the sum of the entries of the columns
of index ≤ i of N . Furthermore, µ⊥1 + . . . + µ⊥i is equal to

∑
j≤i jlj where lj is the

number of rows of N which have sum j. It is easy to check that statement (3) follows.
�

Corollary 6.9. The matrix (〈eλ, hµ⊥〉)λ,µ ⊢n is upper triangular with 1’s on the
diagonal. In particular, its determinant is equal to 1.

Proposition 6.10. When λ varies along the partitions of n, the collection of eλ’s
is a basis of the homogeneous component of degree n, An, of A.

Proof. First we notice that every hi is a polynomial with integral coefficients in
the ej’s. This follows immediately from Proposition 6.6. Therefore the base change



126 6. SYMMETRIC GROUPS, SCHUR–WEYL DUALITY AND PSH ALGEBRAS

matrix P from (hλ)λ⊢n to (eλ)λ⊢n has integral entries. Then the Gram matrix Ge of
(eλ)λ⊢n satisfies the equality

(〈eλ, hµ〉)λ,µ ⊢n = P tGe,

where P t denotes the transposed P . The corollary 6.9 ensures that the left-hand
side has determinant ±1 (the corollary is stated for µ⊥ and µ 7→ µ⊥ is an involution
which can produce a sign). Hence Ge has determinant ±1: we refer to Exercise 4.8
to ensure that the Z-module generated by (eλ)λ⊢n has a basis contained in Ω. Since
the support of en1 is the set of all ω ∈ Ω of degree n, we conclude that (eλ)λ⊢n is a
basis of An. �

We deduce from the results of this section:

Theorem 6.11. (Zelevinsky) Up to isomorphism, there is only one rank one PSH
algebra. It has only one non-trivial automorphism ι, which takes any homogeneous
element x of degree n to (−1)nS(x) where S is the antipode.

Remark 6.12. The sets of algebraically independent generators (en) and (hn) of
the Z-algebra A play symmetric roles, and they are exchanged by the automorphism
ι of the theorem.

7. Bases of PSH algebras of rank one

Let A be a PSH algebra of rank one, with basis Ω and scalar product 〈 , 〉, we will
use the sets of generators (en) and (hn). We keep all the notations of the preceding
section.

We will first describe the primitive elements of A. We denote AQ := A⊗Q.

Exercise 7.1. Consider the algebra A[[t]] of formal power series with coefficients
in A. Let f ∈ A[[t]] such that m∗(f) = f ⊗ f and the constant term of f is 1. Show

that the logarithmic derivative g := f ′

f
satisfies m∗(g) = g ⊗ 1 + 1⊗ g.

Proposition 7.2. (1) For every n ≥ 1, there is exactly one primitive el-
ement of degree n, pn, such that 〈pn, hn〉 = 1. Moreover, every primitive
element of degree n is a integral multiple of pn.

(2) In the formal power series ring AQ[[t]], we have the following equality:

(6.6) exp

(∑

n≥1

pn
n
tn

)
=
∑

n≥0
hnt

n.

Proof. We first show that the set of primitive elements of degree n is a sub-
group of rank 1. Indeed, we recall that the primitive elements form the orthogonal
complement of I2 in I (see just below Exercise 5.3). Since all the elements (hλ)λ⊢n
except hn are in I2, the conclusion follows. Moreover, An is its own dual with respect
to the scalar product. Let denote by (hλ)λ⊢n the dual basis of (hλ)λ⊢n. Clearly, hn

can be chosen as pn. Hence statement (1).
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Consider the formal series H(t) :=
∑

n≥0 hnt
n ∈ A[[t]], it satisfies the relation

m(H) = H ⊗H by Proposition 6.4, re-written in terms of h’s instead of e’s. Hence,

using Exercise 7.1, we get P (t) := H′(t)
H(t)

which satisfiesm∗(P ) = P⊗1+1⊗P . Hence all
the coefficients of P are primitive elements in A. Write P (t) =

∑
i≥1̟i+1t

i. To prove
statement (2), it remains to check that 〈̟n, hn〉 = 1. We have P (t)H(t) = H ′(t), so
when we compare the terms on both sides we get

(6.7) ̟n + h1̟n−1 + . . .+ hn−1̟1 − nhn = 0.

By induction on n, this implies

̟n = (−1)nhn1 +
∑

λ⊢n,λ 6=(1,...,1)

cλhλ,

where the cλ’s are integers. Now, we compute the scalar product with en: we apply
Lemma 6.8 and find that there is no contribution from the terms indexed by λ if
λ 6= (1, . . . , 1). Therefore, 〈̟n, en〉 = (−1)n. Finally, we use the automorphism of
A to get the conclusion that pn = ̟n since ι(en) = hn and ι(̟n) = (−1)n̟n by
Proposition 6.6. �

For every partition λ = (λ1, . . . , λr), we set pλ = pλ1 . . . pλr . Let us compute their
Gram matrix:

Proposition 7.3. The family (pλ) is an orthogonal basis of AQ and one has

〈pλ, pλ〉 =
∏

j

(λ⊥j − λ⊥j+1)!
∏

i

λi

Proof. Since pi is primitive, the operator p∗i is a derivation of A. Moreover,
since pi is of degree i, pi and pj are orthogonal when i 6= j. We compute 〈pi, pi〉: we
use the formula (6.7) (recall that we proved that pn = ̟n∀n) and since p∗i (hrpi−r) =
p∗i (hr)pi−r + hrp

∗
i (pi−r) = 0 if 1 ≤ r ≤ i− 1, we obtain p∗i (pi) = 〈pi, pi〉 = 〈pi, ihi〉 = i

by Proposition 7.2.
To show that pλ is orthogonal to pµ if λ 6= µ, we repeat the argument of the proof

of Lemma 5.1.
Finally, we compute 〈pri , pri 〉: we use the fact that p∗i is a derivation such that

p∗i (pi) = i, hence 〈pri , pri 〉 = r!ir. This implies the formula giving 〈pλ, pλ〉 for any
λ. �

Now we want to compute the transfer matrices between the bases (hλ) (or (eλ))
and Ω.

Lemma 7.4. Let λ be a partition, then the intersection of the supports Supp(eλ⊥)
and Supp(hλ) is of cardinal one. We will denote this element ωλ.

Proof. By Lemma 6.8, one has 〈eλ⊥ , hλ〉 = 1 and, by the positivity of those
elements, this implies the statement. �
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Our first goal is to express hλ’s in terms of ωµ’s. First, we compute h∗i (ωλ), and
for this, we need to introduce some notations.

Let λ be a partition, or equivalently a Young diagram. We denote by r(λ) (resp.
c(λ)) the number of rows (resp columns) of λ.

We denote by Rλ
i the set of all µ’s such that µ is obtained from λ by removing

exactly i boxes, at most one in every row of λ. Similarly, Cλ
i is the set of all µ’s such

that µ is obtained from λ by removing exactly i boxes, at most one in every column
of λ. In the specific case where i = r(λ), there is only one element in the set Rλ

i and
this element will be denoted by λ←, it is the diagram obtained by removing the first
column of λ, similarly, if i = c(λ) the unique element of Cλ

i will be denoted by λ↓

and is the diagram obtained by suppressing the first row of λ.

Remark 7.5. Note that if µ ∈ Cλ
i , then µ

⊥ ∈ Ri(λ
⊥).

Theorem 7.6. (Pieri’s rule) One has:

h∗i (ωλ) =
∑

µ∈Cλ
i

ωµ,

and

e∗j(ωλ) =
∑

µ∈Rλ
j

ωµ.

We need several lemmas to show this statement.

Lemma 7.7. One has, for all i, j in N,

e∗i ◦ hj = hj ◦ e∗i + hj−1 ◦ e∗i−1
Proof. From Exercise 6.5 statement (1), we obtain that

e∗i (hjx) = e∗1(hj)e
∗
i−1(x) + hje

∗
i (x) ∀x ∈ A,

hence the Lemma. �

Lemma 7.8. Let p, q be two integers, let a ∈ A. Let us assume that h∗i (a) = 0 for
i > p and e∗j(a) = 0 for j > q, then

h∗p ◦ e∗q(a) = 0

and

h∗p−1 ◦ e∗q(a) = h∗p ◦ e∗q−1(a).
Proof. Using a transposed version of Proposition 6.6, we get:

∑

i+j=n

(−1)jh∗i ◦ e∗j = 0.

The lemma follows. �
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Lemma 7.9. One has:

e∗r(λ)(ωλ) = ωλ← .

Proof. Applying Equation (6.4), we get

e∗r(λ)(hλ) = hλ← .

Since e∗r(λ) is a positive operator and ωλ < hλ by definition, we have Supp(e∗r(λ)(ωλ)) ⊂
Supp(hλ←).

By definition of ωλ, we know that 〈eλ⊥ , ωλ〉 = 1, so we have 〈e(λ←)⊥ , e
∗
r(λ)(ωλ)〉 = 1.

