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Preface

Representation theory is a very active research topic in mathematics nowadays.

There are representations associated to several algebraic structures, representa-
tions of algebras, groups (of finite or infinite cardinal). Roughly speaking, a represen-
tation is a vector space equipped with a linear action of the algebraic structure. For
example, the algebra of n x n matrices acts on the vector space C". A slightly more
complicated example is the action of the group GL(n,C) in the set of n x n-matrices,
the group acting by conjugation.

In the beginning, there was no tendency to classify all the representations of a
given object. The first result in this direction is due to Frobenius, who was interested
in the general theory of finite groups. Let G be a finite group, a representation V' of
G is a complex vector space V together with a morphism of groups p: G — GL(V).
One says V is irreducible if there exists no proper subspace W C V such that W
is stable under all p(g),g € G. Frobenius showed there is finitely many irreducible
representations of G and that they are completely determined by their characters:
the character of V' is the complex function g € G — T'r(p(g)) where T'r is the trace of
the endomorphism. These characters form a basis of the complex valued functions on
G invariant under conjugation. Then Frobenius proceeded to compute the characters
of symmetric groups in general. His results inspired Schur, who was able to relate
them to the theory of complex finite dimensional representations of GL(n, C) through
the Schur-Weyl duality. In both cases, every finite dimensional representation of the
group is a direct sum of irreducible representations (we say that the representations
are completely reducible).

Most of the results about representations of finite groups can be generalized to
compact groups. In particular, once more, the complex finite dimensional represen-
tations of a compact groups are completely reducible, and the regular representation
in the space of continuous functions on the compact group has the similar struc-
ture. This theory was developed by H. Weyl and the original motivation came from
quantum mechanics. The first examples of compact groups are the group SO(2)
of rotations of the plane (the circle) and the group SO(3) of rotations of the 3-
dimensional space. In the former case, the problem of computing the Fourier series
for a function on the circle is equivalent to the decomposition of the regular repre-
sentation. More generally, the study of complex representations of compact groups
helps to understand Fourier analysis on such groups.
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If a topological group is not compact, for example, the group of real numbers
with operation of addition, the representation theory of such a group involves more
complicated analysis (Fourier transform instead of Fourier series). The representa-
tion theory of real non-compact groups was initiated by Harish-Chandra and by the
Russian school leaded by Gelfand. Here emphasis is on the classification of unitary
representations due to applications from physics. It is also worth mentioning that
this theory is closely related to harmonic analysis, and many special functions (such
as Legendre polynomials) naturally appear in the context of representation theory.

In the theory of finite groups one can drop the assumption that the characteristic
of the ground field is zero. This leads immediately to the loss of complete reducibility.
This representation theory was initiated by Brauer and it is more algebraic. If one
turns to algebras, a representation of an algebra is, by definition, the same as a
module over this algebra. Let k be a field. Let A be a k-algebra which is finite
dimensional as a vector space. It is a well-known fact that A-modules are not,
in general, completely reducible: for instance, if A = k[X]/X? and M = A, the
module M contains kX as a submodule which has no A-stable complement. An
indecomposable A-module is a module which has no non-trivial decomposition as a
direct sum. It is also interesting to attempt a classification of A-modules. It is a
very difficult task in general. Nevertheless, the irreduducible A-modules are in finite
number. The radical R of A is defined as the ideal of A which annihilates each of
those irreducible modules, it is a nilpotent ideal. Assume k is algebraically closed,
the quotient ring A/R is a product of matrix algebras over k, A/R = II;End(S;)
where S; runs along the irreducible A-modules.

If G is a finite group, the algebra k(G) of k-valued functions on G, the composition
law being the convolution, is a finite dimensional k-algebra, with a zero radical as long
as the characteristic of the field £ does not divide the cardinal of G. The irreducible
modules of k(G) are exactly the finite dimensional representations of the group G,
the action of G extends linearly to k(G). This shows that all k(G)-modules are
completely reducible (Maschke’s theorem).

In order to study finite dimensional k-algebras representations more generally,
it is useful to introduce quivers. Let A be a finite dimensional k-algebra, denote
S1,...,5, its irreducible representations, and draw the following graph, called the
quiver associated to A: the vertices are labelled by the S;s and we put [ arrows
between S; and S;, pointing at S;, if Exzt'(S;,S;) is of dimension [ (the explicit
definition of Ezt! requires some homological algebra which is difficult to summarize
in such a short introduction).

More generally, a quiver is an oriented graph with any number of vertices. Let @
be a quiver, a representation of () is a set of vector spaces indexed by the vertices of
@ together with linear maps associated to the arrows of ). Those objects were first
systematically used by Gabriel in the early 70’s, and studied by a lot of people ever
since. The aim is to characterize the finitely represented algebras, or in other terms
the algebras with a finite number of indecomposable modules (up to isomorphism).
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Today the representation theory has many flavors. In addition to the above
mentioned, one should add representations over non-archimedian local fields with its
applications to number theory, representations of infinite-dimensional Lie algebras
with applications to number theory and physics and representations of quantum
groups. However, in all these theories certain main ideas appear again and again
very often in disguise. Due to technical details it may be difficult for a neophyte to
recognize them. The goal of this book is to present some of these ideas in their most
elementary incarnation.

We will assume that the reader is familiar with usual linear algebra (including
the theory of Jordan forms and tensor products of vector spaces) and basic theory of
groups and rings.






CHAPTER 1

Introduction to representation theory of finite groups.

1. Definitions and examples

Let k be a field, V be a vector space over k. By GL (V') we denote the group of
all invertible linear operators in V. If dimV' = n, then GL (V) is isomorphic to the
group of invertible n X n matrices with entries in k.

A (linear) representation of a group G in V' is a group homomorphism

p:G— GL(V),

dim V is called the degree or the dimension of the representation p (it may be infinite).
For any g € G we denote by p, the image of g in GL (V) and for any v € V' we
denote by p,v the image of v under the action of p,. The following properties are
direct consequences of the definition

® 0¢Ph = Pgh;

o p1 =1d;

° p,t = py-1;

o py (20 +yw) = 2p,v + yopu.

ExaMPLE 1.1. (1) Let us consider the abelian group of integers Z with op-
eration of addition. Let V be the plane R? and for every n € Z, we set
1 n

m=\q1 | The reader can check that this defines a representation of

degree 2 of Z.

(2) Let G be the symmetric group S, V = k™. Forevery s € S, and (21, ...,2,) €
k™ set

ps (T1,. .., x,) = (%(1)7 . ,a:s(n)) )

In this way we obtain a representation of the symmetric group .S,, which is
called the permutation representation.

(3) For any group G (finite or infinite) the trivial representation is the homo-
morphism p : G — k* such that p; =1 for all s € G.

(4) Let G be a group and

F(G)={¢:G—k}

be the space of functions on G with values in k. For any g,h € G, p € F (G)
and let

pgp (h) = ¢ (hg).
9
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Then p: G — GL (F (G@)) is a linear representation.
(5) Recall that the group algebra k(G) is the vector space of all finite linear

combinations ) cyg, ¢, € k with natural multiplication. We define the
reqular representation R : G — GL (k (G)) in the following way

Ry (chg> chsg

DEFINITION 1.2. Two representations of a group G, p : G — GL(V) and o

G — GL(W) are called equivalent or isomorphic if there exists an invertible linear
operator 1" : V' — W such that T'o p, = 0,07 for any g € G.

ExaMPLE 1.3. If GG is a finite group, then the representations in examples 4 and
5 are equivalent. Indeed, define T': F (G) — k (G) by the formula

=> o)z

zeG

Then for any ¢ € F (G) and g € G we have

T (pgp) = > _pep @)z =D plag)a™ = oy R, (Typ).

zeG zeG yeG

Let a group G act on a set X on the right. Let F(X) be the set of k-valued
functions on X. Then there is a representation of G in F(X) defined by

pep(z) == p(x - g)

EXERCISE 1.4. Consider a left action [ : G x X — X of G on X. For every
p e F(X),geGand x € X set
agp(a) = (g™ - 2).

(a) Prove that o is a representation of G in F(X).
(b) Define a right action r : X x G — X by

r-g:=g ',

and consider the representation p of G in F(X) associated with this action. Check
that p and o are equivalent representations.

REMARK 1.5. As one can see from the previous exercise, there is a canonical way
to go between right and left action and between corresponding representations
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2. Ways to produce new representations

Let G be a group.

Restriction. If H is a subgroup of G and p : G — GL (V) is a representation
of G, the restriction of homomorphism p to H gives a representation of H which we
call the restriction of p to H. We denote by Resy p the restriction of p on H.

Lift. Let p : G — H be a homomorphism of groups. Then for every represen-
tation p : H — GL(V), the composite homomorphism pop : G — GL (V) gives a
representation of G on V. This construction is frequently used in the following case:
let N be a normal subgroup of G, H denote the quotient group GG/N and p be the
natural projection. In this case p is obviously surjective. Note that in the general
case we do not require p to be surjective.

Direct sum. If we have two representations p : G — GL (V) and ¢ : G —
GL (W), then we can define p @ o: G — GL (V @& W) by the formula

(p® o), (v,w) = (pyv,o4w).

Tensor product. The tensor product of two representations p : G — GL (V)
and 0 : G — GL (W) is defined by

(r®o), (vOw) = pu®ogw.

Exterior tensor product. Let G and H be two groups. Consider representa-
tions p: G — GL (V) and 0 : H — GL (W) of G and H respectively. One defines
their exterior tensor product pX o : G x H — GL(V ® W) by the formula

(P T) v @ W= pyv @ opw.

EXERCISE 2.1. If § : G — G x G is the diagonal embedding, show that for any
representations p and o of G

p&o=(pNao)od.

Dual representation. Let V* denote the dual space of V and (-,-) denote the
natural pairing between V' and V*. For any representation p : G — GL (V') one can
define the dual representation p* : G — GL (V*) by the formula

(pho,v) = (p,p, ')

for every v € V,p € V*.

Let V' be a finite-dimensional representation of G with a fixed basis. Let A, for
g € G be the matrix of p, in this basis. Then the matrix of pj in the dual basis of
V* is equal to (A})~".

EXERCISE 2.2. Show that if GG is finite, then its regular representation is self-dual
(isomorphic to its dual).
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More generally, if p: G — GL (V) and 0 : G — GL (W) are two representations,
then one can naturally define a representation 7 of G on Homy, (V, W) by the formula

ngo:agogOOpg_l,gEG,ngHomk(V,W).

EXERCISE 2.3. Show that if V' and W are finite dimensional, then the represen-
tation 7 of G on Homy, (V, W) is isomorphic to p* ® 7.

Intertwining operators. A linear operator 7' : V' — W is called an intertwining
operator if 7o p, = 0,0 T for any g € G. The set of all intertwining operators will
be denoted by Homg (V,W). Tt is clearly a vector space. Moreover, if p = o,
then Endg(V) := Homg (V, V) has a natural structure of associative k-algebra with
multiplication given by composition.

EXERCISE 2.4. Consider the regular representation of G in k(G). Prove that the
algebra of intertwiners Endg(k(G)) is isomorphic to k(G). (Hint: ¢ € Endg(k(G))
is completely determined by ¢(1).)

3. Invariant subspaces and irreducibility

3.1. Invariant subspaces and subrepresentations. Consider a representa-
tion p: G — GL (V). A subspace W C V is called G-invariant if p, (W) C W for
any g € G.

If W is a G-invariant subspace, then there are two representations of G naturally
associated with it: the representation in W which is called a subrepresentation and
the representation in the quotient space V /W wjich is called a quotient representation.

EXERCISE 3.1. Let p: S, = GL (k™) be the permutation representation, then
W =A{z(1,...,1) |z € k}
and
W' ={(z1,...,2,) | ¥1 + 22+ - + 2, =0}

are invariant subspaces.

EXERCISE 3.2. Let G be a finite group of order |G|. Prove that any representation
of G contains an invariant subspace of dimension less or equal than |G].

3.2. Maschke’s theorem.

THEOREM 3.3. (Maschke) Let G be a finite group such that char k does not divide
|G|. Let p: G — GL (V) be a representation and W C V' be a G-invariant subspace.
Then there exists a complentary G-invariant subspace, i.e. a G-invariant subspace

W'V such that V. =W @ W'.
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PROOF. Let W” be a subspace (not necessarily G-invariant) such that W@ W” =
V. Consider the projector P : V — V onto W with kernel W”. One has P? = P.

Now we construct a new operator

_ 1
P .= |—G|Zpgopop;1.
geG
An easy calculation shows that p, o Po pg_l = P for all g € G, and therefore p,0 P =
P o p,. In other words, P € Endg (V).
On the other hand, Py = Id and Im P = W. Hence P?=P.
Let W’ = Ker P. First, we claim that W' is G-invariant. Indeed, let w € W/,
then P (p,w) = p, (Pw) = 0 for all g € G, hence p;w € Ker P = W'
Now we prove that V = W & W’. Indeed, W N W’ = 0, since Py = Id. On the
other hand, for any v € V, we have w = Pv € W and w' = v — Pv € W’. Thus,
v =w + w, and therefore V =W + W". O

Remarks. If chark divides |G| or G is infinite, the conclusion of Mashke’s
theorem does not hold anymore. Indeed, in the example of Exercise 3.1 W and W’
are complementary if and only if char & does not divide n. Otherwise, W C W' C V,
and one can show that neither W nor W’ have a G-invariant complement.

In the case of an infinite group, consider the representation of Z in R? as in the
first example of Section 1. The span of (1,0) is the only G-invariant line. Therefore
it can not have a G-invariant complement in R?. direct sum of two proper invariant
subspaces.

3.3. Irreducible representations and Schur’s lemma.

DEFINITION 3.4. A non-zero representation is called irreducible if it does not
contain any proper non-zero G-invariant subspace.

EXERCISE 3.5. Show that the dimension of any irreducible representation of a
finite group G is not bigger than its order |G|.

The following elementary statement plays a key role in representation theory.

LEMMA 3.6. (Schur) Let p: G — GL(V') and 0 : G — GL(W) be two irreducible
representations. If T' € Homg(V, W), then either T =0 or T is an isomorphism.

Proor. Note that KerT" and Im T are G-invariant subspaces of V and W, re-
spectively. Then by irreducibility of p, either KerT = V or KerT = 0, and by
irreducibility of o, either Im7T = W or ImT = 0. Hence the statement. 0J

COROLLARY 3.7. (a) Let p : G — GL(V)) be an irreducible representation. Then
Endq(V) is a division ring.

(b) If the characteristic of k does not divide |G|, Endg (V) is a division ring if and
only if p is irreducible.

(c) If k is algebraically closed and p is irreducible, then Endg (V) = k
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PROOF. (a) is an immediate consequence of Schur’s Lemma.

To prove (b) we use Maschke’s theorem. Indeed, if V' is reducible, then V' = Vi &V,
for some proper subspaces V; and V5. Let p; be the projector on V; with kernel V5 and
po be the projector onto V with kernel V;. Then py, ps € Endg(V) and p; o py = 0.
Hence Endg (V) has zero divisors.

Let us prove (c). Consider 7" € Endg(V). Then T has an eigenvalue A € k and
T—M\1d € Endg(V). Since T'— A 1d is not invertible, it must be zero by (a). Therefore
T = \d. O

3.4. Complete reducibility.

DEFINITION 3.8. A representation is called completely reducible if it splits into a
direct sum of irreducible subrepresentations. (This direct sum might be infinite.)

THEOREM 3.9. Let p : G — GL(V) be a representation of a group G. The
following conditions are equivalent.

(a) p is completely reducible;

(b) For any G-invariant subspace W C V there exists a complementary G-
invariant subspace W'.

ProoF. This theorem is easier in the case of finite-dimensional V. To prove it for
arbitrary V' and G we need Zorn’s lemma. First, note that if V' is finite dimensional,
then it always contains an irreducible subrepresentation. Indeed, we can take a
subrepresentation of minimal positive dimension. If V' is infinite dimensional then
this is not true in general.

LEMMA 3.10. If p satisfies (b), any subrepresentation and any quotient of p also
satisty (b).

PROOF. To prove that any subrepresentation satisfies (b) consider a flag of G-
invariant subspaces U C W C V. Let U' C V and W/ C V be G-invariant subspaces
such that U @ U' =V and W @& W’ = V. Let P be the projector on W with kernel
W'. Then W =U & P(U").

The statement about quotients is dual and we leave it to the reader as an exercise.

O

LEMMA 3.11. Let p satisfy (b). Then it contains an irreducible subrepresentation.

PRrOOF. Pick up a non-zero vector v € V' and let V' be the span of p,v for all
g € G. Consider the set of G-invariant subspaces of V' which do not contain v, with
partial order given by inclusion. For any linearly ordered subset {X;};c; there exists

a maximal element, given by the union U X;. Hence there exists a proper maximal
iel

G-invariant subspace W C V', which does not contain v. By the previous lemma one

can find a G-invariant subspace U C V' such that V! = W@ U. Then U is isomorphic

to the quotient representation V'/W which is irreducible by the maximality of W in

1% OJ
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Now we will prove that (a) implies (b). We write

V=V
iel
for a family of irreducible G-invariant subspaces V;. Let W C V be some G-invariant
subspace. By Zorn’s lemma there exists a maximal subset J C [ such that

wnEpv; =o.

jeJ

We claim that W' := @ V; is complementary to W. Indeed, it suffices to prove that
jet

V =W+ W'. For any i ¢ J we have (V; @ W) N W # 0. Therefore there exists
a non-zero vector v € V; equal to w 4+ w’ for some w € W and w’ € W’. Hence
Vin (W' + W) # 0 and by irreducibility of V;, we have V; € W + W’. Therefore
V=W+W.

To prove that (b) implies (a) consider the family of all irreducible subrepresen-
tations {Wy}rex of V. Note that ZWk = V because otherwise ZWk has a

keK kEK
G-invariant complement which contains an irreducible subrepresentation. Again due

to Zorn’s lemma one can find a minimal J C K such that Z W; =V Then clearly
jeJ
V=w;. O
jeJ
The next statement follows from Maschke’s theorem and Theorem 3.9.

PROPOSITION 3.12. Let GG be a finite group and k be a field such that char k does
not divide |G|. Then every representation of G is completely reducible.

4. Characters

4.1. Definition and main properties. For a linear operator 7' in a finite-
dimensional vector space V we denote by trT" the trace of T

For any finite-dimensional representation p : G — GL (V) the function x, : G — k
defined by

Xp (9) = trp,.
is called the character of the representation p.

EXERCISE 4.1. Check the following properites of characters.
) Xp (1) = dim p;

) 1fp— o, then x, = Xo;

) Xpwo = Xp + Xo

; Xpgo = XpXos

(1
(
(
(
( (9)=x, (97"

2
3
4
5
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(6) X, (ghg™") = x, ().

EXERCISE 4.2. Calculate the character of the permutation representation of 5,
(see the first example of Section 1).

ExAMPLE 4.3. If R is the regular representation of a finite group, then xz (g) =0
for any s # 1 and yx (1) = |G|.

EXAMPLE 4.4. Let p : G — GL (V) be a representation of dimension n and
assume char k # 2. Consider the representation p®p in V®V and the decomposition

VeV =25%aAV.

The subspaces S?V and A?V are G-invariant. Denote by sym and alt the subrepre-
sentations of G in S?V and A%V respectively. Let us compute the characters ysym
and Xal-

Let g € G and denote by Aq,...,\, the eigenvalues of p, (taken with multiplic-
ities). Then the eigenvalues of alt, are the products A;A; for all ¢ < j while the
eigenvalues of sym  are A\;A\; for ¢ < j. This leads to

Xeym (9) = D ANy,

1<j
Xate (9) = Z Aidj.
i<j
Hence
Xeym (9) = Xan (9) = Y A7 = trpge = X, (9°) -

On the other hand by properties (3) and (4)

Xaym (9) + Xait (9) = Xpep (9) = X5 (9) -
Thus, we get

X5 (9) +x, (9°) e (9) —x,(97)
9 » Xalt (g) - 2 .

LEMMA 4.5. If k = C and G is finite, then for any finite-dimensional representa-
tion p and any g € G we have

(1.1) Xsym (9) =

Xp(9> = Xp(gfl)-

PROOF. Indeed, x,(g) is the sum of all the eigenvalues of p,. Since ¢ has finite
order, every eigenvalue of p, is a root of 1. Therefore the eigenvalues of p,-1 are the
complex conjugates of the eigenvalues of p,. O
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4.2. Orthogonality relations. In this subsection we assume that G is finite
and the characteristic of the ground field k is zero. Introduce a non-degenerate
symmetric bilinear form on the space of functions F (G) by the formula

(1.2) (o) = =S 0 (s7) 6 (s).
a1 2

If p: G — GL(V) is a representation, then we denote by V¢ the subspace of
G-invariant vectors, i.e.

VY ={veV|p,(v) =v,Vg e G}
LEMMA 4.6. If p: G — GL(V) is a representation, then
dim VG - (Xpa Xtriv>7

where Xy, denotes the character of the trivial representation, i.e. X-in(g) = 1 for all
gea@q.

PrOOF. Consider the linear operator P € Endg (V') defined by the formula

1

gelG

Note that P2 = P and Im P = V. Thus, P is a projector on V. Since chark = 0
we have

tr P = dimIm P = dim V°.

On the other hand, by direct calculation we get tr P = (X,, X¢riv), and the lemma
follows. OJ

Note that for two representations p: G — GL(V) and o : G — GL(W) we have
(1.3) Hom,,(V, W) = Homg(V, W) = (V* @ W)“.
Therefore we have the following
COROLLARY 4.7. One has
dim Home(V, W) = (X)) Xo)-

PRrOOF. The statement is a consequence of the following computation:

() = 1 o Xolg™ M1rl0) = 1 D Xprr(9) = (i)

geG geG

O

The following theorem is usually called the orthogonality relations for characters.
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THEOREM 4.8. Let p, o be irreducible representations over a field of characteristic
Zero.

(a)If p: G — GL(V) and o : G — GL(W) are not isomorphic, then (x,, x») = 0.

(b) Assume that the ground field is algebraically closed. If p and o are equivalent,
then (X,, x») = 1.

PROOF. By Schur’s lemma

HOIIlg(V, W) =0

Therefore Corollary 4.7 implies (a).

Assertion (b) follows form Corollary 3.7 (¢) and Corollary 4.7. O

This theorem has several important corollaries.

COROLLARY 4.9. Let

p=mip1 G- Dm.p,

be a decomposition into a sum of irreducible representations, where m;p; is the direct

(xoxe:)

sum of m; copies of p;. Then m; = .
u pl p (Xpi7xpi)
The number m; is called the multiplicity of an irreducible representation p; in p.

COROLLARY 4.10. Two finite-dimensional representations p and o are equivalent
if and only if their characters coincide.

In the rest of this section we assume that the ground field is alge-
braically closed.

COROLLARY 4.11. A representation p is irreducible if and only if (x,, x,) = 1.

EXERCISE 4.12. Let p and o be irreducible representations of finite groups G and
H respectively.

(a) If the ground field is algebraically closed, then the exterior product p X o is
an irreducible representation of G x H.

(b) Give a counterexample to (a) in the case when the ground field is not alge-
braically closed.

THEOREM 4.13. Every irreducible representation p appears in the regular repre-
sentation with multiplicity dim p.

PRrROOF. The statement is a direct consequence of the following computation
1 :
(Xp: XR) = G (1) xr (1) = dim p.
O

COROLLARY 4.14. Let py, ..., p, be all (up to isomorphism) irreducible represen-
tations of G and n; = dim p;. Then

ni+---+nl=|G|
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PROOF. Indeed,

dim R = |G = xr(1) = > iy, (1) = Y n?
i=1 .

EXAMPLE 4.15. Let GG act on a finite set X and

:{beﬂbxek}.

zeX

Define p: G — GL (k (X)) by

Py (Z wa> = byg- .

zeX zeX

It is easy to check that p is a representation and

Xo(9)=[{reX|g-x=ua}]

Clearly, p contains the trivial subrepresentation. To find the multiplicity of the trivial
representation in p we have to calculate (1, x,):

(1, x,) X 1= |Gal,
LG E s Y E s
where

Let X = X; U---UX,, be the disjoint union of orbits. Then |G,| =
x € X; and therefore

1G| f
or each
x|

m G
zz'
i=1 x€X;

’L

Now let us evaluate (x,, X,):

v mS (1) EE S e S o

geG \gz=z 9€G ga=z,9-y=y (zy)eXxX

Let o be the representation associated with the action of G on X x X. Then the
last formula implies
(X Xp) = (1, Xo) -

Thus, p is irreducible if and only if | X| = 1, and p has two irreducible components if
and only if the action of G on X x X with removed diagonal is transitive.
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4.3. The number of irreducible representations of a finite group.

DEFINITION 4.16. Let

C(G)={peF(G)]¢(ghg) =¢h)}.
Elements of C(G) are called class functions.

EXERCISE 4.17. Check that the restriction of (-, -) on C (G) is non-degenerate.

THEOREM 4.18. The characters of irreducible representations of G form an or-
thonormal basis of C (G).

PrOOF. We have to show that if ¢ € C(G) and (¢, x,) = 0 for any irreducible
representation p, then ¢ = 0. The following lemma is straightforward.

LEMMA 4.19. Let p: G — GL (V) be a representation, ¢ € C (G) and
el
e =

Then T € Endg V and tr T = (¢, X,)-

Thus, for any irreducible representation p we have

(1.4) Z 2 (97") pg=0.
gEG

But then the same is true for any representation p, since any representation is a direct
sum of irreducible representations. Apply (1.4) to the case when p = R is the regular

representation. Then
Zs& ) Zw )
gEG geG

Hence p(g7') =0 forall g€ G, ie. ¢ =0 O

COROLLARY 4.20. The number of isomorphism classes of irreducible representa-
tions equals the number of conjugacy classes in the group G.

COROLLARY 4.21. If G is a finite abelian group, then every irreducible represen-
tation of G is one-dimensional and the number of irreducible representations is the
order of the group G.

For any group G (not necessarily finite) let G* denote the set of all one-dimensional
representations of G.

EXERCISE 4.22. (a) Show that G* is a group with respect to the operation of
tensor product.

(b) Show that the kernel of any p € G* contains the commutator [G, G]. Hence
we have G* ~ (G/|G, G])*.
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(c¢) Show that if G is a finite abelian group, then G* ~ G. (This isomorphism is
not canonical.)

EXERCISE 4.23. Consider the symmetric group S,, for n > 2.

(a) Prove that the commutator [S,, S, coincides with the subgroup A,, of all even
permutation.

(b) Show that S, has two up to isomorphism one-dimensional representations:
the trivial and the sign representation € : S,, — {1, —1}.

EXERCISE 4.24. Let p be a one-dimensional representation of a finite group G
and o is some other representation of G. Show that o is irreducible if and only if
p ® o is irreducible.

4.4. Isotypic components. Consider the decomposition of some representation
p: G — GL(V) into a direct sum of irreducible representations

p:mlpl@"'@mrpr-

The subspace W; ~ V,¥™ of the representation m;p; is called the isotypic component
of type p; of V.

LEMMA 4.25. Let n; denote the dimension of the irreducible representation p;

and
n; _
™= > xilg ™),

gelG

Then m; is the projector on the isotypic component W; of type p;.

PROOF. Define a linear operator on V; by the formula

> xilg™H)(ps)s

geG

n;
7Tz'j :

e

By construction m;; € Endg(V;). Corollary 3.7 (¢) implies that m;; = Ald. By
Theorem 4.8

trmi; = ni(Xi, xj) = nidi;-

Now we write
I
T = E g -
j=1

Hence
7Ti|Wj = 5ij Id.

The statement follows. O
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5. Examples.
In the examples below we assume that the ground field is C.

ExAMPLE 5.1. Let G = S5. There are three conjugacy classes in GG, each class
is denoted by some element in this class: 1,(12),(123). Therefore there are three
irreducible representations, denote their characters by x1, x2 and ys. It is not difficult
to see that S3 has the following table of characters

1] (12) ] (123)
i 1] 1 1
Yo | 1| =1 ] 1
vs12] 0 | -1

The characters of one-dimensional representations are given in the first and the
second row (those are the trivial representation and the sign representation, see Ex-
ercise 4.23), the last character x3 can be obtained by using the identity

(15) Xperm = X1 + X3,

where Xperm Stands for the character of the permutation representation, see Exercise
4.2.

EXAMPLE 5.2. Let G = S;. In this case we have the following character table (in
the first row we write the number of elements in each conjugacy class).

1] 6 | 8 3 6
1] (12) [ (123) ] (12) (34) | (1234)
i 1] 1 1 1 1
Yo | 1| =1 ] 1 1 1
s3] 1 | 0 —1 —1
a3 =11 0 1 1
2] 0 | =1 2 0

The first two rows are the characters of the one-dimensional representations. The
third one can again be obtained from (1.5). When we take the tensor product p, :=
P2 @ p3 we get a new 3-dimensional irreducible representation, see Exercise 4.24 whose
character y4 is equal to the product x2x3. The last character can be obtained through
Theorem 4.8. An alternative way to describe ps is to consider S/ K4, where

Ky ={1,(12) (34), (13) (24) , (14) (23)}
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is the Klein subgroup. Observe that S,/ K, = S3, and therefore the two-dimensional
representation o of S3 can be lifted to a representation of S; by

ps =0 op,
where p : Sy — S5 is the natural projection.

ExAMPLE 5.3. Now let G = Aj. There are 5 irreducible representations of GG over
C. Here is the character table

1] 20 15 12 12
1] (123) [ (12) (34) | (12345) | (12354)
i1 1 1 1 1
X2 4] 1 0 —1 —1
Xs|5| —1 1 0 0
yal3| 0 —1 Live | 1¥5
X5 3] 0 -1 =5 | 155

To obtain y» we use the permutation representation and (1.5) once more. In order
to construct new irreducible representations we consider the characters xsym and xai
of the second symmetric and the second exterior powers of py respectively. Using
(1.1) we compute

1 [(123)](12) (34) [ (12345) [ (12354)
Xeym | 10| 1 2 0 0
Xait | 6| O ) 1 1

It is easy to check that

(Xsyms Xsym) = 3, (Xsym» X1) = (Xsyms X2) = 1.
Therefore
X3 = Xsym — X1 — X2
is the character of another irreducible representation of dimension 5. We still miss
two

To find then we use x.;. We have
(Xalts Xatt) = 2, (Xaies X1) = (Xats X2) = (Xaie, X3) = 0.

Therefore xat = x4 + X5 is the sum of two irreducible characters. First we compute
the dimensions of p; and p; using

1? + 4> + 5% + nj + nZ = 60.
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We obtain ny = ns = 3.
Next, we use Theorem 4.8 to compute some other values of y, and x5. The
equations

(X4 X1+ x2) =0, (X4,x3) =0
imply
X4 ((123)) =0, x4 ((12) (34)) = — 1.
The same argument applied to x5 gives
x5 ((123)) = 0, x5 ((12) (34)) = —1.
Finally let us denote
x = x4 ((12345)) , y = x4 ((12354))

and write down the equation arising from (x4, x4) = 1:

1 2 2
%(9+15+12x +12y%) =1,

or more simply

(1.6) 2+ y? = 3.

On the other hand, (x4, x1) = 0, which gives
3-15+12(z+y) =0,

or simply

(1.7) r+y=1

The system (1.6), (1.7) has two solutions

_1+45 1-+/5 1—-+5 1++/5

= To =
9 y U1 2

2 2
They give the characters x4 and ys.

o

Now that we have the character of A5 we would like to explain a geometric
construction related to it. First, we observe that the previous constructions work
over the grouond field R of real numbers. In particular, the representations p, and ps
are defined over R. Indeed, they are subrepresentation of the second exterior power
of p; and by Lemma 4.25 the corresponding projectors are defined over R. Therefore
we have an action of A in R3. Our next step is to show that this action preserves
the scalar product. In a more general context we have the following result.

LEMMA 5.4. Let V be a finite-dimensional vector space over R and p be a repre-
sentation of some finite group G in V. There exists a positive definite scalar product
B :V xV — R such that B(pyu, p;v) = B(u,v) for any u,v € V and g € G.

Remark. Such a scalar product is called wnvariant.
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PRrROOF. Let C': V x V — R be some positive definite scalar product. Set

B(u,v) := Z C(pgu, pyv).

geG

Then B satisfies the conditions of the lemma. ]

Dodecahedron. We have constructed two 3-dimensional irreducible represen-
tations of Az, wecan use any of them to construct a dodecahedron, i.e. a regular
polyhedron with 12 pentagonal faces and 20 vertices. For instance, let us take p = py.
By Lemma 5.4 we may assume that for all g € G, p, acts on R* by an orthogonal
matrix. We claim that p, preserves the orientation in R?, in other words the deter-
minant det p, is 1 fo all g € G. We already know that det p, = 1. Therefore if g is
of odd order the determinant is necessarily 1. If g is of even order, it belongs to the
conjugacy class of (12)(34). Hence it is an involution with trace —1, thus a rotation
by 180°. Recall that any isometry in R? preserving orientation ia a rotation.

Let g = (123), then it is of order 3, hence p, is a rotation by 120°. Pick up a
non-zero x fixed by p,. Consider its orbit S = {p,(z)|g € As}. Since the stabilizer of
x in As is the cyclic group generated by p,, we know that S has 20 points. Moreover,
all points of S lie on a sphere, and hence the convex hull A of S is a polytope with
vertices in S. We will show that A is a regular polytope whose faces are regular
pentagons.

Let h = (12345). Consider the subgroup H C Aj generated by h. Since pj, is a
rotation by 72°. Without loss of generality we may assume the axis of py, is vertical.
Hence the different orbits of H in S lie on 4 horizontal planes. The top and the
bottom plane sections are faces of A. Thus, we can conclude that at least some faces
of A are regular pentagons.

Next, we claim that any vertex of A belongs to exactly three pentagonal faces.
Indeed, it follows from the fact that the stabilizer of any s € S has order three and
it acts on the set of pentagonal faces containing s.

Finally, assume there is a face f of A which is not a regular pentagon. Then at
least one angle of f is not less than 60°. Denote this angle by a and the corresponding
vertex by s. Consider the stabilizer of s in As. It is a cyclic group of order 3 acting
on the set of faces containing s. Thus, there are at least three plane angles at s which
are equal to . But then the total sum of all plane angles at s should be at least
3 x 72° 4+ 3a which is bigger that 360°, thus, a contradiction. Thus, all the faces of
A are regular pentagons. Hence the total number of faces is 12.

Note that we have also proved that the group of rotations of a dodecahedron is
isomorphic to As.

EXERCISE 5.5. Let D, denote the dihedral group of order 8 and Hg denote the
multiplicative subgroup of quaternions consisting of £1,+:, £j, £k. Compute the
character tables of both groups and verify that those tables coincide.
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6. Invariant forms

We assume here that char k = 0. Recall that a bilinear form on a vector space V'

isamap B :V xV — k satisfying
(1) B (cv,dw) = cdB (v, w);
(2) B (vy +v9,w) = B (vy,w) + B (vg, w);
(3) B (v,wy +ws) = B (v,w1) + B (v,ws).

One can also think about a bilinear form as a vector in V* ® V* or as the homo-
morphism B : V — V* given by the formula B, (w) = B (v,w). A bilinear form is
symmetric if B (v,w) = B (w,v) and skew-symmetric if B (v, w) = —B (w,v). Every
bilinear form can be uniquely written as a sum B = BT + B~ where BT is symmetric
and B~ skew-symmetric form,

B (v,w) £ B (w,v)

B* = :
(v, ) :

Such a decomposition corresponds to the decomposition

(1.8) V*e V=SV @ APV

A bilinear form is non-degenerate if B : V' — V* is an isomorphism, in other words
if B (v,V) =0 implies v = 0.
Let p: G — GL (V) be a representation. We say that a bilinear form B on V is
G-invariant if
B (pgv, pgw) = B (v, w)
for any v,w € V, g € G. If there is no possible confusion we use the word invariant
instead of G-invariant.

EXERCISE 6.1. Check the following
(1) If W C V is an invariant subspace, then W+ = {v € V | B (v, W) = 0} is
invariant. In particular, Ker B is invariant.
(2) B:V — V*is invariant if and only if B € Homg (V, V*).
(3) If B is invariant, then B™ and B~ are invariant.

