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Abstract. Basing on a sheaf O with a fixed section 1 on a manifold M we intro-
duce the notions of the de Rham, cyclic and Hochschild cohomological complexes
of the Alexander—Spanier type for M with coefficients in O. We show when these
complexes are quasi-isomorphic to the usual cohomology of M and how to build
cocycles for these complexes basing on cocycles for M . If O is a sheaf of algebras
with a trace on the ring A of global sections, we construct mappings from these
complexes to the corresponding cohomology of A. In the case of the ring of pseu-
dodifferential operators these mappings are isomorphisms if we consider cyclic or
Hochschild complexes.

Moreover, for an arbitrary sheaf of algebras the Hochschild complex of the alge-
bra of global sections has a natural structure of a module over the cohomological
Hochschild complex of the base (with a natural product). On the level of cohomol-
ogy we get an analoguous fact: algebraic Hochschild cohomology is a module over
cohomological ring of the base. In the case of the sheaf of differential operators we
show that this module is a free module with one generator and build this generator.

These two descriptions are compatible with known descriptions of the cohomol-
ogy for corresponding algebras, however they provide also explicit constructions of
cocycles. We also construct a lot of cocycles for Poisson algebras, what generalizes
the Gelfand—Mathieu construction [?GelMat] to the case of an arbitrary Poisson
manifold.
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0. Introduction

In the last couple of years there was a big progress in construction of cocycles
for non-commutative algebras with local multiplication. In fact the first results in
this direction were achieved a long time ago, when there appeared a description
of cohomology of algebras of differential or pseudodifferential operators ([?BryGet],
[?Wod]). However, these description were nonconstructive, so the first sign of the
progress was the description of one particular Lie-algebraic cocycle of the Lie algebra
of pseudodifferential operators with a use of the symbol for log ∂[?KheKra].
It was a very easy task to pinpoint the topological origin of the Khesin—Kravchenko

construction, and it seems now that the generalization of this construction is a com-
mon knowledge between specialists. The description of the cohomology obtained in
the “ancient” papers [?BryGet], [?Wod] shows that there is a tight connection between
the cohomology of the support of the algebra and the cohomology of the algebra
itself. So the generalizations assign to a topological cocycle of some kind an algebraic
cocycle. The best candidates for that are Čech cohomology and de Rham cohomology.
The discussion below has two targets: to give the simplest examples of the cocycles

we will obtain later and to provide the reader with euristics why these cocycles are in
the best cases nontrivial. We do not restrict ourselves to be absolutely correct with
the second target, therefore the reader who needs proofs should skip all the vague
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arguments like “if some conditions of non-degeneracy are satisfied . . . ”. However,
even in this section any construction of cocycles is still correct, hence even the most
demanding reader can get something if he will not skip to the section 1.

0.1. A construction of 2-cocycles. Let us give a construction of a 2-cocycle
as an example. Consider a manifold M over a field k and a sheaf O of associative
algebras with units on M . Let A be Γ (M,O), and suppose that there is a trace on
the algebra A, i.e., a linear functional Tr : A → k such that

Tr (ab− ba) = 0

for any two elements a, b ∈ A. The best example would be the sheaf D of differential
operators, however, this sheaf allows only trivial trace Tr a = 0. We will explain how
to correct this deficiency later, when we use pseudodifferential operators.
We can consider (though approximately) a differential operator or a pseudodif-

ferential operator as a function on a cotangent bundle. In the same way the trace
on pseudodifferential operators is an analogue of integration of functions on a sym-
plectic manifold. Therefore the reader should now imagine that there is some non-
commutative deformation of the sheaf of functions on a manifold, and that the inte-

gration of functions deforms to a non-trivial trace on this algebra. Or, if the reader is
too recalcitrant, he should consider instead any sheaf of algebras with a global trace.
What we want to do is to construct a morphism from H1 (M, k) to H2