Therefore, ωλ← ∈ Supp(e∗r(λ)(ωλ)).
It is sufficient to show now that 〈e∗r(λ)(ωλ), hλ←〉 = 1: let us compute:

〈e∗r(λ)(ωλ), hλ←〉 = h∗λ←e
∗
r(λ)(ωλ),

assume λ = (λ1, . . . , λr),

〈e∗r(ωλ), hλ←〉 = h∗λr−1 ◦ . . . ◦ h∗λ1−1 ◦ e∗r(ωλ)
= h∗λr−1 ◦ . . . ◦ h∗λ2−1 ◦ e∗r−1 ◦ h∗λ1(ωλ)

by Lemma 7.8 (the hypothesis is satisfied because for all i > λ1 one has h∗i (eλ⊥) = 0
and for all j > r, e∗j(hλ) = 0). We use the same trick repeatedly, the enthusiastic
reader is encouraged to check that the hypothesis of Lemma 7.8 is satisfied at each
step by induction. We finally obtain

h∗λ← ◦ e∗r(λ)(ωλ) = h∗λ(ωλ) = 1.

�

For every i in N and for every partition λ, we set:

h∗i (ωλ) =
∑

µ

aiλ,µωµ

which can also be written

(6.8) hiωµ =
∑

λ

aiλ,µωλ

the Theorem 7.6 amounts to computing the coefficients aiλ,µ.

Lemma 7.10. For i > 0 and for every partitions λ and µ, one has

aiλ,µ =





aiλ←,µ← if r(λ) = r(µ)
ai−1λ←,µ← if r(λ) = r(µ) + 1

0 otherwise

Remark 7.11. The first equality of Theorem 7.6 is obtained from this lemma by
induction on c(λ), the second one follows via the automorphism ι.
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Proof. First, let us prove that if aiλ,µ 6= 0, then r(λ) = r(µ) or r(λ) = r(µ) + 1.

Assume r(µ) > r(λ) and aiλ,µ 6= 0: then we have ωµ ≤ h∗i (ωλ), therefore, applying
Lemma 7.9, we get

ωµ← = e∗r(µ)(ωµ) ≤ e∗r(µ) ◦ h∗i (ωλ) = h∗i ◦ e∗r(µ)(ωλ) = 0,

which gives a contradiction.
Assume r(µ) < r(λ)− 1 and aiλ,µ 6= 0: then applying the equation (6.8), we have

ωλ ≤ hiωµ, therefore applying Lemma 7.9 and Lemma 7.7, we get

ωλ← = e∗r(λ)(ωλ) ≤ e∗r(λ) ◦ hi(ωµ) = hi ◦ e∗r(λ)(ωµ) + hi−1 ◦ e∗r(λ)−1(ωµ) = 0,

which again gives a contradiction.
Next, we look at the case r(λ) = r(µ). We do a direct computation:

h∗i (ωλ←) = e∗r(λ) ◦ h∗i (ωλ) =
∑

µ

aiλ,µe
∗
r(λ)(ωµ) =

∑

r(λ)=r(µ)

aiλ,µωµ← .

Finally, we assume r(λ) = r(µ) + 1. We apply Lemma 7.7,

e∗r(µ)+1(hiωµ) = hi−1e
∗
r(µ)(ωµ) = hi−1(ωµ←) =

∑

ν

ai−1ν,µ←ων .

On the other hand,

e∗r(µ)+1(hiωµ) =
∑

λ

aiλ,µe
∗
r(µ)+1(ωλ) =

∑

r(λ)=r(µ)+1

aiλ,µωλ← .

Now we compare the coefficients and obtain that

aiλ,µ = ai−1λ←,µ← .

�

For a partition λ, we introduce the notion of semistandard tableau of shape λ: the
Young diagram of shape λ is filled with entries wich are no longer distinct, with the
condition that the entries are non decreasing along the rows and increasing along the
columns of λ. For instance,

1 1 1
2 3
3
4

is a semistandard tableau.
To such a semistandard tableau, we associate its weight, which is the sequence

mi consisting of the numbers of occurences of the integer i in the tableau: in our
example, m1 = 2, m2 = 1, m3 = 2, m4 = 1 and all the other mi’s are zero.
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Proposition 7.12. Let λ be a partition of n. Let m1, . . . ,mr be a sequence
of non negative integers such that m1 + . . . +mr = n, then 〈hm1 . . . hmr

, ωλ〉 is the
number of semistandard tableaux of shape λ and weight m1, . . . ,mr.

Proof. We iterate Pieri’s rule (see Theorem 7.6):

h∗mr
(ωλ) =

∑

µ∈Cλ
mr

ωµ,

(hmr−1hmr
)∗(ωλ) =

∑

µ1∈Cλ
mr

∑

µ2∈Cµ1
mr−1

ωµ2 ,

and eventually

〈hm1 . . . hmr
, ωλ〉 = (hm1 . . . hmr−1hmr

)∗(ωλ) =
∑

µ1∈Cλ
m1

∑

µ2∈Cµ1
m2

. . .
∑

µr∈C
µr−1
mr

1,

because ωµr = 1 due to the fact that m1 + . . .+mr = n.
The sequences µ1, . . . , µr indexing the sum in the right-hand side are in bijective

correspondence with the semistandard tableaux of shape λ and weight m1, . . . ,mr,
indeed given such a semistandard tableau, we set µi to be the union of the boxes
filled with numbers ≤ i: µi is a semistandard tableau. Hence the result. �

Remark 7.13. Since the product is commutative, 〈hm1 . . . hmr
, ωλ〉 depends only

on the non-increasing rearrangement µ of the sequence µ1, . . . , µr. Note that the
partition µ we just obtained verifies λ � µ .

Definition 7.14. Let λ, µ be two partitions of n, we define the Kostka number
Kλµ to be the number of semistandard tableaux of shape λ and weight µ.

Theorem 7.15. (Jacobi-Trudi) For any partition λ of n, one has

ωλ = Det
(
(hλi−i+j)1≤i,j≤r(λ)

)
.

Proof. The theorem is proved by induction on n. For n = 1 the statement is
clear and we assume that the equality holds for all partitions µ of m with m < n.

We will use the automorphism H of the PSH algebra A defined by

H(hi) =
∑

j≤i
hj,

(the automorphism H is the formal sum
∑

k∈N h
∗
k).

First, we notice that the linear map H − Id : I → A is injective: indeed this
amounts to saying that its adjoint restricts to the surjective linear map

∑

0≤j≤n
Aj −→ An, (a0, . . . , an−1) 7→ a0hn + . . .+ an−1h1,

and this assertion is clear since A the polynomial algebra Z[(hi)i∈N].
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Let us explain the induction step: we denote by ̟λ the determinant of the theo-
rem. We know (Pieri’s rule, Theorem 7.6 ) that H(ωλ) =

∑
i≥0,µ∈Cλ

i
ωµ, and we will

show that H(̟λ), when λ varies, satisfies the same equality (with obvious changes
of notations). This will conclude the proof since H − Id : I → A is injective.

Since H is an algebra homomorphism, we have

H(̟λ)(= H
(
Det

(
(hλi−i+j)1≤i,j≤r(λ)

))
) = Det

(
(H(hλi−i+j))1≤i,j≤r(λ)

)
.

We know that H(hλi−i+j) =
∑

k≤λi hk−i+j by definition of H. Hence

H(̟λ) = Det



( ∑

k1≤λ1,...,kr≤λr

hki−i+j

)

1≤i,j≤r


 .

We notice that, in this determinant, every entry is a partial sum of the entry which
is just above it, we are led to substract the i + 1th row from the ith row for all i.
This doesn’t affect the value of the determinant, therefore we obtain the equality

H(̟λ) = Det




 ∑

λ2≤k1≤λ1,...,λr≤kr−1≤λr−1,kr≤λr

hki−i+j




1≤i,j≤r


 .

Since the determinant is a multilinear function of its rows, we deduce

H(̟λ) =
∑

λ2≤k1≤λ1,...,λr≤kr−1≤λr−1,kr≤λr

Det
(
(hki−i+j)1≤i,j≤r

)
.

Now each family of indices k1, . . . , kr gives rise to a partition µ belonging to Cλ
m for

m = n− k1 − . . .− kr, from which we deduce the result. �

8. Harvest

In the last four sections, we defined and classified PSH algebras and we obtained
precise results in the rank one case. Now it is time to see why this was useful. In this
section, we will meet two avatars of the rank one PSH algebra, namely A of section
4, and the Grothendieck group of polynomial representations of the group GL∞:
this interpretation will give us precious information concerning the representation
theory in both cases. The final section of this chapter will be devoted to another
very important application of PSH algebras, in infinite rank case, associated to linear
groups over finite fields. We will only state the main results without proof and refer
the reader to Zelevinsky’s seminal book.

8.1. Representations of symmetric groups revisited. We use the notations
of section 4. We know by Proposition 4.7 that A is a PSH algebra.
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Proposition 8.1. The PSH algebra A is of rank one with basic primitive element
π, the class (in the Grothendieck group) of the trivial representation of the trivial
group S1.

Proof. Our goal is to show that every irreducible representation of Sn (n ∈
N\{0}) appears in πn. It is clear that πn is the regular representation of Sn, hence
the result. �

The choice of π gives us gives us two isomorphisms between A and A (one is
obtained from the other by application of the automorphism ι). We choose the
isomorphism which send h2 to the trivial representation of S2 (hence it sends e2 to
the sign representation of S2).

Let us give an interpretation of the different bases (eλ), (hλ), (ωλ), (pλ) in this
setting.