LEMMA 6.2. Let p: G — GL(V) be an irreducible representation of G, then any
invariant bilinear form on V' is non-degenerate. If k is algebraically closed, then such
a bilinear form is unique up to scalar multiplication.

Remark. Lemma 6.2 holds for a field of arbitrary characteristic.
PRrOOF. Follows from Exercise 6.1 (2) and Schur’s lemma. O]

LEMMA 6.3. Let p: G — GL(V) be an irreducible representation of G. Then it
admits an invariant form if and only if x, (9) = x, (¢~") for any g € G.

PROOF. Since every invariant bilinear form establishes an isomorphism between
p and p*, the statement follows from Corollary 4.10. O
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LEMMA 6.4. (a) If k is algebraically closed, then every non-zero invariant bilinear
form on an irreducible representation p is either symmetric or skew-symmetric.

(b) Define
=g
geG
Then m, = 1,0 or —1.
(c) If m, = 0, then p does not admit an invariant form. If m, = 1 (resp.
m, = —1), then p admits a symmetric (resp. skew-symmetric) invariant form.

PRrooF. First, (a) is a consequence of Lemma 6.2 and Exercise 6.1.
Let us prove (b) and (c). Recall that p ® p = paix ® psym. Using 1.1 we obtain

X; +>< 9°)
(XSYITI’XtI‘lV |G‘Z P < )

1 G (9) X (97)
(Xalta Xtriv) = @ Z 5 .
geG

Note that

Therefore

(Xp» Xp*) + M
2 )

(Xos Xp*) — My
5 )

(Xsyrm Xtriv) -

(Xaltu Xtriv) —
We have the folowing thrichotomy

e p does not have an invariant form, if and only if p is not isomorphic to p*.
In this case (X, X,+) = 0 and (Xsym, Xtriv) = (Xsym, Xtriv) = 0. Therefore
m, = 0.

e phas a symmetric invariant form if and only if (x,, x,+) = 1 and (Xsym, Xtriv) =
1. This implies m, = 1.

e p admits a skew-symmetric invariant if and only if (x,, x,+) = 1 and (Xait, Xtriv) =
1. This implies m, = 1.

O

Let £ = C. An irreducible representation of a finite group G is called real if
m, = 1, complex if m, = 0 and quaternionic if m, = —1.

Remark. Since y,(s™') = x,(s), then x, takes only real values for real and
quaternionic representations. If p is complex there is at least one g € G such that
X, (g) ¢ R. This terminology will become clear in Section 8.
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EXERCISE 6.5. Show that

(a) All irreducible representation of S, are real.

(b) All non-trivial irreducible representations of Zs are complex.

(¢) The two-dimensional representation of the quaternionic group Hg is quater-
nionic (see Exercise 5.5).

EXERCISE 6.6. Assume that the order of G be odd. Show that all non-trivial
irreducible representation of G are complex. (Hint: prove that m, = (x,, Xtriv)-)

7. Representations over R

Let us recall that by Lemma 5.4 every representation of a finite group over R
admits an invariant scalar product. Assume the representation p : G — GL(V)
is irreducible. Denote by B(-,-) an invariant scalar product and let Q(-,-) denote
another invariant symmetric form on V. These two forms can be silmultaneously
diagonalized. Therefore there exists A € R, such that Ker (Q — AB) # 0. Since
Ker (Q — AB) # 0 is G-invariant and p is irreducible, this implies Q = AB. There we
have

LEMMA 7.1. Let p : G — GL(V) be an irreducible representation of G' over R.
There is exactly one invariant symmetric form on V' up to scalar multiplication.

THEOREM 7.2. Let R C K be a division ring, which is finite-dimensional over R.
Then K is isomorphic to R, C or H.

PROOF. If K is a field, then K = R or C, because C = R and [C : R] = 2.

Assume that K is not commutative. Then it contains a subfield isomorphic to C
obtained by taking # € K'\R and conidering R. Therefore without loss of generality
we may assume R C C C K.

Consider the involutive C-linear automoprhism of K defined by the formula

f(z) =izi !,
Look at the eigenspace decomposition of K with respect to f
K=K ®© K_,
where
Kiyy={re K| f(zx)=+x}.
One can easily check the following inclusions
KWK CcK, K,K,CK, KK,CK, KK CK.,.

The eigenspace K7 coincides with the centralizer of C in K. Therefore K; = C.
Choose a non-zero y € K. The left multiplication by y defines an isomorphism

of R vector spaces K; and K_;. Hence dimg K; = dimg K_; = 2 and dim K = 4.
For any z = a + bi € K; and any w € K_1, we have

wz = wa — wbi = aw + biw = zw.
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Since w? € C and commutes with w, we have w? € R. We claim that w? is negative
since otherwise w? = ¢? for some real ¢ and (w — ¢) (w + ¢) = 0, which is impossible,
since K is a division ring. Set j := \/_LTJQ Then j? = —1 and ij = —ji. So if we set
k :=1j, then 1,4, 7, k form the standard basis of H. O

LEMMA 7.3. Let p: G — GL (V) be an irreducible representation over R, then
there are three possibilities:
(1) Endg (V) =R and (x,, x,) = 1;
(2) Endg (V) =2 C and (x,, x,) = 2;
(3) Endg (V) = H and (x,, x,) = 4.

ProoFr. Corollary 3.7 and Theorem 7.2 imply that Endg (V) is isomorphic to
R, C or H, (x,,Xx,) = 1,2 or 4 as follows from Corollary 4.7.

O

8. Relationship between representations over R and over C

Hermitian invariant form. Recall that a Hermitian form is a binary additive
form on a complex vector space satisfying the conditions

H (av,bw) = abH (v,w), H (w,v) = H (v,w).
The following Lemma can be proved exactly as Lemma 7.1.

LEMMA 8.1. Every representation of a finite group over C admits a positive-
definite invariant Hermitian form. If the representation is irreducible, then any two
invariant Hermitian forms on it are proportional.

Let p: G — GL (V) be a representation of dimension n over C. Denote by V¥
the space V considered as a vector space over R of dimension 2n. Denote by p® the
representation of G in V.

EXERCISE &8.2. Show that
Xp® = Xp T Xp-

The exercise implies that (x,z,x,z) is either 2 or 4. Hence dim Endg (VR) is
either 2 or 4. Moreover, C is a self-centralizing subalgebra in Endg (VR). Therefore
End¢ (V) is isomorphic to C, H or to the ring Ms(R) of real matrices of size 2 X 2.

PROPOSITION 8.3. Let p: G — GL (V') be an irreducible representation over C.
Then one of the follwoing three cases occur.

(1) Endg (V®) ~ My(R). Then there exists a basis of V such that the matrices
pg for all g € G have real entries. In this case V admits an invariant scalar
product.

(2) Endg (VR) ~ C. Then p is complex, i.e. p does not admit any invariant
bilinear form.

(3) Endg (VR) o~ H. Then p admits an invariant skew-symmetric form.
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PrROOF. The statement (1) follows from Lemma 7.1. For (2) use Exercise 8.3.
Since (XpJR, XpR) = 2 by Lemma 7.3, then x, # X,, and therefore p is complex.

Finally let us prove (3). Let j € Endg (VF) = H, then j (bv) = bv for all b € C.
Let H be a positive-definite invariant Hermitian form on V. Then

Q (v,w) = H (jw, jv)
is another invariant positive-definite Hermitian form. By Lemma 8.1 ) = AH and A
should be positive because @ is also positive definite. Since j? = —1, one has \? =1
and therefore A = 1. Thus,

H (v,w) = H (jw, jv).
Set
B (v,w) = H (jv,w).
Then B is a bilinear invariant form, and
B (w,v) = H (jw,v) = H (jv,j2w) = —H (jv,w) = =B (v,w),
hence B is skew-symmetric. 0

COROLLARY 8.4. Let o be an irreducible representation of G over R. There are
three possibilities for o

(1) xo = X, for some real representation p of G' over C;
(2) Xo = X, + X, for some complex representation p of G over C;
(3) xo = 2x, for some quaternionic representation p of G over C.

THEOREM 8.5. Let GG be a finite group, r denote the number of conjugacy classes
and s denote the number of classes which are stable under inversion. Then % is the
number of irreducible representations of GG over R.

PROOF. Recall that C(G) is the space of complex valued class functions on G.
Consider the involution 6 : C(G) — C(G) given by

bo(g) = p(g7").
An easy calculation shows dimC(G)? = ==
Denote by x4, ..., X, the irreducible characters of G over C. Recall that y1,..., x,

form a basis of C(G). Observe that for any character y,

H(Xp) = Xp*-
Therefore 6 permutes irreducible characters xq,...,x,. Corollary 8.4 implies that
the number of irreducible representations of GG over R equals the number of self-
dual irreducible representations over C plus half the number of those which are not
self-dual. Therefore this number is exactly the dimension of C(G)°. O



CHAPTER 2

Modules with applications to finite groups

1. Modules over associative rings
1.1. The notion of module.

DEeFINITION 1.1. Let R be an associative ring with identity element 1 € R.
An abelian group M is called a (left) R-module if there is a map R x M — M,
(a,m) — am such that for all a,b € R and m,n € M we have

(1) (ab) m = a(bm);

(2) Im =m;

(3) (a+b)m = am + bm;
(4) a(m +n) = am + an.

One can define in the similar way a right R-module. Unless otherwise stated we
only consider left modules and we say module for left module.

ExAaMpPLE 1.2. If R is a field then R-modules are vector spaces over R.

ExAMPLE 1.3. Let G be a group and k (G) be its group algebra over k. Then
every k(G)-module V' is a vector space over k equipped with a G-action. Set

Pl 1= U
for all g € G C k(G), v € V. This defines a representation p : G — GL(V).
Conversely, if V' is a vector space over k and p: G — GL (V) is a representation,

the formula
(Z agg> vi= Z AgPg.

e geG
defines a k(G)-module structure on V.
In other words, to study representations of G over k is exactly the same as to
study k(G)-modules. Hence from now on we will talk indifferently of k(G)-modules,
representations of G over k or just simply G-modules over k.

DEFINITION 1.4. Let M be an R-module. A submodule N C M is a subgroup
which is invariant under the R-action. If N C M is a submodule then the quotient
M /N has a natural R-module structure. A non-zero module M is simple or irreducible
if all submodules are either zero or M.

REMARK 1.5. Sums and an intersections of submodules are submodules.

31
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ExaMPLE 1.6. If R is an arbitrary ring, then R is a left R-module with action
given by left multiplication. Its submodules are the left ideals.

Let {M;};cs be a family of R-modules. We define the direct sum @ M; and the
jeJ
direct product H M; in the obvious way. An R-module is free if it is isomophic to a
jed
direct sum of I copies of R, (I can be infinite).
EXERCISE 1.7. If R is a division ring, then every non-zero R-module is free.

EXERCISE 1.8. Let R = 7Z be the ring of integers.

(a) Show that any simple Z-module is isomorphic to Z/pZ for some prime p.

(b) Let M be a Z-module. We call m € M a torsion element if rm = 0 for some
non-zero r € Z. Prove that the subset M®™" of all torsion elements is a submodule.

(c) We say M is a torsion free if M*™" = 0. Prove that M/M"™" is torsion free.

(d) Give an example of a non-zero torsion free Z-module which is not free.

Let M and N be R-modules. In the same way as in the group case we define the
abelian group Hompg (M, N) of R-invariant homomorphisms from M to N and the
ring Endg (M) of R-invariant endomorphisms of M. In particular if k is a filed and
V' is an n-dimensional vector space, then Endy (V') is the matrix ring M, (k).

In this context we have the following formulation of Schur’s Lemma. Its proof is
the same as in the group case.

LEMMA 1.9. Let M and N be simple R-modules. If ¢ € Hompg (M, N) is not zero
then it is an isomorphism.
If M is a simple module, then Endg (M) is a division ring.

1.2. A group algebra is a product of matrix rings. Recall that for every
ring R one defines R°P as the ring with the same abelian group structure together
with the new multiplication % given by

a*b=ba.
LEMMA 1.10. The ring Endg (R) is isomorphic to R°P.
PRrROOF. For all a € R, define ¢, € End (R) by the formula
©q () = za.
It is easy to check that
e ¢, € Endg (R),

® Vpg = Pa © Pop-
In this way we have constructed a homomorphism

¢ : R°® — Endg (R).

All we have to show that this is an isomorphism.
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Injectivity: Assume ¢, = ¢,. Then ¢, (1) = ¢, (1), hence a = b.
Surjectivity: let v € Endg (R). One has for all x € R

v (@) =7 (@l) = 2y (1)
Therefore v = ¢4(1). OJ

LEMMA 1.11. Let p; : G — GL(V;), i = 1,...,1, be a finite set of pairwise non-
isomorphic irreducible representations of a finite group G over an algebraically closed

field k, and let
V=VE"g... oVvim
Then
Endg (V) = M, (k) x -+ x My, (k).

PROOF. If ¢ is an element of Endg (V), then Schur’s Lemma implies that ¢
preserves isotypic components. Therefore we have an isomorphism

Endg (V) & Endg (V,7™) x -+ x Endg (V;7™) .
Thus it suffices to prove the following

LEMMA 1.12. Let G be a finite group, k be an algebraically closed field of char-
acteristic zero and W be a simple k(G)-module. Then Endg (W®™) is isomorphic to
the matrix ring M,, (k).

PROOF. For all i,j = 1,...,m denote by p; the canonical projection of W™
onto its j-th factor and by ¢; the emebedding of W as the i-th factor into W™,
Take ¢ € Endg (W®™). For all i,j = 1,...,m denote by ¢;; the composition map

WL wem 2y gyem Iy,

Since ¢;; € Endg(W), Schur’s Lemma implies
Pij = cij Idw

for some ¢;; € k. Thus we obtain a map

¢ : End (W®m) — M, (k).
Moreover, ¢ can be written uniquely as

w = Z Cijqi © Pj-
ij=1

If 9 is another element in End (W®™) we write

Y= Z dijqi © p;-

1,j=1
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Then we have, for the composition

m

por) = Z Cikdkj% opj-

1,5,k=1

This shows that ® is a homomorphism of rings. Injectivity and surjectivity of ® are
direct consequences of the definition. O

OJ

THEOREM 1.13. Let G be a finite group. Assume k is algebraically closed and
chark = 0. Then

k(G> = Mm(k) Koo X Mnr<k)7

where nq, ..., n, are the dimensions of all up to isomorphism irreducible representa-
tions.

ProoOF. By Lemma 1.10
Endyq) (k (G)) = k(G)™.
Moreover, g — ¢! gives an isomorphism
kE(G)® 2 Ek(G).
On the other hand, by Theorem 4.13 Chapter 1 one has
B =Vi"e eV,
where Vi, ..., V, are simple G-modules. Applying Lemma 1.11 we get the theorem.
OJ
2. Finitely generated modules and Noetherian rings.

DEFINITION 2.1. An R-module M is finitely generated if there exist finitely many
elements xq,...,x, € M such that M = Rz + --- + Rx,.

LEMMA 2.2. Let
0O>NIMEL->0

be an exact sequence of R-modules.
(a) If M is finitely generated, then L is finitely generated.
(b) If N and L are finitely generated, then M is finitely generated.

PRrROOF. The first assertion is obvious. For the second let
L=Rxy+---+ Rx,, N =Ry, +- -+ Rypn,
then one has M = Rp~ ' (z1) + -+ Rp~ ' (z,) + Rq (y1) + -+ - + Rq (Ym). O

LEMMA 2.3. Let R be a ring. The following conditions are equivalent
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(1) Every increasing chain of left ideals in R is finite, in other words for any
sequence Iy C Iy C ... of left ideals, there exists ny such that for all n > ny,
I, = 1,,.

(2) Every left ideal is a finitely generated R-module.

PROOF. (1) = (2). Assume that some left ideal I is not finitely generated. Then
there exists an infinite sequence of x,, € I such that

Tpr1 & Rxy+ -+ + Ry,

But then I, = Rxi + - - -+ Rx, form an infinite increasing chain of ideals which does
not stabilize.
(2) = (1). Let I; C I, C ... be an increasing chain of ideals. Consider

I::U[n.

Then by (2) I is finitely generated. Therefore I = Rx1+-- -+ Rz, for some x4, ... x5 €
I. Then there exists ng such that z,,...,2, € I,,. Hence I = I,, and the chain
stabilizes. 0

DEFINITION 2.4. A ring satisfying the conditions of Lemma 2.3 is called (left)
Noetherian.

LEMMA 2.5. Let R be a left Noetherian ring and M be a finitely generated R-
module. Then every submodule of M is finitely generated.

PROOF. First, we prove the statement when M is free. Then M is isomorphic
to R™ for some n and we use induction on n. For n = 1 the statement follows from
definition. Consider the exact sequence

0> R"' 5> R"> R—0.

Let N be a submodule of R™. Consider the exact sequence obtained by restriction to
N
0=>NNR"! 5NN —=0.

By induction assumption N N R* ! is finitely generated and N’ C R is finitely
generated. Therefore by Lemma 2.2 (b), N is finitely generated.
In the general case M is a quotient of a free module of finite rank. We use the
exact sequence
0—-K—=R"5% M—0.

If N is a submodule of M, then p~*(N) C R" is finitely generated. Therefore by
Lemma 2.2 (a), N is also finitely generated. O

EXERCISE 2.6. (a) A principal ideal domain is a Noetherian ring. In particular,
Z and the polynomial ring k[X] are Noetherian.

(b) Show that the polynomial ring k[X, ..., X,,...] of infinitely many variables
is not Noetherian.
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(c) A subring of a Noetherian ring is not automatically Noetherian. For example,
let R be a subring of C[X, Y] consisting of polynomial functions constant on the cross
X% —Y? =0. Show that R is not Noetherian.

Let R be a commutative ring. An element r € R is called integral over Z if there
exists a monic polynomial p(X) € Z[X] such that p(r) = 0.

EXERCISE 2.7. Check that r is integral over Z if and only if Z[r] C R is a finitely
generated Z-module.

Remark. The complex numbers which are integral over Z are usually called
algebraic integers. All the rational numbers which are integral over Z belong to Z.

LEMMA 2.8. Let R be a commutative ring and S be the set of elements integral
over Z. Then S is a subring of R.

PROOF. Let z,y € S. By assumption Z [z| and Z [y] are finitely generated Z-
modules. Then Z [x,y] is also finitely generated. Since Z is Noetherian ring, Lemma
2.5 implies that for every s € Z [z, y] the Z-submodule Z [s] is finitely generated. O

3. The center of the group algebra £ (G)

In this section we assume that k is algebraically closed of characteristic 0 and G
is a finite group. In this section we obtain some results about the center Z (G) of the
group ring k (G). It is clear that Z(G) can be identified with the subspace of class

functions:
Z(G) = {Zf(s)s | fGC(G)}-
seG
Recall that if nq,...,n, are the dimensions of isomorphism classes of simple G-

modules, then by Theorem 1.13 we have an isomorphism
k(G) ~ M,, (k) x - x M, (k).

If e; € k(G) denotes the element corresponding to the identity matrix in M, (K), the
ey, ...,e. form a basis of Z(G) and one has

eiej = 5ij6i
1G:€1+"'+6r-

If p; : G — GL (V}) is an irreducible representation, then e; acts on V; as the identity
element and we have

(2.1) pj(ei) = 0y Idy; .

LEMMA 3.1. Ify; is the character of the irreducible representation p; of dimension
n;, then one has

(2.2) e; = ’a d xilg g

geG
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PrOOF. We have to check (2.1). Since p;(e;) belongs to Endg (V;), Schur’s
Lemma implies p; (e;) = A1d for some X\. Now we use orthogonality relations, Theo-
rem 4.8

T
tl"p] ez |G| ZXZ Xj @ (Xz’an) = 5@'”1‘-
Therefore we have n;\ = d;;n; which implies A\ = ¢;;. O

EXERCISE 3.2. Define w; : Z (G)) — k by the formula

w; (Z ass> = nil Z asxi (s)

w=(wg,...,w).

and w: Z(G) — k" by
Check that w is an isomorphism of rings. Hint: check that w; (e;) = J;; using again
the orthogonality relations.

For any conjugacy class C' in G let

ne=>_g.

geC

Clearly, the set 7o for C' running the set of conjugacy classes is a basis in Z(G).

LEMMA 3.3. For any conjugacy class C' C G we have

- Xi\g
ne = 1030 X
i=1 v

where g is any element of C'.

PROOF. If we extend by linearity xi,...x, to linear functionals on k(G), then
(2.1) implies x;(e;) = n;0; ;. Thus, x1,...,x, form a basis in the dual space Z(G)*.
Therefore it suffices to check that

—|C| Z xilg — |Clx;(9)-

LEMMA 3.4. If g, h € G lie in the same conjugacy class C', we have

=) = 161

If g and h are not conjugate we have

in(g)xi(h_l) = 0.
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PrOOF. The statement follows from Lemma 3.1 and Lemma 3.3. Indeed, if g is
in the congugacy class C', we have

= 101Y e, — IS~ S sttt

1=1 hed

The coefficient of h in the last expression is 1 if A~ € C and zero otherwise. This
implies the lemma. O

LEMMA 3.5. Let u = )
is integral over 7.

gec g9 € Z (G). If all a, are algebraic integers, then u

ProOF. Consider the basis 7o of Z(G). Every ne is integral over Z since the
subring generated by all ne is a finitely generated Z-module. Now the statement
follows from Lemma 2.8. O

THEOREM 3.6. Let p be an n-dimenisonal irreducible representation of GG. Then
n divides |G|.

PROOF. For every g € G, all eigenvalues of p(g) are roots of 1. Therefore x, (9)
is an algebraic integer. By Lemma 3.5 u = 3~ _, x, (9) g is integral over Z. Recall
the homomorphism w; from Exercise 3.2. Since w; (u) is an algebraic integer we have

1 1y _ Gl _ /¢
wi (w) = Y oxi(s)xi(s7) = ) =
Therefore |n£| €. O
THEOREM 3.7. Let Z be the center of G and p be an irreducible n-dimensional
representation of G. Then n divides %

ProOF. Let G™ be the direct product of m copies of G and p™ be the exterior
product of m copies of p. The dimension of p™ is n™. Furthermore, p" is irreducible
by Exercise 4.12. Consider the normal subgroup N of G™ defined by

N=A{(z1,...,2m) €Z™ | z129... 2y = 1}.

We have |N| = |Z|™!. Furthermore, N lies in the kernel of p™. Therefore p™ is a
representation of the quotient group H = G/N. Hence, by Theorem 3.6, n™ divides
IG™ |G

[T for every m > 0. It follows from prime factorization that n divides 7 OJ

4. Generalities on induced modules

Let A be a ring, B be a subring of A and M be a B-module. Consider the
abelian group A ®p M defined by generators and relations in the following way. The
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generators are all elements of the Cartesian product A x M and the relations:

(2.3) (a1 +ag) Xxm—a; Xm—azy Xm, ay,az € A,mée M,
(2.4) ax (my+mg) —axmg—axmy a€Amy,mge M,
(2.5) abxm—axbm, a€Abe B,meée M.

This group has a structure of A-module, A acting on it by left multiplication. For
every a € A and m € M we denote by a ® m the corresponding element in A ®g M.

DEFINITION 4.1. The A-module A ® 5 M is called the induced module.

EXERCISE 4.2. (a) Show that A ®p B is isomoprhic to A.
(b) Show that if M; and M, are two B-modules, then there exists a canonical
isomorphism of A-modules

ARp (My & M) ~A®p M) & A®p M.
(c) Check that for any n € Z one has
Q®z (Z/nZ) = 0.

THEOREM 4.3. (Frobenius reciprocity.) For every B-module M and for every
A-module N, there is an isomorphism of abelian groups

Homp (M, N) = Homy (A®p M, N).

PROOF. Let M be a B-module and N be an A-module. Consider j : M — A®QgM
defined by
j(m):=1em,
which is a homomorphism of B-modules.

LEMMA 4.4. For every ¢ € Homp (M, N) there exists a unique ¢ € Homy (A ®p M, N)
such that v o j = ¢. In other words, the following diagram is commutative

Proor. We define ¢ by the formula

U(a®m) = ap(m),
for all a € A and m € M. The reader can check that 1) is well defined, i.e. the
relations defining A ® g M are preserved by 1. That proves the existence of v
To check uniqueness we just note that for all a € A and m € M, 1 must satisfy
the relation

Y(@a@m)=ap(lom)=ap(m).
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To prove the theorem we observe that by the above lemma the map ¢ — ¢ := 1oy
gives an isomorphism between Homy (A ® 5 M, N) and Homp (M, N). O

REMARK 4.5. For readers familiar with category theory the former theorem can
be reformulated as follows. Since any A-module M is automatically a B-module,
we have a natural functor Res from the category of A-modules to the category of B-
modules. This functor is usually called the restriction functor. The induction functor
Ind from the category of B-modules to the category of A-modules which sends M to
A ®p M is left adjoint of Res.

EXAMPLE 4.6. Let kK C F be a field extension. For any vector space M over k,
F ® M is a vector space of the same dimension over F'. If we have an exact sequence
of vector spaces
0—>N—->M-—L—0,

then the sequence
0> Fx N> FM—F®,L—0
is also exact. In other words the induction in this situation is an exact functor.

EXERCISE 4.7. Let A be a ring and B be a subring of A.
(a) Show that if a sequence of B-modules

N—-M-—=L-—=0
is exact, then the sequence
A®BN—)A®BM—>A®BL—)O

of induced modules is also exact. In other words the induction functor is right exact.
(b) Assume that A is a free right B-module, then the induction functor is exact.
In other words, if a sequence

0O—>N—-M-—=L—0
of B-modules is exact, then the sequence
0 > A®Rg N > A®gM - AR L — 0

is also exact.
(c) Let A =Z[X]/(X? 2X) and B = Z. Consider the exact sequence

0257 —7/2Z — 0,

where ¢ is the multiplication by 2. Check that after applying induction we get a
sequence of A-modules
0—-A—A— A2A—0,

which is not exact.

Later we discuss general properties of induction but now we are going to study
induction for the case of groups.
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5. Induced representations for groups.

Let G be a finite group. Let H be a subgroup of G and p: H — GL (V) be a
representation of H with characater x. Then the induced representation Indg p is by
definition the k (G)-module

k (G) Ok (H) V.

The following lemma has a straightforward proof.

LEMMA 5.1. The dimension of Ind, p equals the product of dim p by the index
|G : H] of H. More precisely, let S be a set of representatives of left cosets in G/H,

ie.
G = HSH,
seS
then
(2.6) E(G) @um V=EsaV.

ses

Moreover, for any g € G, s € S there exists a unique s’ € S such that (s')"'gs € H.
Then the action of g on s ® v for all v € V' is given by

(2.7) g(s®@v) =5 @ prg)-14s0.

EXAMPLE 5.2. Let p be the trivial representation of H. Then Ind% p is the
permutation representation of G' obtained from the natural left action of G' on the
set of left cosets GG/ H, see Example 3 in Section 4.2 Chapter 1.

LEMMA 5.3. We keep the notations of the previous lemma. Denote by Indfl X
the character of the induced representation. Then one has for g € GG

(2.8) mdfx(9)= > x(s7'gs).

s€S,s~lgseH
PROOF. (2.6) and (2.7) imply

Ind% x (g) = Z Os,5 U1 P(sr)~1gs-

seES

COROLLARY 5.4. In the notations of Lemma 5.3 we have

Ind§y(g)= > x(u'gu).

ueGu-lgue H

PROOF. If s7'gs € H, then for all u € sH we have x(u"'gu) = x(sgs). There-

fore 1
X(s7hgs) = == > x (u'gu).
|H| uesH

Hence the statement follows from (2.8). O]
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COROLLARY 5.5. Let H be a normal subgroup in G. Then Ind% x (g) = 0 for
any g ¢ H.

EXERCISE 5.6. (a) Let G = S3 and H = Aj be its normal cyclic subgroup.
Consider, a one-dimensional representation of H such that p(123) = ¢, where ¢ is a
primitive 3-d root of 1. Show that then

Indg X, (1) = 2,
Ind% XP (12> = 07
Ind% y, (123) = —1.

Therefore Ind% p is the irreducible 2-dimensional representation of Ss.

(b) Next, consider the 2-element subgroup K of G = S5 generated by the trans-
position (12), and let o be the (unique) non-trivial one-dimensional representation of
K. Show that

Ind¥ v, (1) = 3,
Ind$ v, (12) = —1,
Ind% x, (123) = 0.

Therefore Indf( o is the direct sum of the sign representation and the 2-dimensional
irreducible representation.

Now we assume that k has characteristic zero. Let us recall that, in Section 4.2
Chapter 1, we defined a scalar product on the space C(G) of class functions by (1.2).
When we consider several groups at the same time we specify the group by the a
lower index.

THEOREM b5.7. Consider two representations p : G — GL(V) and o: H —
GL (W). Then we have the identity

(29) (Indg Xos Xp)G - (XU7 ReSH XP)H :

PrROOF. The statement follows from Frobenius reciprocity (Theorem 4.3) and
Corollary 4.7 in Chapter 1, since

dim Homg (Indg W, V) = dim Homy (W, V).

O

EXERCISE 5.8. Prove Theorem 5.7 directly from Corollary 5.4. Define two maps
Resy : C(G) — C(H), Ind% : C(H) — C(G),

the former is the restriction on a subgroup, the latter is defined by (2.8). Then for
any ¢ € C(G),v € C(H)

(Indf ¢, ) , = (. Resy ¥), .
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6. Double cosets and restriction to a subgroup

If K and H are subgroups of GG one can define the equivalence relation on G: s ~ t
if and only if s € KtH. The equivalence classes are called double cosets. We can choose
a set of representative T' C G such that

G=][KtH.
teT
We define the set of double cosets by K\G/H. One can identify K\G/H with K-
orbits on S = G/H in the obvious way and with G-orbits on G/K x G/H by the

formula

KtH — G (K, tH).

EXAMPLE 6.1. Let F be a field. Let G = GLy (F) be the group of all invertible
2 x 2 matrices with coefficients in IF. Consider the natural action of G on F?. Let B
be the subgroup of upper-triangular matrices in G. We denote by P! the projective

line which is the set of all one-dimensional linear subspaces of 2. Clearly, G acts on
P!

EXERCISE 6.2. Prove that G acts transitively on P! and that the stabilizer of any
point in P! is isomorphic to B.

By the above exercise one can identify GG/B with the set of lines P'. The set of

double cosets B\G/B can be identified with the set of G-orbits in P* x P! or with
the set of B-orbits in P! .

EXERCISE 6.3. Check that G has only two orbits on P! x P!: the diagonal and
its complement. Thus, |B\G/B| = 2 and

G = BU BsB,

-())

THEOREM 6.4. Let T' C G such that G = [[,.; KsH. Then

where

Resg Indy p = @ger Indf 1 07

where
s def
ph = Ps—lhs,

for any h € sHs™*.
PROOF. Let s € T and W* = k(K) (s® V). Then by construction, W* is K-

invariant and

k(G) @rin V = @serW?.
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Thus, we need to check that the representation of K in W# is isomorphic to IndgﬁSHs_l p°.
We define a homomorphism

o Indf g1 V. — W*
by a(t®v) =ts®v for any t € K,v € V. It is well defined
a(th®@v—t® piv) =ths @ v —ts ® pe-1,0 = ts (s_lhs) RV — 18 ® pg-1psv = 0
and obviously surjective. Injectivity can be proved by counting dimensions. O

EXAMPLE 6.5. Let us go back to our example B C SLy (F) (see Exercise 6.3).
We now assume that F = [, is the finite field with ¢ elements. Theorem 6.4 tells us
that for any representation p of B

Indg p=p>D Indfl 0,

where H = BN sBs™! is a subgroup of diagonal matrices and

(a0 - b 0
PRob )7P\0 a
COROLLARY 6.6. If H is a normal subgroup of G, then

Resy Indg p = DPseq/up’

7. Mackey’s criterion

In order to compute (Indg X Indg X), we use Frobenius reciprocity and Theo-
rem 6.4. One has:

(Indfq] X5 Indf] X)G - (ReSH Indfl X X)H - Z (IndgﬂsHs—l Xs7 X)H -
seT

= Z (XS7 R‘eSHﬁsHs*1 X)HmsHsfl = (XvX)H + Z (XS7 R‘esHﬁsHs*1 X)HﬁsHs*1 '
seT seT\{1}

We call two representation disjoint if they do not have any irreducible component
in common, or in other words if their characters are orthogonal.

THEOREM 7.1. (Mackey’s criterion) The representation Ind% p is irreducible if

and only if p is irreducible and p* and p are disjoint representations of H N sHs™!
for all s € T\ {1}.

Proor. Write the condition
(Indg ¥, Ind% X)G =1
and use the above formula. O

COROLLARY 7.2. Let H be a normal subgroup of G. Then Indg p Is irreducible
if and only if p* is not isomorphic to p for any s € G/H, s ¢ H.
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REMARK 7.3. Note that if H is normal, then GG/H acts on the set of representa-
tions of H. In fact, this is a part of the action of the group Aut H of automorphisms
of H on the set of representation of H. Indeed, if ¢ € Aut H and p: H — GL (V) is
a representation, then p¥ : H — GL (V') defined by

pi = Po(t)

is a new representation of H.

8. Hecke algebras, a first glimpse

DEFINITION 8.1. Let G be a group, H C G a subgroup, consider H(G, H) C k(G)
defined by:
H(G, H) := Endg(Ind$ triv).
This is the Hecke algebra associated to the pair (G, H).

Define the projector
1

heH
EXERCISE 8.2. Show that
Ind% triv = k(G)y.
Applying Frobenius reciprocity, one gets:
End G Ind$, triv = Homy (triv, Ind$ triv).

We can identify the Hecke algebra with Il k(G)Ily. Therefore a basis of the Hecke
algebra can be enumerated by the double cosets, i.e. elements of H\G/H.
Set, for g € G,
ng = Hgglly.
it is clear that those functions are constant on double cosets and give a basis of the
Hecke algebra. Then, the multiplication is given by the formula

1
(2.10) Nglly = Y o

K lgHg' N Hg"H|ng.
glleG

EXERCISE 8.3. Consider the pair G = GL»(F,), H = B the subgroup of upper
triangular matrices. Then by Exercise 6.3 we know that the Hecke algebra H (G, B)
is 2-dimensional. The identity element 7. corresponds to the double coset B. The
second element of the basis is 7,. Let us compute n? using (2.10). We have

n2 = ane. + b,

where
_ |sBsn B|

sBsN BsB
| B| '

, b=
| B|
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Since sBs is the subgroup of the lower triangular matrices in G, the intersection
subgroup sBs N B is the subgroup of diagonal matrices. Therefore we have

1 —1
|IB| = (¢ —1)%q, |sBsNB|=(q—1)?% a=-, b:l_a:q_‘
q q
DEFINITION 8.4. We say that a G-module V' is multiplicity free if any simple

G-module appears in V' with multiplicity either 0 or 1.

PROPOSITION 8.5. Assume that k is algebraically closed. The following conditions
on the pair H C G are equivalent
(1) The G-module Ind$, triv is multiplicity free;
(2) For any G-module M the dimension of subspace M* of H-invariants is at

most one;
(3) The Hecke algebra H(G, H) is commutative.

PROOF. (1) is equivalent to (2) by Frobenius reciprocity. Equivalence of (1) and
(3) follows from Lemma 1.11. O

LEMMA 8.6. Let G be a finite group and H C G be a subgroup. Let ¢ : G — G
be antiautomorphism of G such that for any g € G we have ¢(g) C HgH. Then
H(G, H) is commutative.

PRrOOF. Extend ¢ to the whole group algebra k(G) by linearity. Then ¢ is an
antiautomorphism of k(G) and for all ¢ € G we have ¢(n,) = n,. Therefore for any
g,h € H\G/H we have

Nt = Y Contlu = Y Copp(nu) = o(ngmn) = o (m)p(ng) = mang-
ue H\G/H

O

EXERCISE 8.7. Let G be the symmetric group .S,, and H = S, x S,,_,,. Prove that
H(G, H) is abelian. Hint: consider p(g) = ¢~! and apply Lemma 8.6.