Lie (A, k). As
we see below, in good cases this morphism is an isomorphism.
We stole the following innocent statement from [?KhesKra91Coc] (though it is present

there only virtually): let X ∈ A and c1 : A → k given by

c1 : A 7→ TrX · A(0.1)

be a 1-cochain for A (here we consider, say, cochain complex for the Lie algebra that Label equ0.3,

correspond to A). Then we can rewrite a coboundary of c1

dc1 : A⊗A → k : (A,B) 7→ TrX · [A,B]

as

dc1 (A,B) = Tr [X,A] ·B.(0.2)

Let us note that we can represent any 1-cochain on A in the form (0.1) if the Label equ0.6,

trace on A is “sufficiently nondegenerate”. Therefore under this condition of non-
degeneracy any 2-coboundary for A can be written in the form (0.2). Moreover, the
cochain (0.2) is remarkable by its locality property: let us call a 2-cochain c2 local if
there is a mapping

X : O → O : Γ (U,O) ∋ ϕ 7→ X (ϕ) ∈ Γ (U,O)

such that c2 (A,B) = TrX (A) · B.
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It is clear that on local cochains the closeness is a local property : if we have
a covering U of M and a set of closed local cochains on O|U , U ∈ U, that are
restrictions1 of some global cochain, then this cochain is also closed. The following
step we want to do now is to construct a local cochain that does not correspond to
any global section X . By the locality property it is closed, and since it does not
correspond to any section, it cannot be a coboundary. Therefore it is a nontrivial
cocycle!
Moreover, we want to do it for an arbitrary class in H1 (M, k). We want here

to consider a geometric realization of this cocycle as the intersection index with an
(coorientable) hypersurface H ⊂ M . Consider a pair of tubular neighborhoods U1,
U of H such that U 1 ⊂ U and a section X1 on U that is identically 0 near one
boundary of U and identically 1 near another. Let X2 be a 0 section on M r U 1.
The sections X1,2 define by (0.2) two local cochains on their domains,2 and these
cochains “coincide” on the intersection of these domains. As we explained it above,
that determines a cochain on M , and in order this cochain to be a coboundary, the
section X1 should extend to the entire M as a local constant (i.e., as a section in
k ⊂ O). We can write this cochain as

c2 (M,X1,2) : (A,B) 7→ TrX (A) · B, X (A)
def
= [X1,2, A] .

In the definition of X we should take a different function X1 or X2 depending on
the region of M we are currently in—the result X (A) does not depend on the choice
anywhere a choice is possible.
If H divides M into two parts, then X1 can be extended into one part as 0 and into

another as 1. However, in this case H represent a trivial cohomology class. Therefore
we constructed a promised mapping

H1 (M, k)→ H2
Lie (A, k) .

The cheating in this construction is the choice of the section X1. If O is indeed the
isomorphic as a sheaf to the sheaf of functions, and M is a C∞-manifold, then there
is no problem in providing such a section. Otherwise the notion of such a section
is correctly defined (since A is an algebra with unity, there is a constant subsheaf
k ⊂ O, so there is a notion of section being locally 0 or locally 1), but to find it we
need some additional “nice” properties of the sheaf O, like O being soft.
We can consider X1,2 as a (global) section of the sheaf O/k. Then the discussion

above can be rewritten in one phrase: the mapping

X : O → O : A→ [X,A]

1I.e., a local cochain coincides with the global on local sections with compact support, and such
sections for different U generate the set of global sections.

2More precise, on the rings of global sections with compact support on their domains.
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is correctly defined even in the case when X is not an element of A = Γ (M,O), but
an element of Γ (M,O/k), and the sequence

0→ k = Γ (M, k)→ A = Γ (M,O)→ Γ (M,O/k)→ H1 (M, k)→ H1 (M,O)→ . . .

is exact. However, as the following generalization shows, this abstraction is too
concrete to sustain useful modifications.