Exercise 8.2. (1) Check that ei corresponds to the sign representation of
Si and that hi corresponds to the trivial representation of Si.

(2) Show that ωλ corresponds to the class of the irreducible representation Vλ
defined in section 1.

Remark 8.3. In the case of symmetric groups, the Grothendieck group is also
the direct sum of Z-valued central functions on Sn when n varies. See Chapter 1,
associated with the fact that the characters of the symmetric groups take their values
in Z.

Exercise 8.4. (1) Show that the primitive element pi
i
is the characteristic

function of the circular permutation of Si.
(2) Interpreting the induction functors involved, show that, for every partition

λ, pλ is the characteristic function of the conjugacy class cλ corresponding

to λ times |λ|!|cλ| .

The following Proposition is now clear:

Proposition 8.5. The character table of Sn is just the transfer matrix expressing
the pλ’s in terms of ωλ’s when λ varies along the partitions of n.

Our goal now is to prove the Hook formula:
Let λ be a partition, let a = (i, j) be any every box in the Young diagram λ, we

denote h(a) the number of boxes (i′, j′) of the Young diagram such that i′ = i and
j′ ≥ j or i′ ≥ i and j′ = j: h(a) is called the hook length of a.

Theorem 8.6. (Hook formula) For every partition λ of n, the dimension of the
Sn-module Vλ is equal to

dimVλ =
n!∏

a∈λ h(a)
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Proof. For any Sn-module V , let us denote by rdimV the reduced dimension of
V that is the quotient dimV

n!
: this defines a ring homomorphism from A to Q, as one

can easily see computing the dimension of an induced module.
We write λ = (λ1, . . . , λr). Set Li = λi + r − i and consider the new partition

consisting of (L1, . . . , Lr) := L. We apply Theorem 7.15 and notice that rdim(hp) =
1
p!
: therefore one has

rdim(ωλ) = Det

((
1

(Li − r + j)!

)

1≤i,j≤r

)
.

Since Li! = (Li − r + j)!Pr−j(Li) where Pk(X) is the polynomial X(X − 1) . . . (X −
k + 1), the right-hand side becomes

1

L1! . . . Lr!
Det

(
(Pr−j(Li))1≤i,j≤r

)
.

Now Pk is a polynomial of degree k with leading coefficient 1, hence this determinant
is a Vandermonde determinant and is equal to

∏
1≤i<j≤r(Li − Lj) and we get

dimVλ =
n!

L1! . . . Lr!

∏

1≤i<j≤r
(Li − Lj).

Noting that Li!∏
i<j(Li−Lj)

is product of the hook lengths of boxes of the i-th row of λ,

we obtained the wanted Hook formula. �

Theorem 8.7. For every partition λ of n, the restriction of Vλ to Sn−1 is the
direct sum ⊕µVµ where the Young diagram of µ is obtained from the Young diagram
of λ by deleting exactly one box.

Proof. This restriction is h∗1(ωλ). Hence the result. �

Exercise 8.8. Compute the dimension of the S6-module Vλ for λ = (3, 2, 1).
Calculate the restriction of Vλ to S5.

8.2. Symmetric polynomials in infinitely many variables over Z. Let R
be a unital commutative ring, let us define the ring SR of symmetric polynomials in
a fixed infinite sequence (Xi)i∈N>0 of variables with coefficients in R. Recall that the
symmetric group Sn acts on the polynomial ring R[X1, . . . , Xn] by σ(Xi) := Xσ(i),
the ring of invariants consits of the symmetric polynomials in n variables. There is a
surjective algebra homomorphism which preserves the degree

ψn : R[X1, . . . , Xn+1]
Sn+1 → R[X1, . . . , Xn]

Sn

P (X1, . . . , Xn+1) 7→ P (X1, . . . , Xn, 0).

By definition, SR is the projective limit of the maps (ψn)n∈N>0 in the category of
graded rings.
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In order to be more explicit, we need to introduce the ring of formal power series
R[[X1, . . . , Xn, . . .]] consisting of (possibly infinite) formal linear combinations, with
coefficients in R,

∑
α aαX

α, where α runs along multi-indices (αi)i≥1 of integers with
finite support. There is no difficulty in defining the product since, for any multi-index
α, there are only finitely many ways of expressing α into a sum α1+α2. We set S∞ to
be the groups of permutations of all positive integers generated by the transpositions.
Then SR is the subring of R[[X1, . . . , Xn, . . .]] whose elements are invariant under S∞
and such that the degrees of the monomials are bounded.

Let A be the PSH algebra of rank one.

Theorem 8.9. The map ψ : A→ SZ, given by, for all a ∈ A,
(6.9) ψ(a) =

∑

α

〈a,
∏

i

hαi
〉Xα,

is an algebra isomorphism.

Remark 8.10. We deduce immediately from the formula for ψ the following
statements:

(1) ψ(hn) =
∑
|α|=nX

α, where |α| :=∑i αi if α = (α1, . . . , αi . . .),

(2) ψ(en) =
∑

α=(α1,...)
Xα, where every αi is either 0 or 1 and |α| = n,

(3) ψ(pn) =
∑

i≥1X
n
i .

Finally, if we denote by h♦λ the dual basis of hλ with respect to the scalar
product on A, one has

(4) ψ(h♦λ ) =
∑

αX
α where α runs along the multi-indices whose non-increasing

rearrangement is λ.

Proof. We follow the proof given in Zelevinsky’s book, attributed to Bernstein.
Let us first define the homomorphism ψ: we iterate the comultiplication A→ A⊗A
and obtain an algebra homomorphism µn : A→ A⊗n for any n (one has µ2 = m∗).

Furthermore, the counit ε induces a map εn : A⊗n+1 → A⊗n such that the follow-
ing diagram is commutative:

(6.10) A
µn

!!C
CC

CC
CC

C

µn+1
// A⊗n+1

εn

zzuuuuuuuuu

A⊗n

If B is a N-graded commutative ring and t is an indeterminate, we can define
a canonical homomorphistm βB : B → B[t] by setting, for any b ∈ B of degree k,
βB(b) := btk: thus we obtain a homomorphism β⊗nA : A⊗n → A[X1, . . . , Xn]. Note
that, in order to obtain a homogeneous homomorphism, we have to forget the grading
of A for the definition of the degree in A[X1, . . . , Xn]: in this algebra, the elements
of A have degree 0. Note also that the image of µn is always contained in (A⊗n)Sn .
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Exercise 8.11. Show that the following diagram is commutative (the symmetric
group acts both on the set of variables and on the factors of A⊗k):

(6.11) (A⊗n+1)Sn+1

εn
��

β⊗n+1
A // (A⊗n+1[X1, . . . , Xn+1])

Sn+1

��

(A⊗n)Sn

β⊗n
A

// (A⊗n[X1, . . . , Xn])
Sn

Let a ∈ A, by definition of µn one has

µn(a) =
∑

λ1,...,λn

〈a, ωλ1 . . . ωλn〉ωλ1 ⊗ . . .⊗ ωλn

where λ1, . . . , λn are partitions. Thus,

(6.12) β⊗nA (µn(a)) =
∑

λ1,...,λn

〈a, ωλ1 . . . ωλn〉ωλ1 ⊗ . . .⊗ ωλnX |λ1|1 . . . X |λn|n .

Lemma 8.12. There are exactly two positive algebra homomorphisms from A to
Z, conjugate up to ι (see Theorem 6.11) which transform the basic primitive element
π into 1. One of them, denoted by δ, is such that δ(hi) = 1 for all i and δ(ωλ) = 0
whenever ωλ is not one of the his.

Proof. Such a homomorphism maps π2 onto 1, but π2 = e2 + h2 and since it is
positive, either e2 or h2 is sent to one 1 (and the other to 0). Since ι exchanges e2 and
h2, we can assume that h2 is sent to 1 (and e2 to 0). We denote this homomorphism
by δ. Let ω be a basic element of degree n in A, distinct from hn. By Lemma 6.3,
e∗2(ω) 6= 0, hence ω � e2π

n−2 and since δ(e2) = 0 and δ is positive, δ(ω) = 0. Then,
since δ(πn) = 1, we obtain δ(hn) = 1, hence the Lemma. �

Set ψn = δ⊗n ◦ β⊗nA ◦ µn : A→ Z[X1, . . . , Xn]. Applying Lemma 8.12 and (6.12),
we obtain

(6.13) ψn(a) =
∑

(i1,...,in)∈Nn

〈a, hi1 . . . hin〉X i1
1 . . . X

in
n .

Taking the projective limit, we get the morphism ψ : A→ SZ we are looking for and
the item (4) of Remark 8.10 ensures that ψ is an isomorphism. �

We now compute ψ(ωλ) for any partition λ, and more precisely ψn(λ) for any
n ≥ |λ|.

Corollary 8.13. For any partition µ = (µ1, . . . , µk) set

Xµ =
∑

i1 6=i2 6=...ik

Xµ1
i1
. . . Xµk

ik
.
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Then
ψ(ωλ) =

∑

|µ|=|λ|
KλµX

µ.