9. Some examples

Let H be a subgroup of G of index 2. Then H is normal and G = H U sH for
some s € G\ H. Suppose that p is an irreducible representation of H. There are two
possibilities

(1) p* is isomorphic to p;
(2) p® is not isomorphic to p.

Hence there are two possibilities for Ind$ p :

(1) Ind% p = o @ o', where ¢ and ¢’ are two non-isomorphic irreducible repre-

sentations of Gj;
(2) Ind$ p is irreducible.
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For instance, let G = S5, H = A5 and py, ..., p5 be the irreducible representations
of H introduced in Example 5.3. 3. Then for i =1,2,3

Ind$ p; = 0; ® (0; @ sgn)

where sgn denotes the sign representation. Furthermore, the induced modules Indg n
and Indg ps are isomorphic and irreducible. Thus in dimensions 1,4 and 5, S5 has
two non-isomorphic irreducible representations and only one in dimension 6.

Now let G be the subgroup of GL, (F,) consisting of matrices of shape

(51),

where a € F; and b € F,. Let us classify complex irreducible representations of G.
One has |G| = ¢* — ¢. Furtheremore G has ¢ conjugacy classes with the following

representatives
10 11 a 0
01 ’ 01 ’ 01 ’

(in the last case a # 1). Note that

H:{( - ),beIFq}

is a normal subgroup of GG and the quotient G'/H is isomorphic to F; which is cyclic
of order g — 1.

Therefore G has ¢ — 1 one-dimensional representations which can be lifted from
GG/H. That leaves one more representation, its dimension must be ¢—1. Let us try to
obtain it using induction from H. Let o be a non-trivial irreducible representation of
H | its dimension is automatically 1. Then the dimension the induced representation
Indg o is equal to ¢ — 1 as required. We claim that it is irreducible. Indeed, if p is
a one-dimensional representation of GG, then by Frobenius reciprocity, Theorem 5.7,
we have

(Indg o, p)G = (0,Resy p)y; =0,

since Resy p is trivial. Therefore Ind$ o is irreducible.
EXERCISE 9.1. Compute the character of this representation.

EXERCISE 9.2. Let G’ denote the commutator of G, namely the subgoup of G
generated by ghg='h~! for all g, h € G. Show that all one-dimensional representations
of G are obtained by lifting from one-dimensional representations of G/G’.

10. Some generalities about field extension

LEMMA 10.1. If char k = 0 and G is finite, then a representation p : G — GL (V')
is irreducible if and only if Endg (V') is a division ring.
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PRrROOF. In one direction it is Schur’s Lemma. In the opposite direction if V is
not irreducible, then V = V; & V5 and the projectors p; and p, are intertwiners such
that p; o py = 0. [l

For any extension F' of k and any representation p : G — GL (V') over k we denote
by pr the representation G — GL (F ®; V).

For any representation p : G — GL (V) we denote by V¢ the subspace of G-
invariants in V/, i.e.

Ve ={veV|puwv=uvVsecG}.
LEMMA 10.2. One has (F @, V)% = F @, V©.

PROOF. The embedding F ®, VY C (F @y V)G is trivial. On the other hand, V¢
is the image of the operator
1
P= = Ts,
P

in particular dim V¢ equals the rank of p. Since rank p does not depend on the base
field, we have
dim F @ V¢ = dim (F @, V)9
O
COROLLARY 10.3. Let p: G — GL (V) and 0 : G — GL (W) be two representa-
tions over k. Then
Homg (F @ V, F @, W) = F ® Homg (V,W).
In particular,
dimy Homg (V, W) = dimp Homg (F @, V, F @5 W) .

PROOF.
Home (V, W) = (V* @ W)

COROLLARY 10.4. The formula
dim Home (V, W) = (X, Xo)
holds even if the field is not algebraically closed.

A representation p : G — GL (V) over k is called absolutely irreducible if it
remains irreducible after any extension of k. This property is equivalent to the
egality (X,,x,) = 1.

A field K is called splitting for a group G if every irreducible representation of G
over K is absolutely irreducible. It is not difficult to see that for a finite group G,
there exists a finite extension of Q which is a splitting field for G.



CHAPTER 3

Representations of compact groups

1. Compact groups

Let G be a group which is also a topological space. We say that G is a topological
group if both the multiplication from G x G to G and the inverse from G to G are
continuous maps. Naturally, we say that G is compact (respectively, locally compact)
if it is a compact (resp., locally compact) topological space.

Examples.

e The circle
St={zeC]||z|=1}.

e The torus 7" = S' x --- x St
Note that in general, the direct product of two compact groups is com-
pact.
e The unitary group

U, ={X € CQL,(C) | X'X = 1,}.

To see that U, is compact, note that a matrix X = (x;;) € U, satisfies the
equations " [z;[> = 1 for j = 1,...,n. Hence U, is a closed subset of
the product of n spheres of dimension (2n — 1).

e The special unitary group

SU, ={X €U, |det X =1}.
e The orthogonal group
O,={reCGL,(R) | X'X =1,}.
e The special orthogonal group

SO, ={X €0, |det X =1}.

1.1. Haar measure. A measure dg on a locally compact group G is called right-
invariant if, for every integrable function f on GG and every h in GG, one has:

/Gf(gh)dgz/Gf(g)dg
49
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Similarly, a measure d'g on G is called left-invariant if for every integrable function
f on G and every h in (G, one has:

/G [ (hg) d'g = /G /() dg.

THEOREM 1.1. Let G be compact group. There exists a unique right-invariant
measure dg on G such that
/ dg = 1.
G

In the same way there exists a unique left-invariant measure d'g such that
/ dg=1.
el

DEFINITION 1.2. The measure dg is called the Haar measure on G.

Moreover, dg = d'g.

We do not give the proof of this theorem in general. In this sketch of proof, we
assume general knowledge of submanifolds and of the notion of vector bundle. All
examples we consider here are smooth submanifolds in GLg(R) or GL(C).

EXERCISE 1.3. Assume that G is a subgroup of GL;(R) or GL,(C) and G is the
set of zeros of smooth functions fi,..., fx. Then G is a smooth submanifold in GLj.
Hint: consider the map m, : G — G given by left multiplication by g € G. Then its
differential (my). : T.G — T,G is an isomorphism between tangent spaces at e and

qg.

To define the invariant measure we just need to define a volume form on the
tangent space at identity T.G and then use right (left) multiplication to define it on
the whole group. More precisely, let v € A*PT*G. Then the map

g vg i=my (7)),

where m, : G — G is the right (left) multiplication by g and mj is the induced
differential map AYPT;G — A"PT; G, is a section of the bundle A*PT*G. This
section is a right (left) invariant differential form of maximal degree on the group G,
i.e. an invariant volume form. One can normalize 7 to satisfy |, o7 =1

REMARK 1.4. If G is locally compact but not compact, there are still left-invariant
and right-invariant measures on (G, each is unique up to scalar multiplication, but the
left-invariant ones are not necessarily proportional to the right-invariant ones. We
speak of left-Haar measure or right-Haar measure.
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1.2. Continuous representations. Consider a vector space V over C equipped
with a topology such that addition and multiplication by a scalar are continuous. We
always assume that a topological vector space satisfies the following conditions

(1) for any v € V' \ 0 there exists a neighbourhood of 0 which does not contain
U3
(2) there is a base of convex neighbourhoods of zero.
Topological vector spaces satisfying the above conditions are called locally convez.
We do not go into the theory of such spaces. All we need to know is the fact that
there is a non-zero continuous linear functional on a locally convex space.

DEFINITION 1.5. A representation p : G — GL (V) is called continuous if the map
G xV — V given by (g,v) — p,v is continuous. Two continuous representations are
equivalent or isomorphic if there is a bicontinuous invertible intertwining operator
between them. In this chapter we consider only continuous representations.

A representation p : G — GL (V), V' # {0} is called topologically irreducible if
the only G-invariant closed subspaces of V' are V' and 0.

1.3. Unitary representations. Recall that a Hilbert space is a vector space
over C equipped with a positive definite Hermitian form (, ), which is complete with
respect to the topology defined by the norm

loll = (v, v)"/2.

We will use the following facts about Hilbert spaces:
(1) A Hilbert space V" has an orthonormal topological basis, i.e. an orthonormal
system of vectors {e; };es such that @ Ce; is dense in V. Two Hilbert spaces
i€l
are isomorphic if and only if their topological orthonormal bases have the
same cardinality:.

(2) If V* denotes the space of all continuous linear functionals on V, then we
have an isomorphism V* ~ V' given by v — (v, ).

DEFINITION 1.6. A continuous representation p : G — GL (V) is called unitary
if V' is a Hilbert space and
<Ua w) = <,0gU, Pgw>
for any v,w € V and g € G. If U(V) denotes the group of all unitary operators in
V', then p defines a homomorphism G — U (V).

The following is an important example of a unitary representation.
Regular representation. Let G be a compact group and L? (G) be the space
of all complex valued functions ¢ on G such that

[ 106 Py
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exists. Then L? (G) is a Hilbert space with respect to the Hermitian form

(or0) = /G 5(9) ¥ (g) dy.

Moreover, the representation R of G in L? (G) given by

Ry (h) = ¢ (hg)
is continuous and the Hermitian form is G-invariant. This representation is called
the regular reprensentation of G.

1.4. Linear operators in a Hilbert space. We will recall certain facts about
linear operators in a Hilbert space. We only sketch the proofs hiding technical details
in exercises. The enthusiastic reader is encouraged to supply those details and the less
enthusiastic reader can find those details in textbooks on the subject, for instance,???.

DEFINITION 1.7. A linear operator 7" in a Hilbert space is called bounded if there
exists C' > 0 such that for any v € V' we have ||Tv|| < C|v||.

EXERCISE 1.8. Let B(V) denote the set of all bounded operators in a Hilbert
space V.

(a) Check that B(V') is an algebra over C with multiplication given by composi-
tion.

(b) Show that 7" € B(V) if and only if the map 7': V' — V' is continuous.

(c) Introduce the norm on B(V') by setting

|17l = supy,=1 [ T0]]

Check that | T1Ts|| < ||Th]||T2]] and ||T7 + Ta|| < ||T1]] + | T2]| for all T1, Ty € B(V)
and that B(V') is complete in the topology defined by this norm. Thus, B(V) is a
Banach algebra.

THEOREM 1.9. Let T € B(V) be invertible. Then T~! is also bounded.

ProOF. Consider the unit ball
B:={zxeV]|z| <1}
For any k& € N denote by Sy the closure of T'(kB) = kT'(B) and let Uy, = V' \ Sy.

Note that
V=|]JkB.

Since T' is invertible, it is surjective, and therefore

UJsi=V

keN
We claim that there exists k such that Uy is not dense. Indeed, otherwise there exists
a sequence of embedded balls By C Uy, Bxi1 C By, which has a common point by
completeness of V. This contradicts to the fact that the intersection of all Uy is
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empty. Then Sy contains a ball x + B for some x € V and ¢ > 0. It is not hard to
see that for any r > £ + ||z||, S, contains B.

Now we will prove the inclusion B C T'(2rB) for r as above. Indeed, let y € B C
S,. There exists z; € rB such that ||y — Tz;|| < 1. Note that y — T'z; € 1B C 15,.
Then one can find x, € 5B such that ||y — Tz — Tas| < 1. Proceeding in this way
we can construct a sequence {z, € 5B} such that ||y — T(z1 + -+ + z,)|| < 5.

Consider w = Z x;, which is well defined due to completeness of V. Then w € 2rB

i=1
and Tw = y. That implies B C T'(2rB).
Now we have T~'B C 2rB and hence || T < 2r. O

Bounded operators have a nice spectral theory, see 777.

DEFINITION 1.10. Let T be bounded. The spectrum o(T) of T is the subset of
complex numbers A such that 7" — A Id is not invertible.

In a finite-dimensional Hilbert space o(T") is the set of eigenvalues of 7. In the
infinite-dimensional case a point of the spectrum is not necessarily an eigenvalue. We
need the following fundamental result.

THEOREM 1.11. IfT is bounded, then o(T') is a non-empty closed bounded subset
of C.

PROOF. The main idea is to consider the resolvent R(\) = (7' — AId)™! as a
function of A\. If T is invertible, then we have the decomposition

RN =T M Ad+T AN +T32N2+...),

which converges for |\ < ﬁ Thus, R(A) is analytic in a neighbourhood of 0.
Using shift R(\) — R(A + ¢) we obtain that R(\) is analytic in its domain which is
C\ o(T). The domain of R(\) is an open set. Hence o(7T') is closed.

Furthermore, we can write the series for R(\) at infinity:
(3.1) ROA) = A TAd 4+ + 2722+ ).

This series converges for |\| > ||T||. Therefore o(\) is a subset of the circle |A| < [|T||.
Hence o(T) is bounded.
Finally, (3.1) also implies Alim R(N) = 0. Suppose that o(T) = 0, then R(A) is
—00

analytic and bounded. By Liouville’s theorem R () is constant, which is impossible.
0J

DEFINITION 1.12. For any linear operator 7" in a Hilbert space V' we denote by
T* the adjoint operator. Since V* ~ V', we can consider T™ as a linear operator in V'
such that for any x,y € V'

(x,Ty) = (T"z,y) .
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An operator T is self-adjoint if T* =T. A self-adjoint operator 1" defines on V' a Her-
mitian form (x,y), = (z,Ty). We call T' (semi)positive if this form is (semi)positive
definite. For any operator X the operator X*X is semipositive self-adjoint.

EXERCISE 1.13. (a) If T"is bounded, then T* is bounded and o(7™) is the complex
conjugate of (7).
(b) If T is bounded self-adjoint, then o(T) C R.

LEMMA 1.14. Let T be a self-adjoint operator in a Hilbert space. Then ||T?| =
I

PRrROOF. For any bounded operator A the Cauchy—Schwartz inequality implies

that for all v € V
(Av,v) < [[Av][lv]l < [|A] ][]
For a self-adjoint T" we have
(T?v,v) = || T
Therefore
||T2|| > SUpP|jv||=1 <T2U;U> = SUP|jy||=1 ||TUH2 = HTHQ‘

On the other hand || 72| < ||T||?. Hence ||T?|| = ||T*. O

LEMMA 1.15. Let T be a self-adjoint operator in a Hilbert space V such that
o(T) = {u} is a single point. Then T = p1d.

PrROOF. Without loss of generality we may assume g = 0. Then the series (3.1)
converges for all A # 0. Therefore by the root test we have

lim sup ||7"]] = 0.
n—o0

By Lemma 1.14 if n = 2* then ||T"|| = ||T||*. This implies ||7]] = 0. Hence
T =0. 0J

EXERCISE 1.16. Let X be a self-adjoint bounded operator.

(a) If f € R[z] is a polynimial with real coefficients, then o(f(X)) = f(o(X)).

(b) Let f : R — R be a continuous function. Show that one can define f(X) by
approximating f by polynomials f,, on the interval |z| < || X|| and setting f(X) =
ILm fn(X) and the result does not depend on the choice of approximation.

(c) For a continuous function f we still have o(f(X)) = f(o(X)).

DEFINITION 1.17. An operator T in a Hilbert space V is called compact if the
closure of the image T'(.S) of the unit sphere S = {x € V' | ||z|| = 1} is compact.

Clearly, any compact operator is bounded.

EXERCISE 1.18. Let C(V') be the subset of all compact operators in a Hilbert
space V.
(a) Show that C(V) is a closed ideal in B(V).
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(b) Let F(V) be the ideal in B(V) of all operators with finite-dimensional image.
Prove that C(V) is the closure of F(V).

LEMMA 1.19. Let A be a compact self-adjoint operator in V. Then

A := sup (Au, u)
u€esS

is either zero or an eigenvalue of A.

PRroOOF. Consider the hermitian form = +— A (z,x) — (Az,z) on V, it is positive
therefore the Cauchy—Schwarz inequality gives

(3.2) Az, y) = (Az, ) | < (Ma, z) — (Az, 2)) (A () — (Ay, 1))

Let (z,,) be a sequence in S such that (Az,, z,) converges to A. Since A is a compact
operator, after extracting a subsequence we may assume that Ax,, convergesto z € V.
By the inequality 3.2, we get that (A\z, — Az,,y) tends to 0 uniformly in y € S.
Hence, || Az, — Ax, || tends to 0. Therefore, (x,,) converges to 3z and z is a eigenvector
for A with eigenvalue A, if A > 0. O

1.5. Schur’s lemma for unitary representations.

THEOREM 1.20. Let p: G — U(V') a topologically irreducible unitary represen-
tation of G and T' € B(V') be a bounded intertwining operator. Then T' = \1d for
some \ € C.

PrOOF. First, by Theorem 1.11, the spectrum o(7") is not empty. Therefore by
adding a suitable scalar operator we may assume that 7" is not invertible. Note that
T* is also an interwiner, and therefore S = TT™ is an interwiner as well. Moreover,
S is not invertible. If o(S) = {0}, then S = 0 by Lemma 1.15. Then we claim
that KerT' # 0. Indeed, if T is injective, then Im7T* C KerT = 0. That implies
T* =T = 0. Since Ker T is a closed G-invariant subspace of V', we obtain T" = 0.

Now we assume that o(S) consists of more than one point. We will use Exer-
cise 1.16. Omne can always find two continuous functions f,g : R — R such that
fg(a(S)) =0, but f(o(S)) # 0 and g(o(S)) # 0. Then Exercise 1.16(3) together
with Lemma 1.15 implies f(X)g(X) = 0. Both f(X) and g(X) are non-zero inter-
twiners. At least one of Ker f(X) and Ker g(X) is a proper non-zero G-invariant
subspace of V. Contradiction. O

COROLLARY 1.21. Let p: G — U(V) and p' : G — U(V') be two topologically
irreducible unitary representations and T : V. — V' be a continuous intertwining
operator. Then either T = 0 or there exists ¢ > 0 such that ¢TI : 'V — V' is an
isometry of Hilbert spaces.

PrOOF. Let T' # 0. By Theorem 1.20 we have T*T = TT* = AId for some
positive real A. Set ¢ = A2 and U = ¢T. Then U* = U~', hence U is an
isometry. ]
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COROLLARY 1.22. Every topologically irreducible unitary representation of an
abelian topological group G is one-dimensional.

1.6. Irreducible unitary representations of compact groups.

PROPOSITION 1.23. Every non-zero unitary representation of a compact group G
contains a non-zero finite dimensional invariant subspace.

PROOF. Let p : G — GL (V) be an irreducible unitary representation. Choose
v eV, ||v]| = 1. Define an operator 7' : V' — V' by the formula

Tx = (v,z)v.

One can check easily that 7" is a semipositive self-adjoint operator of rank 1.
Define the operator

Qr = /GpgT (pglx) dg.

EXERCISE 1.24. Check @) : V — V is a compact semipositive intertwining oper-
ator.

Lemma 1.19 implies that ) has a positive eigenvalue A\. Consider W = Ker (Q — A1d).
Then W is an invariant subspace of V. Note that for any orthonormal system of vec-

tors ey,...,e, € W, one has
n

Z (€;,Te;) < 1.

i=1

Hence
Z (s, Qei) = Z/ (pgei, Tpgei) < 1.
i=1 i=1 v G
That implies An < 1. Hence dim W < % 0

COROLLARY 1.25. Every irreducible unitary representation of a compact group
G is finite-dimensional.

LEMMA 1.26. Every topologically irreducible representation of G is isomorphic
to a subrepresentation of the regular representation in L? (G).

PROOF. Let p : G — GL (V) be irreducible. Pick a non-zero continuous linear
functional ¢ on V and define the map ® : V' — L?(G) which sends v to the ma-
trix coefficient f, (9) = (¥, pgv). The continuity of p and ¢ implies that f,, is a
continuous function on G, therefore f,, € L* (G). Furthermore

Rgfv#’(h) = fv,so(hg) = <<P7phg'U> = <(107phpgv> = fpgv,cp(h>-

Hence @ is a continuous intertwining operator and the irreducibility of p implies
Ker @ = 0. The bicontinuity assertion follows from Corollary 1.25. 0
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COROLLARY 1.27. Every topologically irreducible representation of a compact
group (G is equivalent to some unitary representation.

COROLLARY 1.28. Every irreducible continuous representation of a compact group
G is finite-dimensional.

THEOREM 1.29. Ifp : G — GL(V') is a unitary representation, then for any closed

invariant subspace W C V' there exists a closed invariant subspace U C V such that
V=UpW.

PRrROOF. Take U = W+, OJ

Let G denotes the set of isomorphism classes of irreducible unitary representations
of G. This set is called the unitary dual of G.

LeEMMA 1.30. Let V' be a unitary representation of a compact group GG. Then it
has a unique dense semi-simple GG-submodule, namely S Homg(V,, V) ®@ V,,.

PROOF. Let M =& 5 Homg(V,, V) ® V,, and M denote the closure of M. We
claim that M = V. Indeed, if M* is not zero, then it contains an irreducible finite-
dimensional subrepresentation by Proposition 1.23, but any such representation is
contained in M.

On the other hand, if N is a dense semisimple submodule of V', then N must

contain all finite-dimensional irreducible subrepresentations of V. Therefore N =
M. OJ

2. Orthogonality relations and Peter—Weyl Theorem

2.1. Matrix coefficients. Let p: G — GL (V') be a unitary representation of a
compact group GG. The function G — C defined by the formula
fow (9) = (w, pgv) .

for v,w in V' is called a matriz coefficient of the representation p.
Since p is unitary, one has:

(33) fv,w (g_l) - fw,v (g) .

THEOREM 2.1. For every irreducible unitary representation p : G — GL (V'), one
has:

<fv,wa fv’,w’)

Moreover, the matrix coefficients of two non-isomorphic representations of G are
orthogonal in L? (G).

PRrROOF. Take v and v' in V. Define T' € Endc (V') by

Tx:= (v,z)v

= o () ('),
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and let
Q= / pa Ty td
G

As follows from Schur’s lemma, since p is irreducible, @) is a scalar multiplication.
Since

trQ=trT = (v,0'),

we obtain /
_ Wy
dim p
Hence
1

(v, 0" (W', w) .

(W', Qu) =

dim p
On the other hand,

w', Qu) =/<w’,<v,pg‘1w>pgv’>dg=/fw,v (97" forw (9)dg =

/fvw fvw()dg_ <fvwafvw>-
If f,» and f, . are matrix coefficients of two non-lsomorphlc representations, then
@ = 0, and the calculation is even simpler. O

COROLLARY 2.2. Let p: G — GL(V) and 0 : G — GL(W) be two irreducible
unitary representations, then (x,,X,) = 1 if p is isomorphic to o and (x,, X,) = 0
otherwise.

PRrooOF. Let vy,...,v, be an orthonormal basis in V' and wy,...,w,, be an or-
thonormal basis in W. Then

(Xo» Xo) ZZ(fvlvl,fwj v
=1 j=1

Therefore the statement follows from Theorem 2.1. ]

LEMMA 2.3. Let p: G — GL(V) be an irreducible unitary representation of G.
Then the map V — Homg(V, L*(G)) defined by

W= Py, Pu(V) = fu for allv,w eV
is an isomorphism of vector spaces.

PROOF. It is easy to see that ¢, € Homg(V, L*(G)). Moreover, the value of
ww(w) at e equals (w, w). Hence ¢, # 0if w # 0. Thus, the map is injective. To check
surjectivity note that Homg(V, L?(G)) is the subspace of functions f : G x V — C
satisfying the condition

f(gh;v) = f(g,pnv) forallveV, g,heq.
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For any such f there exists w € V such that f(e,v) = (w,v). The above condition
implies f(g,v) = (w, pyv), i.e. f = @y. O

THEOREM 2.4. (Peter-Weyl) Matrix coefficients of all irreducible unitary repre-
sentations span a dense subspace in L* (G) for a compact group G.

Proor. We apply Lemma 1.30 to the regular representation of G. Let p € G.
Lemma 2.3 implies that V, ® Homg(V,, L*(GA)) coincides with the space of all matrix
coefficients of p. Hence the span of matrix coefficients is the unique semisimple
G-submodule in L?*(G). O

2.2. Convolution algebra. For a group G we define by L'(G) the set of all
complex valued functions ¢ on G such that

17l = /G o(g)ldg

is finite.

DEFINITION 2.5. The convolution product of two continuous complex valued func-
tions ¢ and ¢ on G is defined by the formula:

(3.4) (e 0)la) = [ ems(ng)an
EXERCISE 2.6. The following properties are easily checked:

(1) le =¥l < llellallvll

(2) The convolution product extends uniquely as a continuous bilinear map
LYG) x LMG) — LYG).

(3) The convolution is an associative product.

(4) Let V be a unitary representation of G, show that we can see it as a L'(G)-
module by setting ¢.v := [, ¢(g)g~ 'vdy.

COROLLARY 2.7. Let G be a compact group and R denote the representation of
G x G in L* (G) given by the formula

Ry f (z) = f (s 'wt).
Then -
2 ~ *
L? (G) = @peévp XV,

where the direct sum is in the sense of Hilbert spaces.
Moreover, this isomorphism is actually an isomorphism of algebras (without unit)

between L?(G) equipped with the convolution and @peéEnd(Vp).

PROOF. For any p € G consider the map ¢, : VXV, — L*(G) defined by
P, (v®@w)(g) = (v, pyw) .
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It is easy to see that ®, defines an embedding of the irreducible G x G-representation
p* W p in L*(G). Moreover, by orthogonality relation (Im®,, Im®,) = 0 if p and
o are not isomorphic. The direct sum ®peé Im ®, coincides with the span of all
matrix coefficients of all irreducible representations of G. Hence it is dense in L?(G).
That implies the first statement. The final statement is clear by applying item (4) of
Exercise 2.6. 0

REMARK 2.8. A finite group G is a compact group in discrete topology and
L*(@) with convolution product is the group algebra C(G). Therefore Theorem 1.13
of Chapter II is a particular case of Corollary 2.7 when the ground field is C.

COROLLARY 2.9. The characters of irreducible representations form an orthonor-
mal basis in the subspace of class function in L? (G).

PROOF. Let C(G) denote the subspace of class functions in L*(G), it is clearly
the center of L?(G). On the other hand, the center of End(V,) is C and its image
in L*(G@) is Cx, (x, denotes as usual the character of p). The assertion is a direct
consequence of Corollary 2.7. O

EXERCISE 2.10. Let r : G — U(V) be a unitary representation of a compact
group G and p be an irreducible representation with character x,. Then the linear
operator

1

/ Xp(g~ " )rgudg
G
is a projector onto the corresponding isotypic component.

EXERCISE 2.11. Let E be a faithful finite-dimensional representation of a compact
group G. Show that all irreducible representations of G appear in 7' (E) @ T'(E*) as
subrepresentations. Hint: Note that G is a subgroup in GL(F). Using Weierstrass
theorem prove that matrix coefficient of £ and E* generate a dense subalgebra in
L*(@) (with usual pointwise multiplication).

3. Examples

3.1. The circle. Let T = S* = {z € C||z| =1}, if z € S, one can write
z = ¥ with § in R/27Z. The Haar measure on S is equal to %. All irreducible
representations of S are one-dimensional since S* is abelian. They are given by the

characters x, : S — C*, x, () = ¢, n € Z. Hence S! = Z and
L2 (Sl) — @nezceinO.

This is a representation-theoretic explanation of the Parseval theorem, meaning that
every square integrable periodic function is the sum (with respect to the L? norm)
of its Fourier series.
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3.2. The group SU,. Consider the compact group G = SU,. Then G consists

of all matrices
a b
-b a)’

satisfying the relations |a|?+|b|> = 1. Thus, as a topological space, SUs is isomorphic
to the 3-dimensional sphere S®.

EXERCISE 3.1. Check that SU, is isomorphic to the multiplicative subgroup of
quaternions with norm 1 by identifying the quaternion a+bi+cj+dk = a+bi+j(c+di)
a+bi c+ dz‘)

with the matrix (—c+di 0 —di

To find the irreducible representations of SUs,, consider the polynomial ring
C [z, y], with the action of SU; given by the formula

pg (x) = ax + by, py(y) = —bxr +ay, if g = (_ab 2) .

Let p, be the representation of GG in the space C,, [x, y] of homogeneous polynomi-

als of degree n. The monomials x™, "'y, ..., y" form a basis of C,, [z, y]. Therefore

dim p, = n+1. We claim that all p, are irreducible and that every irreducible repre-

sentation of SUs is isomorphic to p, for some n > 0. We will show this by checking

that the characters y,, of p, form an orthonormal basis in the Hilbert space of class
functions on G.

Recall that every unitary matrix is diagonal in some orthonormal basis, therefore

every conjugacy class of SU, intersects the diagonal subgroup. Moreover, (g 2)

and (é (z)) are conjugate. Hence the set of conjugacy classes can be identified with
the quotient of S' by the equivalence relation z ~ z. Let z = €?, then
2 — 27 sin(n+1)6

— =

(3.5) Xn(2) = 2"+ 2" 24 =

z— 2z~ sin 0

First, let us compute the Haar measure for G.

EXERCISE 3.2. Let G = SUs.

(a) Using Exercise 3.1 show that the action of G x G given by the multiplication
on the right and on the left coincides with the standard action of SO(4) on S3. Use
it to prove that SO(4) is isomorphic to the quotient of G x G by the two element
subgroup {(1,1),(—1,—1)}.

(b) Prove that the Haar measure on G is proportional to the standard volume
form on S? invariant under the action of the orthogonal group SO;.

More generally: let us compute the volume form on the n-dimensional sphere S™ C
R™"! which is invariant under the action SO,,,1. We use the spherical coordinates in
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n+1
R"™™,
x1 =rcost, xy = rsinfcos sy, x3 = rsinf sin @ cos po,

Tp—1 = Tsinfsin ¢q sin @y ... sin @, _s coS Y, _1,
Tp = 7Tsinfsin g sin g .. .sinp,,_9sin @, 1,

where 7 > 0, 0,¢1,...,¢,o vary in [0, 7] and ¢,_; € [0,27]|. The Jacobian relating
spherical and Euclidean coordinates is equal to

rsin™ !t @sin™ 2 oy ... sin g9,

thus when we restrict to the sphere » = 1 we obtain the volume

sin" 1 @sin™ 2 oy ... sin g, _odlde; . .. dp,_1,
which is SO, -invariant. It is not normalized.
Let us return to the case G = SU, ~ S3. After normalization the invariant
volume form is

1
9.2 sin? f sin p1dfdpidp,.

The conjugacy class C () of all matrices with eigenvalues e, e~ (6 € [0,7]) is
the set of points in S* with spherical coordinates (1,6, @1, p2): 1ndeed7 the minimal
polynomial on R of the quaternion with those coordinates is

t2 — 2tcosf + 1

which is also the characteristic polynomial of the corresponding matrix in SU,, so it
belongs to C(0).
Hence, one gets that, for a class function ¥ on G

/¢(g) dg = 2/ Y (0) sin 6’d9/ smgpldgol/ dpy = / Y (#) sin® Od6.
G 2m 0

EXERCISE 3.3. Prove that the functions y, form an orthonormal basis of the
space L?([0,7]) with the measure 2 sin® #df and hence of the space of class functions

on G.

3.3. The orthogonal group G = SOs. Recall that SU; can be realized as
the set of quaternions with norm 1. Consider the representation v of SU, in the
space of quaternions H defined by the formula v, (o) = gag™'. One can see that
the 3-dimensional space Hj, of pure imaginary quaternions is invariant and (o, 8) =
Re (ozB) is an invariant positive definite scalar product on Hi,,. Therefore p defines
a homomorphism v: SUy; — SOs.

EXERCISE 3.4. Check that Kery = {1, —1} and that ~ is surjective. Hence SO3 =
SU,/{1,—1}. Thus, we can see that as a topological space SOj3 is a 3-dimensional
sphere with opposite points identified, or the real 3-dimensional projective space.



3. EXAMPLES 63

Therefore every representation of SO3 can be lifted to the representations of SUs,,
and a representation of SU, factors to the representation of SOz if and only if it
is trivial on —1. Omne can check easily that p, (—1) = 1 if and only if n is even.
Thus, any irreducible representations of SOj3 is isomorphic to ps, for some m > 0
and dim p9,, = 2m + 1. Below we give an independent realization of irreducible
representation of SOs.

3.4. Harmonic analysis on a sphere. Consider the sphere S? in R? defined

by the equation
2+ a5+ a5 =1
The action of SO3 on S? induces the representation of SO3 in the space L?(S?) of
complex-valued squre integrable functions on S?. This representation is unitary. We
would like to decompose it into a sum of irreducible representations of SO3. We
note first that the space C[S?] obtained by restriction of the polynomial functions
Clz1, g, 23] to S? is the invariant dense subspace in L?(S?). Indeed, it is dense in
the space of continuous functions on S? by the Weierstrass theorem and the latter
space is dense in L?*(S?).
Let us introduce the following differential operators in R?:

R YR, b 0 0 0 1/ 02 0? 0?
D) (xl tamt :zcg) T xl@xl + 0xy +$38x3 2 0x? i 03 + 3
note that e, f, and h commute with the action of SO3 and satisfy the relations

[Qf] :hv [h7€] = 2e, [hvf] :—Qf,

®

3
+§a f i

where [a, b] = ab — ba.

Let P, be the space of homogeneous polynomial of degree n and H,, = Ker fNP,.
The polynomials of H,, are called harmonic polynomials since they are annihilated
by the Laplace operator f. For any ¢ € P, we have

3
h(p) = (n+§) ®.
It ¢ € H,, then

and by induction

fef () = efef 1 () — hef 1 () = — (nk‘ +k(k-1)+ %) eF Ly,

In particular, this implies that
(3.6) fe (H,) =e"1(H,).
We will prove now that

(3.7) Po=H,De(H, 5)®e* (Hyg)+...
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by induction on n. Indeed, by the induction assumption
Pn_g :Hn—2@6<Hn—4)+----
Furthermore, (3.6) implies fe(P,_5) = P,_5. Hence H, NeP, o = 0. On the

other hand, f: P, — P,_s is surjective, and therefore dim H,, + dim P, 5 = dim P,,.
Therefore

(38) Pn - Hn S¥ ePnf2>

which implies (3.7). Note that after restriction to S?, the operator e acts as the
multiplication on _71

Hence (3.7) implies that

C[S’] =P H..
n>0
To calculate the dimension of H,, use (3.8)
1 2 -1
dim Hy = dim P, — dim Py — U >2(”+ ) _ "(”2 ) —ont1

Finally, we will prove that the representation of SOz in H, is irreducible and
isomorphic to py,. Consider the subgroup D C SOj consisting of all rotations about
xz-axis. Then D is the image under v : SU; — SOj3 of a diagonal subgroup of SU,.
Let Ry denotes the rotation by the angle 6.

EXERCISE 3.5. Let V5, be the space of the representation p,,. Check that the set
of eigenvalues of Ry in the representation V5, equals {e*¥ | —n < k < n}.

Let ¢ = (w1 +ixy)". It is easy to see that o, € H, and Ry(p,) = ¢p,. By
Exercise 3.5 this implies that H,, contains a subrepresentation isomorphic to py for
some k > n. By comparing dimensions we see that this implies H,, = V5,. Thus, we
obtain the following decompositions

C[S?] = P Hn, L(S?) = EPH...
neN neN
Now, we are able to prove the following geometrical theorem.

THEOREM 3.6. A convex centrally symmetric solid in R? is uniquely determined
by the areas of the plane cross-sections through the origin.

PROOF. A convex solid B can be defined by an even continuous function on S2.
Indeed, for each unit vector v let

¢ (v)=sup{t* €R|tv e B}.

Define a linear operator 7' in the space of all even continuous functions on S? by the
formula

T@<v>=§/0”so<w>de,
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where w runs the set of unit vectors orthogonal to v, and 6 is the angular parameter
on the circle S Nwvt. Check that T'p (v) is the area of the cross section by the plane
v*. We have to prove that 7 is invertible.