0.2. 2-cocycles for pseudodifferential symbols. As we will see later (when
we give a precise definition of a pseudodifferential symbol on a circle), this ring is a
ring of global section over a product of two circles: one ordinary, another infinites-
imal. This manifold has 2-dimensional space H1, therefore we can construct two
2-cocycles. However, this two 2-cocycles correspond to different geometrical objects
(since the radii of the circles are so different), therefore we need two slightly different
constructions.

Example 0.1. Consider the sheaf of pseudodifferential symbols on a circle S1. We
consider them as “functions” ϕ (x, ξ) on the cotangent bundle T ∗S1. In fact these
functions are just asymptotic expansions when ξ → ∞, so they are defined on the
infinitesimal neighborhood of the infinity in the cotangent bundle. There are two
classes in H1 of this manifold: one corresponds to a hypersurface x = const, another
one to

ξ = a very-very big const .

Consider a first one of these two classes and the corresponding function X1. We
can suppose that X1 depends only on x, and that it has a “jump” near the point
x = 0. Now we want to expand X1 to be as near as it is possible to a function on a
circle, i.e., a function with period 1. This function (where defined) is 0 if x < −c, is
1 if x > c. Let us extend it as 0 on the interval −1 + c < x < −c and as 1 on the
interval c < x < 1− c. Now this function is already non-periodic, but it satisfies the
relation

X1 (x+ 1) = X1 (x) + 1

instead. Moreover, we can uniquely extend it to a function X̃1 on the entire line
leaving this relation true. However, since for any function A (x, ξ) with period 1 in x
the expression

[
X̃1, A

]

is periodic with period 1, we can still apply the formula (0.2) and get a 2-cocycle

(A,B) 7→ Tr
[
X̃1, A

]
· B.
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(And we do not need to know the precise law of multiplication for pseudodifferen-
tial operators, the only thing we need to know is the translation-invariance of this
multiplication.)
However, we can still simplify this formula a lot. Let as note that an addition of

a periodical function to X̃1 results in changing this cocycle by a coboundary, as the
formula (0.2) shows. Therefore we can substitute the function x instead of X̃1 (x),

since X̃1 (x) − x is a periodical function. We result in the following formula for a
cocycle:

(A (x, ξ) , B (x, ξ)) 7→ Tr [x,A] · B = −Tr
∂A

∂ξ
· B.

Example 0.2. To deal with the second case is a little bit more tricky, especially
since we cannot formulate precisely what we mean by “a very-very big const”. Let
us proceed first as in the first example. Consider a hypersurface ξ = const and a
corresponding function X1. The big problem is that the functions we consider should
also have good symmetry properties. In the previous example they should have been
invariant with respect to translation in x, here they should have a good decomposition
with respect to the action of expansions in ξ, as the definition of a psudodifferential
symbol shows.
One way to circumvent this is to consider a family of surfaces that are “approxi-

mately invariant” with respect to expansions in ξ, say

ξ = const ·αk, k ∈ Z, α > 1.

The corresponding function X1 is locally constant away from these surfaces and has
a “jump” 1 near any one of them. This modification is in direct analogy with the
step from a locally defined function X1 to an “almost periodical” function X̃1.
This function X1 satisfies the property

X1

(
αkξ

)
= X1 (ξ) + k

of “almost-invariance” with respect to a discrete group of expansions. If we consider
instead of a discrete family of hypersurfaces a “continuous family”, or if we take the
limit α→ 1 with the corresponding scaling of X1, we get a function

X1 (ξ) = log ξ.

If the reader believes what was discussed so far, he should understand now that the
formula

(A,B) 7→ Tr [log ξ, A] · B

is correct, defines a cocycle for Lie algebra of pseudodifferential operators, and that
this cocycle cannot be a coboundary (since log ξ is not a pseudodifferential symbol).
Moreover, it should be clear that the classes of two defined cocycles are linearly
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independent, since no linear combination of x and log ξ is simultaneously periodic
and a sum of homogeneous in ξ functions.