We first introduce the following notation for the generalized Vandermonde de-
terminant: let µ = (µ1, . . . , µn) be a decreasing sequence of non-negative integers,
we set Vµ(X1, . . . , Xn) = det((X

µj
i )1≤i,j≤n). Notice that V(n−1,n−2,...,1,0)(X1, . . . , Xn)

is the usual Vandermonde determinant.

Proposition 8.14. One has

(6.14) ψn(ωλ) =
V(λ1+n−1,λ2+n−2,...λn)(X1, . . . , Xn)

V(n−1,n−2,...,1,0)(X1, . . . , Xn)
.

Exercise 8.15. Prove Proposition 8.14. Hint: Let Sλ denote the right hand side
of (6.14). Prove that

ψn(ek)Sλ =
∑

µ∈Tk(λ)
Sµ,

where Tk(λ) is he set of all partitions obtained from λ be adding k boxes, at most
one box in each row, satisfying the additional restriction that the number of rows of
µ is not bigger than n. Check that it is consistent with dual Pieri formula. Then
show that for any µ one can find k > 0 and λ such that Tk(λ) contains only µ and
partition less that µ in lexicographic order. Then prove the statement by induction
on lexicographic order.

8.3. Complex general linear group for an infinite countable dimensional
vector space. Let V be an infinite countable dimensional complex vector space, we
consider the group G = GL(V ). Denote by T the full subcategory of the category of
G-modules whose objects are submodules of direct sums of tensor powers of V . We
saw in section 2 that T is a semisimple category. The simple modules are indexed
by partitions and we denote by Sλ(V ) the simple module associated to the partition
λ. We denote by K(T ) the Grothendieck group of T .

Our aim is to equip K(T ) with a structure of PSH algebra of rank one.
We define the multiplication: m([M ], [N ]) = [M ⊗ N ] for M and N in T (recall

that if M ∈ T , we denote by [M ] its class in the Grothendieck group).
We define the scalar product: 〈[M ], [N ]〉 = dimHomG(M,N), and the grading:

by convention, the degree of V ⊗n is n.
Finally we proceed to define the comultiplication m∗, and it is a trifle more tricky.

Since V is infinite dimensional, we can choose an isomorphism ϕ : V → V ⊕ V . By
composition with ϕ, we obtain a group morphism Φ : G×G to G,

Φ

(
A 0
0 B

)
= ϕ−1 ◦

(
A 0
0 B

)
◦ ϕ.

We have two canonical projectors of V ⊕ V and we denote by V1 (resp.V2) the image
of the first (resp. second) one.
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Exercise 8.16. Show that V ⊗p1 ⊗ V ⊗q2 is a semisimple G × G-module and that
its irreducible components are of the form Sλ(V1)⊗ Sµ(V2), where λ is a partition of
p and µ is a partition of q.

Therefore, if we denote T̃ the full sucategory of the category of G × G-modules
whose objects are submodules of direct sums of V ⊗p1 ⊗ V ⊗q2 , then its Grothendieck
group is isomorphic to K(T )⊗K(T ).

Hence, the restriction functor Res (with respect to the inclusion of G × G in
G) maps the category T to the category T̃ . Therefore it induces a linear map
m∗ : K(T )→ K(T )⊗K(T ).

Theorem 8.17. The Grothendieck group K(T ), equipped the operations de-
scribed above and the basis given by the classes of simple modules, is a PSH algebra
of rank one, and the basic primitive element is the class of V , [V ].

Proof. The only axiom of the definition of PSH algebras which is not straight-
forward and needs to be checked is the self-adjointness, namely the fact that m and
m∗ are mutually adjoint with respect to the scalar product. For this, we have to find
a functorial bijective map HomG(M ⊗ N,P ) → HomG×G(M ⊗ N,Res(P )) (where
M , N , P are objects of T ). Since any G-module is the direct sum of its homoge-
neous components, we may asume that M , N , P are homogeneous of degree p, q, n
respectively, with n = p+ q.

For any objectW ∈ T homogeneous of degree r, set ΠW := HomG(V
⊗r,W ) which

is an Sr-module; Schur-Weyl duality (see Proposition 2.12) can be reformulated in
saying that there is a canonical isomorphism of G-modules W ≃ ΠW ⊗C(Sr) V

⊗r. We

set M1 := ΠM ⊗C(Sp) V
⊗p
1 →֒M , N2 := ΠN ⊗C(Sq) V

⊗q
2 →֒ N .

Then we have an inclusion M1 ⊗N2 ⊂M ⊗N , and the restriction defines a map
HomG(M ⊗ N,P ) → HomG×G(M1 ⊗ N2, Res(P )). This is the functorial map we
where looking for.

In order to show this map is bijective, it is enough (by the semisimplicity of the
categories T and T̃ ) to check it forM = V ⊗p, N = V ⊗q and P = V ⊗n with p+ q = n
indeed, on one hand, one has:

dimHomG(V
⊗p ⊗ V ⊗q, V ⊗n) = dimHomG×G(V

⊗p
1 ⊗ V ⊗q2 , V ⊗n) = n!

the first equality coming from the Schur-Weyl duality and the second equality comes
from the formula

V ⊗n ≃ ⊕nr=0

(
V ⊗r1 ⊗ V ⊗(n−r)2

)⊕ n!
r!(n−r)!

.

On the other hand, the map is injective because V ⊗p1 ⊗V ⊗q2 spans the G-module V ⊗n.
�

Exercise 8.18. Let V have dimension n. Show that

dimSλ(V ) = ψn(ωλ)(1, . . . , 1) =

∏
i<j(λi − λj + j − i)∏

i<j(j − i)
.
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Hint: ψn(ωλ) is the character of GL(n).





CHAPTER 7

Introduction to representation theory of quivers

1. Representations of quivers

A quiver is an oriented graph. For example

•1
α

++ •2

γ

��

β

kk •3
δ

kk

ε
ss

is a quiver.
In this chapter we consider only finite quivers, namely quivers with finitely many

vertices and arrows.
The underlying graph of a quiver Q is the graph obtained from Q by forgetting

the orientation of the arrows.
If Q is a quiver, we denote by Q0 the set of vertices of Q and by Q1 the set of

arrows of Q. In the example above, Q0 = {1, 2, 3} and Q1 = {α, β, γ, δ, ε}.
A quiver Q′ is a subquiver of a quiver Q if Q′0 ⊂ Q0 and Q′1 ⊂ Q1.

For every arrow γ ∈ Q1 : i
γ−→ j we define s(γ) = i as the source or tail of γ and

t(γ) = j as the target or head of γ. In the example the vertex 1 is the source of α
and the target of β.

An oriented cycle is a subgraph with vertices C0 := {s1, . . . , sr} ⊂ Q0 and arrows
C1 = {γ1, . . . , γr} ⊂ Q1 such that γi goes from si to si+1 if i < r and γr goes from

sr to s1. In our example •1
α

++ •2
β

kk is a oriented cycle. A loop is an arrow with the

same head and tail. In our example, there is only one loop •2

γ

��

.

Definition 1.1. Fix a field k. Let Q be a quiver. Consider a k-vector space

V =
⊕

i∈Q0

Vi

and a collection of k-linear maps

ρ = {ργ : Vi → Vj | γ ∈ Q1, s(γ) = i, t(γ) = j}.
Then (V, ρ) is called a representation of Q. The dimension of the representation (V, ρ)
is the vector d ∈ ZQ0 such that di = dimVi.

141
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We sometimes use a diagram to visualize a representation of a quiver. For exam-
ple, if Q is of shape

•1 α−→ •2 β←− •3,
and if V1 = k2, V2 = k, V3 = k and ρα = 0, ρβ = id, we present is as the following
diagram:

k2
0−→ k

id←− k.

Definition 1.2. Let (V, ρ) and (W,σ) be two representations of Q. A morphism
of representations φ : (V, ρ) → (W,σ) is a set of linear maps {φi : Vi → Wi | i ∈ Q0}
such that the diagram

Vj
ργ←− Vi

↓ φj ↓ φi
Wj

σγ←− Wi

is commutative for every γ ∈ Q1, where i = s(γ), j = t(γ).
We say that two representations (V, ρ) and (W,σ) of Q are isomorphic if there

exists a morphism φ : (V, ρ)→ (W,σ) such that φi is an isomorphism for every i ∈ Q0.

The direct sum (V ⊕W, ρ⊕σ) of two representations (V, ρ) and (W,σ) of a quiver
Q is defined in the obvious way.

A representaion (W,σ) is a subrepresentation of (V, ρ) if for every i ∈ Q0 there is
an inclusion Wi ⊂ Vi such that for every γ ∈ Q1 with s(γ) = i, the restriction of ργ
to Wi coincides with σγ.

A representation (V, ρ) is irreducible if it does not have non-trivial proper sub-
representations and is indecomposable if it can not be written as a direct sum of two
non-trivial subrepresentations.

Example 1.3. Consider the quiver 1
γ−→ 2 and the representation (V, ρ) which

corresponds to the diagram k
id−→ k. Then (V, ρ) has only one non-trivial proper

subrepresentation, namely the one given by the diagram 0
0−→ k. Therefore (V, ρ) is

indecomposable but not irreducible.

In many cases it is not difficult to classify irreducible representations of a given
quiver. On the other hand, classifiying all indecomposable representations up to
isomorphism is very hard. Many classical problems of linear algebra can be viewed
as particular cases of this general problem. Let us see few examples.