Obviously T' commutes with the SOs-action. Therefore T can be diagonalized by
using Schur’s lemma and the decomposition

L2 (G)even :®H2n

neN
Indeed, T acts on Hy, as the scalar operator \,Id. We have to check that A\, # 0 for
all n. Consider again ¢, € Hy,. Then g, (1,0,0) = 1 and

1 2 9 (_1)“ 2
Ts, (1,0,0) = 5/ (iy)" df = T/ sin®" 0d#,
0 0

here we take the integral over the circle z2+z2 = 1, and assume x5 = sin 6, x3 = cos 6.
Since T'p = \,, we obtain

L

2m
/ sin®" 0df # 0.
2 0






CHAPTER 4

Some results about unitary representations

In this chapter, we consider unitary representations of groups which are locally
compact but no longer compact. We do not intend to go very far in this deep subject,
but we want to give three examples in order to show how the structure of the dual
of the group changes.

1. Unitary representations of R"” and Fourier transform

1.1. Unitary dual of an abelian group. Let G be an abelian topological
group. Then by Corollary 1.22 of Chapter III, every unitary representation of G is
one-dimensional. Therefore the unitary dual G is the set of continuous homomor-
phisms p : G — S*. Moreover, G is an abelian group with multiplication defined by
the tensor product.

For example, as we have seen Section 3.1 chapter IIL if G = S Lis a circle, then
G is isomorphic to Z. In general, if G is compact, then G is discrete. If G is not
compact, one can define a topology on G in such a way that the natural homomorphim

s: G — @G, defined by s(g)(p) = p(g), is an isomorphism. This fact is usually called
the Pontryagin duality.

Let us concentrate on the case when G = V is a real vector space of finite
dimension n. Let us fix an invariant volume form dx on V. The unitary dual of V' is
isomorphic to the usual dual V* via identification

pe(x) = *™<"> for all z € V, € € V¥,

where < &, x > is the duality evaluation.

We immediately see that, in contrast with the compact case, pe ¢ L*(V). We
still can try to write down the formula for the projector Py from L*(V') onto the
irreducible representation pg as in Exercise 2.10 Chapter III. For f € L*(V),y € V
and £ € V* we set

P(f)(y) = / Fa + y)e ey = ( /V F(2)e <67 d2) pe(y).

The coefficient [, f(z)e *"<4*>dz is nothing else but the value f(€) of the Fourier

transform f. However the integral defining f is in general divergent for f € L2(V).
In this section we explaln how to overcome this difficulty, see Plancherel Theorem
1.12.

67
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We also would like to claim that every f € L*(V) is “a sum” of its projections,
which leads to the formula

- [ fwermeae
|4

This is involutivity of the Fourier transfrom, see Theorem 1.7 below.

1.2. Fourier transform: generalities. Let L'(V) be the set of integrable
complex-valued functions on V.

DEFINITION 1.1. Let f € L'(V), the Fourier transform of f is the function on V*
/ f —2z7r<£ x>d$
REMARK 1.2. (1) One checks that £lim f(€) = 0 and that f is continuous on
—00
V.

(2) Nevertheless, there is no reason for f to belong to L'(V*) (check on the
characteristic function of an interval in R).

(3) The Fourier transform of the convolution (cf Definition 2.5 Chapter III) of
two functions is the product of the Fourier transforms of the two factors.

(4) (Adjunction formula for Fourier transforms), let f € L'(V) and p € L*(V*),
then

JRCECEE IGEGTS

EXERCISE 1.3. Let v € GL(V), show that the Fourier transform of the function
v.f defined by (v.f)(z) = f(y7'(2)) is det(y)"y7".f.

Let us consider the generalized Wiener algebra W(V') consisting of integrable
functions on V' whose Fourier transform is integrable on V*.

PROPOSITION 1.4. The subspace W(V) C L'(V) is a dense subset (for the L'-
norm).

PRrOOF. Let @) be a positive definite quadratic form on V', denote by B its polar-
ization and by Q7! the quadratic form on V* whose polarization is B~*. Let Disc(Q)
denote the discriminant of () in a basis of V' of volume 1.

LEMMA 1.5. The Fourier transform of the function ¢ : x + e ™@®) on V is the
function € — Disc(Q)/2e @€ on V*.

PROOF. (of the lemma) One can reduce this lemma to the case n = 1 by using an
orthogonal basis for () and Fubini’s theorem. We just need to compute the Fourier
transform of the function e(z) := z — ¢~™ on the line R.

One has
é(§) :/6”2Zi“’:xdq::e“g/e“(”ié)Qdaz.
R

R
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By complex integration, the integral factor in the far-right-hand side does not depend
on ¢ and its value for £ = 0 is the Gauss integral fR e ™" dx = 1. Hence the
lemma. O

To finish the proof of Proposition let us take @ such that Disc(Q) = 1. The lemma
implies that ¢ belongs to W(V'). For every A € Ry, we set ¢y (x) := A"¢(Az).

EXERCISE 1.6. Check that ¢,(z) is a positive-valued function and [, ¢x(x)dz =
1. Prove that when A tends to infinity ¢,(x) converges uniformally to 0 in the
complement of any neighbourhood of 0 € V.

Now take any function f € L'(V). By Remark 1.2 the convolution product
fr = f*¢y belongs to W(V). By the exercise fy converges to f for the L'-norm. [

THEOREM 1.7. (Fourier reciprocity) Let f € W(V'), one has, for all x € V:

~

f(x) = f(==).

ProoOF. By Proposition 1.4 the set of continuous bounded functions is dense in
W(V'). Hence it suffices to prove the statement for continuous bounded f. We use a
slight extension of the adjunction formula (Remark 1.2, (4)): let A € R-, one has,
for all f € L}(V) and ¢ € L'(V*),

(4.1) /V fOa)pla)ds = [ f(ee0ede = / /V Sl e dnde

If X goes to 0, the function z — f(Az) tends to f(0) and remains bounded by sup | f |.
By dominated convergence, we obtain the equality

~

(4.2) £(0)5(0) = f(0)(0).

We know that, if ¢(€) = ¢(£) (see Lemma 1.5) ¢ = ¢, thus f(O) = f(0).
We use the actions of the additive group V on W(V') given by
Ty(f): (= flz —y))
and on W(V*) given by

py(p) 1 & = e 2TV p(g)
forally e V.

EXERCISE 1.8. Check that
(1) 7 (f) =y (f) for all f € L1(V),
(2) j1y(9) = 7—($) for all p € L1 (V).

—
—

We apply 7, to f, Exercise 1.8 shows that 7,(f) = 7_, f , hence the result. O
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REMARK 1.9. Fourier reciprocity is equivalent to the following statement

(4.3) f=7
where f denotes the complex conjugate of f.

COROLLARY 1.10. The space W(V) is a dense subspace in L*(V).

PROOF. By Theorem 1.7 and Remark 1.2, W(V) is a subset of the set C°(V) of
continuous functions on V' which tend to 0 at infinity. Here we need a reference,
Rudin? Therefore W(V) is included in L*(V'). The proof of Proposition 1.4 can be
adapted to prove the density of W(V') in L*(V) (using that ¢ € L*(V)). O

COROLLARY 1.11. The Fourier transform is an injective map from L*(V) to
CO(V™).

PROOF. We first notice that W(V) is dense in C°(V) by the same argument as
in the proof of the Proposition 1.4.

Hence, if f € L'(V) is such that f = 0, to show that f = 0 it suffices to prove
that

kéf@MWMxZO

for any g € W(V'). By Theorem 1.7, g is the Fourier transform of £ — g(—¢) and by
Remark 1.2(4), one has

| @i = [ foa-eic=o
0J

THEOREM 1.12. (Plancherel) The Fourier transform extends to an isometry from
LA(V) to L*(V*).

PROOF. Since W(V) is dense in L*(V), all we have to show is that for f and ¢
in W(V'), one has

(1.4 [t = [ foaea
By Remark 1.2 (4), the right-hand side is equal to
f@)g(w)dz.
\%4
But, by Remark 1.9 (4.3), f = F, QED. 0

REMARK 1.13. This result amounts to saying that the Fourier transform in gen-
eralized Wiener algebras changes the usual product into the convolution product.
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1.3. The link between Fourier series and Fourier transform on R. Let f

be a function over the interval [—1,1]. The Fourier series of f is

(45) § :Cn(f)BZiwnz
nez
where

1
Cn ::/ f(t)e 2 m™idt,
—3

Now, for A € R, if g is a function defined over the interval [—%, %], changing the
variable by y := Az, the corresponding Fourier series is written

31 o o
4.6 / —g(u)e ™ du | e* X,
(1.6) > ( 3o )
We consider that, formally, ¢ is the sum of its Fourier series on [—%, %]

Now if we consider g as a function defined on R with compact support by extend-
ing by 0 outside the interval [—%, %], we may interpret the n-th Fourier coefficient as
19(%) and the Fourier series as the sum

1 ~ T\ 2imny
(4.7) 5 Zg(x)e X
nez
Formally, this series is exactly the Riemann sum, corresponding to the partition of

R associated to the intervals [2, 1] of the infinite integral [, f(t)e*™™dt.

If now ¢ is compactly supported and A tends to +oo, this formal expression of
the sum suggests the equality

g(t) = / Gy du,

2. Heisenberg groups and the Stone-von Neumann theorem

2.1. The Heisenberg group and some examples of its unitary represen-
tation. Let V be a vector space over R of finite even dimension n = 2¢ together
with a non-degenerate symplectic form w : (z,y) — (z|y). Let T = S be the group
of complex numbers of modulus 1. We define the Heisenberg group H as the set
theoretical product T x V' with the composition law

(t,z)(t',2) = (tt'e™ ) o 4 o).
The centre of H is T, imbedded in H by t — (¢,0). There is non split exact sequence
1-T—H—=V —=0.
The commutator of elements of H naturally factorises as the map V xV — T

(2, ) > W),
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EXERCISE 2.1. Define a representation 7 of the group H in the space L*(V') by
the formula

rea f(y) i=tf(y —2)e™ W for allt € T, 7,y € V, f € L*(V).
Check that r is a unitary representation of H.

EXERCISE 2.2. Consider in V' two maximal isotropic subspaces with zero inter-
section. If we denote one of them by W, then the second one can be identified by w
with the dual space W*. Since the restriction of w to both W and W* is zero, the
map = — (1,z) from V' to H induces groups homomorphisms on both W and W*.

The Schrodinger representation o of H in the Hilbert space L*(W) is defined by

O f (@) = tf(x —w)e*™ %) for all t € T, z,w € W, n € W*, f € L*(W).

Prove that o is an irreducible unitary representation of H. To show irreducibility
it suffices to check that any bounded operator 7" in L?(W) commuting with the action
of H is a scalar multiplication. First, since T' commutes with the action of W*, it
commutes also with multiplication by any continuous function with compact support.
Making use of partitions of unity, show that this implies that 7" is the multiplication
by some bounded measurable function g on W. Moreover, since T commutes with
the action of W, the function ¢ is invariant under translations, hence is a constant
function.

2.2. The Stone—von Neumann theorem. The aim of this subection is to
show

THEOREM 2.3. (Stone—von Neumann) Let p be a unitary representation of H such
that p, = t1d for allt € T. Then p is isomorphic to the Schrodinger representation.

Let H be a Hilbert space together with an action p of the Heisenberg group H:
we assume that the hypotheses of the theorem are satisfied by (p,H). To simplify
the notations, we identify x € V with (1,z) € H, although it is not a group ho-
momorphism. We set p(z) := pn ) for all # € V. Then the condition that p is a
representation is equivalent to

(4.8) p(x)ply) = W p(z + y).

We denote by A the minimal closed subalgebra of the algebra B(H) of bounded
operators on #H, which contains the image pg. Let C°(V) be the space of compactly
supported continuous complex valued functions on V. For every ¢ € C2(V), set

7, = [ elaplads,

where dz is the Lebesgue measure on V. It is easy to see that T,, € A. We have

%m:/ﬂwﬂmwmmw@w@
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Tﬂ%z[/ e(2)0(y)e™ W p(x + y)dady
VxV

T, Ty = //va o(z)h(u — )™= p(u)dadu

TTy = Toxy,

where ¢ 3 1 is defined by the formula

(49) px0u) = [ plapilu - a)eme s
%

Since clearly ||T,|| < [[¢lli(= [, [¢(z)|dz), we get the following statements:

e The map ¢ — T, extends by continuity to L*(V), the space of integrable
complex valued functions on V.

e The product (¢, 1) — ¢ % 1 extends to a product L'(V) x LY(V) — LY (V)

e The formula (4.9) remains valid for ¢ and ¢ in L' (V') for almost every u € V.

LEMMA 2.4. The map ¢ — T, is injective on L*(V).
PRrROOF. Denote by N the kernel of this map. We notice the equality
p)Tap(—9) = [ @hp@p@ip(-v)do = [ o) 0p(a)do.
v v
It shows that if ¢(x) is in N then p(z)e?"¥?) lies in N for every y € V. For a,b in

‘H, consider the matrix coefficient function

Xap(®) =< p(x)a,b >,
where <, > is the scalar product on H. It is a continuous bounded function of z € V.
Moreover, for any z, there exists at least one coefficient function which doesn’t vanish
at x.
If ¢ belongs to N, we have

| #ahnastors =o
1%
and therefore

/wgnw@k%m%mzo
Vv

for all y € V. This means that the Fourier transform of the function py,, € L*(V)

is identically zero, hence px,, = 0 for all a, b, therefore ¢ = 0. O
We will also use the following equality:
(4.10) T: =T,

with p*(z) := B(—x).
Our ultimate goal is to construct a continuous intertwiner 7 : L*(V) — H. The
following observation is crucial for this construction.
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LEMMA 2.5. (a) For all f € CO(V) and h € H we have T,, ; = p,T}.
(b) For any u € H the map m, := C)(V) — H defined by f > Tu is H-
equivariant.

Proor. It suffices to check (a) for h = (1,y) with y € V. Then using (4.8) and
making the substitution z = x — y we have

T, = / F(a—y)pla) ™) dg = / fa—y)p(w)o(a—y)dz = ply) /V F(2)o(2)dz = p(y)T;.

(b) follows immediately from (a). O

Thus we have an equivariant map m, : C2(V) — H. It remains to show that for a
suitable choice of u € H we are able to extend 7, to a continuous map L*(V) — H.

LEMMA 2.6. Let ¢ be a continuous bounded function on V which lies in the
intersection L*(V') N L*(V). Assume that T, is an orthogonal projection onto a line
Cey for some vector e, in H of norm 1. Then the map n., : C2(V) — H extends to
a continuous linear H-equivariant map 7 : L*(V) — H.

PROOF. Observe that for any f € L*(V) the convolution f % ¢ lies in L'(V).
Hence we can use
Tf&p = TfTsp&@ = Tf%@&p.
]

The next step is to look for a function ¢ such that T}, is an orthogonal projector
of rank 1.

LEMMA 2.7. Let P € B(H) be a self-adjoint bounded operator and P # 0. Then
P is a scalar multiple of an orthogonal projector of rank 1 if and only if for any x € V'
we have

(4.11) Pp(x)P € CP

Proor. Note that if P is a multiple of an orthogonal projector of rank 1, then
clearly Pp(z)P € CP for allz € V.

Assume now that P satisfies the latter condition. First, we have P? = AP for
some non-zero \. Hence after normalization we can assume P2 = P. Hence P is a
projector. It is an orthogonal projector since P is self-adjoint.

[t remains to prove that P has rank 1. Let u be a non-zero vector in P(H) and M
be the span of p(z)u for all x € V. The assumption on P implies that M is included
in Cu @ Ker P. Irreducibility of ‘H implies that M is dense in H. Hence we have
H = Cué Ker P. Hence P has rank 1. O

LEMMA 2.8. Let ¢ be an element in L'(V') and ¢ = ¢*. Then T, is a multiple of
an orthogonal projection on a line if and only if for all uw € V, the function

z— o(u+x)p(u — )

is its own Fourier transform.
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REMARK 2.9. Note that the Fourier transform is defined on the dual V* of V|
and those spaces are identitified through the symplectic form w. We will refer to this
characterisation of ¢ as the functional equation.

PrOOF. We use Lemma 2.7. Let v € V. We compute

Tep(v)T, = / /V Vw(w)so(y)p(:v)p(v)p(y)dxdy
— / / () ()™ @I o0 4 4 y)dady
VXV

= // (,0(13)30(2 — v = x)em(($|v)+(m|z)+(v|z))p<z>dxdz
VxV
For almost every value of z, this operator is T, for
(v, 2) = / p(z)p(z — v — )@+ PR gy
1%

by Fubini’s theorem. The relation (4.11) is equivalent to the fact that for every v,
1 = C(v)p. So (4.11) is equivalent to:

[ #l@holz v = eI gy — Cw)p(c).
\%4

In the left hand side, we set x = —y and use ¢* = ¢. Then we obtain

/V BP0 — 2 — y)e T OO TEN gy = C(0)p(z) = T(2)(0).

Hence
(4.12) #z) _ W)
C(z) C(v)
so that % does not depend on z, moreover it is equal to its complex conjugate hence
belongs to R. We set C' = g(é)), and get C(z) = Cp(—2).
Finally,

[ #laole v = )G g — (0.
:

Now we set ¢ := 2 — (2 — v) and we get

Z—0 Z—U :
[ oCGE e — et = Cp(-0)p().
;
z+

The left hand side is precisely the value at 7% of the Fourier transform of ¢

(552 + t)p(%52 — t), now Fourier reciprocity implies C? = 1 and C' is a positive real

number as can be seen by setting z = v in (4.12), hence the Lemma. 0J
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In order to find a non-trivial solution of the functional equation, we choose a
positive definite quadratic form ) on V, denote by B : V. — V* the morphism
induced by the polarization of (). We recall (Lemma 1.5) that the Fourier transform
of the function z — ¢ ™93 on V is the function w — Disc(Q) 2e ™" ®) on V*.
Let ©2: V — V* be the isomorphism induced by the symplectic form w.

LeEMMA 2.10. The function x + (x) = e 2@ js its own Fourier transform if
and only if one has
(Q'B)? = —Idy.

PROOF. Straightforward computation. O

LEMMA 2.11. The function

Q(z)

T

p(z) =e
satisfies the functional equation of Lemma 2.8.

PROOF. This is easily shown using the fact that o(u + z)p(u —x) = ©*(u)p?(x).
0

Now by application of Lemma 2.6 we obtain a bounded H-invariant linear operator
7 : L*(V) — H. Consider the dual operator 7* : H — L*(V). The composition
77" is a bounded intertwiner in H. Hence Theorem 1.20 Chapter III implies that
77" = A1ldy for some positive real A (since 77* is self-adjoint positive). Next we will
show that A = 1.

LEMMA 2.12. We have 7*(e,) = ¢ and 77" = Idy.

PROOF. Consider the operator Y : L*(V) — L*(V) defined by Y (f) := px fx¢.
Lemma 2.4 and relations ¢ % ¢ = ¢, T,TyT, € CT, imply that Y is an orthogonal
projection on the line Cy. Hence Y (f) = (¢, f)LQ(V) @. If f is orthogonal to 7*(e,),
then

<T*(€<P)7 f>L2(V) = <5gm7_(f>>7-[ = <5¢7Tf(5<p)>7-[ = 0.
This is equivalent to T, 7yT, = Ty = 0. Hence f is orthogonal to ¢. We obtain
that 7*(e,,) = cyp for some ¢ € C. But

c= <690790>L2(V) = <T*(5@)7‘P>L2(V) = <5<p77'(90)>y = <5<p75<p>7-¢ =1

The first assertion is proved.
Now

<TT*<E¢)7€SO>’H = <7—*(5<p)a7—*(590)>[,2(v) = <907 ‘:0>L2(V) =L
Hence the second assertion. |

Thus, we have shown that an arbitrary irreducible unitary representation H is

equivalent to the subrepresentation of L?(V') generated by ¢(z) = e~ . Hence

the Stone-von Neumann theorem is proved.
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2.3. Fock representation. Let us continue with a lovely avatar of this repre-
sentation, the Fock representation. We would like to characterize the image 7*(H)
inside L*(V).

Just before Lemma 2.10, we chose a quadratic form @ on V such that (27'B)? =
—1Idy, and this equips V with a structure of complex vector space of dimension g for
which Q7!B is the scalar multiplication by the imaginary unit i. We denote by J
this complex structure and by V; the corresponding complex space.

Furthermore B + Q2 : V; — VJ is a sesiquilinear isomorphism, we denote by A
the corresponding Hermitian form on V.

In this context, for a given z € V' we have:

(413)  rawme(y) = ply — )T = TGl _ on(SEEE Ay

which is the product of ¢(y) with a holomorphic function of f(y) = o452 —Awy),

The Fock representation associated to the complex structure J is the subspace
F; C L*(V) consisting of the products fo where ¢ was defined before and f is
a holomorphic function on V;. We have just proven that this space is stable un-
der the H-action. Moreover, it is closed in L?*(V) since holomorphy is preserved
under uniform convergence on compact sets. Let us choose complex coordinates
z=(z,...,24) in Vj so that the Hermitiam product has the form A(w, z) = > w;z;.
The scalar product (-,-)r in F; is given by

(Forg0)e = /V F(2)g(z)e ™= dzdz,

where |z = Y77 | |z2 I m = (my,...,m,) € Z9 we denote by 2™ the monomial
function 2" ... zy". Any analytic function f(z) can be represented by a convergent
series
(4.14) )= ame™

meZ9I

EXERCISE 2.13. Check that if f(z)p € F; then the series

fRe= )" am2™p
meZ9

is convergent in the topology defined by the norm in F;. Furthermore, prove that
{z™|m € Z9} is an orthogonal topological basis of F .

LEMMA 2.14. The image 7*(H) is equal to F;. Hence the representation of H in
F; is irreducible.

PROOF. Recall that 7*(e,) = ¢. Therefore taking into account (4.13) it is suf-
ficient to show that the set {e ™ @YW (y) |z € V} is dense in F;. Let fop € Fj.
Assume that

(f(W)ply),e ™) =0 forallz € V.
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In the z-coordinates it amounts to saying that

/ f Yl wizig=mlzl® gz,

is identically zero. Note that then the partial derivative

OF - g
dw; /Vzif<z>ezi=lWiZie—“'z'dedz,

is also zero. Hence for every monomial z™ and w € V; we have
= g . 2 5
/ 2™ f(2)eXim WiFie ™ gz, = 0.
V

Consider the Taylor series (4.14). By Exercise 2.13 we have for any w € V;

/ F(2) f(2)eXizm vizie# P gzd = 0,
v

/f 2)dzdz = 0,

which implies f(z) = 0. Hence the set {e ™ @¥p(y) |2 € V} is dense in F. O

in particular,

EXERCISE 2.15. Check that f % ¢ € F; for any f € L*(V). Therefore the map
[ [ ¢ from L*(V) to L*(V) is an orthogonal projection onto F.

2.4. Unitary dual of H. Now it is not hard to classify unitary irreducible
representations of the Heisenberg group H. If p is an irreducible representation of
H in a Hilbert space H, then by Theorem 1.20 Chapter III, for every t € T we have
pr = X¢Idy for some character y € T. In other words, using the description of T
pr = t" Idy for some n € Z. Hence we have defined the map @ : H—7=T.

We know that the fiber ®7!(1) = {0} is a single point due to the Stone-von
Neumann theorem. We claim that for any n # 0 the fiber ®~!(n) is also a single
point. Indeed, consider a linear transformation  of V' such that (y(z)|v(y)) = n (x|y).
Then we can define a homomorphism 4 : H — H by setting ¥(t,x) = (", y(x)). We
have the exact sequence of groups

15 Z/mZ —HL H— 1.

If p lies in the fiber over n, then Kerp C Kerd. Hence p = 4 o p/, where p lies in
®~1(1). Thus, p~7Foo.

Finally, ®1(0) consists of all representations which are trivial on T. Therefore
®~1(0) coincides with the unitary dual of V' = H/T and hence isomorphic to V*.
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3. Representations of SL, (R)

In this section we give a construction of all up to isomorphism unitary irreducible
representations of the group SLy(R). We do non provide a proof that our list is
complete and refer to 77 for this.

3.1. Geometry of SLy(R). In this section we use the notation
G=SLy(R)={g € GLy(R) | det g = 1}.

EXERCISE 3.1. (a) Since G = {(z 2) |ad — bc = 1}, topologically G' can be
described as a non-compact 3-dimensional quadric in R*.

(b) Conjugacy classes in G are given by the equations tr g = ¢, where ¢ € R, with
exception of the case trg = +2.

(¢) The only proper non-trivial normal closed subgroup of G is the center {1, —1}.

Let us start with the following observation.

LEMMA 3.2. Let p: G — GL(V) be a unitary finite-dimensiona representation
of G. Then p is trivial.

11
01
k. Hence tr p, = tr pgr. Note that p, is unitary and hence diagonalizable in V. Let
A1, ..., A, be the eigenvalues of p, (taken with muliplicities). Then for any k # 0 we
have

PROOF. Let g = . Then ¢* is congugate to g for every non-zero integer

M+t A=A 0
Hence \; = --- =\, = 1. Then g € Ker p. By Exercise 3.1 we have G = Kerp. U

Let K be the subgroup of matrices
[ cosf sinf
96 =\ —sinf cosh)"
The group K is a maximal compact subgroup of G, clearly K is isomorphic to T = S*.
If p: G — GL (V) is a unitary representation of G in a Hilbert space then the re-
stricted K-representation Resg p splits into the sum of 1-dimensional representations

of K. In particular, one can find v € V such that, for some n, p,, (v) = e™v. We
define the matrix coefficient function f : G — C by the fomula

f(9) = (v, pgv) .
Then f satisfies the condition
f (990) = ™ f (9).

Thus, one can consider f as a section of a line bundle on the space G/K (if n = 0,
then f is a function). Thus, it is clear that the space G/K is an important geometric
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object, on which the representations of GG are “realized”. To be a trifle more precise,
consider the quotient (G x C)/K where K acts on G by right multiplication and on
C by e, It is a topological line bundle on G/K, and one can see f as a section of
this bundle.

Consider the Lobachevsky plane
H={:=2+iyecCly>0}

equipped with the Riemannian metric defined by the formula % and the corre-

sponding volume form %% Then G coincides with the group of rigid motions of H
y

preserving orientation. The action of the matrix (CCL Z) € G on H is given by the
formula

az +b

cz+d

EXERCISE 3.3. Check that GG acts transitively on H, preserves the metric and the
volume. Moreover, the stabilizer of ¢« € H coincides with K. Thus, we identify H

with G/K.

Z

3.2. Discrete series. Those are the representations with matrix coefficients in
L?*(G). For n € Z~y, let H be the space of holomorphic densities on H, i.e. the

set of formal expressions ¢ (z) (dz)"/?, where ¢ (2) is a holomorphic function on H
satisfying the condition that the integral

/ |<p|2y"_2dzd2
H

is finite. Define a representation of G in H,! by the formula

o (0 () (@2)"%) = (20) o @™,

and a Hermitian product on H,, by the formula

(4.15) (o v @) = [ ooy azaz,
H

for n > 1. For n = 1 the product is defined by

(4.16) (ot v @)y = [ pvds,

in this case H consists of all densities which converge to L>*-functions on the bound-
ary (real line).

EXERCISE 3.4. Check that this Hermitian product is invariant.
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To show that ;" is irreducible it is convenient to consider the Poincaré model of
the Lobachevsky plane using the conformal map
Z—1
Z41i
that maps H to the unit disk |w| < 1. Then the group G acts on the unit disk by
linear-fractional maps w — #2 for all complex a,b satisfying |a> — [b]> = 1, and
K is defined by the condition b = 0. If a = €, then p,, (w) = €*’w. The invariant
volume form is %.
It is clear that w* (dw)™? for all k > 0 form an orthogonal basis in H

vector wk (dw)"/ ? is an eigen vector with respect to K, namely

Dao (wk (dw)”/2> = )0k ()2

+
—, each

It is easy to check now that H,! is irreducible. Indeed, every invariant closed subspace
M in M} has a topological basis consisting of eigenvectors of K, in other words
w” (dw)”/ ? for some positive k must form a topological basis of M. Without loss of
generality assume that M contains (dw)n/ ?_ then by applying p, one can get that

m (dw)"/ ?_and in Taylor series for W all elements of the basis appear with

non-zero coefficients. That implies w* (dw)™?* € M for all k > 0, hence M = H.
One can construct another series H.~ by considering holomorphic densities in the
lower half-plane Re z < 0.

EXERCISE 3.5. Check that all representations in the discrete series H are pair-
wise non-isomorphic.

3.3. Principal series. These representations are parameterized by a continu-
ous parameter s € Ri(s # 0). Consider now the action of G on the real line by

linear fractional transformations z ‘;;IZ Let P denotes the space of densities
1ts

¢ (z) (dz)™2 with G-action given by

Py (so () (dz) ) = (am ki b) lex + d| =

cr +d

The Hermitian product given by

(4.17) (0, 1) = / " puda

[e.9]

is invariant. The property of invariance justify the choice of weight for the density as
1+s 14s . . . . .
(dx) 2 (dx) 2 = dz, thus the integration is invariant. To check that the represen-

tation is irreducible one can move the real line to the unit circle as in the example
1ts
2

of discrete series and then use e™*? (df)) > as an orthonormal basis in P;. Note that
the eigen values of p,, in this case are e for all integer k.
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The second principal series P, can be obtained if instead of densities we consider

the pseudo densities which are transformed by the law
1+s axr + b
oo () @) ) =

cr+d
3.4. Complementary series. Those are representations which do not appear
in the regular representation L? (G). They can be realized as the representations in

) lcx +d| ™ 'sgn (cx +d)da' T

Cs of all densities ¢ (z) (dx)% for real 0 < s < 1 and have an invariant Hermitian
product

(4.18) (o) = / N / o (@) (4) = — | dudy.



CHAPTER 5

On algebraic methods

1. Introduction

Say a few words about infinite direct sums and products, talk about Zorn’s lemma.
Emphasize that we are now in full generality.

2. Semisimple modules and density theorem

2.1. Semisimplicity. Let R be a unital ring. We will use indifferently the terms
R-module and module whenever the context is clear.

DEFINITION 2.1. An R-module M is semisimple if for any submodule N C M
there exists a submodule N’ of M such that M = N & N'.

Recall that an R-module M is simple if any submodule of M is either M or 0.
Clearly, a simple module is semi-simple.

EXERCISE 2.2. Show that if M a semisimple R-module and if N is a quotient of
M, then N is isomorphic to some submodule of M.

LEMMA 2.3. Every submodule, every quotient of a semisimple R-module is semisim-
ple.

PROOF. Let N be a submodule of a semisimple module M, and let P be a sub-
module of N. By semisimplicity of M, there exists a submodule P C M such that
M = P & P’, then there exists an R-invariant projector p : M — P with kernel P’
The restriction of p to N defines the projector N — P and the kernel of this projector
is the complement of P in N. Apply Exercise 2.2 to complete the proof. 0

For what comes next, it is essential that the ring R is unital. Indeed it is necessary
to have this property to ensure that R has a maximal left ideal and this can be proved
using Zorn’s Lemma.

LEMMA 2.4. Any semisimple R-module contains a simple submodule.

PRrOOF. Let M be semisimple, m € M. Let I be a maximal left ideal in R. Then
Rm is semisimple by Lemma 2.3 and Rm = Im & N. We claim that N is simple.
Indeed, every submodule of Rm is of the form Jm for some left ideal J C R. If N’
is a submodule of N, then N’ & I'm = Jm and hence I C J. But, by maximality of
I, J=1or R, therefore N' =0 or N. O

83
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LEMMA 2.5. Let M be an R-module. The following conditions are equivalent:
(1) M is semisimple;
(2) M = Z M; for a family of simple submodules M; of M indexed by a set I;
el
(3) M = @ M; for a family of simple submodules M; of M indexed by a set
J€Jdo
Jo.

PROOF. (1) = (2) Let {M;},.; be the collection of all simple submodules of
M. We want to show that N = > . M;. Let N = Y ., M; and assume that N
is a proper submodule of M. Then M = N & N’ by the semisimplicity of M. By
Lemma 2.4, N’ contains a simple submodule which can not be contained in the family
{M;}ic;. Contradiction.

Let us prove (2) = (3). We consider all possible families {M;},_; of simple
submodules of M such that Zjej M; = ®jesM;. First, we note the set of such
families satisfies the conditions of Zorn’s lemma, namely that any totally ordered
subset of such families has a maximal element, where the order is the inclusion order.
(To check this just take the union of all sets in the totally ordered subset.) Hence
there is a maximal subset Jy and the corresponding maximal family {M;},_, such
that ZjeJo M; is direct. We claim that M = @jc;,M;. Indeed, if this is not true,
there exists a simple submodule M, which is not contained in @®;c s M;. Since M,
simple, that means M; N @jc;,M; = 0. Hence

M+ P M =M 0 f M,
J€Jo j€Jo

This contradicts maximality of Jj.

Finally, let us prove (3) = (1). Let N C M be a submodule and S C Jy be
a maximal subset such that N N (®,esM;) = 0 (Zorn’s lemma once more). Let
M'= N & (®jesM;). We claim that M’ = M. Indeed, otherwise there exists k € J,
such that M} does not belong to M’'. Then M, N M’ = 0 by simplicity of M, and
therefore N N (®;esurM;) = 0. Contradiction. O

EXERCISE 2.6. If R is a field, after noticing that an R-module is a vector space,
show that every simple R-module is one-dimensional, and therefore, through the
existence of bases, show that every module is semisimple.

EXERCISE 2.7. If R = 7Z, then some R-modules which are not semisimple, for
instance 7Z itself.

LEMMA 2.8. Let M be a semisimple module. Then M is simple if and only if
Endg (M) is a division ring.

PRrROOF. In one direction this is Schur’s lemma. In the opposite direction let
M = M; & M, for some proper submodules M; and My of M. Let pi, ps be the
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canonical projections onto M; and M, respectively. Then p; o p; = 0 and therefore
p1,p2 can not be invertible. O

2.2. Jacobson density theorem. Let M be any R-module. Set K := Endg (M),
then set S := Endg (M). There exists a natural homomorphism R — S. In general
it is neither surjective nor injective. In the case when M is semisimple it is very close
to being surjective.

THEOREM 2.9. (Jacobson density theorem). Assume that M is semisimple. Then
for any mq,...,m, € M and s € S there exists r € R such that rm; = sm; for all
1=1,...,n.

PrOOF. First let us prove the statement for n = 1. We just have to show that
Rm; = Sm,. The inclusion Rm; C Sm; is obvious. We will prove the inverse
inclusion. The semisimplicity of M implies M = Rmy & N for some submodule N
of M. Let p be the projector M — N with kernel Rm,. Then p € K and therefore
pos=sop for every s € S. Hence Kerp is S-invariant. So Sm; C Rm;.

For arbitrary n we use the following lemma.

LEMMA 2.10. Let K := Endg (M®") and S := Endp (M®") = S. Then K

is isomorphic to the matrix ring Mat, (K) and S is isomorphic to S. The latter
isomorphism is given by the diagonal action

s(my,...,my) = (smy,...,smy,).
EXERCISE 2.11. Adapt the proof of Lemma 1.12 to check the above lemma.
O

COROLLARY 2.12. Let M be a semisimple R-module, which is finitely generated
over K. Then the natural map R — Endg (M) is surjective.

Proor. Let mq,...,m, be generators of M over K, apply Theorem 2.9. 0
COROLLARY 2.13. Let R be an algebra over a field k, and p: R — Endy, (V') be
an irreducible finite-dimensional representation of R. Then
e There exists a division ring D containing k such that p (R) = Endp (V).
e If k is algebraically closed, then D = k and therefore p is surjective.
Proor. Apply Schur’s lemma. 0

EXERCISE 2.14. Let V be an infinite-dimensional vector space over C and R be
the span of Id and all linear operators with finite-dimensional image. Check that R is
a ring and V' is a simple R-module. Then K = C, S is the ring of all linear operators
in V and R is dense in S but R does not coincide with S.
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3. Wedderburn—Artin theorem

A ring R is called semisimple if every R-module is semisimple. For example, a
group algebra k (G), for a finite group G such that chark does not divide |G|, is
semisimple by Maschke’s Theorem 3.3.

LEMMA 3.1. Let R be a semisimple ring. Then as a module over itself R is
isomorphic to a finite direct sum of minimal left ideals.