Remark 0.1. The second cocycle has certain advantages comparing with the first.
While the first cocycle is trivial after restriction on the ring of differential operators,
the second one gives (the only nontrivial) 2-cocycle for this ring. This is a reason
why the much simpler first cocycle was missed so far—and while it is discovered, the
discussed in this paper theory becomes almost obvious.
We want to note also that though it is possible to consider the second cocycle on

differential operators only, to define it we need pseudodifferential symbols.

0.3. 3-cocycles and 4-cocycles. Here we want to construct a generalization
of the above construction to higher codimensions. Again, we want to begin with
constructions of (local) cochains and coboundaries.
Call an n-cochain c on A a local cochain if

c (A1, . . . , An) = 0 if
n⋂

i=1

SuppAi = ∅.

Suppose that the sheaf of algebras O is isomorphic to a sheaf of functions on M . In
this case such a cochain is just a skew-symmetric generalized function with a support
on a diagonal in Mn. Locally we can write any such function (i.e., a functional on
the space of functions) as a linear combination of the terms

A1 ⊗ · · · ⊗ An 7→ TrAltD1A1 · . . . · DnAn,

and

A1 ⊗ · · · ⊗ An 7→ TrAltD1A1 · . . . · Dn−1An−1 · f0An,

where Di are differential operators without a term of degree 0, and f is a function
on M . Now suppose that the product on O is a deformation of the commutative
product on the sheaf of functions with respect to a non-degenerate Poisson structure.
In this case we can write the operator Di as a composition of vector fields, i.e., of
Poisson brackets with functions on M . We can see that in this case we can write any
local cochain as

A1 ⊗ · · · ⊗ An 7→ TrAlt
[
f 1
1 ,
[
f 2
1 ,
[
. . . ,

[
fk1
1 , A1

]]]]
· . . . ·

[
fn−1,

[
. . .
[
f
kn−1

n−1 , An−1

]]]
· f0An,

or as the analogous expression without f0. Now we can write any commutator as a
difference of products, therefore any such function can be written as

A1 ⊗ · · · ⊗ An 7→ TrAlt f1 · A1 · f2 · A2 · . . . · fn · An.

Therefore we obtained a general formula for local cocycles, and we can write a general
formula for local coboundaries (all under the above assumptions). If we avoid the
question of a local cochain being a coboundary, but of non-local cochain only, then
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to construct a non-trivial cocycle we can try to find a local coboundary that is not a
global coboundary. To do this we need to fix a geometrical realization of a class of
cohomology on M , say a submanifold in M .
Suppose that codimension is 2. Let X1, X2 be two functions on M . Consider a

cochain

c2{Xi}
(A1, A2) = Tr Alt

σ,τ∈S2

Xσ1
· Aτ1 ·Xσ2

· Aτ2 .

Then we can write a coboundary of this cochain as

dc2{Xi}
(A1, A2, An+1) = Tr Alt

σ∈S2,τ∈S3

(
1

3
[Xσ1

, Aτ1 ] · [Xσ2
, Aτ2 ] ·Aτ3

+
1

12
[Aτ1 , Aτ2 ] · [Xσ1

, Xσ2
] · Aτ3

)
.

(0.3)

Suppose that codimension is 3. Let Xi, i = 1, . . . , 3, be functions on M . Consider a Label equ0.10,

cochain

c3{Xi}
(A1, A2, A3) = Tr Alt

σ,τ∈S3

Xσ1
· Aτ1 ·Xσ2

·Aτ2 ·Xσ3
· Aτ3 .

Then we can write a coboundary of this cochain as

dc3{Xi}
(A1, . . . , A4) = Tr Alt

σ∈S3,τ∈S4

(
1

4
[Xσ1

, Aτ1] · . . . · [Xσ3
, Aτ3 ] · Aτ4

+
1

16
[Xσ1

, Aτ1] · [Aσ2
, Aσ3

] · [Xτ2 , Xτ3 ] · Aτ4

+
1

16
[Xτ1 , Xτ2 ] · [Aσ1

, Aσ2
] · [Xσ3

, Aτ3] · Aτ4

)
.