Example 1.4. Let Q be the quiver of Example 1.3. A representation of Q can
be seen as a pair of vector spaces V1 and V2 together with a linear map ργ : V1 → V2.
Let us fix the dimension (d1, d2) and identify V1 with k

d1 , V2 with k
d2 . Classifying the

representations of Q of dimension (d1, d2) is equivalent to the following problem of
linear algebra. Consider the space of matrices of size d2× d1. Then the linear groups
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GL(d1) and GL(d2) act on this space by multiplication on the left and on the right
respectively. We would like to describe all the orbits for this action.

Consider a representation (V, ρ) of Q. Choose subspaces W1 ⊂ V1 and W2 ⊂ V2
such that V1 = Ker ργ ⊕W1 and V2 = ργ(W1) ⊕W2. Note that ργ induces an iso-
morphism α : W1 → ργ(W1). Then (V, ρ) is the direct sum of the subrepresentations

Ker ργ
0−→ 0, 0

0−→ W2 and W1
α−→ ργ(W1). It is clear that the first representation can

be written as a direct sum of several copies of k
0−→ 0, the second one is a direct sum

of several copies of 0
0−→ k. These decompositions are not unique, they depend on the

choice of basis in Ker ργ and W2. Finally the representation W1
α−→ ργ(W1) can be

written as a direct sum of several copies of k
id−→ k.

Therefore there are three (up to isomorphism) indecomposable representations
of Q. Their dimensions are (1, 0), (0, 1) and (1, 1). Furthermore, in every dimen-
sion there are finitely many non-isomorphic representations. Quivers with the latter
property are called quivers of finite type.

Example 1.5. Consider the quiver Q with one vertex and one loop. Then a
finite-dimensional representation of Q is a pair (V, T ), where V is a finite-dimensional
vector space and T is a linear operator in V . Isomorphism classes of representations
of this quiver are the same as conjugacy classes of n × n matrices when n is the
dimension of V . If k is algebraically closed, this classification problem amounts to
describing Jordan canonical forms of n × n matrices. In particular, indecomposable
representations correspond to matrices with one Jordan block.

If k is not algebraically closed, the problem of classifying conjugacy classes of
matrices is more tricky. This example shows that representation theory of quivers
depends very much on the base field.

Example 1.6. Consider the Kronecker quiver • •jj
tt . Classification of finite-

dimensional representations of this quiver is also a classical problem of linear algebra.
It amounts to the classification of pairs of linear operators S, T : V1 → V2 up to
multiplication by some X ∈ GL(V1) on the left and by some Y ∈ GL(V2) on the
right. It is still possible to obtain this classification by brute force. We will solve this
problem using general theory of quivers in the next chapter.

Example 1.7. Now let Q be the quiver with one vertex and two loops. Repre-
sentation theory of Q is equivalent to classifying pairs of linear operators (T, S) in a
vector space V up to conjugation. In contrast with all previous examples in this case
the number of variables parametrizing indecomposable representations of dimension
n grows as n2. We call a pair (T, S) generic if T is diagonal in some basis e1, . . . , en
with distinct eigenvalues and the matrix of S in this basis does not have any zero
entry.
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Exercise 1.8. Check that if (T, S) is generic and W ⊂ V is both T -stable and
S-stable, then W = 0 or W = V . Thus, the corresponding representation of Q is
irreducible.

Therefore every generic pair of operators (T, S) gives rise to an irreducible repre-
sentation of Q. The eigenvalues of T give n distinct parameters. If T is diagonalized,
we can conjugate S by linear operators diagonal in the eigenbasis of T . Thus, we
have n2 − n parameters for the choice of S.

The situation which appears in this example is refered to as wild. There is a
precise definition of wild quivers and we refer reader to ?? for further reading on this
subject.

2. Path algebra

As in the case of groups, we can reduce the representation theory of a quiver to
the representation theory of some associative ring. In the case of groups, this ring is
the group algebra, while in the case of quivers it is the path algebra.

Definition 2.1. Let Q be a quiver. A path p is a sequence γ1, . . . , γk of arrows
such that s (γi) = t (γi+1). Set s (p) = s (γk), t (p) = t (γ1). The number k of arrows
is called the length of p.

Definition 2.2. Let p1 = γ1, . . . , γk and p2 = δ1, . . . , δl be two paths of Q. We
define the product of p1 and p2 to be the path δ1, . . . , δl, γ1, . . . γk if t(γ1) = s(δl) and
zero otherwise.

Next we introduce elements ei for each vertex i ∈ Q0 and define the product of
ei and ej by the formula

eiej = δijei.

For a path p, we set

eip =

{
p, if i = t (p)

0 otherwise
,

pei =

{
p, if i = s (p)

0 otherwise
.

The path algebra k (Q) of Q is the vector space of k-linear combinations of all
paths of Q and elements {ei}i∈Q0 , with the multiplication law obtained by extending
of the product defined above by bilinearity.

Note that every ei, i ∈ Q0, is an idempotents in k(Q) and that
∑

i∈Q0
ei = 1.

Example 2.3. Let Q be the quiver with one vertex and n loops then k (Q) is the
free associative algebra with n generators.
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Exercise 2.4. Let Q be a quiver such that the underlying graph of Q does not
contain any cycle or loop. Let Q0 = {1, . . . , n}. Show that the path algebra k (Q) is
isomorphic to the subalgebra of the matrix algebra Matn (k) generated by the subset
of elementary matrices {Eii | i ∈ Q0}, {Eji | γ ∈ Q1, s(γ) = i, t(γ) = j}.

In particular, show that the path algebra of the quiver

• ← • ← · · · ← •
is isomorphic to the algebra Bn of upper triangular matrices, see Example 7.19 Chap-
ter V.

Lemma 2.5. Let Q be a quiver.

(1) The path algebra k (Q) is generated by the idempotents {ei | i ∈ Q0} and
the paths {γ | γ ∈ Q1} of length 1.

(2) The algebra k (Q) is finite-dimensional if and only if Q does not contain an
oriented cycle.

(3) If Q is the disjoint union of two quivers Q′ and Q′′, then k (Q) is isomorphic
to the direct product k (Q′)× k (Q′′).

(4) The path algebra has a natural Z-grading

k (Q) =
∞⊕

n=0

k (Q)(n) ,

where k(Q)(0) is the span of the idempotents ei for all i ∈ Q0 and k(Q)(n) is
the span of all paths of length n.

(5) For every vertex i ∈ Q0 the element ei is a primitive idempotent of k (Q),
and hence k(Q)ei is an indecomposable projective k (Q)-module.

Proof. The first four assertions are straightforward and we leave them to the
reader as an exercise. Let us prove (5).

Let i ∈ Q0. By Exercise 7.14 Chapter V, proving (5) amounts to checking that if
ε ∈ k(Q)ei is an idempotent such that eiε = εei = ε, then ε = ei or ε = 0. We use
the grading of k(Q) defined in (4). By definition, the left ideal k(Q)ei inherits this
grading. Hence we can write

k(Q)ei =
∞⊕

n=0

k (Q)(n) ei,

where k(Q)(0)ei = kei and, for n > 0, the graded component k(Q)(n)ei is spanned
by the paths of length n with sourse at i. We can write ε = ε0 + · · · + εl with
εn ∈ k(Q)(n)ei. Since ε is an idempotent, we have ε20 = ε0, which implies ε0 = ei or
ε0 = 0. In the latter case let εp be the first non-zero term in the decomposition of ε.
Then the first non-zero term in the decomposition of ε2 has degree no less than 2p.
This implies ε = 0. If ε0 = ei, consider the idempotent ei − ε and apply the above
argument again. �
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Given a representation (V, ρ) of a quiver Q, V =
⊕

i∈Q0

Vi one can equip V with a

structure of k (Q)-module in the following way

(1) The idempotent ei acts on Vj by δij IdVj .
(2) For γ ∈ Q1 and v ∈ Vi we set γv = ργ(v) if i = s(γ) and zero otherwise.
(3) We extend this action for the whole k(Q) using Lemma 2.5 (1).

Conversly, every k (Q)-module V gives rise to a representation ρ of Q when one
sets Vi = eiV .

This implies the following Theorem. 1

Theorem 2.6. The category of representations of Q over a field k is equivalent
to the category of k (Q)-modules.

Exercise 2.7. Let Q be a quiver and J(Q) be the ideal of k(Q) generated by
all arrows γ ∈ Q1. Then the quotient k(Q)/J is a semisimple commutative ring
isomorphic to kQ0 .

Exercise 2.8. Let Q′ be a subquiver of a quiver Q. Let I(Q′) be the ideal of
k(Q) generated by ei for all i /∈ Q′0 and by all γ /∈ Q′1. Prove that k(Q′) is isomorphic
to the quotient ring k(Q)/I(Q′).

Lemma 2.9. Let A =
∞⊕

i=0

A(i) be a graded algebra and R be the Jacobson radical

of A. Then

(1) R is a graded ideal, i.e. R =
∞⊕

i=0

R(i), where R(i) = R ∩ A(i);

(2) If u ∈ R(p) for some p > 0, then u is nilpotent.