PrOOF. Consider R as an R-module. By definition the simple submodules of R
are exactly the minimal left ideals of R. Hence since R is semisimple we can write R
as a direct sum @;c7L; of minimal left ideals L;. It remains to show that this direct
sum is finite. Indeed, let I; € L; be the image of the identity element 1 under the
projection R — L;. But R as a module is generated by 1. Therefore I; # 0 for all
1 € I. Hence [ is finite. O

COROLLARY 3.2. A direct product of finitely many semisimple rings is semisimple.

EXERCISE 3.3. Let D be a division ring, and R = Mat,, (D) be a matrix ring over
D.

(a) Let L; be the subset of R consisting of all matrices which have zeros everywhere
outside the i-th column. Check that L; is a minimal left ideal of R and that R =
L& ---® L,. Therefore R is semisimple.

(b) Show that L; and L; are isomorphic R-modules and that any simple R-module
is isomorphic to L;.

(c) Using Corollary 2.12 show that F':= Endg(L;) is isomorphic to D, and that
R is isomorphic to Endg(L;).

By the above exercise and Corollary 3.2 a direct product Mat,, (Dy) X -+ X
Mat,,, (Dy) of finitely many matrix rings is semisimple. In fact any semisismple ring
is of this form.

THEOREM 3.4. (Wedderburn-Artin) Let R be a semisimple ring. Then there exist
division rings D1, . .., Dy such that R is isomorphic to a finite product of matrix rings

Mat,, (D1) x --- x Mat,, (Dy).

Furthermore, D+, ..., Dy are unique up to isomorphism and this presentation of R is
unique up to permutation of the factors.

Proor. Take the decomposition of Lemma 3.1 and combine isomorphic factors
together. Then the following decomposition holds
R=L{" @ @ L™,

where L; is not isomorphic to L; if i # j. Set J; = LZ@"”. We claim that J; is
actually a two-sided ideal. Indeed Lemma 1.10 and simplicity of L; imply that L;r
is isomorphic to L; for any r € R such that L;r # 0. Thus, L;r C J;.
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Now we will show that each J; is isomorphic to a matrix ring. Let F; := End, (L;).
The natural homomorphism J; — Endpg, (L;) is surjective by Corollary 2.12. This
homomorphism is also injective since rL; = 0 implies rJ; = 0 for any r € R. Then,
since J; is a unital ring » = 0. On the other hand, F; is a division ring by Schur’s
lemma. Threfore we have an isomorphism J; ~ Endg (L;). By Exercise 1.7 L; is a
free F;-module. Moreover, L; is finitely generated over F; as J; is a sum of finitely
many left ideals. Thus, by Exercise 3.3 (c), J; is isomorphic to Mat,, (D;) where
D; = F/".

The uniqueness of presentation follows easily from Krull-Schmidt theorem (Theo-
rem 4.19) which we prove in the next section. Indeed, let Sy, ..., Sy be a complete list
of non-isomorphic simple R-modules. Then both D; and n; are defined intrinsically,
since D{* ~ Endg(S;) and n; is the multiplicity of the indecomposable module S; in
R. O

4. Jordan-Holder theorem and indecomposable modules

Let R be a unital ring.

4.1. Artinian and Noetherian modules.

DEFINITION 4.1. We say that an R-module M is Noetherian or satisfies the
ascending chain condition (ACC for short) if every increasing sequence

M, C M, C...

of submodules of M stabilizes.
Similarly, we say that M is Artinian or satisfies the descending chain condition
(DCCQ) if every decreasing sequence

My DMy, D ...
of submodules of M stabilizes.

EXERCISE 4.2. Consider Z as a module over itself. Show that it is Noetherian
but not Artinian.

EXERCISE 4.3. (a) A submodule or a quotient of a Noetherian (respectively,
Artinian) module is always Noetherian (resp. Artinian).
(b) Let
O—=N—-M-—=L—0

be an exact sequence of R-modules. Assume that both N and L are Noetherian
(respectively, Artinian), then M is also Noetherian (respectively, Artinian).

EXERCISE 4.4. Let M be a semisimple module. Prove that M is Noetherian if
and only if it is Artinian.



88 5. ON ALGEBRAIC METHODS
4.2. Jordan-Holder theorem.
DEFINITION 4.5. Let M be an R-module. A finite sequence of submodules of M
M=MyD>DM D---DM,=0

such that M; /M, is a simple module for all i = 0,..., k—1 is called a Jordan-Hélder
series of M.

LEMMA 4.6. An R-module M has a Jordan-Hélder series if and only if M is both
Artinian and Noetherian.

PRrROOF. Let M be an R-module which is both Artinian and Noetherian. Then it
is easy to see that there exists a finite sequence of properly included submodules of

M
MIMoDMlDDMk:O

which can not be refined. Then M;/M;,; is a simple module for all i =0,... &k — 1.
Conversely, assume that M has a Jordan-Holder series

M=My>D M D---DM,=0.

We prove that M is both Noetherian and Artinian by induction on k. If £ = 1, then
M is simple and hence both Noetherian and Artinian. For k£ > 1 consider the exact
sequence

0= M —M— M/M; -0
and use Exercise 4.3 (b). O

We say that two Jordan-Holder series of M
M=MyD>M D---DM,=0
and
M=NyDND---DN; =0
are equivalent if k = [ and for some permutation s of indices 1,...,k — 1 we have

M; /My = My /Mgy

THEOREM 4.7. Let M be an R-module which is both Noetherian and Artinian.
Let
M=MyDM D---DM,=0
and

M=NyDN;D---DN; =0

be two Jordan-Holder series of M. Then they are equivalent.
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PRroOF. First note that if M is simple, then the statement is trivial. We will
prove that if the statement holds for any proper submodule of M then it is also true
for M. If My, = Nj, then the statement is obvious. Otherwise, M; + N; = M, hence
we have two isomorphisms M/M; = N;/(M; N Ny) and M/Ny = M;/ (M; N Ny).
Like the second isomorphism theorem for groups. Now let

MiNnNiDK;D---DK;=0

be a Jordan-Holder series for M7 N N;. This gives us two new Jordan-Hoélder series
of M

M=MyDM i DMiNN,DK;D---DK,=0
and

M=NyDON DN NM ;DK D ---DK;,=0.
These series are obviously equivalent. By our assumption on M; and N; the first
series is equivalent to M = My D M; D --- D My = 0, and the second one is
equivalent to M = Ny D N; D --- D N; = {0}. Hence the original series are also
equivalent. O

Thus, we can now give two definitions:

DEFINITION 4.8. First, we define the length [ (M) of an R-module M which
satsfies ACC and DCC as the length of any Jordan-Holder series of M. Note that
we can easily see that if IV is a proper submodule of M, then [ (N) <[ (M).

Furthermore, this gives rise to a notion of finite length R-module.

REMARK 4.9. Note that in the case of infinite series with simple quotients, we
may have many non-equivalent series. For example, consider Z as a Z-module. Then
the series

7224247 D ...

is not equivalent to
ZDO3LDIYLD....

4.3. Indecomposable modules and Krull-Schmidt theorem. A module M
is wndecomposable if M = My & My implies M; = 0 or My = 0.

ExXAMPLE 4.10. Every simple module is indecomposable. Furthermore, if a semisim-
ple module M is indecomposable then M is simple.

DEFINITION 4.11. An element e € R is called an idempotent if €2 = e.

LEMMA 4.12. An R-module M is indecomposable if and only if every idempotent
in Endg(M) is either 1 or 0.

PRrooOF. If M is decomposable, then M = M; & M, for some proper submodules
My and Ms. Then the projection e : M — M; with kernel M, is an idempotent
in Endg M, which is neither 0 nor 1. Conversely, any non-trivial idempotent e €
Endgz M gives rise to a decomposition M = Kere & Ime. O
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EXERCISE 4.13. Show that Z is an indecomposable module over itself, although
it is not simple.

LEMMA 4.14. Let M and N be indecomposable R-modules, « € Hompg (M, N),
f € Hompg (N, M) be such that o « is an isomorphism. Then « and 3 are isomor-
phisms.

Proor. We claim that N = Im a®Ker . Indeed, since Im aNKer § C Ker foa,
we have Im v N Ker 3 = 0. Furthermore, for any = € N set y := a o (3oa) " o 8 (z)
and z = x —y. Then f(y) = B(x). One can write z = y + z, where z € Ker  and
y € Ima.

Since N is indecomposable, Ima = N, Kerf = 0, hence N is isomorphic to
M. O

LEMMA 4.15. Let M be an indecomposable R-module of finite length and ¢ €
Endg (M), then either ¢ is an isomorphism or ¢ is nilpotent.

PRrROOF. Since M is of finite length and Ker ¢", Im ¢™ are submodules, there exists
n > 0 such that Ker¢" = Ker "™, Im¢" = Im "™, Then Ker " N Im " = 0.
The latter implies that the exact sequence

0= Kerp" - M —=Ime" =0

splits. Thus, M = Ker ¢™ & Im ¢". Since M is indecomposable, either Im ¢ = 0,
Ker " = M or Ker " = 0, Imp™ = M. In the former case ¢ is nilpotent. In the
latter case ¢™ is an isomorphism and hence ¢ is also an isomorphism. 0

LEMMA 4.16. Let M be as in Lemma 4.15 and @, @1, 02 € Endg (M) such that
@ = 1 + @o. Then if ¢ is an isomorphism, at least one of @1 and ps is also an
isomorphism.

PrOOF. Without loss of generality we may assume that ¢ = id (otherwise multi-
ply by ¢ 1). In this case p; and ¢y commute. If both ¢; and s are nilpotent, then
©1 + (o is nilpotent, but this is impossible as ¢ + @2 = id. 0

COROLLARY 4.17. Let M be as in Lemma 4.15. Let ¢ = p1+- - -+py € Endg (M).
If ¢ is an isomorphism then ; is an isomorphism at least for one 1.

EXERCISE 4.18. Let M be of finite length. Show that M has a decomposition
where all M; are indecomposable.

THEOREM 4.19. (Krull-Schmidt) Let M be an R-module of finite length. Con-
sider two decompositions

M=M&--- &M, and M =N H---B N,

such that all M; and N; are indecomposable. Then k = | and there exists a permu-
tation s of indices 1,. ..,k such that M; is isomorphic to Ny.
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Proor. We prove the statement by induction on k. The case k = 1 is clear since
in this case M is indecomposable.
Let

pgl) M — M;, p(2) : M — N

J
denote the natural projections, and

¢V My— M, ¢?:N; >N

denote the injections. We have

l
S orf? =id,
j=1

hence
l

> oneq? op? ogt = idy,
j=1

By Corollary 4.17 there exists j such that pgl) o q](.z) o p§2) o qil) is an isomorphism.

After permuting indices we may assume that j = 1. Then Lemma 4.14 implies that

pgz) o q%l) is an isomorphism between M; and N;. Set

M/;:MQ@---@Mk, N/::NQ@"'@Nl-

Since M intersects trivially N/ = Ker pf) we have M = M; ® N'. But we also
M = M; & M'. Therefore M’ is isomorphic to N’. By induction assumption the
statement holds for M’ ~ N’. Hence the statement holds for M. U]

Come up with examples of modules for which Krull-Schmidt does not hold.

5. A bit of homological algebra
Let R be a unital ring.

5.1. Complexes. Let Cy = ®;>0C; be a graded R-module. An R-morphism f
from C, to D, is of degree k (k € Z) if f maps to C; to D, for all i. An R-differential
on C, is an R-morphism d from C, to C, of degree —1 such that d? = 0.

An R-module C, together with a differential d is called a complez.

We usually represent C, the following way:

d d d d
o= Ci—= ... C—> Cy—0.

REMARK 5.1. It will be convenient to look at similar situations for an R-morphism
o of degree +1 on a graded R-module such that 52 = 0. In this case, we will use
upper indices C* (instead of C;) and represent the complex the following way:

0L ots Lo
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EXERCISE 5.2. (Koszul complex) The following example is very important.

Let V' be a finite-dimensional vector space over a field k and denote by V* its
dual space. By S(V) = @ SYV) and A(V) = @ AY(V) we denote the symmetric
and the exterior algebras of V' respectively.

Choose a basis ey,...,e, of V and let fi,...,f, be the dual basis in V* i.e.
fi(ej) = 0;;. For any x € V* we define the linear derivation 0, : S(V) — S(V') given
by 0.(v) := z(v) for v € V and extend it to the whole S(V') via the Leibniz relation

Op(urug) = Op(ur)ug + u10;(ug) for all  wuy,us € S(V).
Now set C* := S(V) @ A¥(V) and C* := S(V) @ A(V). Define 6 : C* — C* by

u®@w) = idfj(u) ® (e;j Aw) forall uwe S(V),weAV).

(a) Show that 0 does not depend on the choice of basis in V.

(b) Prove that 62 = 0, and therefore (C*,4) is a complex. It is called the Koszul
complez.

(c) Let p(w) denote the parity of the degree of w if w is homogeneous in A(V).
For any x € V* define the linear map 0, : A(V) — A(V) by setting 0,(v) := x(v) for
all v € V and extend it to the whole A(V') by the Zs-graded version of the Leibniz
relation

O (w1 A wg) = 0y (wy) A we + (—1)p(w1)w1 A Op(we) for all wy,wy € A(V).

Check that one can construct a differential d of degree —1 on the Koszul complex by

du@w) =Y (ue;) ®dy,(w) forall ueS(V),weA(V).
j=1
5.2. Homology and Cohomology. Since in any complex d?> = 0, we have
Imd C Kerd (in every degree). The complex (Cs,d) is ezact if Ind = Kerd. The
key notion of homological algebra is defined below. This notion expresses how far a
given complex is from being exact.

DEFINITION 5.3. Let (C,,d) be a complex of R-modules (with d of degree —1).
Its i-th homology, H; (C,), is the quotient

A complex (C,, d) is exact if and only if H; (Cy) = 0 for all i > 0.
If (C*,9) is a complex with a differential § of degree +1 we use the term coho-
mology instead of homology and we consistently use upper indices in the notation:
H' (C*) = (KerdNC") / (ImdNC*).

DEFINITION 5.4. Given two complexes (C,,d) and (C.,d’), a homomorphism
f:Cy — Cl of R-modules of degree 0 which satisfies the relation fod = d o f is
called a morphism of complexes.
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EXERCISE 5.5. Let f : Cy — C. be a morphism of complexes. Check that
f(Kerd) C Kerd and f(Imd) C Imd'. Therefore f induces a homomorphism

fe:r Hi (Co) — H; (C)
between homology groups of the complexes.
Let (C.,d), (C.,d"), (CV,d") be complexes and f: C, — C and g : Cy — C. be
morphisms such that the sequence
0 Sarlarso
is exact for all 7 > 0.

EXERCISE 5.6. (Snake Lemma) One can define a homomorphism 6 : H;(C)) —
H; 1(C,) as follows. Let 2 € Ker d’NCY and y be an arbitrary element in the preimage
f~Yx) C C!. Check that d'(y) lies in the image of g. Pick up z € g7 *(d'(y)) C C;_;.
Show that z € Kerd. Moreover, show that for a different choice of v/ € f~!(x) C C}
and of 2’ € g71(d'(y')) C C;_; the difference z — 2’ lies in the image of d : C; — C;_;.
Thus, x — z gives a well-defined map ¢ : H;(C)) — H;_1(C.,).

Why is it called “snake lemma”? Look at the following diagram

¢ = o Lo oo

dl d,l d,,l
Ciy —— C_, L Cily

1

In this diagram § = g~ ' od' o f~! goes from the upper right to the lower left corners.
g g g

THEOREM 5.7. (Long exact sequence). The following sequence
% Hy (C) 25 H (CL) L5 HA(C) S Hy oy (C) 2
is actually an exact complex.

We skip the proof of this theorem. The enthusiastic reader might verify it as an
exercise or read the proof in Weibel, MacLane.

5.3. Homotopy.

DEFINITION 5.8. Consider complexes (C,,d), (C.,d') of R-modules and let f, g :
Ce — C. be morphisms. We say that f and g are homotopically equivalent if there
exists a map h : Cy — C. of degree 1 such that

f—g=hod+d oh.

LEMMA 5.9. If f and g are homotopically equivalent then f, = g..
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PROOF. Let ¢ := f — g and x € C; such that dx = 0. Then
¢ (z) = h(dz) +d (hx) = d (hx) € Imd.

Hence f, — g, = 0. O

We say that complexes C, and C. are homotopically equivalent if there exist
f:Cy — CLand g : C, — C, such that f o g is homotopically equivalent to idcr
and g o f is homotopically equivalent to ido. Lemma 5.9 implies that homotopically
equivalent complexes have isomorphic homology.

Let (C,,d) be a complex of R-modules and M be an R-module. Then we have a
complex of abelian groups

0 — Homp(Cy, M) > Homp(Cy, M) % ... 5 Homp(Cy, M) 2 ...

where ¢ : Hompg(C;, M) — Hompg(Cj41, M) is defined by
(5.1) d(p)(x) == p(dx) forall ¢ € Homg(C;, M) and x € Ciiy.

Note that the differential 6 on Hompg (C,, M) has degree 1. The following Lemma
will be used in the next section. The proof is straightforward and we leave it to the
reader.

LEMMA 5.10. Let (C,,d) and (C.,d") be homotopically equivalent complexes
and M be an arbitrary R-module. Then the complexes (Homp (Ce, M),§) and
(Homp (C,, M), d") are also homotopically equivalent.

The following lemma is useful for calculating cohomology.

LEMMA 5.11. Let (C,,d) be a complex of R-modules and h : Cy — Cy be a map
of degree 1. Set f :=doh+hod. Then f is a morphism of complexes. Furthermore,
it f:C; — C; is an isomorphism for all 1 > 0, then C, is exact.

PROOF. First, f has degree 0 and since d? = 0 we have
dof=dohod= fod.

Thus, f is a morphism of complexes.

Now let f be an isomorphism. Then f, : H;(C,) — H;(C,) is also an isomorphism
for all . On the other hand, f is homotopically equivalent to 0. Hence, by Lemma
5.9, f. = 0. Therefore H;(C,) = 0 for all 7. O

EXERCISE 5.12. Recall the Koszul complex (C*,¢) from Exercise 5.2. Assume
the field & has characteristic zero. Show that H*(C*) =0 for i > 0 and H(C*®) = k.

Hint. For every m > 0 consider the subcomplex C}, with graded components
Cl = 8" V)@ A(V).
Check that d(C!) c C41, 6(CL) € CHand that the relation
dod+dod=mid
holds on Cy,. Then use Lemma 5.11 and the decomposition C* = P, Cr,.-
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6. Projective modules

Let R be a unital ring.

6.1. Projective modules. An R-module P is projective if for any surjective
morphism ¢ : M — N of R-modules and any morphism ¢ : P — N there exists a
morphism f : P — M such that ¢» = o f.

P-L-n
N
%)
N
EXAMPLE 6.1. A free R-module F is projective. Indeed, let {e;},., be a set of
generators of . Define f: F'— M by f(e;) = o (¢ (&)).

LEMMA 6.2. Let P be an R-module, the following conditions are equivalent

(1) P is projective;
(2) There exists a free module F' such that F' is isomorphic to P & P’;
(3) Any exact sequence of R-modules

0O—N—->M-—=P—=0
splits.
Proor. (1) = (3)
Consider the exact sequence

0—N-=>MZ3P 0.

Set ¢ = idp. Since ¢ is surjective and P is projective, there exists f : P — M such
that ¢ =idp = p o f.

(3) = (2) Every module is a quotient of a free module. Therefore we just have to
apply (3) to the exact sequence

0=N—=F—=-P—=0

for a free module F'.

(2) = (1) Choose a free module F' such that F' = P & P'. Let ¢ : M — N be a
surjective morphism of R-modules and ¢ a morphism v : P — N. Now extend v to
¢+ F — N such that the restriction of ¢ to P (respectively, P’) is ¢ (respectively,
zero). There exists f : F' — M such that po f = . After restriction to P we get

0o flp =1, =1.
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EXERCISE 6.3. Recall that a ring A is called a principal ring if A is commutative,
has no zero divisors and every ideal of A is principal, i.e. generated by a single
element.

(a) Let F' be a free A-module. Show that every submodule of F' is free. For
finitely generated F' this can be done by induction on the rank of F'. In the infinite
case one has to use transfinite induction, see Rotman(651).

(b) Let P be a projective A-module. Show that P is free.

6.2. Projective cover.

DEFINITION 6.4. Let M be an R-module. A submodule N of M is small if for
any submodule L C M such that L + N = M, we have L = M.

EXERCISE 6.5. Let f: P — M be a surjective morphism of modules such that
Ker f is a small submodule of P. Assume that f = f o~ for some homomorphism
~v: P — P. Show that v is surjective.

DEFINITION 6.6. Let M be an R-module. A projective cover of M is a projective
R-module P equipped with a surjective morphism f : P — M such that Ker f C P
is small.

LEMMA 6.7. Let f : P — M and g : Q — M be two projective covers of M.
Then there exists an isomorphism ¢ : P — () such that go ¢ = f.

PrOOF. The existence of ¢ such that gop = f follows immediately from projec-
tivity of P. Similarly, we obtain the existence of a homomorphism 9 : Q — P such
that f o1 = g. Therefore we have go p o1 = g.. By Exercise 6.5 ¢ o) is surjective.
This implies surjectivity of ¢ : P — (). Since () is projective we have an isomorphism
P~ Q®Kerp. Since Ker p C Ker f, we have P = Q4+ Ker f. Recall that Ker f C P
is a small. Hence P = @) and Ker ¢ = 0. Thus ¢ is an isomorphism. 0J

6.3. Projective resolutions.
DEFINITION 6.8. Let M be an R-module. A complex (P, d) of R-modules
R T YY)

such that P; is projective for all i > 0, Hy(P,) = M and H;(P,) =0 for all i > 1, is
called a projective resolution of M.

It is sometimes useful to see a projective resolution as the exact complex
i P PL Py B M0,
where p : Py — M is the lift of the identity map between Hy(P,) and M.
EXERCISE 6.9. Show that for every R-module M, there exists a resolution of M
o= K== =5 Fy—0

such that all F; are free. Such a resolution is called a free resolution.
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This exercise immediately implies:
PrROPOSITION 6.10. Every R-module has a projective resolution.

EXAMPLE 6.11. Let R = k[zy,...,x,] be a polynomial ring over a field k. Con-
sider the simple R-module M := R/(z1,...,x,). One can use the Koszul complex,
introduced in Exercise 5.2, to construct a projective resolution of M. First, we iden-
tify R with the symmetric algebra S(V') of the vector space V' = k™. Let P; denote
the free R-module R ® A*(V) and recall d : P, — P,_; from Exercise 5.2 (c¢). Then
Hy(P,) = M and H;(P,) =0 for i > 1. Hence (P,,d) is a free resolution of M.

LEMMA 6.12. Let (P,,d) and (P,,d") be two projective resolutions of an R-module
M. Then there exists a morphism of complexes f : P, — P, such that f, : Hy (P,) —
Hy (P)) induces the identity id,;. Moreover, f is unique up to homotopy equivalence.

PROOF. We use an induction procedure to construct a morphism f; : P, — P.
For i = 0, we denote by p : Py — M and p’ : ) — M the natural projections. Since
Py is projective there exists a morphism fy : Py — PJ such that p’ o fo = p:

Py Ry 0
|
I fo l id
P
P/ P M 0

then we have f(Kerp) C Kerp’. We construct f; : P, — P| using the following
commutative diagram:

*>P1*d>Kerp*>0

\
1 J{fo
v
—— P ——Kerp — 0.

The existence of f; follows from projectivity of P; and surjectivity of d'.

We repeat the procedure to construct f; : P, — P; for all i.

Suppose now that f and g are two morphisms satisfying the assumptions of the
lemma. Let us prove that f and g are homotopically equivalent. Let ¢ = f — g. We
have to prove the existence of maps h; : P, — P;,; such that h; od = d' o h; 1. Let
us explain how to construct hg and h; using the following diagram

d d p

Py P Fy M 0

/ e
l@z//h lsm,/h isﬂo lo
//d’ 1 y 0 ,

U

P} pl-Lep oy 0.

Since the morphism ¢, : Ho(P,) — Ho(P.) is zero, we get p’ o ¢ = 0, and hence

Impy C Imd’. Recall that P, is projective, therefore there exists hy : Py — P| such
that d’ o hg = ¢g.
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To construct the map hy, set ¢ := ¢ — hg o d. The relation
d/ohood:gpood:dlogpl
implies d’ o ¢ = 0. Since H{(P.) = 0, the image of ¥ belongs to d'(Pj), and by
projectivity of P; there exists a morphism hy : P, — Pj such that
dlohl :w:(pl—hoOd.
The construction of h; for ¢ > 1 is similar to the one for ¢ = 1. The collection of
the maps h; gives the homotopy equivalence. O

The following proposition expresses in what sense a projective resolution is unique.

PROPOSITION 6.13. Let M be an R-module, and (P,,d), (P.,d’) be two projective
resolutions of M. Then (P,,d) and (P.,d") are homotopically equivalent.

ProOF. By Lemma 6.12 there exist f : P, — P, and g : P, — P, such that go f
is homotopically equivalent to idp, and f o g is homotopically equivalent to idp;. O

6.4. Extensions.

DEFINITION 6.14. Let M and N be two R-modules and P, be a projective reso-
lution of M. Consider the complex of abelian groups

0 — Hompg (Py, N) % Hompg (P, N) > ...,

where § is defined by (5.1). We define the i-th extension group Ext’, (M, N) as the
i-th cohomology group of this complex. Lemma 5.10 ensures that Ext} (M, N) does
not depend on the choice of a projective resolution of M.

EXERCISE 6.15. Check that Ext%(M, N) = Homg(M, N).

Let us give an interpretation of Extp(M, N). Consider an exact sequence of R-
modules

(5.2) 05 N3Q5 M—0
and a projective resolution
(5.3) LA PRLA PSR E M0

of M. Then by projectivity of P, there exist 1) € Hompg(Fp, Q) and v € Hompg(P;, N)
which make the following diagram

d d

P P B,
i ’ l ! i w\\i
a B
0 N Q M 0

commutative. Let § be the differential of degree +1 in Definition 6.14. The commuta-
tivity of this diagram implies that vod = 0 and hence §(v) = 0. The choice of ¢ and
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7 is not unique. If we choose another pair ¢/ € Homg(Fy, Q) and 7' € Hompg(Py, N),
then there exists §# € Hompg(Fy, N) such that ¢/ — 1) = a0 as in the diagram below

P, P Py
PN
0 N Q M 0.

Furthermore, v/ — v = 6 o d or, equivalently, 7/ — v = §(#). Thus, we can associate
the class [y] € Ext}, (M, N) to the exact sequence (5.2).

Conversely, if we start with resolution (5.3) and a class [y] € Exty (M, N), we
may consider some lift v € Homg(P;, N). Then we can associated the following short
exact sequence to [v]

0— P /Kery — Py/d(Kervy) — M — 0.
The reader may check that this exact sequence splits if and only if [y] = 0.
EXAMPLE 6.16. Let R be C[z]. Since C is algebraically closed, every simple R-

module is one-dimensional over C and isomorphic to Cy := C[z] / (z — A). It is easy
to check

0— Clz] S Cla] — 0,
where d (1) = z — A is a projective resolution of Cy. We can compute Ext® (Cy,C,,).
It amounts to calculating the cohomology of the complex

O—>(Ci>(C—>O

where 0 is the multiplication by A — . Hence

0 if A
Ext%((C,\,(CM) = EXt}%(C)\,CM) = { C i )\il;

EXAMPLE 6.17. Let R = C|z]/ (2?). Then R has only one (up to isomorphism)
simple module, which we denote Cy. Then

A5 RL R0,

where d (1) = z is a projective resolution for Co and Ext’ (Cy, Cy) = C for all i > 0.

7. Representations of artinian rings

7.1. Idempotents, nilpotent ideals and Jacobson radical. A (left or right)
ideal N of a ring R is called nilpotent if there exists p > 0 such that N? = 0. The
smallest such p is called the degree of nilpotency of N. The following lemma is
sometimes called “lifting of an idempotent”.

LEMMA 7.1. Let N be a left (or right) nilpotent ideal of R and take r € R
such that > = r mod N. Then there exists an idempotent e € R such that e = r
mod N.
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PROOF. Let N be a left ideal. We prove the statement by induction on the degree
of nilpotency d(N). The case d(N) = 1 is trivial. Let d(N) > 1. Set n = r? —r, then
n belongs to N and rn = nr. Therefore we have

(r+mn—2rn)> =>4+ 2rn — 4r’n  mod N2.
We set s =r +n — 2rn. Then we have
s?=s mod N?, s=r mod N.

Since d(N?) < d(N), the induction assumption ensures that there exists an idempo-
tent e € R such that e = s mod N2, hence e =r mod N. O

For an R-module M let
AnmmM ={x € R|zM =0}.

DEFINITION 7.2. The Jacobson radical rad R of a ring R is the intersection of
Ann M for all simple R-modules M.

EXERCISE 7.3. (a) Prove that rad R is the intersection of all maximal left ideals
of R as well as the intersection of all maximal right ideals.

(b) Show that z belongs rad R if and only if 1 + rx is invertible for any r € R.

(c) Show that if N is a nilpotent left ideal of R, then N is contained in rad R.

LEMMA 7.4. Let e € rad R such that e> = e. Then e = 0.

PrOOF. By Exercise 7.3 (b) we have that 1 — e is invertible. But e(1 —e) =0
and therefore e = 0. UJ

7.2. The Jacobson radical of an Artinian ring.

DEFINITION 7.5. A ring R is artinian if it satisfying the descending chain condi-
tion for left ideals.

A typical example of artinian ring is a finite-dimensional algebra over a field. It
follows from the definition that any left ideal in an Artinian ring contains a minimal
(non-zero) ideal.

LEMMA 7.6. Let R be an artinian ring, I C R be a left ideal. If I is not nilpotent,
then I contains a non-zero idempotent.

PROOF. Since R is Artinian, one can can find a minimal left ideal J C I among
all non-nilpotent ideals of I. Then J? = J. We will prove that .J contains a non-zero
idempotent.

Let L C J be some minimal left ideal such that JL # 0. Then there exists v € L
such that Jz # 0. By minimality of L we have Jx = L. Therefore there exists r € J
such that rz = x. Hence (r? —r)x = 0. Let N = {y € J | yx = 0}. Note that N is
a proper left ideal of J and therefore N is nilpotent. Thus, we have 7> =7 mod N.
By Lemma 7.1 there exists an idempotent e € R such that e = r mod N, and we
are done. O
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THEOREM 7.7. If R is artinian then rad R is the unique maximal nilpotent ideal
of R.

Proor. By Exercise 7.3 every nilpotent ideal of R lies in rad R. It remains to
show that rad R is nilpotent. Indeed, otherwise by Lemma 7.6, rad R contains a
non-zero idempotent. This contradicts Lemma 7.4. 0

LEMMA 7.8. An Artinian ring R is semisimple if and only if rad R = 0.

Proor. If R is semisimple and Artinian, then by Wedderburn-Artin theorem it
is a direct product of matrix rings, which does not have non-trivial nilpotent ideals.
If R is Artinian with trivial radical, then by Lemma 7.6 every minimal left ideal
L of R contains an idempotent e such that L = Re. Hence R is isomorphic to
L& R(1 —e). Therefore R is a direct sum of its minimal left ideals. O

COROLLARY 7.9. If R is Artinian, then R/rad R is semisimple.

PRrROOF. By Theorem 7.7 the quotient ring R/ rad R does not have non-zero nilpo-
tent ideals. Hence it is semisimple by Lemma 7.8. 0

7.3. Modules over Artinian rings.

LEMMA 7.10. Let R be an Artinian ring and M be an R-module. Then M /(rad R) M
is the maximal semisimple quotient of M.

PROOF. Since R/rad R is a semisimple ring and M/(rad R)M is an R/rad R-
module, we obtain that M/(rad R)M is semisimple. To prove maximality, observe
that rad R acts by zero on any semisimple quotient of M. 0

COROLLARY 7.11. Assume that R is Artinian and M is an R-module. Consider
the filtration

M > (radR)M > (rad R)>M > --- > (rad R)* M =0,

where k is the degree of nilpotency of rad R. Then all quotients (rad R)"M/(rad R)"™ M
are semisimple R-modules. In particular, M always has a simple quotient.

PROPOSITION 7.12. Let R be Artinian. Consider it as a module over itself. Then
R is a finite length module. Hence R is a Noetherian ring.

PROOF. Apply Corollary 7.11 to M = R. Then every quotient (rad R)*/(rad R)"™!
is a semisimple Artinian R-module. By Exercise 4.4 (rad R)'/(rad R)"*" is a Noether-
ian R-module. Hence R is a Noetherian module over itself. O

Let us apply the Krull-Schmidt theorem to an Artinian ring R considered as a left
module over itself. Then R has a decomposition into a direct sum of indecomposable
submodules

R=L®---®L,.
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Recall that Endg (R) = R°P. Therefore the canonical projection on each compo-
nent L; is given by multiplication (on the right) by some idempotent element e; € L;.
In other words R has a decomposition

(5.4) R=Re; ®--- & Re,.

Moreover, e;e; = d;;¢;. Once more by Krull-Schmidt theorem this decomposition is
unique up to multiplication by some invertible element on the right.

DEFINITION 7.13. An idempotent e € R is called primitive if it can not be written
e = ¢ + ¢€” for some non-zero idempotents €', ¢” such that ¢’e¢” = ¢e”¢’ = 0.

EXERCISE 7.14. Prove that the idempotent e € R is primitive if and only if Re
is an indecomposable R-module.

In the decomposition (5.4) the idempotents e, ..., e, are primitive.

LEMMA 7.15. Assume R is Artinian, N = rad R and e € R is a primitive idem-
potent. Then Ne is a unique maximal submodule of Re.

PROOF. Due to Corollary 7.11 it is sufficient to show that Re/Ne is a simple
R-module. Since e is primitive, the left ideal Re is an indecomposable R-module.
Assume that Re/Ne is not simple. Then Re/Ne = Ree; @ Reesy for some non-zero
idempotent elements e; and e in the quotient ring R/N. By Lemma 7.1 there exist
idempotents fi, fo € R such that f; = ¢, mod N. Then Re = Rf; & Rfy; which
contradicts indcomposability of Re. 0

THEOREM 7.16. Assume R is Artinian.

(1) Every simple R-module S has a projective cover which is isomorphic to Re
for some primitive idempotent e € R.

(2) Let P be an indecomposable projective R-module. There exists a primitive
idempotent e € R such that P is isomorphic to Re. Furthermore, P has a
unique simple quotient.

PRrROOF. Let S be a simple R-module. There exists a surjective homomorphism
f R — S. Consider the decomposition (5.4). There exists i < n such that the
restriction of f on Re; is non-zero. By the simplicity of S the restriction f : Re; — S
is surjective. It follows from Lemma 7.15 that Re; is a projective cover of S.

Let P be an indecomposable projective module. By Lemma 7.10 the quotient
P/(rad RP) is semisimple. Let S be a simple submodule of P/(rad RP). Then we
have a surjection f : P — S. Let g : @ — S be a projective cover of S. There
exists a morphism ¢ : P — (@) such that f = g o ¢. Since ) has a unique simple
quotient, the morphism ¢ is surjective. Then P is isomorphic to @) ¢ Ker¢. The
indecomposability of P implies that P is isomorphic to Q). O

ExXAMPLE 7.17. Consider the group algebra R = F3(S3). First let us classify
simple and indecomposable projective R-modules.
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Let r be a 3-cycle and s be a transposition. Since s and r generate S3, one can
see easily that the elements r — 1, r?2 — 1, sr — s and sr? — s span a nilpotent ideal
N, which turns out to be maximal. The quotient R/N is a semisimple R-module
with two simple components L, and Lo, where Ly (resp. Lo) is the trivial (resp. the
sign) representation of S3. Set e; = —s — 1 and e; = s — 1. Then e, ey are primitive
idempotents of R such that 1 = e; + e; and ejes = 0. Hence R has exactly two
indecomposable projective modules, namely P, = Re; and P, = Rey. Those modules
can be seen as induced modules

Re; = Indgz (triv), Reg = Indgg (sgn).
Thus P, is the 3-dimensional permutation representation of Ss, and P, = P; ® sgn.
EXERCISE 7.18. Compute explicitly the radical filtration of P, and P». Show that
Py/(rad R)P, ~ Ly, (rad R)P,/(rad R)*P, ~ Ly, (rad R)*P;, ~ L,
and
Py/(rad R)Py =~ Ly, (rad R)P,/(rad R)*P, ~ L;, (rad R)*P; ~ L.