(0.4)

Now we want to show that (at least in some particular cases) we can use these two Label equ0.11,

formulae for generation of cocycles, and we can hope that in reasonable cases these
cocycles should be non-trivial. We see that in a formula for a local coboundary in
the codimension 2 and 3 any occurence of Xi is in the form

[Xi, something] .

Therefore if we know X up to a (locally defined) constant only, we can still use
these formulae and we get a cocycle. If we cannot find global Xi with the specified
non-constant part, then there is a big hope that this cocycle is non-trivial.
Now consider a submanifold S of codimension n in M and let us try to repeat the

above construction in these conditions. One particular case is when this submani-
fold is a complete intersection in its neighborhood. We mean that we can construct
hypersurfaces Hi, i = 1, . . . , n, in a neighborhood of S such that M is a transversal
intersection of Hi. Now let Xi be the functions with a change 1 in a narrow neigh-
borhood of Hi and locally constant far from it. Consider the right-hand sides of the
formulae (0.3)–(0.4). They define some (n+ 1)-cochains of A. Indeed, though Xi are
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defined only in a neighborhood of S, but the function under the trace sign is non-zero
only in a smaller neighborhood. Therefore we can extend it everywhere as 0 and take
the trace.
In the same way as above what we get is a cocycle (since locally it looks as a

coboundary). If the class of S in Hn (M, k) is non-trivial, there is a big hope that we
get a non-trivial cochain.

Example 0.3. Let us combine the two discussed above examples of cocycles to con-
struct a 3-cocycle for pseudodifferential symbols. We get the following formula:

(A,B,C) 7→ Tr

(
∂A

∂ξ
· [log ξ, B] · C − [log ξ, A] ·

∂B

∂ξ
· C

)
.

This cocycle corresponds to the intersection of the plane x = const with the plane
ξ = const, i.e., to a cohomological class of a point.

0.4. Higher dimensions. In the case codim > 3 we do not know if we can write
a differential of a local cochain in a form similar to (0.3)–(0.4). However, it is not
necessary. Let Xi, i = 1, . . . , n, be functions on M . Consider a cochain

cn{Xi}
(A1, . . . , An) = Tr Alt

σ,τ∈Sn

Xσ1
· Aτ1 · . . . ·Xσn

· Aτn .

Then we can write a coboundary of this cochain as

dcn{Xi}
(A1, . . . , An, An+1) = ±Tr Alt

σ∈Sn,τ∈Sn+1

Aτ1 ·Xσ1
· Aτ2 · . . . ·Xσn

· Aτn+1
.

(0.5)

Now it is very easy to see that if X1 = const, then the alternation vanishes. There- Label equ0.12,

fore we can substitute a section of O/k instead of X in this formula, therefore any
argument above is still applicable. Again under some non-degeneracy conditions any
cochain can be written as a linear combination of such, therefore there is a hope to
write down a cocycle that is locally of the same form. What does the word “locally”
mean here? We can see that if any one of Xi vanishes in a neighborhood of some
point, then the expression under the trace sign vanishes there. Therefore we can
consider a function X1 ⊗ · · · ⊗Xn on M × · · · ×M :

X1 ⊗ · · · ⊗Xn (m1, . . . , mn) = X1 (m1) . . .Xn (mn) .

This function uniquely determines the corresponding cochain, moreover, the above
remark on locality shows that it is sufficient to know this function in a neighborhood
of the diagonal. So “locally” means exactly this consideration in a neighborhood of
the diagonal.
The only problem now is what to do with the case of when S is not a local inter-

section. In less demanding cohomological theories we could consider a decomposition
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of unity. To do this in our case we should put some cut-off functions in the formu-
la (0.5). However, there are too many places to “put a horse into”, therefore it is not
so easy to do this in such a way that the result will remain closed. Another problem
is that we have too many degrees of freedom: we can get a mapping of cohomology
groups, but this mapping is too far away from the “cohomological dream”, when we
have mapping of complexes themselves.