Proof. Assume first that the ground field k is infinite. Let t ∈ k∗. Consider
the automorphism ϕt of A such that ϕt(u) = tpu for all u ∈ A(p). Observe that
ϕt(R) = R. Suppose that u belongs to R and write it as the sum of homogeneous
components u = u0 + · · · + un with uj ∈ A(j). We have to show that ui ∈ R for all
i = 1, . . . , n. Indeed,

ϕt(u) = u0 + tu1 + · · ·+ tnun ∈ R
for all t ∈ k∗. Since k is infinite, this implies ui ∈ R for all i. If k is finite, consider
the algebra A⊗k k̄ and use the fact that R⊗k k̄ is included in the radical of A⊗k k̄.

Let u ∈ R(p). Then 1 − u is invertible. Hence there exists ai ∈ A(i), for some
i = 1, . . . , n such that

(a0 + a1 + · · ·+ an)(1− u) = 1.

This relation implies a0 = 1 and apj = uj for all j > 0. Thus uj = 0 for sufficiently
large j. �

1Compare with the analogous result for groups in Chapter 2.
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Let us call a path p of a quiver Q a one way path if there is no path from t(p) to
s(p).

Exercise 2.10. The span of all one way paths of Q is a two-sided nilpotent ideal
in k(Q).

Lemma 2.11. The Jacobson radical of the path algebra k (Q) is the span of all
one way paths of Q.

Proof. Let N be the span of all one way paths. By Exercise 2.10 R is contained
in the radical of k(Q).

Assume now that y belongs to the radical of k(Q). Exercise 2.7 implies that y ∈
J(Q) and moreover by Lemma 2.9(2) we may assume that y is a linear combination
of paths of the same length. We want to prove that y ∈ N . Note that eiyej belongs
to the radical for all i, j ∈ Q0. Assume that the statement is false. Then there
exists i and j such that z := eiyej is not in N , in other words there exists a path u
with source j and target i. Furthermore zu is a linear combination of oriented cycles
u1, . . . , ul of the same length. By Lemma 2.9(2) u must be nilpotent. But it is clearly
not nilpotent. Contradiction. �

Lemma 2.11 implies the following

Proposition 2.12. Let Q be a quiver which does not contain oriented cycles.
Then k(Q)/ rad k(Q) ≃ kn, where n is the number of vertices. In particular, every
simple k(Q)-module is one dimensional.

Proof. The assumption on Q implies that every path is a one way path. Hence
the radical of k(Q) is equal to J(Q). �

3. Standard resolution and consequences

3.1. Construction of the standard resolution. A remarkable property of
path algebras is the fact that every module has a projective resolution of length at
most 2:

Theorem 3.1. Let Q be a quiver, A denote the path algebra k (Q) and V be an
A-module. Recall that V =

⊕
i∈Q0

Vi. Then the following sequence of A-modules

0→
⊕

γ∈Q1

Aet(γ) ⊗ Vs(γ) f−→
⊕

i∈Q0

Aei ⊗ Vi g−→ V → 0,

where
f
(
aet(γ) ⊗ v

)
= aet(γ)γ ⊗ v − aet(γ) ⊗ γv

for all γ ∈ Q1, v ∈ Vs(γ), and
g (aei ⊗ v) = av

for any i ∈ Q0, v ∈ Vi, is exact. Hence it is a projective resolution of V .
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Remark 3.2. The structure of A-modules considered in the statement is defined
by the action of A on the lefthand side of the tensor product.

Proof. The fact that f and g are morphisms of A-modules is left to the reader.
First, let us check that g ◦ f = 0. Indeed,

g (f (aej ⊗ v)) = g (aejγ ⊗ v − aej ⊗ γv) = aejγv − aejγv = 0.

Since V = ⊕i∈Q0Vi and Vi = eiV , g is surjective.
Now let us check that f is injective. To simplify notations we set

X =
⊕

γ∈Q1

Aet(γ) ⊗ Vs(γ), Y =
⊕

i∈Q0

Aei ⊗ Vi.

Consider the Z-grading

A⊗ V =
∞⊕

p=0

A(p) ⊗ V.

Since all Aei for i ∈ Q0 are homogeneous left ideals of A, there are induced gradings
X = ⊕p≥0X(p) and Y = ⊕p≥0Y(p). Define f0 : X → Y and f1 : X → Y by

f1
(
aet(γ) ⊗ v

)
= aet(γ)γ ⊗ v, f0

(
aet(γ) ⊗ v

)
= aet(γ) ⊗ γv.

Note that for any p ≥ 0 we have f1(X(p)) ⊂ X(p+1) and f0(X(p)) ⊂ X(p). Moreover, it
is clear from the definition that f1 is injective. Since f = f1 − f0, we obtain that f
is injective by a simple argument on gradings.

It remains to prove that Im f = Ker g.

Exercise 3.3. Show that for any p > 0 and y ∈ Y(p) there exists y′ ∈ Y(p−1) such
that y′ ≡ y mod Im f . (Hint: it suffices to check the statement for x = u⊗ v where
v ∈ Vi and u is a path of length p with source i).

The exercise implies that for any y ∈ Y there exists y0 ∈ Y(0) such that y ≡ y0
mod Im f . Let y ∈ Ker g, then y0 ∈ Ker g. But g restricted to Y 0 is injective. Thus,
y0 = 0 and y ∈ Im f . �

3.2. Extension groups. Let X and Y be two k(Q)-modules. We define a linear
map

(7.1) d :
⊕

i∈Q0

Homk (Xi, Yi)→
⊕

γ∈Q1

Homk

(
Xs(γ), Yt(γ)

)

by the formula

(7.2) dφ (x) = φ (γx)− γφ (x)
for any γ ∈ Q1, x ∈ Xs(γ) and φ ∈ Homk

(
Xs(γ), Ys(γ)

)
. Theorem 3.1 implies that

Ext1 (X, Y ) is isomorphic to the cokernel of the map d.
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According to Section 6.4 Chapter V, every non-zero ψ ∈ Ext1 (X, Y ) induces a
non-split exact sequence

0→ Y → Z → X → 0.

In our situation we can describe the k(Q)-module structure on Z precisely. Indeed,
consider ψ ∈ ⊕γ∈Q1

Homk

(
Xs(γ), Yt(γ)

)
and denote by ψγ the component of ψ ∈

Homk

(
Xs(γ), Yt(γ)

)
. We set Zi = Xi ⊕ Yi for every i ∈ Q0. Furthermore, for every

γ ∈ Q1 with source i and target j we set

γ (x, y) = (γx, γy + ψγx) .

Obviously we obtain an exact sequence of k(Q)-modules

0→ Y
i−→ Z

π−→ X → 0,

where i(y) = (0, y) and π(x, y) = x. This exact sequence splits if and only if there
exists η ∈ HomQ (X,Z) such that π ◦ η = Id. Note that η = ⊕i∈Q0ηi with ηi ∈
Homk(Xi, Zi) and for every x ∈ Xi we have

ηi(x) = (x, φix) ,

for some φi ∈ Homk (Xi, Yi). The condition that η is a morphism of k(Q)-modules
implies that for every arrow γ ∈ Q1 with source i and target j we have

γ (x, φix) = (γx, γφix+ ψγx) = (γx, φjγx) .

Hence we have
ψγx = φjγx− γφix.

If we write φ = ⊕i∈Q0φi, then the latter condition is equivalent to ψ = dφ.
Note also that Theorem 3.1 implies the following.

Proposition 3.4. In the category of representations of Q one has

Exti (X, Y ) = 0 for all i ≥ 2.

Corollary 3.5. Let
0→ Y → Z → X → 0

be a short exact sequence of representations of Q, then the maps

Ext1 (V, Z)→ Ext1 (V,X) , Ext1 (Z, V )→ Ext1 (Y, V )

are surjective.

END OF EDITING IN NANCY

Proof. Follows from Proposition 3.4 and the long exact sequence for extension
groups, Theorem 5.7 Chapter V. �

Lemma 3.6. If X and Y are indecomposable finite-dimensional k(Q)-modules
and Ext1 (Y,X) = 0, then every non-zero ϕ ∈ HomQ (X, Y ) is either surjective or
injective.
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Proof. Consider the exact sequences

(7.3) 0→ Kerϕ→ X
β−→ Imϕ→ 0,

(7.4) 0→ Imϕ
δ−→ Y → S ∼= Y/ Imϕ→ 0.

Note that both sequences do not split. Let ψ ∈ Ext1 (S, Imϕ) be an element associ-
ated to the sequence (7.4). By Corollary 3.5 and (7.3) we have a surjective map

g : Ext1(S,X)→ Ext1(S, Imϕ).

Let ψ′ ∈ g−1(ψ). Then ψ′ induces a non-split exact sequence

0→ X
α−→ Z → S → 0.

This exact sequence and the sequence (7.4) can be arranged in the following commu-
tative diagram

0 → X
α−→ Z → S → 0

↓β ↓γ ↓Id
0 → Imϕ

δ−→ Y → S → 0

here β and γ are surjective. We claim that the sequence

(7.5) 0→ X
α+β−−→ Z ⊕ Imϕ

γ−δ−−→ Y → 0

is exact. Indeed, α + β is obviously injective and γ − δ is surjective. Furthermore,
dimZ = dimX + dimS, dim Imϕ = dimY − dimS. Therefore,

dim (Z ⊕ Imϕ) = dimX + dimY,

and therefore Ker (γ − δ) = Im (α + β).
By the assumption Ext1 (Y,X) = 0. Hence the exact sequence (7.5) splits, and

we have an isomorphism
Z ⊕ Imϕ ∼= X ⊕ Y.