Now we will calculate the extension groups between the simple modules. The
above exercise implies the following exact sequences

0—=Ly—-PFP—-P —L,—0, 0L —P —PFP — Ly,—0.
By gluing these sequences together we obtain a projective resolution for L,
o= P =P =P =P =P =P =P =P =0
and for Lo
o= PP =P =P Ph— P =P — P—0.
Using the following obvious relation
ot )< 5,507

we obtain

0, ifp=1,2 mod4,i1=y
Fs, if p=0,3 mod4,i1=j
0, ifp=0,3 mod4,i+#j
Fs, if p=1,2 mod 4,7 # j

Ext? (Ll, Ll> =

EXERCISE 7.19. Let B,, denote the algebra of upper triangular n x n matrices over
a field F. Denote by F;; the elementary matrix. Show that Ej; for i = 1,...,n, are
primitive idempotents of B,,. Furthermore, show that B, has n up to isomorphism
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simple modules L, ..., L, associated with those idempotents and that the dimension
of every L; over F is 1. Finally check that

F, if i=j5 p=0ori=7+1, p=1

Ext? (L;, L;) =
Xt s) {0, otherwise

8. Abelian categories

An abelian category is a generalization of categories of modules over a ring.
Let us start with definition of an additive category.

DEFINITION 8.1. A category C is called additive if for any two objects A and B,

(1) The set of morphisms Home(A, B) is an abelian group.

(2) There exist an object A @ B, called a direct sum, and a pair of morphisms
ia:A— A®Bandip: B — A®DB such that for any morphisms ¢ : A — M
and ¢ : B — M there exists a unique morphism 7 : A ® B — M such that
Toig=@and Toig = 1.

(3) There exist an object A x B called a direct product and a pair of morphisms
pa:AXB — Aandig: Ax B — B such that for any morphisms a.: M — A
and §: M — M there exists a unique morphism ¢ : M — A x B such that
paol =aand pgof=0.

(4) The induced morphism A& B — A x B is an isomorphism.

DEFINITION 8.2. An abelian category is an additive category C such that, for
every morphism ¢ € Home(A, B)

(1) There exist an object and a morphism Kery — A such that for any mor-
phism ~v : M — A such that, ¢ oy = 0, there exists a unique morphism
0 : M — Ker g such that v =i 0.

(2) There exist an object and morphism B % Coker ¢ such that for any mor-
phism 7 : B — M such that, 7 o ¢ = 0, there exists a unique morphism
o : Coker ¢ — M such that 7 =g op.

(3) There is an isomorphism Cokeri — Ker p.

EXERCISE 8.3. Let R be a ring, show that the category of finitely generated R-
modules is abelian. Show that the category of projective R-modules is additive but
not abelian in general. Finally show that the category of projective R-modules is
abelian if and only if R is a semisimple ring.

In an abelian category we can define the image of a morphism, a quotient object,
exacts sequences, projective and injective objects. All the results of Sections 4, 5 and
6 can be generalized for abelian categories. If we want to define extension groups we
have to assume the existence of projective covers.
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DEFINITION 8.4. Let C be an abelian category. Its Grothendieck group K¢ is the
abelian group defined by generators and relations in the following way. For every
object M of C there is one generator [M]. For every exact sequence

O—=+N—->M-—=K-—0
in C we have the relation [M| = [K] + [N].

EXERCISE 8.5. Let C be the category of finite-dimensional vector spaces. Show
that K¢ is isomorphic to Z.

EXERCISE 8.6. Let GG be a finite group and k be a field of characteristic 0. Let
C be the category of finite-dimensional k(G)-modules. Then K¢ is isomorphic to the
abelian subgroup of C(G) generated by the characters of irreducible representations.
Furthermore, the tensor product equips K¢ with a structure of commutative ring.






CHAPTER 6

Symmetric groups, Schur—Weyl duality and PSH algebras

This chapter was written with Laurent GRUSON

Though this be madness, yet there is method in it (Hamlet, Act II scene 2)

In which we revisit the province of representations of symmetric groups with a vision enriched by
our journeys, encounter Schur-Weyl duality and PSH algebras, and put a bit of order in this mess. Not
to mention the partitions, Younyg tableaux and related combinatorics.

In this chapter (from section 3), we will rely on a book by Andrei Zelevinsky, Rep-
resentations of finite classical groups, a Hopf algebra approach (LNM 869, Springer
1981), which gives a very efficient axiomatisation of the essential properties of the
representations of symmetric groups and general linear groups over finite fields. In
this book lies the first appearance of the notion of categorification which has become
an ubiquitous tool in representation theory.

1. Representations of symmetric groups

Consider the symmetric group .S,,. In this section we classify irreducible repre-
sentations of 5, over Q. We will see that any irreducible representation over Q is
absolutely irreducible, in other words Q is a splitting field for .S,,. We will realize the
irreducible representations of \S,, as minimal left ideals in the group algebra Q(S,,).

DEFINITION 1.1. A partition A of n is a sequence of positive integers (A, ..., Ag)
such that Ay > --- > X\, and Ay + -+ - + A\, = n. We use the notation A - n when A is
a partition of n. Moreover, the integer k is called the length of the partition \.

REMARK 1.2. Recall that two permutations lie in the same conjugacy class of
S, if and only if there is a bijection between their sets of cycles which preserves the
lengths. Therefore we can parametrize the conjugacy classes in S,, by the partitions
of n.

DEFINITION 1.3. To every partition A = (A,..., \x) we associate a table, also
denoted A\, consisting of n boxes with rows of length A{, ..., A, it is called a Young
diagram. A Young tableau t(\) is a Young diagram A\ with entries 1,...,n in its
boxes such that every number occurs in exactly one box. We say that two Young
tableaux have the same shape if they are obtained from the same Young diagram.
The number of tableaux of shape A\ equals n!.

107
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ExXAMPLE 1.4. Let n =7, A = (3,2,1,1). The corresponding Young diagram is

and a possible example of tableau t(A

23]
5

) is
1
4
6]
7

Given a Young tableau t(\), we denote by Py the subgroup of S, preserving the
rows of £(A) and by Q) the subgroup of permutatlons preserving the columns.

ExAMPLE 1.5. Consider the tableau ¢(\) from Example 1.4. Then Py, is iso-

morphic to S3 X S, which is the subgroup of S; permuting {1,2,3} and {4,5}, and
Q¢(n is isomorphic to Sy x Sy which permutes {1,4,6,7} and {2,5}.

EXERCISE 1.6. Check that Pyx) N Q) = {1} for any tableau t(\).

Introduce the following elements in Q(S,,):

Z D, by = Z (=1)1q, ciny = arbin

pEP;(N) qEQ¢(n)

where (—1)? stands for €(q).
The element cy(y) is called a Young symmetrizer.
THEOREM 1.7. Let t(\) be a Young tableau.
(1) The left ideal Q(S,)cy(n) is minimal, therefore it is a simple Q(S,)-module.
(2) Two Q(S,)-modules Q(S,)cyny and Q(S,)cy () are isomorphic if and only if

w=A.
(3) Every simple Q(S,)-module is isomorphic to Vi) = Q(S,)cyn) for some
Young tableau t(\).
REMARK 1.8. Note that assertion (3) of the Theorem follows from the first two,
since the number of Young diagrams is equal to the number of conjugacy classes (see
Remark 1.2).

ExAaMPLE 1.9. Consider the partition (of length 1) A = (n). Then the corre-
sponding Young diagram consists of one row with n boxes. For any tableau t(\) we
have P,y = Sy, Q¢ is trivial and therefore

= E S.
SESTL

The corresponding representation of S, is trivial.
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ExampPLE 1.10. Consider the partition A = (1,...,1) whose Young diagram con-
sists of one column with n boxes. Then Q) = Sy, Py is trivial and

oy = by = Y (=1)°s.

SES)

Therefore the corresponding representation of S, is the sign representation.

EXAMPLE 1.11. Let us consider the partition A = (n—1, 1) and the Young tableau
t(\) which has entries 1,...,n — 1 in the first row and n in the second row. Then
Py is isomorphic to S, and consists of all permutations which fix n, and Q) is
generated by the transposition (1n). We have

Cin) = Z s|(1—=(1n)).

SESH—1

Let I denote the permutation representation of S,. Let us show that Q(S,)cyy) is
the n — 1 dimensional simple submodule of E. Indeed, ayxciyr) = ¢ n), therefore
the restriction of Vjy) to Py contains the trivial representation of Fy). Recall
that the permutation representation can be obtained by induction from the trivial
representation of .S, _1:

E = Ind}i’; triv.
By Frobenius reciprocity Q(S,,)cyy is a non-trivial submodule of £. .

In the rest of this Section we prove Theorem 1.7.
First, let us note that S,, acts simply transitively on the set of Young tableaux of
the same shape by permuting the entries, and for any s € S,, we have

sty = SarS s barny = Sbis T ey = senys

Therefore if we have two tableaux ¢(A) and ¢'(\) of the same shape, then

Q(Sn)ct()\) = @(Sn)ct/(,\)sfl

for some s € S,,. Hence Q(S,)cyn) and Q(S,)cy(x) are isomorphic Q(S,)-modules.

In what follows we denote by V) a fixed representative of the isomorphism class
of Q(Sy)cyn for some tableau ¢(A). As we have seen this does not depend on the
tableau but only on its shape.

EXERCISE 1.12. Let ¢(A\) be a Young tableau and s € S,,. Show that if s does
not belong to the set P\ Qy(y), then there exist two entries 7, j which lie in the same
row of ¢(\) and in the same column of st(\). In other words, the transposition (ij)
lies in the intersection Py N Q). Hint: Assume the opposite, and check that one
can find s" € Pyy) and s” € Q) such that s't(\) = s”st(N).

Next, observe that for any p € Py and ¢ € @), we have
pang = (1) ey
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LEMMA 1.13. Let t(\) be a Young tableau and y € Q(S,,). Assume that for all
p € Py and q € Q4 we have
pyq = (=1)"y.
Then y = acyy) for some a € Q.

PROOF. Let T' be a set of representatives of the double cosets Pjx)\Sn/Q:)-
Then 5, is the disjoint union |_|56T Pyx)sQq(x) and we can write y in the form

Z ds Z <_1)qp5q = Z dsat(,\)sbt(,\).

seT pEPt(A),qEQt()\) seT

It suffices to show that if s & Py Q) then ayx)sbyxy = 0. This follows from Exercise
1.12. Indeed, there exists a transposition 7 in the intersection P;x)N Qg (x). Therefore

arnsbin s = arnbsn) = (arnT) (Thstn)) = —aynbsin) = 0.
O

This lemma implies

COROLLARY 1.14. We have ¢;(,Q(Sy)cyny C Qcyny.

Now we are ready to prove the first assertion of Theorem 1.7.
LEMMA 1.15. The ideal Q(S,)cy(») is a minimal left ideal of Q(S,,).

PRrOOF. Consider a left ideal W C Q(Sy,)cyn). Then by Corollary 1.14 either
Ct(/\)W = Qct(/\) or Ct()\)W =0.

If coiwW = Qeyny, then Q(S,)c )W = Q(Sy)cn). Hence W = Q(S,)cyny- If
cyW = 0, then W2 = 0. But Q(S,) is a semisimple ring, hence W = 0. O

Note that Corollary 1.14 also implies that V) is absolutely irreducible because
Endsg, (Q(Sh)ciny) = ciyQ(Sn)crn) =~ Q.
COROLLARY 1.16. For every Young tableau t(\) we have cf()\) = naCy), wWhere

!
ny = dlg—VA
ProoF. By Corollary 1.14 we know that c¢;n) = nacyy) for some ny € Q. More-
over, there exists a primitive idempotent e € Q(S,,) such that ¢,y = nye. To find ny
note that the trace of e in the regular representation equals dim V), and the trace of

cy(x) in the regular representation equals n!. (]

EXERCISE 1.17. Introduce the lexicographical order on partitions by setting A > u
if there exists ¢ such that \; = p; for all j <4 and \; > ;. Show that if A > p, then
for any two Young tableaux ¢(\) and ¢'(u) there exist entries ¢ and j which lie in the
same row of ¢(A) and in the same column of #'(u).

LEMMA 1.18. Let t(\) and t'(i) be two Young tableaux such that A < p. Then
et Q(Sn)er(wy = 0.



1. REPRESENTATIONS OF SYMMETRIC GROUPS 111

PRrROOF. We have to check that ¢,y scy (s = 0 for any s € S, which is equivalent
to cnCser(uy = 0. Therefore it suffices to prove that cyyycy () = 0. By Exercise 1.17
there exists a transposition 7 which belongs to the intersection Q) N Py (). Then,
repeating the argument from the proof of Lemma 1.13, we obtain

CoN Crr () = CUNT Cor() = —Co(N) e/ ()

OJ
Now we show the second statement of Theorem 1.7.

LEMMA 1.19. Two irreducible representations Vy and V,, are isomorphic if and
only if A = p.

PRrROOF. It suffices to show that if A # p, then V) and V), are not isomorphic.
Without loss of generality we may assume A < p and take some Young tableaux ¢(\)
and t'(1). By Lemma 1.18 we obtain that c,x) acts by zero on V,. On the other
hand, by Corollary 1.16, ¢\ does not annihilate V. Hence the statement. (]

By Remark 1.8 the proof of Theorem 1.7 is complete.

REMARK 1.20. Note that in fact we have proved that if X # 1 then ¢\ Q(Sy)cy () =
0 for any pair of tableaux t(\),#'(1). Indeed, if ¢;(\yQ(Sy)cy(u) # 0, then

Q(Sn)eenQ(Sn) vy = Q(Sn)ew (-
But this is impossible since Q(S,,)cy,)Q(Sy) has only components isomorphic to V).

LEMMA 1.21. Let p: S, — GL(V) be a finite-dimensional representation of S,,.
Then the multiplicity of Vy in V' equals the rank of p (cto\)).

PRrROOF. The rank of ¢;») in V) is 1 and ¢V, = 0 for all © # A. Hence the
statement. O

EXERCISE 1.22. Let A be a partition and y, denote the character of V).
(1) Prove that xa(s) € Z for all s € S,,.
(2) Prove that x(s) = xa(s™!) for all s € S,, and hence Vj is self-dual.
(3) For a tableau t(\) let &) = bynyayn). Prove that Q(S,,)cyn) and Q(Sy,)cEn
are isomorphic Q(S,,)- modules

EXERCISE 1.23. Let \ be a partition. We define the conjugate partition A* by
setting A to be equal to the length of the i-th row in the Young diagram A. For
example, if A = | ,then A\t =

Prove that for any partition A, the representatlon V1 is isomorphic to the tensor
product of V) with the sign representation.

Since Q is a splitting field for S,,, Theorem 1.7 provides classification of irreducible
representations of S,, over any field of characteristic zero.
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2. Schur—Weyl duality.

2.1. Dual pairs. We will start the following general statement.

THEOREM 2.1. Let G and H be two groups and p : G x H — GL (V) be a
representation in a vector space V. Assume that V' has a decomposition

V=@ Vi® Homa(V;, V)
i=1
for some aboslutely irreducible representations Vi, ..., V,, of G, and the subalgebra
generated by p(H) equals Endg (V). Then every W; := Homg(V;, V') is an absolutely
irreduicble representation of H and W; is not isomorphic to W; if i # j.

PROOF. Since every V; is an absolutely irreducible representation of GG, we have
Endg(V) = ﬁ Endg(W;).
i=1
By our assumption the homomorphism
p:k(H)— ﬁEndk(I/Vi)
i=1

is surjective. Hence the statement. [l

REMARK 2.2. In general, we say that G and H satisfying the conditions of The-
orem 2.1 form a dual pair.

ExaMPLE 2.3. Let k be an algebraically closed field, G be a finite group. Let p
be the regular representation of G in k(G) and o be the representation of G in k(G)
defined by
ag(h) = hg™*
for all g,h € G. Then k(G) has the structure of a G x G-module and we have a
decomposition

KG) = ViRV,
i=1
where Vi, ..., V, are all up to isomorphism irreducible representations of G.

2.2. Duality between GL(V) and S,. Let V be a vector space over a field k
of characteristic zero. Then it is an irreducible representation of the group GL(V).
We would like to understand V" as a GL(V)-module. Is it semisimple? If so, what
are its simple component?

Let us define the representation p : S, — GL (V®") by setting

sS(V1 @+ @ vp) == Vs1) @+ + @ Vy(m),
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for all vy,...,v, € V and s € S,,. One can easily check that the actions of GL(V')
and S, in the space V®" commute. We will show that GL(V) and S, form a dual
pair.

THEOREM 2.4. (Schur-Weyl duality) Let m = dim V" and I',, ,,, denote the set of
all Young diagrams with n boxes such that the number of rows of A\ is not bigger
than m. Then

ver= B vie Si(v),
A6117’1,77'71
where V) is the irreducible representation of S,, associated to \ and

SA = HOIHSn(V)\, V)
is an irreducible representation of GL(V'). Moreover, S\(V) and S, (V') are not iso-

morphic if X # p.

REMARK 2.5. If A € ', ,,, and ¢(\) is arbitrary Young tableau of shape A, then the
image of the Young symmetrizer cyyy in V®" is a simple GL(V)-module isomorphic

to SA(V)

EXAMPLE 2.6. Let n = 2. Then we have a decomposition V@V = S?(V)HA*(V).
Theorem 2.4 implies that S*(V) = S(5)(V) and A*(V) = Si1.1)(V) are irreducible rep-
resentations of GL(V'). More generally, S(,)(V) is isomorphic to S™(V') and Sy,...1)(V)
is isomorphic to A™(V).

Let us prove Theorem 2.4.

LEMMA 2.7. Let o : k(GL(V)) — End,(V®™) be the homomorphism induced by
the action of GL(V') on V®". Then

Endg, (V") = o(k(GL(V)).
PROOF. Let E = Endy (V). Then we have an isomorphism of algebras
Endy, (V") ~ E®".
We define the action of S,, on E®™ by setting
S(Xi®--®X,) =Xy Q- ® Xy

for all s € S and Xi,...,X,, € E. Then Endg, (V") coincides with the subalgebra
of S,-invariants in E®" that is with the n-th symmetric power S™(E) of E. Therefore
it suffices to show that S™(E) is the linear span of o(g) for all g € GL(V).

We will need the following

EXERCISE 2.8. Let W be a vector space. Prove that for all n > 2 the following
identity holds in the symmetric algebra S (W)

2 haley . a = >0 (DT (a4 (2D e (1) )

i9=0,1,...,in=0,1

n
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Let us choose a basis ey, ..., e,2 of E/ such that all non-zero linear combinations
aje;+- - -Famze2 with coefficients a; € {—n, ..., n} belong to GL(V'). (The existence
of such basis follows from density of GL(V') in F in Zariski topology.) By the above
exercise the set

{(are;, + -+ + ane;, )" |a; = +1, 4y, .. i, < N}
spans S"™(E). On the other hand, every non-zero (aje;, + -+ + aye;,) belongs to
GL(V). Therefore we have

(arei, + -+ ape;, )" = o(are;, + -+ + aqe;,).
Hence S™(F) is the linear span of o(g) for g € GL(V). O

LEMMA 2.9. Let A = (A1,...,A,) be a partition of n. Then S\(V') # 0 if and
only if X € Iy, .

)®n

PRroOF. Consider the tableau ¢(\) with entries 1,...,n placed in increasing order
from top to bottom of the Young diagram A starting from the first column. For
| 1[3]5]
instance, for A\ = we consider the tableau t(\) = [214] . By Remark 2.5
S\(V) # 0 if and only if ¢;(,)(V®") # 0.

If A =p = (ug,..., 1), then

by (V") = @i A (V).
If X is not in Ty, then gy > m and by (V™) = 0. Hence ¢y (V®") = 0.

Let A € I, ,,,. Choose a basis vy,...,v,, in V, then

Bi={v,® - ®u,|1<id,...,i, <m}

is a basis of V®". Consider the particular basis vector
U=0@ ...V, Q- QU Q...v, € B.

One can easily see that in the decomposition of ¢y () in the basis B, u occurs with

p
coefficient H Ail. In particular, ¢y (u) # 0. Hence the statement. O
i=1
Lemma 2.7, Lemma 2.9 and Theorem 2.1 imply Theorem 2.4. Furthermore, Theo-
rem 2.4 together with the Jacobson density theorem (Theorem 2.9 Chapter V) implies
the double centralizer property:

COROLLARY 2.10. Under assumptions of Theorem 2.4 we have
Ender) (V") = p(k(S,)).

DEFINITION 2.11. Let A be a partition of n. The Schur functor S is the functor
from the category of vector spaces to itself defined by

V= S)\(V) = HOIHSn(V)\, V®n)
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Note that Sy is not an additive functor, in particular,
Schur-Weyl duality holds for an infinite-dimensional space in the following form.

PROPOSITION 2.12. Let V' be an infinite-dimensional vector space and I',, be the
set of all partitions of n. Then we have the decomposition

ver = @G v e Siv),

Aely

each Sy(V) is a simple GL(V')-module and S\(V') is not isomorphic to S,,(V') if X # p.

PRrROOF. The existence of the decomposition is straightforward. For any finite-
dimensional subspace W of V' we have the embedding Sy (W) < S\(V). Furthermore,
S\(W) # 0 if dim W > A\{. Hence S\(V) # 0 for all A € T,,.

Furthermore, S\(V) is the union of Sy(WW) for all finite-dimensional subspaces
W C V. Since S\(W) is a simple GL(W)-module for sufficiently large dim W, we
obtain that S\(V') is a simple GL(V')-module.

To prove the last assertion we notice that Corollary 2.10 holds by the Jacobson
density theorem, hence S)(V') is not isomorphic to S, (V) if A # p. O

Schur-Weyl duality provides a link between tensor product of GL(V')-modules
and induction-restriction of representations of symmetric groups.

DEFINITION 2.13. Let A be a partition of p and p a partition of q. Note that
Sy(V)®S,(V) is a submodule in VEP+9) hence it is a semisimple G L(V)-module and
can be written as a direct sum of S, (V') with some multiplicities. These multiplicities
are called Littlewood-Richardson coefficients. More precisely, we define NY , as the
function of three partitions A\, u and v given by

Ny, = dim Homg ) (S, (V), Sx(V) @ Su(V)).
Clearly, N} , # 0 implies that v is a partition of p + g.
PROPOSITION 2.14. Let A be a partition of p and p a partition of ¢, n = p + q
and dim V' > n. Consider the injective homomorphism S, x S, < S, which sends S,

to the permutations of 1,...,p and S, to the permutations of p+1,...,n. Then for
any partition v of n we have

NY, = dimHomg, (V;, Indg", 5 (VA R V,)) = dim Homg, xs, (Vi, VA B V,,).

PROOF. Let us choose three tableaux t(v), t'(A) and t”(x). We use the identifi-
cation

SV(V) ~ Ct(,,)(V®n), SV(V) ~ Ct/()\)(v(@p), SV(V) ~ Ct//(u)(v(@q).

Since V®" is a semisimple GL(V)-module we have

Homerv) (i) (VE™), ey @ oy (V™)) = o)k (Sn) e o (-
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Now we use an isomorphism of S,-modules
Ind$, g, (VA 8 V,)) = K(Su)evoyerrg.
Then by Lemma 1.21 we obtain
NY,, = dimHomg, (V;,, Indg", 5 (VA R V,)) = dim e k(Sn) cr ()G )
The second equality follows by Frobenius reciprocity. |

3. Generalities on Hopf algebras

Let Z be a commutative unital ring.

Let A be a unital Z-algebra, we denote by m: A® A — A the Z-linear multipli-
cation. Since A is unital, there is an Z-linear map e : Z — A. Moreover, we assume
we are given two Z-linear maps m* : A — A ® A (called the comultiplication) and
e* : A — Z (called the counit) such that the following axioms hold:

e (A): the multiplication m is associative, meaning the following diagram is

commutative
ARARA — A®A
1dg @m i 4 m
AR A — A
m

e (A*): the comultiplication is coassociative, namely the following diagram

commutes:
m*
A — AR A
m* { i} tdy @ m*
AR A — ARAR®A

Note that this is the transpose of the diagram of (A).
e (U): The fact that e(1) = 1 can be expressed by the commutativity of the
following diagrams:

ZRA ~ A ARZ =~ A
e®1 i I Id, 1®e 4 I Id
ARA — A AR A — A
m m

e (U*): similarly, the following diagrams commute

A ~ A®RZ A ~ 7Z®A
Id ¢ T l®e*, Id 1 0 e*®1,
A — AR A A — ARA

m m
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e (Antipode): there exists a Z-linear isomorphism S : A — A such that the
following diagrams commute:

S®Idy ldy® S
AR A — AR A AR A — AR A
m* T Loom,o omt 7 Looom,
A — A A — A
eoe* eoe*

DEFINITION 3.1. This set of data is called a Hopf algebra if the following property
holds:

(H): the map m*: A - A® A is an homomorphism of Z-algebras.

Moreover, if the antipode axiom is missing, then we call it a bialgebra.

EXERCISE 3.2. Show that if an antipode exists, then it is unique. Moreover, if S
is a left antipode and S’ is a right antipode, then S = 5.

REMARK 3.3. Assume that A is a commutative algebra, for any commutative
algebra B, set Xp := Homy_,,(A, B), then the composition with m* induces a map
Xp x Xp = Homy_4,(A® A, B) — Xp which defines a group law on Xp. This
property characterizes commutative Hopf algebras.

ExamPLE 3.4. If M is a Z-module, then the symmetric algebra S*®(M) has a Hopf
algebra structure, for the comultiplication m* defined by: if A denotes the diagonal
map M — M & M, then m* : S*(M & M) = S*(M) ® S*(M) is the canonical
morphism of Z-algebras induced by A.

EXERCISE 3.5. Find m* when Z is a field and M is finite dimensional.

DEFINITION 3.6. Let A be a bialgebra, an element x € A is called primitive if
m*(z)=r®1+1® .

EXERCISE 3.7. Show that if k is a field of characteristic zero and if V' is a finite
dimensional k-vector space, then the primitive elements in S®(V) are exactly the
elements of V.

We say that a bialgebra A is connected graded if
(1) A=,y An is a graded algebra;
(2) m*: A — A® A is a homomorphism of graded algebras, where the grading
on A® A is given by the sum of gradings;
(3) Ao = Z;
(4) the counit e* : A — Z is a homomorphism of graded rings.

LEMMA 3.8. Let A be a graded connected bialgebra, I = @, ., A,. Then for any

rel m(r)=2r®1+1®x+m!(r) for somem’ (x) € I ®I. In particular every
element of A of degree 1 is primitive.
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PROOF. From the properties (3) and (4) we have that I = Kere*. Write
m*(z) =y®1+1®z+m] (z).

We have to check that y = 2z = x. But this immediately follows from the counit
axiom. 0

PROPOSITION 3.9. Let A be a connected graded bialgebra and P be the set of
primitive elements of A. Assume that I NP = 0. Then A is commutative and has
the antipode.

PROOF. Let us prove first that A is commutative. Assume the opposite. Let
r € Ag,y € A; be some homogeneous element of A such that [z,y] # 0 and k + 1
minimal possible. Then m*([x,y]) = [m*(z), m*(y)]. By minimality of k£ 4 [ we have
that [m’ (z),m* (y)] = 0, hence [z, y] is primitive. On the other hand, [z,y] € I ® I,
hence [x,y] = 0. A contradiction.

Next, let us prove the existence of antipode. For every x € A, we construct
S(z) € A, recursively. We set

S(z)=—xforn=1, S(z)=—-2—mo(Id®S)om](x)forn > 1.
EXERCISE 3.10. Check that S satisfies the antipode axiom.
O

4. The Hopf algebra associated to the representations of symmetric
groups

Let us consider the free Z-module A = @,enA(S,,) where A(S,,) is freely gener-
ated by the characters of the irreducible representations (in C-vector spaces) of the
symmetric group S,. (Note that since every S,-module is semi-simple, A(S,,) is the
Grothendieck group of the category S,, — mod of finite dimensional representations of
Syn). It is a N-graded module, where the homogeneous component of degree n is equal
to A(S,) if n > 1 and the homogeneous part of degree 0 is Z by convention. More-
over, we equip it with a Z-valued symmetric bilinear form, denoted (;), for which
the given basis of characters is an orthonormal basis, and with the positive cone A™
generated over the non-negative integers by the orthonormal basis.

In order to define the Hopf algebra structure on A, we use the induction and
restriction functors:

I, : (S, x8;) —mod — S,yq —mod,
R, Sprg —mod — (S, x S;) — mod.

REMARK 4.1. Frobenius (see Theorem 4.3) observed that the induction functor
is left adjoint to the restriction.

Since the restriction and induction functors are exact, they define maps in the
Grothendieck groups. Moreover, the following lemma holds:
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EXERCISE 4.2. Show that we have an group isomorphism
A(Sp % Sg) = A(Sp) @z A(Sy).
We deduce, from the collections of functors I, ,, R, 4, p,q € N, two maps:
m: A A — A,

mA— AR A
More explicitely, if M (resp N) is an S, (resp. S,) module and if [M] (resp. [N])
denotes its class in the Grothendieck group,

m([M] @ [N]) = [Ipy(M @ N)],

and if P is an S,-module,

ptq=n

EXERCISE 4.3. Show that m is associative and hence m* is coassociative (use
adjunction), m is commutative and m* is cocommutative (use adjunction).

The tricky point is to show the following lemma:

LEMMA 4.4. The map m* is an algebra homomorphism.

PRrROOF. (Sketch) We will use Theorem 6.4 Chapter II to compute
Resg", g Indg’, g, M & N,

where p+q = k+ 1 =n, M and N are representations of Sy and S; respectively.
The double cosets S, x S,\S,,/Sk x S; are enumerated by quadruples (a,b, ¢, d) € N*
satisfying a + b =p,c+d=q,a+c=k,b+d = 1. So we have

Sn Sn
ReSprsq IndSkXSl M ® N -

— SpXSq Sg XS]
= @ Indg’S s} v s. x5, ReSgt g xs.x5, M & N.
a+b=p,c+d=q,a+c=k,b+d=l

and
Resgt i ol g ws, M ® N = Resgt g M @ Resdl o N.
If
Roe(M)® RyoN = &,A;, ® B; ® C; ® D;,
then
(6.1) Ry iy (M@ N) = > > Lp(Ai® Ch) @ La(B; @ D).

a+b=p,c+d=q,a+c=k,b+d=l i
The relation (6.1) is the condition

m*m(a,b) = Zm(ai, b;) @ m(a',b’),
1]



120 6. SYMMETRIC GROUPS, SCHUR-WEYL DUALITY AND PSH ALGEBRAS

where m*(a) = 37, a;®a’, m*(b) = 3, b; @V, in terms of homogeneous components.
U

The axiom (U) corresponds to the inclusion Ay C A and (U*) is its adjoint, and
finally the antipode of the class of a simple S,-module [M] is the virtual module
(—1)"[e ® M], where ¢ is the sign representation of S,,.

Hence we have a structure of Hopf algebra on A, and the following properties are
easily checked:

e positivity: the cone A* is stable under multiplication (for m),

e self-adjointness: The maps m and m* are mutually adjoint with respect to the
scalar product on A and the corresponding scalar product on A ® A.

DEFINITION 4.5. A graded connected bialgebra A over Z together with a homo-
geneous basis (2, equipped with a scalar product ( , ) for which €2 is orthonormal,
which is positive (for the cone AT generated over N by ) and self-adjoint is called
a positive self-adjoint Hopf algebra, PSH algebra for short.

Moreover, the elements of € are called basic elements of A.

REMARK 4.6. Note that a PSH algebra is automatically commutative and co-
commutative Hopf algebra by Proposition 3.9.

We have just seen that:

PROPOSITION 4.7. The algebra A with the basis €2 given by classes of all irre-
ducible representations is a PSH algebra.

EXERCISE 4.8. Show that for any a4, ..., a, in A, the matrix Gram(ay,...,a,) =
((a;;)) such that a; ; := (a;, a;) (called the Gram matrix) is invertible in M, (Z) (i.e.
the determinant is +1) if and only if the a;’s form a basis of the sublattice of A
generated by some subset of cardinal n of €). Note that if the Gram matrix is the
identity, then, up to sign, the a;’s belong to €2..

EXERCISE 4.9. Assume H is a Hopf algebra with a scalar product and assume H
is commutative and self-adjoint. Let x be a primitive element in H and consider the
map

dy :H— H, y+— Z(yi,az)yi

where m*(y) = >,y @ y".
e Show that d, is a derivation (for all a,b in H, d,(ab) = ad,(b) + d.(a)b).
e Show that if = and y are primitive elements in H, then d,(y) = (y, z).

5. Classification of PSH algebras part 1: Zelevinsky’s decomposition
theorem

In this section we classify PSH algebras following Zelevinsky. Let A be a PSH
with the specified basis €2 and positive cone A™. Let us denote by II the set of basic
primitive elements of A that is primitive elements belonging to €.
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A multi-index « is a finitely supported function from II to N. For such an o we
denote by 7 the monomial HpEH p*®) We denote by M the set of such monomials.

For a € A we denote by Supp(a) (and call support of a) the set of basic elements
which appear in the decomposition of a.

LEMMA 5.1. The supports of 7® and 7® are disjoint whenever o # f3.

PROOF. Since the elements of M belong to A", we just have to show that the
scalar product (7%, 7%) is zero when a # 3. We prove this by induction on the total
degree of the monomial 7. Write 7® = w77 for some 7 such that a(m) # 0. Then
(recall Exercise 4.9)

(m®,77) = (17, dx, (1))
Since the total degree of 77 is less than the degree of 7®. If the scalar product is not
zero, we obtain by the induction assumption that d,, (7?) is a multiple of 77. This
implies 7° = m 77 = 72, [

For every monomial 7 € M, denote by A* the Z-span of Supp(7®).
LEMMA 5.2. For all 7, 7% in M, one has:
A%AP C AP,

PROOF. We consider the partial ordering < in A whose positive cone is AT (i.e.
x <y if and only if y — 2 € AT). Note that if 0 < x < y then Supp(x) C Supp(y).
Therefore if we pick up w in Supp(7®) and n € Supp(7?) then wn < 74, hence the
result. O

Let I be the ideal spanned by all elements of positive degree.

EXERCISE 5.3. (1) Show that if x € A is primitive, then z € I.
(2) Show that if x € I then m*(z) — 1 ® z — 2 ® 1 belongs to [ ® 1.

Moreover, x € I is primitive if and only if x is orthogonal to I2. Indeed for y and
zin I, (m*(z) —1®x—2® 1,y ® z) = (x,yz), hence the result by Exercise 5.3.

A= A~
TeeM
PROOF. Assume the equality doesn’t hold, then there exists an w € €2 which does
not belong to this sum. We choose such an w with minimal degree k. Since w is not
primitive, it is not orthogonal to I? and therefore belongs to the support of some
nn’ with n,7" belonging to Q. Hence k = k' + k” where k' (resp. k") is degree of n
(resp. 1'). By minimality of k, n and #/ lie in the direct sum, thus, by Lemma 5.2, a
contradiction. O

LEMMA 5.4. One has:

LEMMA 5.5. Let 7 and 7" be elements in M which are relatively prime. Then
the restriction of the multiplication induces an isomorphism A® @ A® ~ A*t8 given
by a bijection between Supp(n®) x Supp(7?®) and Supp(7®+7).
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ProOF. We will prove that the Gram matrix (see Exercise 4.8)

Gram ( (wn)WGSupp(ﬂ’o‘)mESUPP(ﬂ'ﬁ) )

is the identity. This will be enough since it implies that the products wn are distinct
elements of ) (again, see Exercise 4.8), and they exhaust the support of 7%# which
belongs to their linear span.