0.5. The appearing of Alexander—Spanier theory. One of the possible con-
structions is the use of Alexander—Spanier theory as a source for the initial cocycle
on M . Consider the construction of a 2-cocycle basing on a section of O/k. This
section is essentially a closed 1-form on M , if O is the sheaf of functions. In fact we
can write the basic element [X,A] from (0.2) as

X ·A · 1− 1 · A ·X.

In both terms A is in between, therefore we just consider the action of the element
1⊗X−X⊗1 ∈ A⊗A on A ∈ A with respect to the usual left-right action. Now come
two crucial observations: if we change X by a constant, the element 1 ⊗X −X ⊗ 1
does not change, and we need to know 1 ⊗X −X ⊗ 1 only on a neighborhood of a
diagonal in M ×M (we consider A ⊗A as sections of O ⊠ O on M ×M). Indeed,
if an element of A⊗A is zero in a neighborhood of the diagonal, it acts as 0 on A.
Hence this element of A⊗A (i.e., a section of O⊠O on M ×M) is correctly defined
in a neighborhood of a diagonal if X is defined up to a locally constant section.
Therefore we come to the following construction: basing on a sectionX ∈ Γ (M,O/k)

we get a section 1⊗X−X⊗1 of O⊠O in a neighborhood of diagonal inM×M . How-
ever, this section is just a representation of dX in the Alexander—Spanier complex.
What remains to do is to find a more natural place for B from (0.2) and construct a
generalization to the case of cocycles of higher order (this is a definition of “strange
pairing”).
So the topic of this article is a strange observation that while there is a big ambigu-

ity in a construction of the mapping from the, say, Čech complex to a cyclic complex,
this ambiguity is washed out if we start with an Alexander—Spanier complex. That
means that, in fact, all the ambiguity is lying in the step from the Čech complex to
the Alexander—Spanier one.
We remind here several useful mapping (including ambiguities) from various topo-

logical complexes to the Alexander—Spanier one and construct a canonical mapping
from the latter complex to the cocyclic complex. (This in fact gives us also a map-
ping to the Hochschild complex and the Lie-algebraic one.) A remarkable property
of this mapping is that it does not depend on the structure of the algebra, only on
sheaf-theoretical structure of the corresponding sheaf.
We also show that the described set of cocycles give the entire cohomology of the

corresponding algebra in cases when this cohomology is known.
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I am indebted to a lot of people for fruitful discussions and inestimable help,
among them I. M. Gelfand, A. Goncharov, D. Kazhdan, B. Khesin, M. Kontsevich,
O. Kravchenko, H. McKean, A. Radul, B. Tsygan. Another approach to what is
done here is contained in the resent works of B. Tsygan. In these papers the cyclic
cohomology is connected with the Atiyah—Singer theorem of index.
These papers together with what is written here suggest that it is interesting to

try to rewrite some “standard” proof of this theorem using the Alexander—Spanier
cohomology instead of the usual one.

1. Alexander—Spanier cohomology
Label h1

If you have a differential manifold M , usually there is a lot of different ways to
describe the same object: the cohomology of M . You can write a lot of different
complexes that are all quasi-isomorphic. In various geometrical situations you can
apply the complex that you feel is more suitable for it.
However, there is one particular type of complex that appears very rare if you need

a geometrical description of cohomology. I mean the Alexander—Spanier complex,
applications of which are usually met in hard topological papers. Here I want to
show that (quite unanticipated) it is very useful in descriptions of highly geometrical
objects: cyclic cohomology, that are just a non-commutative analogue of the de Rham
cohomology.