By the Krull–Schmidt theorem either X ∼= Imϕ and hence ϕ is injective or Y ∼= Imϕ
and hence ϕ is surjective. �

3.3. Canonical bilinear form and Euler characteristic. Let Q be a quiver
and X be a finite-dimensional k(Q)-module. We use the notation x = dimX ∈ ZQ0

where xi = dimXi for every i ∈ Q0.
We define the bilinear form on ZQ0 by the formula

〈x, y〉 :=
∑

i∈Q0

xiyi −
∑

γ∈Q1

xs(γ)yt(γ) = dimHomQ (X, Y )− dimExt1 (X, Y ) ,

where the second equality follows from calculating Euler characteristic in (7.1). The
symmetric form

(x, y) := 〈x, y〉+ 〈y, x〉
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is called the Tits form of the quiver Q. We also consider the corresponding quadratic
form

q (x) := 〈x, x〉 .

4. Bricks

Here we discuss further properties of finite-dimensional representations of a path
algebra k (Q). In the rest of this chapter we assume that the ground field k
is algebraically closed and all representations are finite-dimensional.

Definition 4.1. A k(Q)-module X is a brick, if EndQ (X) = k.

Exercise 4.2. If X is a brick, then X is indecomposable. If X is indecomposable
and Ext1 (X,X) = 0, then X is a brick (by Lemma 3.6).

Example 4.3. Consider the quiver • → •. Then every indecomposable represen-
tation is a brick.

For the Kronecker quiver • ⇒ • the representation k2 ⇒ k2 with ργ1 = Id,
ργ2 = (0100) is not a brick because ϕ = (ϕ1, ϕ2) with ϕ1 = ϕ2 = (0100) is a non-scalar
element in EndQ (X).

Lemma 4.4. Let X be an indecomposable k(Q)-module which is not a brick.
Then X contains a brick W such that Ext1 (W,W ) 6= 0.

Proof. We will prove the lemma by induction on the length l of X. The base
case l = 1 is trivial, since in this case X is irreducible and hence a brick by the Schur
lemma.

Recall that if X is indecomposable and has finite length, then ϕ ∈ EndQ (X)
is either isomorphism or nilpotent. Therefore, since k is algebraically closed and
X is not a brick, the algebra EndQ (X) contains a non-zero nilpotent element. Let
ϕ ∈ EndQ (X) be a non-zero operator of minimal rank. Then ϕ is nilpotent and
rkϕ2 < rkϕ, hence ϕ2 = 0.

Let Y := Imϕ, Z := Kerϕ. Clearly, Y ⊂ Z. Consider a decomposition

Z = Z1 ⊕ · · · ⊕ Zp
into a sum of indecomposable submodules. Denote by pi the projection Z → Zi.
Let i be such that pi(Y ) 6= 0. Set η := pi ◦ ϕ, Yi := pi(Y ) = η(Z). Note that by
our assumption rk η = rkϕ, therefore Yi is isomorphic to Y . Let Yi = pi (Y ). Then
Ker η = Z and Im η = Yi.

Note that the exact sequence

0→ Z → X
η−→ Yi → 0

does not split since X is indecomposable. Let Xi be the quotient of X by the
submodule ⊕j 6=iZj and π : X → Xi be the canonical projection. Then we have the
exact sequence

0→ Zi → Xi
η̄−→ Yi → 0,
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where η̄ := η ◦ π−1 is well define since Ker π ⊂ Ker η. We claim that (7.6) does not
split. Indeed, if it splits, then Xi decomposes into a direct sum Zi ⊕ L for some
submodule L ⊂ Xi which is isomorphic to Yi. But then X = Zi ⊕ π−1(L), which
contradicts indecomposability of X.

Therefore we have shown that Ext1 (Yi, Zi) 6= 0. Recall that Yi is a submodule of
Zi. By Corollary 3.5 we have the surjection

Ext1 (Zi, Zi)→ Ext1 (Yi, Zi) .

Hence Ext1 (Zi, Zi) 6= 0.
The length of Zi is less than the length of X. If Zi is not a brick, then it contains

a brick W by the induction assumption. �

Corollary 4.5. Assume that Q is a quiver such that its Tits form is positive
definite. Then every indecomposable representation X of Q is a brick with trivial
Ext1 (X,X). Moreover, if x = dimX, then q (x) = 1.

Proof. Assume that X is not a brick, then it contains a brick Y such that
Ext1 (Y, Y ) 6= 0. Then

q (y) = dimEndQ (Y )− dimExt1 (Y, Y ) = 1− dimExt1 (Y, Y ) ≤ 0,

but this is impossible. Therefore X is a brick. Then

q (x) = dimEndQ (X)− dimExt1 (X,X) = 1− dimExt1 (X,X) ≥ 0.

By positivity of q we have q (x) = 1 and dimExt1 (X,X) = 0. �

5. Orbits in representation variety

Fix a quiver Q. For arbitrary x ∈ NQ0 consider the space

Rep (x) :=
∏

γ∈Q1

Homk (k
xs(γ) , kxt(γ)) .

We can see every representation of Q of dimension x as a point ρ ∈ Rep (x) with
components ργ for every γ ∈ Q1.

Let us consider the group

G =
∏

i∈Q0

GL (kxi) ,

and define an action of G on Rep (x) by the formula

gργ := gt(γ)ργg
−1
s(γ) for every γ ∈ Q1.

Two representations ρ and ρ′ of Q are isomorphic if and only if they belong to the
same orbit of G. In other words we have a bijection between isomorphism classes of
representations of Q of dimension x and G-orbits in Rep(x). For a representation X
we denote by OX the corresponding G-orbit in Rep (x).
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Note that
dimRep (x) =

∑

γ∈Q1

xs(γ)xt(γ), dimG =
∑

i∈Q0

x2i ,

therefore

(7.6) dimRep (x)− dimG = −q (x) .
Let us formulate without proof certain properties of G-action on Rep(x). They

follow from the general theory of algebraic groups, see for instance Humphreys We
work in Zariski topology.

• Each orbit is open in its closure;
• if O and O′ are two distinct orbits and O′ belongs to the closure of O, then
dimO′ < dimO;
• If (X, ρ) is a representation of Q, then dimOX = dimG− dimStabX , where
StabX denotes the stabilizer of ρ.

Lemma 5.1. For any representation (X, ρ) of dimension x we have

dimStabX = dimAutQ (X) = dimEndQ (X) .

Proof. The condition that φ ∈ EndQ (X) is not invertible is given by the poly-
nomial equations ∏

i∈Q0

detφi = 0.

Since AutQ (X) is not empty and open in EndQ (X), we obtain that AutQ (X) and
EndQ (X) have the same dimension. �

Corollary 5.2. If (X, ρ) is a representation of Q and dimX = x, then

codimOX = dimRep (x)−dimG+dimStabX = −q (x)+dimEndQ (X) = dimExt1 (X,X) .

Lemma 5.3. Let (Z, τ) be a nontrivial extension of (Y, σ) by (X, ρ), i.e. there is
a non-split exact sequence

0→ X → Z → Y → 0.

Then OX⊕Y belongs to the closure of OZ and OX⊕Y 6= OZ .

Proof. Following Section 3.2 for every i ∈ Q0 consider a decomposition Zi =
Xi ⊕ Yi such that for every γ ∈ Q1 and (x, y) ∈ Xs(γ) ⊕ Ys(γ)

τγ(x, y) = (ργ(x) + ψγ(y), σγ(y))

for some ψγ ∈ Hom(Ys(γ), Xt(γ)).
Next, for every λ ∈ k \ 0 define gλ ∈ G by setting for every i ∈ Q0

gλi |Xi
= IdXi

, gλi |Yi = λ IdYj .

Then we have
gλτγ(x, y) = (ργ(x) + λψγ(y), σγ(y)).



154 7. INTRODUCTION TO REPRESENTATION THEORY OF QUIVERS

The latter formula makes sence even for λ = 0 and g0τ lies in the closure of {gλτ |λ ∈
k \0}. Furthermore g0τ is the direct sum X⊕Y . Hence OX⊕Y belongs to the closure
of OZ .

It remains to check that X ⊕ Y is not isomorphic to Z. This follows immediately
from the inequality

dimHomQ (Y, Z) < dimHomQ (Y,X ⊕ Y ) .

�

The following corollary is straightforward.

Corollary 5.4. If the orbit OX is closed in Rep(x), then X is semisimple.

Corollary 5.5. Let (X, ρ) be a representation of Q and X =
m⊕

j=1

Xj be a

decomposition into the direct sum of indecomposable submodules. If OX is an orbit
of maximal dimension in Rep(x), then Ext1(Xi, Xj) = 0 for all i 6= j.