Let wy,ws (resp. n1,7m2) be elements of Supp(m®) (resp. Supp(r”)), one has

(Wi, warp) = (M (wWim), w2 @ 1) = (M (w1)m (M), wa @ 12).
One has m*(w1) € P or_g A” ® A% and m*(n;) € DBy i pr_s AP @ AP (this is
just a transposed version of Lemma 5.2), hence
m*(wl)m*(m) S Z Aal+'8/ X Aahrﬁ”.
a'+al'=a,B +B" =8

On the other hand, wy, ® 15 belongs to A* ® A®. We must understand in which cases
AY P @ A" = A* @ AP and this occurs if and only if o + 3 = o, o + 8" = .
Since 7® and 7 are relatively prime, this occurs if and only if 3/ =0 = .

The component of m*(w;) in A* ® A° is w; ® 1 and the component of m*(n;) in
A°® AP is 1@y (see Exercise 5.3), therefore

(Wi, wamz) = (w1 @ 1)(1 @ M), we ® N2) = (W1 & M, wa @ 12) = (WM, Wana).
Hence the result. Il

The following Theorem is a direct consequence of Lemmas 5.1, 5.2, 5.4, 5.5.

THEOREM 5.6. (Zelevinsky’s decomposition theorem). Let A be a PSH algebra
with basis w, and let II be the set of basic primitive elements of A. For every © € Il
we set Ay =@,y A™ . Then

(1) A, is a PSH algebra and its unique basic primitive element is T,
(2) A=Q, e Ar

REMARK 5.7. In the second statement, the tensor product might be infinite: it
is defined as the span of tensor monomials with a finite number of entries non-equal
to 1.

DEFINITION 5.8. The rank of the PSH algebra A is the cardinal of the set II of
basic primitive elements in A.

6. Classification of PSH algebras part 2: unicity for the rank 1 case

By the previous section, understanding a PSH algebra is equivalent to under-
standing its rank one components. Therefore, we want to classify the rank one cases.

Let A be PSH algebra of rank one with marked basis €2, and denote 7 its unique
basic primitive element. We assume that we have chosen the graduation of A so that
7 is of degree 1. We will construct a sequence (e;);en of elements of 2 such that:
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(1) eg =1, e = 7 and e, is of degree n (it is automatically homogeneous since
it belongs to ),

(2) A~Zlej, ey, ..., e,,...] as graded Z-algebras,

(3) M (en) = Dy € G €.
Actually, we will find exactly two such sequences and we will denote the second one
(h;)ien- The antipode map exchanges those two sequences.

We denote by d the derivation of A which is adjoint to the multiplication by 7

(see Exercise 4.9).

LEMMA 6.1. There are exactly two elements in §) of degree 2 and their sum is
equal to 72,

PRrRoOF. One has
(n?, %) = (m,d(n?)) = 2(m,7) = 2.

On the other hand, if we write 72 in the basis Q, 7° =Y _ (7% w)w, we get

(n%,7%) = Y (% w)?,
we

but (72, w) is a non negative integer, hence the result. 0

We will denote by ey one of those two basic elements and h, the other one.
Furthermore, we set €} (resp. h}) to be the linear operator on A of degree —2 which
is adjoint to the multiplication by ey (resp. hs).

EXERCISE 6.2. Show that the operator e} satisfies the identities
(6.2) m*(ey) =ea @1 +71R7+1R® ey,

(6.3) es5(ab) = e5(a)b + ae3(b) + d(a)d(D).

LEMMA 6.3. There is exactly one element e,, of degree n in §2 such that hi(e,) = 0.
This element satisfies d(e,,) = e,_1.

PROOF. We prove this by induction on n. For n = 2, hi(es) is the scalar product
(ha, e2) which is zero because e; and hy are two distinct elements of 2. We assume
that the statement of the lemma holds for all ¢« < n. If x is of degree n and satisfies
hi(z) = 0, then d(z) (which is of degree n—1) is proportional to e,,_; by the induction
hypothesis, since hi and d commute. The scalar is equal to (d(z),e,_1) = (z,me,_1)
since d is the adjoint of the multiplication by 7. As in Lemma 6.1, we prove next that
(men_1,men_1) = 2: indeed (we, 1,7, 1) = (d(7e,_1),€n_1) = (€n_1+ Ten_2,€n_1)
=14+ (mep_9,6n-1) =1+ {e,_9,d(e,_1)) = 2.

Therefore me,,_1 decomposes as the sum of two distinct basic elements w; + wo.
Besides, using Exercise 6.2 equation (6.3), we have hi(mwe,_1) = e,_o. Since h} is a
positive operator (i.e. preserves A™), hi(wi) + hj(wz) = e, o implies that one of the
factors hj(w;) (i =1 or 2) is zero, so that w; can be choosen for z = e,. O
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PROPOSITION 6.4. One has, for every n > 1,
n

m*(e,) = Z er Q en_k-

k=0

Proor. If w belongs to 2, we denote by w* the adjoint of the multiplication by
w. We just need to show that w*(e,) = 0 except if w = e; for some 0 < k < n, in
which case w*(e,,) = €,_.

Indeed, we can write 7% = >~ ¢, .. g(w)=k Cww where the coefficients C,, are positive

weN,deg(w)=k wa*' Since Zweﬁ,deg(w):k wa*(en) = dk(en) =
en—k, all the terms in the sum are zero except one (by integrity of the coefficients).
It remains to show that the non-zero term comes from the element e; of 2. But this
is clear since d"Fe;(e,) = erd"*(e,) = e}(er) = 1. O

integers, hence d* =

EXERCISE 6.5. (1) Show that for every n > 0, ey, (ab) = > <, ex(a)ey, 1 (b).
(2) We make the convention that h_; = 0. Prove the following equality for any
positive integer n and 4, ..., 7, non negative integers:

(64) 6*(hi1 c. h“) = h’i1—1 ce hir—l'

A

PROPOSITION 6.6. Let t be an indeterminate, the two formal series Y., e;t" and
Y iso(—1)'hit" are mutually inverse.

PRrROOF. Since A is a graded bialgebra over Z, we know that it is equipped with
a unique antipode S. Let us show that it exchanges e, and (—1)"h,,:

First, let us show that S is an isometry for the scalar product of A. Indeed, we
have the following commutative diagram

Idy® S
AR A — AR A
(6.5) mt 1 Lom,
A — A
eoe*

where e : Z — is the unit of A (see section 3). By considering the adjoint of
this diagram, we understand that S* is also an antipode, and by uniqueness of the
antipode, S = S™! = §* hence S is an isometry and so for w € Q, S(w) = =+,
for some 1 € 2 (w and n have the same degree). Applying the diagram (6.5) to ,
who is primitive, we check that S(7) = —m. In the same way, we obtain S(7?) = 7?
and (es) = hg. Since e, is the unique basic element of degree n satisfying the
relation hi(e,) = 0,we have S(e,) = +h, and the sign coincides is (—1)" since
S(r") = (=1)"x".

The diagram (6.5) implies that (molds®Som*)(e,) = 0 for alln > 1. By Proposi-
tion 6.4, one has m*(e,) = > gcpe,, €6 @€n—k and so we have >, o (—1)"Feph, =
0. The result follows. - o O
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We will now use the definitions and notations for partitions introduced in Section
1. For a partition A = (\1,...,\,), we denote by e, the product ey = ey, ...ey, and
set a similar definition for h,. Note that in general, the elements ey, h) do not belong
to €.

DEFINITION 6.7. Let A = (Ay,..., A\;) and u = (1, ..., ps) be two partitions of
the same integer n. We say that \ is greater or equal than p for the dominance order
and denote it A = p if, for every k <inf(r,s), Ay + ...+ X\ > g1 + ... + pg.

LEMMA 6.8. Let A and p be partitions of a given integer n, define M), as the
number of matrices with entries belonging to {0, 1} such that the sum of the entries
in the i-th row (resp. column) is \; (resp. ;). Then one has:

(1) (ex, hy) = My,
(2) ‘]\4/\)\L = 17
(3) My, # 0 implies A\ < p*

PROOF. (Sketch) We write A = (A1,...,\) and g = (pq ... ps). By Exercise 6.5,
we have

* —
ex, (Puy - hy,) = E Py = - Py,
v;=0,13 v;=\

Next, we apply €3, to this sum, €3, to the result, and so on. We obtain:

(ex, hu> = ei(hu) = Z hm—Zi vig s hus—zi Vei®

vi €{0,1},3°, vij=A;

The terms in the sum of the right-hand side are equal to 0 except when p; = > ;i Vi
for all 4, in which case the value is 1. The statement (1) follows.

For statement (2), we see easily that the only matrix N = (1, ;) with entries in
{0, 1} such that 3. v;; = A; and Y, v; = Aj is the one such that the entries decrease
along both the rows and the columns, hence the result.

Finally, consider a matrix N = (v;;) with entries in {0,1} such that > v;; = A;
and Y .v;; = p;. The sum A\ + ...+ \; is the sum of the entries of the columns
of index < i of N. Furthermore, ui + ...+ ;- is equal to ngl.jlj where [; is the
number of rows of NV which have sum j. It is easy to check that statement (3) follows.

O

COROLLARY 6.9. The matrix ((ex,h,1))x+n Is upper triangular with 1’s on the
diagonal. In particular, its determinant is equal to 1.

PROPOSITION 6.10. When A varies along the partitions of n, the collection of e)’s
is a basis of the homogeneous component of degree n, A, of A.

Proor. First we notice that every h; is a polynomial with integral coefficients in
the e;’s. This follows immediately from Proposition 6.6. Therefore the base change
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matrix P from (hy)a-n to (€x)x-n has integral entries. Then the Gram matrix G, of
(ex)a-n satisfies the equality

((ex, hu))apurn = P'G.,

where P! denotes the transposed P. The corollary 6.9 ensures that the left-hand
side has determinant +1 (the corollary is stated for u* and p+— pt is an involution
which can produce a sign). Hence G, has determinant +1: we refer to Exercise 4.8
to ensure that the Z-module generated by (e))a-, has a basis contained in €. Since
the support of e is the set of all w € Q of degree n, we conclude that (ey)x-, is a
basis of A,,. O

We deduce from the results of this section:

THEOREM 6.11. (Zelevinsky) Up to isomorphism, there is only one rank one PSH
algebra. It has only one non-trivial automorphism ¢, which takes any homogeneous
element x of degree n to (—1)"S(z) where S is the antipode.

REMARK 6.12. The sets of algebraically independent generators (e,,) and (h,,) of
the Z-algebra A play symmetric roles, and they are exchanged by the automorphism
¢ of the theorem.

7. Bases of PSH algebras of rank one

Let A be a PSH algebra of rank one, with basis {2 and scalar product ( ,), we will
use the sets of generators (e,) and (h,). We keep all the notations of the preceding
section.

We will first describe the primitive elements of A. We denote Ag := A ® Q.

EXERCISE 7.1. Consider the algebra A[[t]] of formal power series with coefficients
in A. Let f € A[[t]] such that m*(f) = f ® f and the constant term of f is 1. Show

that the logarithmic derivative g := fT/ satisfies m*(g) =g®@1+1®g.

PROPOSITION 7.2. (1) For every n > 1, there is exactly one primitive el-
ement of degree n, p,, such that (p,,h,) = 1. Moreover, every primitive
element of degree n is a integral multiple of p,,.

(2) In the formal power series ring Agl[t]], we have the following equality:

Pn

6.6 exp —t" | = hnt".
o ()2

Proor. We first show that the set of primitive elements of degree n is a sub-
group of rank 1. Indeed, we recall that the primitive elements form the orthogonal
complement of 1% in I (see just below Exercise 5.3). Since all the elements (hy)x-r
except h, are in I?, the conclusion follows. Moreover, A, is its own dual with respect
to the scalar product. Let denote by (h*)y-, the dual basis of (hy)yn. Clearly, A"
can be chosen as p,. Hence statement (1).
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Consider the formal series H(t) := > ., h,t" € A[[t]], it satisfies the relation
m!H) = H ® H by Proposition 6.4, re-written in terms of h’s instead of €’s. Hence,
using Exercise 7.1, we get P(t) := % which satisfies m*(P) = P®1+1®P. Hence all
the coefficients of P are primitive elements in A. Write P(t) = "o, wiy1t'. To prove

statement (2), it remains to check that (w,, h,) = 1. We have P(t)H(t) = H'(t), so
when we compare the terms on both sides we get

(67) Wy, + hlwn,1 + ...+ hn,1W1 — nhn =0.

By induction on n, this implies

Wy = (—1)”]1? + Z C)\h)\,
AFn A £A(1,.,1)
where the ¢)’s are integers. Now, we compute the scalar product with e,: we apply
Lemma 6.8 and find that there is no contribution from the terms indexed by A if
A # (1,...,1). Therefore, (w,,e,) = (—1)". Finally, we use the automorphism of
A to get the conclusion that p, = w, since t(e,) = h, and (w,) = (—1)"w, by
Proposition 6.6. O

For every partition A = (Ay,..., \,), we set py = py, --.Px,.. Let us compute their
Gram matrix:

PROPOSITION 7.3. The family (p,) is an orthogonal basis of Ag and one has

() = [T =20 T
J K3

PROOF. Since p; is primitive, the operator p; is a derivation of A. Moreover,
since p; is of degree 7, p; and p; are orthogonal when i # j. We compute (p;, p;): we
use the formula (6.7) (recall that we proved that p, = w,Vn) and since p}(h,p;—,) =
Pi(he)pi—r + hepf(piey) = 0if 1 <7 <i—1, we obtain p}(p;) = (pi, pi) = (pi,thi) =i
by Proposition 7.2.

To show that p) is orthogonal to p, if A # u, we repeat the argument of the proof
of Lemma 5.1.

Finally, we compute (p},pl): we use the fact that p} is a derivation such that
pi(pi) = 4, hence (pl,p;) = rli". This implies the formula giving (py,py) for any
A OJ

Now we want to compute the transfer matrices between the bases (hy) (or (ey))
and Q.

LEMMA 7.4. Let \ be a partition, then the intersection of the supports Supp(ey1)
and Supp(hy) is of cardinal one. We will denote this element w.

PROOF. By Lemma 6.8, one has (eyr,h,) = 1 and, by the positivity of those
elements, this implies the statement. O
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Our first goal is to express hy’s in terms of w,’s. First, we compute h}(w,), and
for this, we need to introduce some notations.

Let A be a partition, or equivalently a Young diagram. We denote by 7(\) (resp.
¢(A)) the number of rows (resp columns) of A.

We denote by R the set of all s such that p is obtained from A by removing
exactly i boxes, at most one in every row of A. Similarly, C} is the set of all y’s such
that p is obtained from A by removing exactly ¢ boxes, at most one in every column
of A. In the specific case where i = r()), there is only one element in the set R} and
this element will be denoted by A, it is the diagram obtained by removing the first
column of A, similarly, if i = ¢(\) the unique element of C? will be denoted by A\
and is the diagram obtained by suppressing the first row of \.

REMARK 7.5. Note that if u € C}, then pu* € R;(A%).

THEOREM 7.6. (Pieri’s rule) One has:

B = 3w

A
pneCy

ej(wa) = Z Wy

A
,uGR].

and

We need several lemmas to show this statement.
LEMMA 7.7. One has, for all i,j in N,
e;ohj=hjoe; +hj_j0e;_,
PROOF. From Exercise 6.5 statement (1), we obtain that
e (hyx) = €i(hy)ely () + hyel () Y € A,
hence the Lemma. OJ

LEMMA 7.8. Let p,q be two integers, let a € A. Let us assume that h!(a) = 0 for
i >p and ej(a) = 0 for j > g, then
hyoez(a) =0
and
hy yoey(a) =hyoe; i(a).
PRrooOF. Using a transposed version of Proposition 6.6, we get:
> (=1)hioe;=0.
i+j=n

The lemma follows. O
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LEMMA 7.9. One has:
Er ) (wWr) = wae.
PROOF. Applying Equation (6.4), we get
ey (ha) = hae.

Since €], is a positive operator and wy < hy by definition, we have Supp(e;,, (wy)) C

Supp(hy-).
By definition of wy, we know that {ey.,wy) = 1, so we have (e(ey1, €y (wr)) = 1.

Therefore, wye € Supp(e; ) (w)).
It is sufficient to show now that (e}, (w), ha=) = 1: let us compute:
<€:(A) (Wr), hae) = hie 6:(/\) (wr),
assume A = (Aq, ..., \),
(er(wr), hae) =h3 _jo...0h} _joer(w)
= hi\r—l ©...0 h§2—1 © 6:—1 o hj\l (CU)\)

by Lemma 7.8 (the hypothesis is satisfied because for all i > A\; one has h}(ey.) =0
and for all j > r, €j(hy) = 0). We use the same trick repeatedly, the enthusiastic

reader is encouraged to check that the hypothesis of Lemma 7.8 is satisfied at each
step by induction. We finally obtain

hie o erpy(wa) = hi(wy) = 1.

For every ¢ in N and for every partition A, we set:
h;k (W)\) = Z az)\,uwﬂ
w

which can also be written

(6.8) hiw, = Z aj,Wx
By

the Theorem 7.6 amounts to computing the coefficients aﬁv -

LEMMA 7.10. For i > 0 and for every partitions A and pu, one has
' ahe e if (N =7()
ay, = agﬂ#ﬁ if r(A)=r(p)+1
0 otherwise

REMARK 7.11. The first equality of Theorem 7.6 is obtained from this lemma by
induction on ¢(\), the second one follows via the automorphism ¢.
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PROOF. First, let us prove that if a} , # 0, then r(X) = r(u) or r(X) = r(p) + 1.
Assume r(p) > 7(A) and a} , # 0: then we have w, < h;(w,), therefore, applying
Lemma 7.9, we get

Wue = 6:(#)( ) < er(u (¢] h:(W)\) = h: o 6:(H)<W)\) - 07
which gives a contradiction.
Assume r(p) < r(A) — 1 and aj , # 0: then applying the equation (6.8), we have
wy < hijw,,, therefore applying Lemma 7.9 and Lemma 7.7, we get
wie = e (Wa) < €xpy © hiwy) = hi o ey (wy) + him1 0 €51 (wu) =0,

which again gives a contradiction.
Next, we look at the case r(A) = r(u). We do a direct computation:

hi(wae) = €5y © by (wy) Za&u € = Z af\’uwlﬁ.
p r(N)=r(n)
Finally, we assume 7(\) = r(u) + 1. We apply Lemma 7.7,

er(u +1(h wu) = h;_ ler(u) (W#) =h;_1 wu ZCL <_wl,

On the other hand,
6:(M)+1(hiwu) = Z ag\,uej(u)-kl(w)\) = Z ag\,uwkk'

A r(A)=r(pn)+1

Now we compare the coefficients and obtain that

e e |

O = Oxe e

O

For a partition A, we introduce the notion of semistandard tableau of shape A: the
Young diagram of shape A is filled with entries wich are no longer distinct, with the
condition that the entries are non decreasing along the rows and increasing along the
columns of A. For instance,

—_

L]

‘»P‘OJ DO | =

is a semistandard tableau.

To such a semistandard tableau, we associate its weight, which is the sequence
m; consisting of the numbers of occurences of the integer ¢ in the tableau: in our
example, my = 2, my =1, m3 = 2, my = 1 and all the other m;’s are zero.
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PROPOSITION 7.12. Let A be a partition of n. Let my,...,m, be a sequence
of non negative integers such that my + ...+ m, = n, then (hy,, ... "y, ,wy) is the
number of semistandard tableaux of shape \ and weight my, ..., m,.

PROOF. We iterate Pieri’s rule (see Theorem 7.6):

hjm.(w,\): Z Wi

HeCH,,

(Pny_y b, )" (W) = Z Z W s

wi€Cy,, NQGC"anlT._l

and eventually

Y N I (U TRERY Sy o ol (79 = N RPN §

meEC), weCrly  peCyl!

because w,, = 1 due to the fact that m; +... +m, = n.

The sequences pig, . . ., u, indexing the sum in the right-hand side are in bijective
correspondence with the semistandard tableaux of shape A and weight mq, ..., m,,
indeed given such a semistandard tableau, we set p; to be the union of the boxes
filled with numbers < i: p; is a semistandard tableau. Hence the result. O

REMARK 7.13. Since the product is commutative, (A, ... hn,,wy) depends only
on the non-increasing rearrangement p of the sequence pq,...,u,.. Note that the
partition p we just obtained verifies A = u .

DEFINITION 7.14. Let A, u be two partitions of n, we define the Kostka number
K, to be the number of semistandard tableaux of shape A and weight .

THEOREM 7.15. (Jacobi-Trudi) For any partition A of n, one has

wy = Det ((hAi—i+j)1§i,j§r(A)> ’

PrROOF. The theorem is proved by induction on n. For n = 1 the statement is
clear and we assume that the equality holds for all partitions p of m with m < n.
We will use the automorphism H of the PSH algebra A defined by

H(h,l) — Z hj,
J<i
(the automorphism H is the formal sum ),  hy).

First, we notice that the linear map H — Id : I — A is injective: indeed this
amounts to saying that its adjoint restricts to the surjective linear map

Z Aj — An, (CL(), ce ,an_l) — aohn + ...+ an_lhl,

0<j<n

and this assertion is clear since A the polynomial algebra Z[(h;);en]-
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Let us explain the induction step: we denote by w, the determinant of the theo-
rem. We know (Pieri’s rule, Theorem 7.6 ) that H(wx) = >_;54 secr Wy, and we will

show that H(w,), when A varies, satisfies the same equality (with obvious changes
of notations). This will conclude the proof since H — Id : I — A is injective.
Since H is an algebra homomorphism, we have

H(wy\)(= H (Det <(h/\i—i+j)1§i,j§r(/\)>>) = Det <(H(h*i—i+1))1§i,j§r(k)) :

We know that H(hy,_itj) = Zkgxi hi—i+; by definition of H. Hence

H(W)\> = Det ( Z hki’i“l’j)
1<4,j<r

k1S>\17~~7kT‘S>\7‘

We notice that, in this determinant, every entry is a partial sum of the entry which
is just above it, we are led to substract the ¢ + 1th row from the ith row for all 7.
This doesn’t affect the value of the determinant, therefore we obtain the equality

H(W)\) = Det E hkifiJrj
A2<k1 <AL, Ar Sk 1 <A1,k <A 1<ij<r
Since the determinant is a multilinear function of its rows, we deduce

H(w)y) = Z Det ((hkfiﬂ‘)gz‘,jgr) :

A2<k1 <AL, Ar Sk 1 KA1,k <A

Now each family of indices ki, ..., k, gives rise to a partition u belonging to C?, for
m=mn—ky —...— k., from which we deduce the result. O
8. Harvest

In the last four sections, we defined and classified PSH algebras and we obtained
precise results in the rank one case. Now it is time to see why this was useful. In this
section, we will meet two avatars of the rank one PSH algebra, namely A of section
4, and the Grothendieck group of polynomial representations of the group GL..:
this interpretation will give us precious information concerning the representation
theory in both cases. The final section of this chapter will be devoted to another
very important application of PSH algebras, in infinite rank case, associated to linear
groups over finite fields. We will only state the main results without proof and refer
the reader to Zelevinsky’s seminal book.

8.1. Representations of symmetric groups revisited. We use the notations
of section 4. We know by Proposition 4.7 that A is a PSH algebra.
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PROPOSITION 8.1. The PSH algebra A is of rank one with basic primitive element
7, the class (in the Grothendieck group) of the trivial representation of the trivial
group Si.

PROOF. Our goal is to show that every irreducible representation of S, (n €
N\{0}) appears in 7". It is clear that 7" is the regular representation of S,,, hence
the result. m

The choice of m gives us gives us two isomorphisms between A and A (one is
obtained from the other by application of the automorphism ¢). We choose the
isomorphism which send hy to the trivial representation of Sy (hence it sends ey to
the sign representation of Ss).

Let us give an interpretation of the different bases (ey), (hy), (wx), (pa) in this
setting.

EXERCISE 8.2. (1) Check that e; corresponds to the sign representation of
S; and that h; corresponds to the trivial representation of S;.
(2) Show that w, corresponds to the class of the irreducible representation V)
defined in section 1.

REMARK 8.3. In the case of symmetric groups, the Grothendieck group is also
the direct sum of Z-valued central functions on S,, when n varies. See Chapter 1,

associated with the fact that the characters of the symmetric groups take their values
in Z.

EXERCISE 8.4. (1) Show that the primitive element 2 is the characteristic
function of the circular permutation of .S;.
(2) Interpreting the induction functors involved, show that, for every partition
A, Dy s the| (|:'haracteristic function of the conjugacy class ¢y corresponding
Al

to \ times &=,
[ex]

The following Proposition is now clear:

PROPOSITION 8.5. The character table of S,, is just the transfer matrix expressing
the py’s in terms of wy’s when \ varies along the partitions of n.

Our goal now is to prove the Hook formula:

Let A be a partition, let @ = (i, j) be any every box in the Young diagram A, we
denote h(a) the number of boxes (', ;') of the Young diagram such that ' = ¢ and
j' > jorid >iand j' = j: h(a) is called the hook length of a.

THEOREM 8.6. (Hook formula) For every partition A of n, the dimension of the
Sp-module Vy is equal to
n!

dimVy = ———
T Lo h(a)
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PRroOF. For any S,-module V', let us denote by rdimV the reduced dimension of
V that is the quotient dig‘!V: this defines a ring homomorphism from A to @Q, as one
can easily see computing the dimension of an induced module.

We write A = (Aq,..., ). Set L; = \; +r — i and consider the new partition
consisting of (Ly,...,L,) := L. We apply Theorem 7.15 and notice that rdim(h,) =

%: therefore one has

rdim(wy) = Det ((ﬁ)gms) .

Since L;! = (L; — r + j)!P,_;(L;) where P, (X) is the polynomial X (X —1)...(X —
k + 1), the right-hand side becomes
1
mDet ((PT—j(Li))lgi,j§r> :

Now P is a polynomial of degree k with leading coefficient 1, hence this determinant
is a Vandermonde determinant and is equal to [],,,,(Li — L;) and we get

n!

Ly Lt

T 1<i<g<r

Noting that H(Lf'—%) is product of the hook lengths of boxes of the i-th row of A,
i<g\ iy

we obtained the wanted Hook formula. O
THEOREM 8.7. For every partition A\ of n, the restriction of V\ to S,_1 is the

direct sum ®,V,, where the Young diagram of y is obtained from the Young diagram
of X\ by deleting exactly one box.

PROOF. This restriction is hj(wy). Hence the result. O

EXERCISE 8.8. Compute the dimension of the Sg-module V) for A = (3,2, 1).
Calculate the restriction of V) to Ss.

8.2. Symmetric polynomials in infinitely many variables over Z. Let R
be a unital commutative ring, let us define the ring Sk of symmetric polynomials in
a fixed infinite sequence (X;);en., of variables with coefficients in R. Recall that the
symmetric group S, acts on the polynomial ring R[X;,..., X,] by 0(X;) = X,),
the ring of invariants consits of the symmetric polynomials in n variables. There is a
surjective algebra homomorphism which preserves the degree

Un s RIX1, . X" = RIX, .., X5

P(Xl,...,Xn+1) l-)P(Xl,...7Xn,0).

By definition, Sk is the projective limit of the maps (¢, )nen., in the category of
graded rings.
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In order to be more explicit, we need to introduce the ring of formal power series
R[[X1,...,Xp,...]] consisting of (possibly infinite) formal linear combinations, with
coefficients in R, ) a,X®, where a runs along multi-indices (o;);>1 of integers with
finite support. There is no difficulty in defining the product since, for any multi-index
«, there are only finitely many ways of expressing « into a sum a; +as. We set S to
be the groups of permutations of all positive integers generated by the transpositions.
Then Sk is the subring of R[[ X1, ..., X,,...]] whose elements are invariant under S,

and such that the degrees of the monomials are bounded.
Let A be the PSH algebra of rank one.

THEOREM 8.9. The map v : A — Sz, given by, for all a € A,
(69) ¢(a) = Z<a7 H hai>Xa7

is an algebra isomorphism.

REMARK 8.10. We deduce immediately from the formula for ¢ the following
statements:
(1) ©(hn) = 3010 =n X where [af =37 0 if a = (on,... 050,
(2) ¥(en) =D ue(ar,.) X, where every o is either 0 or 1 and |a| = n,
(3) 1/)(pn> = 2121 X
Finally, if we denote by h§\> the dual basis of hy with respect to the scalar
product on A, one has
(4) (hY) =3, X where a runs along the multi-indices whose non-increasing
rearrangement is A.

Proor. We follow the proof given in Zelevinsky’s book, attributed to Bernstein.
Let us first define the homomorphism : we iterate the comultiplication A - A® A
and obtain an algebra homomorphism g, : A — A®™" for any n (one has py = m*).

Furthermore, the counit € induces a map ¢, : A"t — A®" such that the follow-
ing diagram is commutative:

A Cai
N
A®n

If B is a N-graded commutative ring and ¢ is an indeterminate, we can define
a canonical homomorphistm Sg : B — Blt] by setting, for any b € B of degree k,
Bp(b) := bt*: thus we obtain a homomorphism 87" : A®" — A[X,...,X,]. Note
that, in order to obtain a homogeneous homomorphism, we have to forget the grading
of A for the definition of the degree in A[X7,..., X,]: in this algebra, the elements
of A have degree 0. Note also that the image of y, is always contained in (A%®")%",

®n+1

(6.10)
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EXERCISE 8.11. Show that the following diagram is commutative (the symmetric
group acts both on the set of variables and on the factors of A®¥):

1
Bt

(6.11) (A®HL)Snia s (AS™HUX, L X ]) St
(A®7)5n W (A®"[ Xy, ..., X,])%"
A

Let a € A, by definition of pu,, one has

(@) = Z (a,wyy - Wy YWy @ ... Qwy,

AlyeAn
where A1, ..., \, are partitions. Thus,
(6.12) D (pn(a)) = Z (a,wyy - wy )Wy, @ ... R wAnXl’\ll X
Aty An

LEMMA 8.12. There are exactly two positive algebra homomorphisms from A to
Z, conjugate up to ¢ (see Theorem 6.11) which transform the basic primitive element
7 into 1. One of them, denoted by ¢, is such that §(h;) = 1 for all i and §(wy) = 0
whenever wy, is not one of the h;s.

PROOF. Such a homomorphism maps 72 onto 1, but 72 = e, + hy and since it is
positive, either ey or hy is sent to one 1 (and the other to 0). Since ¢ exchanges es and
ha, we can assume that hs is sent to 1 (and es to 0). We denote this homomorphism
by 6. Let w be a basic element of degree n in A, distinct from h,,. By Lemma 6.3,
e3(w) # 0, hence w =< eam" 2 and since d(ez) = 0 and ¢ is positive, §(w) = 0. Then,
since §(n™) = 1, we obtain 6(h,) = 1, hence the Lemma. O

Set ¥, = 6" 0 f{" oy, : A — Z[ X4, ..., X,]. Applying Lemma 8.12 and (6.12),
we obtain

(6.13) Unla) = > Aahi, by )X XD
(il,...,in)GN"

Taking the projective limit, we get the morphism v : A — Sz we are looking for and
the item (4) of Remark 8.10 ensures that ¢ is an isomorphism. O

We now compute ¢(w,) for any partition A, and more precisely 1, (\) for any
n > |\l

COROLLARY 8.13. For any partition u = (1, ..., i) set

Xr= ) Xpro X
i1FiF . iy



8. HARVEST 137

Then
Ylwy) = D KX~
lul=IAl
We first introduce the following notation for the generalized Vandermonde de-
terminant: let g = (p1,...,1,) be a decreasing sequence of non-negative integers,
we set V,(X1,...,X,) = det((X}”)1<ij<n). Notice that Vinein—2,..1,0( X1, ..., Xp)

1
is the usual Vandermonde determinant.

PROPOSITION 8.14. One has
<6 14) ¢ ((,U)\) _ ‘/()\14-71—1,)\2-&-71—2,...)\”)(X17 s 7Xn>
" Vv(nfl,nf2,...,1,0) (X1> s 7Xn)

EXERCISE 8.15. Prove Proposition 8.14. Hint: Let S, denote the right hand side
of (6.14). Prove that

,lvbn(ek)s)\ - Z S}u
HETK(N)
where Ty () is he set of all partitions obtained from A be adding k boxes, at most
one box in each row, satisfying the additional restriction that the number of rows of
i is not bigger than n. Check that it is consistent with dual Pieri formula. Then
show that for any p one can find £ > 0 and A such that T;()\) contains only p and
partition less that p in lexicographic order. Then prove the statement by induction
on lexicographic order.

8.3. Complex general linear group for an infinite countable dimensional
vector space. Let V be an infinite countable dimensional complex vector space, we
consider the group G = GL(V'). Denote by T the full subcategory of the category of
G-modules whose objects are submodules of direct sums of tensor powers of V. We
saw in section 2 that 7T is a semisimple category. The simple modules are indexed
by partitions and we denote by Sy(V') the simple module associated to the partition
A. We denote by K(7T) the Grothendieck group of T.

Our aim is to equip K (7) with a structure of PSH algebra of rank one.

We define the multiplication: m([M],[N]) = [M ® N| for M and N in T (recall
that if M € T, we denote by [M] its class in the Grothendieck group).

We define the scalar product: ([M],[N]) = dimHomg(M, N), and the grading:
by convention, the degree of V®™ is n.

Finally we proceed to define the comultiplication m*, and it is a trifle more tricky.
Since V is infinite dimensional, we can choose an isomorphism ¢ : V' — V & V. By
composition with ¢, we obtain a group morphism ¢ : G x G to G,

A 0 4 (A0
(I)(o B)I“’lo(o B)W‘

We have two canonical projectors of V@V and we denote by V; (resp.V3) the image
of the first (resp. second) one.
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EXERCISE 8.16. Show that V;*” ® V,? is a semisimple G' x G-module and that
its irreducible components are of the form Sy(Vi) ® S, (V3), where X is a partition of
p and p is a partition of q.

Therefore, if we denote T the full sucategory of the category of G x G-modules
whose objects are submodules of direct sums of V™" ® V;°?, then its Grothendieck
group is isomorphic to K(7) @ K(T).

Hence, the restriction functor Res (with respect to the inclusion of G x G in
(G) maps the category T to the category 7. Therefore it induces a linear map
m*: K(T) — K(T)® K(T).

THEOREM 8.17. The Grothendieck group K(T), equipped the operations de-
scribed above and the basis given by the classes of simple modules, is a PSH algebra
of rank one, and the basic primitive element is the class of V', [V].

PrOOF. The only axiom of the definition of PSH algebras which is not straight-
forward and needs to be checked is the self-adjointness, namely the fact that m and
m* are mutually adjoint with respect to the scalar product. For this, we have to find
a functorial bijective map Homg(M ® N, P) — Homgyxg(M ® N, Res(P)) (where
M, N, P are objects of 7). Since any G-module is the direct sum of its homoge-
neous components, we may asume that M, N, P are homogeneous of degree p, ¢, n
respectively, with n = p 4+ q.

For any object W € T homogeneous of degree r, set [Ty := Homg(V®", W) which
is an S,-module; Schur-Weyl duality (see Proposition 2.12) can be reformulated in
saying that there is a canonical isomorphism of G-modules W =~ Iy ®¢(s,) V. We
set My .= 1l ®(C(Sp) Vv1®p — M, Ny =1y ®C(Sq) Vv2®q — N.

Then we have an inclusion M; ® Ny C M ® N, and the restriction defines a map
Homg(M ® N, P) — Homgyg(M; ® N, Res(P)). This is the functorial map we
where looking for.

In order to show this map is bijective, it is enough (by the semisimplicity of the
categories T and T) to check it for M = V& N = V& and P = V" with p+q =n
indeed, on one hand, one has:

dim Homg (V® @ V&, V") = dim Homgx o (V" @ V3 9, V) = n!

the first equality coming from the Schur-Weyl duality and the second equality comes
from the formula

n!
ri(n—r)!

Vo ~ @77}:0 (V'l®r ® ‘/2®(”*7")>

On the other hand, the map is injective because V" @ V,*¢ spans the G-module V.
O

EXERCISE 8.18. Let V' have dimension n. Show that
[Lo;(Ni =X+ —14)
[Tio;(G =)

dim Sy(V) = ¢, (wr)(1,...,1) =



8. HARVEST 139

Hint: 9, (w,) is the character of GL(n).