1.1. Alexander—Spanier complex. Consider a topological space M and the
vector space A of (say, continuous) functions on M . Let

A ⊗̂ A ⊗̂ . . . ⊗̂ A︸ ︷︷ ︸
n times

= A⊗̂n

be the space of functions3 on Mn. We can consider the inclusion

A⊗A⊗ · · · ⊗ A︸ ︷︷ ︸
n times

= A⊗n ⊂ A⊗̂n

of the space of functions of finite rank into this space. Let me remind you that a
function of rank 1 is just a function of the form

f (m1, m2, . . . , mn) = f1 (m1) f2 (m2) . . . fn (mn) ,

and a function of rank k can be represented as a linear combination of such functions.
Let ΛkA ⊂ Λ̂kA denote the spaces of skewsymmetric functions on Mn of finite rank
and of any type correspondingly. This vector spaces form two complexes, if we
consider the operation of exterior multiplication by 1 ∈ A

∧1: f1 ∧ f2 ∧ · · · ∧ fn 7→ f1 ∧ f2 ∧ · · · ∧ fn ∧ 1: ΛkA → Λk+1A

3Here the completed tensor product ⊗̂ is by definition what is written above. Since we do not
need this notion below, we skip the discussion of this notion.
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as a differential of degree 1. We can extend this operation on Λ̂kA if we note that
this operation can be written as

f (x1, x2, . . . , xk) 7→ df (x1, x2, xk, . . . , xk+1) =
∑

i

(−1)k+1−i f (x1, x2, . . . , x̂i, . . . , xk+1) .

Remark 1.1. The geometrical realization of the bigger complex is as following: Call
an n-tuple of points in M considered up to an alternation a simplex in a manifold.
There is a natural operation of taking a boundary in the vector space spanned by
simplices. Now we can consider a skewsymmetric function on Mn as a function on
the set of simplices. It is easy to understand that the differential above is exactly the
combinatorial differential on the simplicial complex.

At last, let M∆ be diagonal subset in Mn, ∆: M∆ →֒ Mn denote the inclusion

and ∆∗
(
ΛkA

)
⊂ ∆∗

(
Λ̂kA

)
denote the spaces of germs of skewsymmetric continuous

functions at a neighborhood of the diagonal (of finite rank and arbitrary correspond-
ingly).

Definition 1.1. The Alexander—Spanier complex AS(A) consists of the vector spaces

∆∗
(
Λ̂kA

)
(or ∆∗

(
ΛkA

)
). The differential in this complex is the image of the differ-

ential in the complex
(
Λ̂kA,∧1

)
(or

(
ΛkA,∧1

)
).

Remark 1.2. To get a geometrical description of this complex we should call an n-
tuple of nearby points on M a simplex.

Remark 1.3. In what follows we use primarily the smaller complex. However, it is
known that in nice situations the inclusion of the smaller complex into the bigger is
a quasi-isomorphism.

1.2. A case with an arbitrary sheaf. Let us consider instead of the vector space
A of functions on M the corresponding sheaf O of vector spaces over M . We can

easily see that the definition of the complex
(
ΛkA,∧1

)
in fact does not depend on

anything but the sheaf structure of O and the global section 1 of this sheaf. So we
are going to rewrite this definition using only these data.

Definition 1.2. Let O be a sheaf of vector spaces over M . Denote as O⊠n the
exterior tensor product of the sheaf O with itself. This sheaf over Mn is defined by
the following rule:

Γ
(
U1 × · · · × Un,O

⊠n
)
= Γ (U1,O)⊗ · · · ⊗ Γ (Un,O) .

It is clear that the symmetric groupSn is acting onM
n and on the sheaf O⊠n. Denote

as AltO⊠n the subsheaf of skewsymmetric sections (i.e., sections ϕ on U ⊂Mn such
that for any s ∈ Sn the section sϕ satisfies the relation sϕ|sU∩U = (−1)s ϕ|sU∩U). For
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any fixed global section of O (call it 1) the sheafes AltO⊠n form a natural complex
with the exterior product by 1 as a differential.