Proof. If Ext1(Xi, Xj) 6= 0, then by Lemma 5.3 we can construct a representa-
tion (Z, τ) such that OX is in the closure of OZ . Then dimOX < dimOZ . �

6. Coxeter–Dynkin and affine graphs

6.1. Definition and properties. Let Γ be a connected non-oriented graph with
vertices Γ0 and edges Γ1. We define the Tits form (·, ·) on ZΓ0 by

(x, y) :=
∑

i∈Γ0

(2− 2l(i))xiyi −
∑

(i,j)∈Γ1

xiyj,

where l(i) is the number of loops at i. If we equip all edges of Γ with orientation
then the symmetric form coincides with the introduced earlier symmetric form of the
corresponding quiver. We define the quadratic form q on ZΓ0 by

q(x) :=
(x, x)

2
.

By {ǫi | i ∈ Γ0} we denote the standard basis in ZΓ0 . If Γ does not have loops,
then (ǫi, ǫi) = 2 for all i ∈ Γ0. If i, j ∈ Γ0 and i 6= j, then (ǫi, ǫj) equals minus the
number of edges between i and j. The matrix of the form (·, ·) in the standard basis
is called the Cartan matrix of Γ.

Example 6.1. The Cartan matrix of • − • is
(
2−1
−12
)
. The Cartan matrix of the

loop is (0).

Definition 6.2. A connected graph Γ is called Coxeter–Dynkin if its Tits form
(·, ·) is positive definite and affine if (·, ·) is positive semidefinite but not positive
definite. If Γ is neither Coxeter–Dynkin nor affine, then we say that it is of indefinite
type.
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Remark 6.3. For affine graph Γ the form (·, ·) is necessarily degenerate. Fur-
thermore

(7.7) Ker(·, ·) = {x ∈ ZQ0 | (x, x) = 0}.
Lemma 6.4. (a) If Γ is affine then the kernel of (·, ·) equals Zδ for some δ ∈ NΓ0

with all δi > 0.
(b) If Γ is of indefinite type, then there exists x ∈ NΓ0 such that (x, x) < 0.

Proof. Let x ∈ ZQ0 . We define supp x to be the set of vertices i ∈ Q0 such
that xi 6= 0. Let |x| be defined by the condition |x|i = |xi| for all i ∈ Q0. Note that
supp x = supp |x| and by the definition of (·, ·) we have

(7.8) (|x|, |x|) ≤ (x, x).

To prove (b) we just notice that if Γ is of indefinite type then there exists x ∈ ZQ0

such that (x, x) < 0. But then (7.8) implies (|x|, |x|) < 0.
Now let us prove (a). Let δ ∈ Ker(·, ·) and δ 6= 0. Then (7.8) and (7.7) imply

that |δ| also lies in Ker(·, ·). Next we prove that supp δ = Q0. Indeed, otherwise we
can choose i ∈ Q0 \ supp δ such that i is connected with at least one vertex in supp δ.
Then (ǫi, δ) < 0, therefore

(ǫi + 2δ, ǫi + 2δ) = 2 + 4(ǫi, δ) < 0

and Γ is not affine.
Finally let δ′, δ ∈ Ker(·, ·). Since supp δ = supp δ′ = Q0, one can find a, b ∈ Z

such that supp(aδ + bδ′) 6= Q0. Then by above aδ + bδ′ = 0. Hence Ker(·, ·) is
one-dimensional and the proof of (a) is complete. �

Note that (a) implies the following

Corollary 6.5. Let Γ be Coxeter–Dynkin or affine. Any proper connected
subgraph of Γ is Coxeter–Dynkin.

Definition 6.6. A non-zero vector x ∈ ZQ0 is called a root if q (x) ≤ 1. Note for
every i ∈ Q0, ǫi is a root. It is called a simple root.

Exercise 6.7. Let Γ be a connected graph. Show that the number of roots is
finite if and only if Γ is a Coxeter–Dynkin graph.

Lemma 6.8. Let Γ be Coxeter–Dynkin or affine. If x is a root, then either all
xi ≥ 0 or all xi ≤ 0.

Proof. Assume that the statement is false. Let

I+ := {i ∈ Q0 | xi > 0}, I− := {i ∈ Q0 | xi < 0}, x± =
∑

i∈I±
xiǫi.

Then x = x+ + x− and (x+, x−) ≥ 0. Furthermore, since Γ is Coxeter–Dynkin or
affine, we have q(x±) > 0. Therefore

q(x) = q(x+) + q(x−) + (x+, x−) > 1.
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�

We call a root x positive (resp. negative) if xi ≥ 0 (resp. xi ≤ 0) for all i ∈ Q0.

6.2. Classification. The following are all Coxeter–Dynkin graphs (below n is
the number of vertices).

An r r r . . . r

Dn r r r . . . r

r

E6 r r r r r

r

E7 r r r r r r

r

E8 r r r r r r r

r
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The affine graphs, except the loop • �� , are obtained from the Coxeter–Dynkin
graphs by adding a vertex (see Corollary 6.5). Here they are.

Â1 r r

For n > 1, Ân is a cycle with n+ 1 vertices. In this case δ = (1, . . . , 1).
In what follows the numbers are the coordinates of δ.

D̂n r r r . . . r r

r r

1 2 2 2 1

1 1

Ê6 r r r r r

r

r

1 2 3 2 1

2

1

Ê7 r r r r r r r

r

1 2 3 4 3 2 1

2

Ê8 r r r r r r r r

r

2 4 6 5 4 3 2 1

3
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The proof that the above classification is complete is presented below in the
exercises.

Exercise 6.9. Check thatAn, Dn, E6, E7, E8 are Coxeter–Dynkin using the Sylvester
criterion and the fact that every subgraph of a Coxeter–Dynkin graph is Coxeter–
Dynkin. One can calculate the determinant of a Cartan matrix inductively. It is
n+ 1 for An, 4 for Dn, 3 for E6, 2 for E7 and 1 for E8.

Exercise 6.10. Check that the Cartan matrices of Ân, D̂n, Ê6, Ê7, Ê8 have corank
1 and every proper connected subgraph is Coxeter–Dynkin. Conclude that these
graphs are affine.

Exercise 6.11. Let Γ be a Coxeter–Dynkin graph. Using Corollary 6.5 prove
that Γ does not have loops, cycles and multiple edges. Prove that Γ has no vertices
of degree 4 and at most one vertex of degree 3.

Exercise 6.12. Let a Coxeter–Dynkin graph Γ have a vertex of degree 3. Let
p, q and r be the lengths of “legs” coming from this vertex. Prove that 1

p
+ 1

q
+ 1

s
> 1.

Use this to complete classification of Coxeter–Dynkin graphs.

Exercise 6.13. Complete classification of affine graphs using Corollary 6.5, Ex-
ercise 6.10 and Exercise 6.12.

7. Quivers of finite type and Gabriel’s theorem

Recall that a quiver is of finite type if it has finitely many isomorphism classes of
indecomposable representations.

Exercise 7.1. Prove that a quiver is of finite type if and only if all its connected
components are of finite type.

Theorem 7.2. (Gabriel) Let Q be a connected quiver and Γ be its underlying
graph. Then

(1) The quiver Q has finite type if and only if Γ is a Coxeter–Dynkin graph.
(2) Assume that Γ is a Coxeter–Dynkin graph and (X, ρ) is an indecomposable

representation of Q. Then dimX is a positive root.
(3) If Γ is a Coxeter–Dynkin graph, then for every positive root x ∈ ZQ0 there

is exactly one indecomposable representation of Q of dimension x.

Proof. Let us first prove that if Q is of finite type then Γ is a Coxeter–Dynkin
graph. Indeed, if Q is of finite type, then for every x ∈ NQ0 , Rep (x) has finitely
many G-orbits. Therefore Rep (x) must contain an open orbit. Assume that Q is
not Coxeter–Dynkin. Then there exists a non-zero x ∈ ZQ0 such that q (x) ≤ 0. Let
OX ⊂ Rep (x) be an open orbit. Then codimOX = 0. But by Corollary 5.2

(7.9) codimOX = dimEndQ (X)− q (x) > 0.

This is a contradiction.
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Now assume that Γ is Coxeter–Dynkin. To show that Q is of finite type it suffices
to prove assertions (2) and (3).

Note that (2) follows from Corollary 4.5.
Suppose that x is a positive root. Let (X, ρ) be a representation of Q such that

dimOX in Rep (x) is maximal. Let us prove that X is indecomposable. Indeed,
let X = X1 ⊕ · · · ⊕ Xs be a sum of indecomposable bricks. Then by Corollary 5.5
Ext1 (Xi, Xj) = 0. Therefore q (x) = s = 1 and X is indecomposable.

Finally, if (X, ρ) is an indecomposable representation of Q, then (7.9) implies that
OX is an open orbit in Rep (x). By irreducibility, Rep (x) has at most one open orbit.
Hence (3) is proved. �

Remark 7.3. Gabriel’s theorem implies that the propery of a quiver to be of finite
type depends only on the underlying graph and does not depend on orientation.

Remark 7.4. Theorem 7.2 does not provide an algorithm for finding all inde-
composable representations of quivers with Coxeter–Dynkin underlying graphs. We
give such algorithm in the next chapter using the reflection functor.

Exercise 7.5. Let Q be a quiver whose underlying graph is An. Check that the
positive roots are in bijection with connected subgraphs of An. For each positive root
x give a precise construction of an indecomposable representation of dimension x.