CHAPTER 7

Introduction to representation theory of quivers

1. Representations of quivers

A quiver is an oriented graph. For example

”
o () ¢
ol T2 3
8 5
is a quiver.

In this chapter we consider only finite quivers, namely quivers with finitely many
vertices and arrows.

The underlying graph of a quiver () is the graph obtained from ) by forgetting
the orientation of the arrows.

If @ is a quiver, we denote by @)y the set of vertices of () and by ), the set of
arrows of (). In the example above, Qy = {1,2,3} and Q1 = {«, 5,7, ,¢}.

A quiver @) is a subquiver of a quiver @ if Qf C Qp and Q| C Q.

For every arrow v € Qy: i - j we define s(vy) = i as the source or tail of v and
t(y) = j as the target or head of 7. In the example the vertex 1 is the source of «
and the target of (.

An oriented cycle is a subgraph with vertices Cy := {s1,...,s,} C Qo and arrows
C1 = {m,...,%} C Qq such that 7; goes from s; to s;1; if i < r and 7, goes from

[0}

Sr to s1. In our example o! Z__ o2 is a oriented cycle. A loop is an arrow with the
B
.

A

same head and tail. In our example, there is only one loop e2 .
DEFINITION 1.1. Fix a field k. Let ) be a quiver. Consider a k-vector space
V=@V
1€Qo
and a collection of k-linear maps
p=Apy:Vi=Vi|v€Q s(v) =i, t(v) =j}

Then (V, p) is called a representation of Q. The dimension of the representation (V, p)
is the vector d € Z% such that d; = dim V;.

141
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We sometimes use a diagram to visualize a representation of a quiver. For exam-
ple, if @ is of shape
.1 i} .2 (ﬁ .37
and if Vi = k%, Vo = k, V3 = k and p, = 0, pp = id, we present is as the following
diagram:
K5k &k

DEFINITION 1.2. Let (V, p) and (W, o) be two representations of Q. A morphism
of representations ¢: (V,p) — (W, o) is a set of linear maps {¢;: V; — W;|i € Qo}
such that the diagram

Vi &
1 o; 1 9
w, &w

is commutative for every v € @1, where i = s(v),7 = t(7).
We say that two representations (V,p) and (W, o) of @Q are isomorphic if there
exists a morphism ¢: (V, p) — (W, o) such that ¢, is an isomorphism for every i € Q.

The direct sum (V& W, p® o) of two representations (V, p) and (W, o) of a quiver
@ is defined in the obvious way.

A representaion (W, o) is a subrepresentation of (V, p) if for every i € (g there is
an inclusion W; C V; such that for every v € @; with s() = ¢, the restriction of p,
to W; coincides with o,.

A representation (V) p) is irreducible if it does not have non-trivial proper sub-
representations and is indecomposable if it can not be written as a direct sum of two
non-trivial subrepresentations.

ExaMPLE 1.3. Consider the quiver 1 - 2 and the representation (V, p) which
corresponds to the diagram k 4 k. Then (V,p) has only one non-trivial proper

subrepresentation, namely the one given by the diagram 0 2 k. Therefore (V,p) is
indecomposable but not irreducible.

In many cases it is not difficult to classify irreducible representations of a given
quiver. On the other hand, classifiying all indecomposable representations up to
isomorphism is very hard. Many classical problems of linear algebra can be viewed
as particular cases of this general problem. Let us see few examples.

EXAMPLE 1.4. Let Q be the quiver of Example 1.3. A representation of () can
be seen as a pair of vector spaces V; and V5 together with a linear map p., : Vi — Va.
Let us fix the dimension (dy, dy) and identify V; with k%, V4 with k%2, Classifying the
representations of () of dimension (di,ds) is equivalent to the following problem of
linear algebra. Consider the space of matrices of size dy X d;. Then the linear groups
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GL(dy) and GL(dy) act on this space by multiplication on the left and on the right
respectively. We would like to describe all the orbits for this action.

Consider a representation (V) p) of Q). Choose subspaces W, C V; and Wy C V;
such that Vi = Ker p, @ Wy and Vo = p,(W;) @ W,. Note that p, induces an iso-
morphism o : Wy — p,(W7). Then (V, p) is the direct sum of the subrepresentations

Ker p, RN 0,0 RN W, and W, & py(Wh). It is clear that the first representation can
be written as a direct sum of several copies of k RN 0, the second one is a direct sum

of several copies of 0 9 k. These decompositions are not unique, they depend on the
choice of basis in Ker p, and W5. Finally the representation W, % p(W1) can be

written as a direct sum of several copies of k N

Therefore there are three (up to isomorphism) indecomposable representations
of . Their dimensions are (1,0), (0,1) and (1,1). Furthermore, in every dimen-
sion there are finitely many non-isomorphic representations. Quivers with the latter
property are called quivers of finite type.

ExaMpPLE 1.5. Consider the quiver ) with one vertex and one loop. Then a
finite-dimensional representation of @ is a pair (V,T'), where V is a finite-dimensional
vector space and T is a linear operator in V. Isomorphism classes of representations
of this quiver are the same as conjugacy classes of n X n matrices when n is the
dimension of V. If k is algebraically closed, this classification problem amounts to
describing Jordan canonical forms of n x n matrices. In particular, indecomposable
representations correspond to matrices with one Jordan block.

If k£ is not algebraically closed, the problem of classifying conjugacy classes of
matrices is more tricky. This example shows that representation theory of quivers
depends very much on the base field.

EXAMPLE 1.6. Consider the Kronecker quiver @ 2~ e . Classification of finite-
dimensional representations of this quiver is also a classical problem of linear algebra.
It amounts to the classification of pairs of linear operators S, T : Vi — V5 up to
multiplication by some X € GL(V;) on the left and by some Y € GL(V3) on the
right. It is still possible to obtain this classification by brute force. We will solve this
problem using general theory of quivers in the next chapter.

g

ExaMPLE 1.7. Now let ) be the quiver with one vertex and two loops. Repre-
sentation theory of @) is equivalent to classifying pairs of linear operators (7, 5) in a
vector space V up to conjugation. In contrast with all previous examples in this case
the number of variables parametrizing indecomposable representations of dimension
n grows as n?. We call a pair (T, S) generic if T is diagonal in some basis ey, ..., e,
with distinct eigenvalues and the matrix of S in this basis does not have any zero
entry.
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EXERCISE 1.8. Check that if (7, S5) is generic and W C V' is both T-stable and
S-stable, then W = 0 or W = V. Thus, the corresponding representation of () is
irreducible.

Therefore every generic pair of operators (7', .S) gives rise to an irreducible repre-
sentation of (). The eigenvalues of T give n distinct parameters. If T' is diagonalized,
we can conjugate S by linear operators diagonal in the eigenbasis of T'. Thus, we
have n? — n parameters for the choice of S.

The situation which appears in this example is refered to as wild. There is a
precise definition of wild quivers and we refer reader to 77 for further reading on this
subject.

2. Path algebra

As in the case of groups, we can reduce the representation theory of a quiver to
the representation theory of some associative ring. In the case of groups, this ring is
the group algebra, while in the case of quivers it is the path algebra.

DEFINITION 2.1. Let @ be a quiver. A path p is a sequence vy, ...,y of arrows
such that s (v;) =t (7i+1). Set s(p) = s (1), t (p) =t (71). The number k of arrows
is called the length of p.

DEFINITION 2.2. Let p; = v1,...,7% and ps = d1,...,0; be two paths of ). We
define the product of p; and ps to be the path dq,...,0,7,...7 if t(y1) = s(&;) and
zero otherwise.

Next we introduce elements e; for each vertex ¢ € (g and define the product of
e; and e; by the formula

€i€; = 6ijei-

For a path p, we set

0 otherwise

-
pei:{p’ ifi =5 (p)

0 otherwise

if i =t
- {p, if i =t(p)

The path algebra k(Q) of @ is the vector space of k-linear combinations of all
paths of @) and elements {e; };eq,, with the multiplication law obtained by extending
of the product defined above by bilinearity.

Note that every e;, i € Qo, is an idempotents in k(@) and that Zz‘er e; = 1.

ExAMPLE 2.3. Let @ be the quiver with one vertex and n loops then k (@) is the
free associative algebra with n generators.
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EXERCISE 2.4. Let () be a quiver such that the underlying graph of ) does not
contain any cycle or loop. Let Qo = {1,...,n}. Show that the path algebra k (Q) is
isomorphic to the subalgebra of the matrix algebra Mat,, (k) generated by the subset
of elementary matrices {E;; |1 € Qo}, {Eji |7 € Q1, s(v) =1, t(y) =7}

In particular, show that the path algebra of the quiver

R e e )

is isomorphic to the algebra B,, of upper triangular matrices, see Example 7.19 Chap-
ter V.

LEMMA 2.5. Let () be a quiver.

(1) The path algebra k (Q) is generated by the idempotents {e;|i € Qo} and
the paths {y|v € @1} of length 1.

(2) The algebra k (Q) is finite-dimensional if and only if ) does not contain an
oriented cycle.

(3) If Q is the disjoint union of two quivers Q" and Q”, then k (Q) is isomorphic
to the direct product k (Q') x k (Q").

(4) The path algebra has a natural Z-grading

E(Q) =P kQ)u

where k(Q) o) is the span of the idempotents e; for all i € Qo and k(Q),) is
the span of all paths of length n.

(5) For every vertex i € (g the element e; is a primitive idempotent of k (Q),
and hence k(Q)e; is an indecomposable projective k (Q))-module.

PROOF. The first four assertions are straightforward and we leave them to the
reader as an exercise. Let us prove (5).

Let i € Qy. By Exercise 7.14 Chapter V, proving (5) amounts to checking that if
e € k(Q)e; is an idempotent such that e;e = ce; = ¢, then ¢ = ¢; or ¢ = 0. We use
the grading of k(Q) defined in (4). By definition, the left ideal k(Q)e; inherits this

grading. Hence we can write
E(Q)e = Pk (Q), e
n=0

where k(Q)ye; = ke; and, for n > 0, the graded component k(Q)ye; is spanned
by the paths of length n with sourse at i. We can write ¢ = 5 + --- + ¢ with
€n € k(Q)myei. Since € is an idempotent, we have g2 = g9, which implies gy = ¢; or
g9 = 0. In the latter case let ¢, be the first non-zero term in the decomposition of ¢.
Then the first non-zero term in the decomposition of £? has degree no less than 2p.
This implies € = 0. If ¢y = ¢;, consider the idempotent e; — ¢ and apply the above
argument again. 0
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Given a representation (V, p) of a quiver @, V = @ V; one can equip V with a
ic
structure of k (Q)-module in the following way “
(1) The idempotent e; acts on V; by 0 Idy;.
(2) For v € @1 and v € V; we set yv = p,(v) if i = s(y) and zero otherwise.
(3) We extend this action for the whole k(@) using Lemma 2.5 (1).
Conversly, every k (Q)-module V' gives rise to a representation p of () when one
sets V; = ¢; V.

This implies the following Theorem. *

THEOREM 2.6. The category of representations of () over a field k is equivalent
to the category of k (Q))-modules.

EXERCISE 2.7. Let @ be a quiver and J(Q) be the ideal of k(Q) generated by
all arrows v € Q1. Then the quotient k(Q)/J is a semisimple commutative ring
isomorphic to k0.

EXERCISE 2.8. Let Q" be a subquiver of a quiver ). Let I(Q') be the ideal of
k(Q) generated by e; for all ¢ ¢ Qf and by all v ¢ Q). Prove that k(Q’) is isomorphic
to the quotient ring k(Q)/1(Q").

LEMMA 2.9. Let A = @ A be a graded algebra and R be the Jacobson radical
i=0

of A. Then
(1) R is a graded ideal, i.e. R = @ Ry, where Ry = R0 Agy;
i=0
(2) If u € Ry for some p > 0, then u is nilpotent.

PROOF. Assume first that the ground field k is infinite. Let ¢ € k*. Consider
the automorphism ¢, of A such that ¢;(u) = tPu for all u € Ay). Observe that
¢i(R) = R. Suppose that u belongs to R and write it as the sum of homogeneous
components u = ug + - - - + u, with u; € A¢;). We have to show that u; € R for all
t=1,...,n. Indeed,

oi(u) =ug +tuy + -+ - +t"u, € R
for all £ € k*. Since k is infinite, this implies u; € R for all 7. If k is finite, consider
the algebra A ®, k and use the fact that R ®j, k is included in the radical of A @, k.

Let u € R(,). Then 1 — u is invertible. Hence there exists a; € A, for some

¢t =1,...,n such that

(ap+ a1+ -+ a,)(1—u)=1.
This relation implies ap = 1 and a,; = v’ for all j > 0. Thus u/ = 0 for sufficiently
large j. O

LCompare with the analogous result for groups in Chapter 2.
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Let us call a path p of a quiver Q a one way path if there is no path from ¢(p) to
s(p)-
EXERCISE 2.10. The span of all one way paths of () is a two-sided nilpotent ideal

in k(Q).

LEMMA 2.11. The Jacobson radical of the path algebra k (Q)) is the span of all
one way paths of ().

PROOF. Let N be the span of all one way paths. By Exercise 2.10 R is contained
in the radical of £(Q).

Assume now that y belongs to the radical of k(Q). Exercise 2.7 implies that y €
J(Q) and moreover by Lemma 2.9(2) we may assume that y is a linear combination
of paths of the same length. We want to prove that y € N. Note that e;ye; belongs
to the radical for all i,j € Qg. Assume that the statement is false. Then there
exists ¢ and j such that z := e;ye; is not in N, in other words there exists a path u
with source j and target ¢. Furthermore zu is a linear combination of oriented cycles
Uy, ..., u; of the same length. By Lemma 2.9(2) u must be nilpotent. But it is clearly
not nilpotent. Contradiction. O

Lemma 2.11 implies the following

PROPOSITION 2.12. Let ) be a quiver which does not contain oriented cycles.
Then k(Q)/rad k(Q) ~ k™, where n is the number of vertices. In particular, every
simple k(Q)-module is one dimensional.

PRrROOF. The assumption on () implies that every path is a one way path. Hence
the radical of k(@) is equal to J(Q). O

3. Standard resolution and consequences

3.1. Construction of the standard resolution. A remarkable property of
path algebras is the fact that every module has a projective resolution of length at
most 2:

THEOREM 3.1. Let @) be a quiver, A denote the path algebra k (Q)) and V' be an
A-module. Recall that V' = ,cq, Vi- Then the following sequence of A-modules

0— @Aet(ﬁy)(@‘@(w) i> EBA@Z-®V1'1>V—>O,
YEQL 1€Qo
where
f (aeiy) @ v) = aeyy)y @ v — aeys) ® v
for all v € Q1,v € Vi), and
g(ae; ®v) = av
for any 1 € Qu,v € V;, is exact. Hence it is a projective resolution of V.
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REMARK 3.2. The structure of A-modules considered in the statement is defined
by the action of A on the lefthand side of the tensor product.

PRrROOF. The fact that f and g are morphisms of A-modules is left to the reader.
First, let us check that go f = 0. Indeed,
g (f (ae; ®@v)) = g(aejy @ v — ae; @ yv) = aejyv — aejyv = 0.

Since V' = @icq,V; and V; = ¢;V, g is surjective.
Now let us check that f is injective. To simplify notations we set

X =P Aeyy) @ Vi), V=A@ Vi
YEQL 1€Qo
Consider the Z-grading
AV =EPAyaV.
p=0

Since all Ae; for i € Qg are homogeneous left ideals of A, there are induced gradings
X = @®p>0X(p) and Y = @p>0Y(p). Define fo: X — Y and f; : X — Y by

fi (aeiy) @ v) = aeyryy @, fo (aey) @ v) = aeys) @ .

Note that for any p > 0 we have fi(X(,)) C Xp41) and fo(X(p)) C X(p). Moreover, it
is clear from the definition that f; is injective. Since f = f; — fy, we obtain that f
is injective by a simple argument on gradings.

It remains to prove that Im f = Ker g.

EXERCISE 3.3. Show that for any p > 0 and y € Y, there exists ' € Y{,_y) such
that ¥’ =y mod Im f. (Hint: it suffices to check the statement for x = u ® v where
v € V; and u is a path of length p with source i).

The exercise implies that for any y € Y there exists yo € Y(g) such that y = yp
mod Im f. Let y € Ker g, then yy € Ker g. But g restricted to Y is injective. Thus,
Yo=0and y € Im f. O

3.2. Extension groups. Let X and Y be two k(Q)-modules. We define a linear
map

(7.1) d : @5 Homy, (X;,Y;) = @D Homy, (X(), Vi)
1€Qo YEQ1

by the formula

(7.2) do (z) = ¢ (yx) — 79 ()
for any v € Q1, v € X,(,) and ¢ € Homy (XS(V),Y;(V)) . Theorem 3.1 implies that
Ext! (X,Y) is isomorphic to the cokernel of the map d.
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According to Section 6.4 Chapter V, every non-zero ) € Ext' (X,Y) induces a
non-split exact sequence
0—=Y —=272—X—=0.

In our situation we can describe the k(Q)-module structure on Z precisely. Indeed,
consider ¢ € @VEQ1 Homy, (Xs(v),Yt(w)) and denote by 1, the component of ¢ €

Hom,, (Xs('y)y}/;‘,('y))- We set Z; = X; @Y, for every i € (Jy. Furthermore, for every
v € ()1 with source ¢ and target j we set

v (z,y) = (yz, vy + ya) .
Obviously we obtain an exact sequence of k(Q))-modules

0-Y 525X =0,

where i(y) = (0,y) and 7(x,y) = z. This exact sequence splits if and only if there
exists n € Homg (X, Z) such that m o = Id. Note that n = @cq,m: with n; €
Homy(X;, Z;) and for every x € X; we have
ni(z) = (z, ¢ix)
for some ¢; € Homy, (X;,Y;). The condition that 1 is a morphism of k(Q)-modules
implies that for every arrow v € ); with source ¢ and target j we have
v (2, ¢iw) = (yx, ydsx + Vo) = (v, ¢j7) .
Hence we have
Pyt = QYT — YPi
If we write ¢ = @icq, @i, then the latter condition is equivalent to ¢ = d¢.
Note also that Theorem 3.1 implies the following.

PROPOSITION 3.4. In the category of representations of () one has
Ext' (X,Y) =0 for all i > 2.

COROLLARY 3.5. Let
0—=Y—>7—-X—=0

be a short exact sequence of representations of (), then the maps
Ext' (V,Z) — Ext!' (V,X), Ext!' (Z,V) — Ext' (Y, V)
are surjective.

END OF EDITING IN NANCY

Proor. Follows from Proposition 3.4 and the long exact sequence for extension
groups, Theorem 5.7 Chapter V. U

LEMMA 3.6. If X and Y are indecomposable finite-dimensional k((Q)-modules
and Ext' (Y, X) = 0, then every non-zero ¢ € Homg (X,Y) is either surjective or
injective.
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Proor. Consider the exact sequences

(7.3) O—>Ker<p—>Xﬁ>Im<p—>0,

(7.4) 0—>Img0£>Y—>S%Y/Im<p—>O.
Note that both sequences do not split. Let 1) € Ext' (S,Im ¢) be an element associ-
ated to the sequence (7.4). By Corollary 3.5 and (7.3) we have a surjective map
g : Ext'(S, X) — Ext'(S,Im ).
Let ¢’ € g7 *(¢). Then ¢ induces a non-split exact sequence
0=+X3%Z—-5—0.

This exact sequence and the sequence (7.4) can be arranged in the following commu-
tative diagram
0 - X 5 Z = S =0
¥ g J

O—>Im<,oi>Y—>S—>O

here 8 and ~ are surjective. We claim that the sequence

(7.5) 0= X2 ZaIme 257 -0

is exact. Indeed, o + (8 is obviously injective and v — ¢ is surjective. Furthermore,
dim Z = dim X +dim S, dimIm ¢ = dim Y — dim .S. Therefore,

dim (Z @& Imyp) = dim X + dimY,

and therefore Ker (y — 0) = Im (a + f3).
By the assumption Ext' (Y, X) = 0. Hence the exact sequence (7.5) splits, and
we have an isomorphism
ZdImp =2 X @Y.
By the Krull-Schmidt theorem either X = Im ¢ and hence ¢ is injective or ¥ = Im ¢
and hence ¢ is surjective. OJ

3.3. Canonical bilinear form and Euler characteristic. Let () be a quiver
and X be a finite-dimensional k(Q)-module. We use the notation z = dim X € Z%
where x; = dim X; for every 7 € Q).

We define the bilinear form on Z?° by the formula

(@,y) =D wiyi — Y Tum)¥hiy) = dim Homg (X,Y) — dim Ext" (X,Y),
1€Q0 YEQ1

where the second equality follows from calculating Euler characteristic in (7.1). The
symmetric form

(z,y) == (2,y) + (y,7)
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is called the Tits form of the quiver (). We also consider the corresponding quadratic
form

q(x) = (x,z).
4. Bricks

Here we discuss further properties of finite-dimensional representations of a path
algebra £ (@). In the rest of this chapter we assume that the ground field &
is algebraically closed and all representations are finite-dimensional.

DEFINITION 4.1. A k(Q)-module X is a brick, if Endg (X) = k.

EXERCISE 4.2. If X is a brick, then X is indecomposable. If X is indecomposable
and Ext' (X, X) = 0, then X is a brick (by Lemma 3.6).

ExaMPLE 4.3. Consider the quiver @ — o. Then every indecomposable represen-
tation is a brick.
For the Kronecker quiver e = e the representation k* = k* with p,, = Id,
_ (01) : - _ : — o — (O1Y
P, = (go) is not a brick because ¢ = (¢1, p2) With ¢1 = @9 = ()y) is a non-scalar

element in Endg (X).

LEMMA 4.4. Let X be an indecomposable k(Q)-module which is not a brick.
Then X contains a brick W such that Ext' (W, W) # 0.

Proor. We will prove the lemma by induction on the length [ of X. The base
case | = 1 is trivial, since in this case X is irreducible and hence a brick by the Schur
lemma.

Recall that if X is indecomposable and has finite length, then ¢ € Endg (X)
is either isomorphism or nilpotent. Therefore, since k is algebraically closed and
X is not a brick, the algebra Endg (X) contains a non-zero nilpotent element. Let
¢ € Endg (X) be a non-zero operator of minimal rank. Then ¢ is nilpotent and
rk ¢? < rk ¢, hence p? = 0.

Let YV :=Im¢p, Z := Kerp. Clearly, Y C Z. Consider a decomposition

Z=0,® @7
into a sum of indecomposable submodules. Denote by p; the projection Z — Z;.
Let i be such that p;(Y) # 0. Set n := p; o ¢, Y; :== p;(Y) = n(Z). Note that by
our assumption rkn = rk ¢, therefore Y; is isomorphic to Y. Let Y; = p; (Y). Then
Kern =27 and Imn =Y.
Note that the exact sequence

05725 XLY, -0

does not split since X is indecomposable. Let X; be the quotient of X by the
submodule @©;4,Z; and 7 : X — X; be the canonical projection. Then we have the
exact sequence

0—>Zi—>XZ»i>Y;—>O,
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where 77 := non ! is well define since Kerm C Kern. We claim that (7.6) does not
split. Indeed, if it splits, then X; decomposes into a direct sum Z; & L for some
submodule L C X; which is isomorphic to Y;. But then X = Z; & 7~ !(L), which
contradicts indecomposability of X.
Therefore we have shown that Ext! (Y;, Z;) # 0. Recall that Y; is a submodule of
Z;. By Corollary 3.5 we have the surjection
Ext! (Z;, Z;) — Ext* (Y}, Z;) .

Hence Ext' (Z;, Z;) # 0.
The length of Z; is less than the length of X. If Z; is not a brick, then it contains
a brick W by the induction assumption. O

COROLLARY 4.5. Assume that () is a quiver such that its Tits form is positive

definite. Then every indecomposable representation X of () is a brick with trivial
Ext! (X, X). Moreover, if z = dim X, then ¢ (x) = 1.

PROOF. Assume that X is not a brick, then it contains a brick Y such that
Ext' (Y,Y) # 0. Then
q(y) = dimEndg (Y) — dim Ext' (Y,Y) = 1 — dim Ext' (YY) <0,
but this is impossible. Therefore X is a brick. Then
q () = dimEndg (X) — dim Ext' (X, X) = 1 — dim Ext' (X, X) > 0.
By positivity of ¢ we have ¢ (z) = 1 and dim Ext! (X, X) = 0. OJ

5. Orbits in representation variety
Fix a quiver Q. For arbitrary # € N9 consider the space
Rep (z) := H Homy, (k% k¥t
YEQL

We can see every representation of () of dimension x as a point p € Rep (z) with
components p, for every v € Q;.
Let us consider the group

G =[] GL(E"),
1€Qo
and define an action of G on Rep (z) by the formula
9Py = Gim)PrGysy  for every 7y € Q1.

Two representations p and p’ of ) are isomorphic if and only if they belong to the
same orbit of G. In other words we have a bijection between isomorphism classes of
representations of @) of dimension x and G-orbits in Rep(z). For a representation X
we denote by Oy the corresponding G-orbit in Rep (z).
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Note that
dimRep (z) = Z Ty Ta(y), dimG = Z x3,
YEQL i€Qo
therefore
(7.6) dimRep (z) —dim G = —¢q (z) .

Let us formulate without proof certain properties of G-action on Rep(z). They
follow from the general theory of algebraic groups, see for instance Humphreys We
work in Zariski topology.

e Each orbit is open in its closure;
e if O and O’ are two distinct orbits and O" belongs to the closure of O, then
dim O’ < dim O;
e If (X, p) is a representation of (), then dim Ox = dim G — dim Staby, where
Staby denotes the stabilizer of p.
LEMMA 5.1. For any representation (X, p) of dimension x we have
dim StabX = dim Ath (X) = dim EHdQ (X) .

PRrROOF. The condition that ¢ € Endg (X) is not invertible is given by the poly-

nomial equations
I dete: =o0.

1€Q0
Since Autg (X) is not empty and open in Endg (X), we obtain that Autg (X) and
Endg (X)) have the same dimension. O

COROLLARY 5.2. If (X, p) is a representation of ) and dim X = z, then
codim Ox = dim Rep (z)—dim G+dim Staby = —¢ (z)+dim Endg (X) = dim Ext' (X, X).
LEMMA 5.3. Let (Z,7) be a nontrivial extension of (Y, o) by (X, p), i.e. there is

a non-split exact sequence
0—-X—-2—->Y —=0.
Then Oxgay belongs to the closure of Oz and Oxay # Oy.

Proor. Following Section 3.2 for every i € )y consider a decomposition Z; =
X; ®Y; such that for every v € Q1 and (z,y) € Xy(5) @ Yy(y)

T’y(x> y) = (,O»Y(IL’) + ¢~/(y)a U’y(y))
for some 1, € Hom(Y(), Xy(y))-
Next, for every A € k '\ 0 define ¢g* € G by setting for every i € Qg

9
Then we have
9, y) = (py () + Xy (y), 04 (1))
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The latter formula makes sence even for A = 0 and ¢°7 lies in the closure of {g*7 |\ €
k\ 0}. Furthermore ¢°7 is the direct sum X &Y. Hence Oxgy belongs to the closure
of Oz.

It remains to check that X @Y is not isomorphic to Z. This follows immediately
from the inequality

dim Homg, (Y, Z) < dimHomg (Y, X @ Y).

The following corollary is straightforward.

COROLLARY 5.4. If the orbit Ox is closed in Rep(x), then X is semisimple.

COROLLARY 5.5. Let (X, p) be a representation of () and X = @Xj be a
j=1

decomposition into the direct sum of indecomposable submodules. If Oy is an orbit
of maximal dimension in Rep(z), then Ext!(X;, X;) = 0 for all i # j.

ProOF. If Ext'(X;, X;) # 0, then by Lemma 5.3 we can construct a representa-
tion (Z, 1) such that Ox is in the closure of Oz. Then dim Ox < dim Oy. O

6. Coxeter—Dynkin and affine graphs

6.1. Definition and properties. Let I" be a connected non-oriented graph with
vertices [y and edges I';. We define the Tits form (-, -) on Z by

(x,y) == 2(2 —21(i))xy; — Z Ty,

i€l (i,5)€ly

where [(7) is the number of loops at i. If we equip all edges of I" with orientation
then the symmetric form coincides with the introduced earlier symmetric form of the
corresponding quiver. We define the quadratic form ¢ on Z™ by

(z,7)
2
By {¢;]i € To} we denote the standard basis in Z". If T’ does not have loops,
then (e;,¢;) =2 for all ¢ € I'y. If 4,5 € I'y and ¢ # j, then (e, €;) equals minus the
number of edges between i and j. The matrix of the form (-, -) in the standard basis
is called the Cartan matriz of T.

q(x) =

EXAMPLE 6.1. The Cartan matrix of e — e is (7). The Cartan matrix of the
loop is (0).

DEFINITION 6.2. A connected graph I is called Coxeter—Dynkin if its Tits form
(+,-) is positive definite and affine if (-,-) is positive semidefinite but not positive
definite. If I is neither Coxeter-Dynkin nor affine, then we say that it is of indefinite
type.
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REMARK 6.3. For affine graph I' the form (-,-) is necessarily degenerate. Fur-
thermore
(7.7) Ker(-,:) = {z € 29| (z,z) = 0}.

LEMMA 6.4. (a) If T is affine then the kernel of (-,-) equals Z§ for some § € Nto
with all 6; > 0.
(b) If T is of indefinite type, then there exists v € N'0 such that (z,z) < 0.

PROOF. Let € Z%. We define suppz to be the set of vertices i € Q, such
that z; # 0. Let |z| be defined by the condition |z|; = |z;| for all i € Q. Note that
supp = = supp |z| and by the definition of (-,-) we have
(7.8) (lzl, |z]) < (2, ).

To prove (b) we just notice that if I' is of indefinite type then there exists z € Z0
such that (z,z) < 0. But then (7.8) implies (|x|, |z|) < 0.

Now let us prove (a). Let § € Ker(-,-) and  # 0. Then (7.8) and (7.7) imply
that |0] also lies in Ker(-,-). Next we prove that suppd = Q. Indeed, otherwise we
can choose i € Qg \ supp ¢ such that ¢ is connected with at least one vertex in supp 4.
Then (¢;,0) < 0, therefore

(Ei + 25, € + 25) =2+ 4(61,5) <0

and I is not affine.

Finally let ¢’,9 € Ker(+,+). Since suppd = suppd’ = Qo, one can find a,b € Z
such that supp(ad + bd") # Qo. Then by above ad + b0’ = 0. Hence Ker(-,-) is
one-dimensional and the proof of (a) is complete. O

Note that (a) implies the following

COROLLARY 6.5. Let I' be Coxeter—Dynkin or affine. Any proper connected
subgraph of T" is Coxeter—Dynkin.

DEFINITION 6.6. A non-zero vector x € Z% is called a root if ¢ (x) < 1. Note for
every i € (Qo, €; is a root. It is called a simple root.

EXERCISE 6.7. Let I' be a connected graph. Show that the number of roots is
finite if and only if T" is a Coxeter-Dynkin graph.

LEMMA 6.8. Let I' be Coxeter-Dynkin or affine. If x is a root, then either all
z; > 0orall z; <O0.

PROOF. Assume that the statement is false. Let
It ZI{i€Q0|$i>O}, 1~ 2I{Z'EQO|SC7;<O}, Jci:inei.
iel+
Then z = 2 4+ 2~ and (z%,27) > 0. Furthermore, since I' is Coxeter—Dynkin or
affine, we have ¢(z*) > 0. Therefore

q(x) = q(z") +qz7) + (=7, 27) > L.
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0
We call a root x positive (resp. negative) if z; > 0 (resp. z; < 0) for all i € Q.

6.2. Classification. The following are all Coxeter-Dynkin graphs (below n is
the number of vertices).

A
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The affine graphs, except the loop e, are obtained from the Coxeter—Dynkin
graphs by adding a vertex (see Corollary 6.5). Here they are.

A

Al «—»

Forn>1, A, is a cycle with n + 1 vertices. In this case § = (1,...,1).
In what follows the numbers are the coordinates of .

- 1 2 2 2 1
D,
1] 1]

- 1 2 2 1
Eg s

2

1
~ 1 2 3 4 3 2 1
Er

2[

- 2 4 4 2 1
i 6 5 3
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The proof that the above classification is complete is presented below in the
exercises.

EXERCISE 6.9. Check that A,,, D,,, Fs, F7, Eg are Coxeter—Dynkin using the Sylvester
criterion and the fact that every subgraph of a Coxeter—Dynkin graph is Coxeter—

Dynkin. One can calculate the determinant of a Cartan matrix inductively. It is
n+ 1 for A,, 4 for D,,, 3 for Eg, 2 for E7 and 1 for Eg.

EXERCISE 6.10. Check that the Cartan matrices of fln, ﬁn, EG, E7, Eg have corank
1 and every proper connected subgraph is Coxeter-Dynkin. Conclude that these
graphs are affine.

EXERCISE 6.11. Let I' be a Coxeter-Dynkin graph. Using Corollary 6.5 prove
that I' does not have loops, cycles and multiple edges. Prove that I' has no vertices
of degree 4 and at most one vertex of degree 3.

EXERCISE 6.12. Let a Coxeter-Dynkin graph I' have a vertex of degree 3. Let
p, q and r be the lengths of “legs” coming from this vertex. Prove that % + % + % > 1.
Use this to complete classification of Coxeter-Dynkin graphs.

EXERCISE 6.13. Complete classification of affine graphs using Corollary 6.5, Ex-
ercise 6.10 and Exercise 6.12.

7. Quivers of finite type and Gabriel’s theorem

Recall that a quiver is of finite type if it has finitely many isomorphism classes of
indecomposable representations.

EXERCISE 7.1. Prove that a quiver is of finite type if and only if all its connected
components are of finite type.

THEOREM 7.2. (Gabriel) Let Q be a connected quiver and I be its underlying
graph. Then
(1) The quiver @ has finite type if and only if T is a Coxeter—Dynkin graph.
(2) Assume that I' is a Coxeter—-Dynkin graph and (X, p) is an indecomposable
representation of (). Then dim X is a positive root.
(3) If T is a Coxeter-Dynkin graph, then for every positive root x € Z?° there
is exactly one indecomposable representation of () of dimension x.

PROOF. Let us first prove that if @ is of finite type then I' is a Coxeter-Dynkin
graph. Indeed, if @ is of finite type, then for every x € N% Rep (z) has finitely
many G-orbits. Therefore Rep () must contain an open orbit. Assume that @ is
not Coxeter—Dynkin. Then there exists a non-zero x € Z9 such that ¢ (z) < 0. Let
Ox C Rep (x) be an open orbit. Then codim Oy = 0. But by Corollary 5.2

(7.9) codim Ox = dim Endg (X) — ¢ (z) > 0.

This is a contradiction.
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Now assume that I' is Coxeter—-Dynkin. To show that () is of finite type it suffices
to prove assertions (2) and (3).

Note that (2) follows from Corollary 4.5.

Suppose that z is a positive root. Let (X, p) be a representation of ) such that
dim Oy in Rep (z) is maximal. Let us prove that X is indecomposable. Indeed,
let X = X716 --- @ X, be a sum of indecomposable bricks. Then by Corollary 5.5
Ext' (X;, X;) = 0. Therefore ¢ (z) = s = 1 and X is indecomposable.

Finally, if (X, p) is an indecomposable representation of ), then (7.9) implies that
Ox is an open orbit in Rep (). By irreducibility, Rep (x) has at most one open orbit.
Hence (3) is proved. O

REMARK 7.3. Gabriel’s theorem implies that the propery of a quiver to be of finite
type depends only on the underlying graph and does not depend on orientation.

REMARK 7.4. Theorem 7.2 does not provide an algorithm for finding all inde-
composable representations of quivers with Coxeter-Dynkin underlying graphs. We
give such algorithm in the next chapter using the reflection functor.

EXERCISE 7.5. Let @ be a quiver whose underlying graph is A,,. Check that the
positive roots are in bijection with connected subgraphs of A,,. For each positive root
x give a precise construction of an indecomposable representation of dimension .