Let us denote by ΛkO the sheaf∆∗
(
AltO⊠k

)
. Sheaves ΛkO form a natural complex

for any fixed global section of the sheaf O. A section of ΛkO over U ⊂ M is a
skewsymmetric section of O⊠k over a small neighborhood of ∆(U) ⊂ Mk. Let
Ck

AS (O) = Λk+1O, k ≥ 0.

1.3. Realization of Alexander—Spanier cocycles. Here we are going to give
several examples of mappings from some complexes calculating the cohomology of
M to the Alexander—Spanier complex. These constructions give us a possibility to
provide explicit formulae for cocycles in case we need one.

Label cs1

Case 1.1. Let M be covered by open subsets Ui. Let σi be a unity decomposition for
the covering {Ui}.

Consider a Čech cochain ci0i1...in for {Ui}. Let us associate to c the following
Alexander—Spanier cochain:

f (x0, . . . , xn) =
∑

i0,...,in

σi0 (x0) . . . σin (xn) ci0...in .(1.1)

It is easy to see that this mapping from the Čech complex to the Alexander—Spanier Label equ1.10,

complex is compatible with differentials.
A chain from the cosimplicial complex is a function on the set of embedded sim-

plices. To construct a chain in the Alexander—Spanier complex we need only to
assosiate with an (n+ 1)-tuple of nearby points on M an embedded simplex (or a
linear combination thereof). To proceed in this way we need a further structure on
M .

Label cs2

Case 1.2. M is a Riemannian manifold.

In this case given two nearby points m1, m2 ∈ M we can consider a geodesic arc
S1 (m1m2) with ends in this points. Given a point m ∈ M and a subset V ⊂ M we
can construct

Arc (m, V ) =
⋃

v∈V

S1 (mv) .

Let us associate (using induction) to the ordered (n + 1)-tuple (m0, . . . , mn) of points
of M a simplex

Sn (m0, . . . , mn) = Arc
(
m0,S

n−1 (m1, . . . , mn)
)
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in M . Taking the antisymmetrization of this map, we associate to the (n+ 1)-tuple
(m0, . . . , mn) a linear combination

1

(n + 1)!

∑

s∈Sn+1

(−1)s S (ms0, . . . , msn)

of imbedded simplices in M . It is easy to see that this mapping is compatible with
taking a boundary.
Now given an n-form ω we can integrate it over this linear combination of simplices.

It is easy to see that the resulting skew-symmetric function on Mn+1 is closed if ω is
closed.

Label cs3

Case 1.3. Let M be covered by subsets Ui with an identification of Ui with an open
convex subset in an affine space. Let σi be a unity decomposition for the covering
{Ui}. Let ω be a differential k-form on M .

In this case we can proceed as in the previous one. If ω has a support in one of
subsets Ui we can define the following Alexander—Spanier cochain in Ui: to k + 1
given points in Ui we associate the integral of ω over the oriented convex hull of
this points. We can extend this function to the entire M (more precise, to the
neighborhood of the entire M in Mn) to get a cochain on M . Now we can apply this
construction to the forms σiω.

1.4. The analogues for the cases of cyclic and Hochschild complexes. We
will see below that the discussed above complex is adopted to the case of cohomology
of Lie algebra. Here we introduce two other complexes adopted to calculations of
cyclic and Hochschild cohomology.

Definition 1.3. Let O be a sheaf of vector spaces over M with a marked section 1.
Consider the following differential in the graded sheaf

⊕
nO

⊠n+1:

d (f0 ⊠ · · ·⊠ fn) = (−1)n+1 1⊠ f0 ⊠ · · ·⊠ fn

+ (−1)n f0 ⊠ 1⊠ · · ·⊠ fn + · · ·+ f0 ⊠ · · ·⊠ fn ⊠ 1, d2 = 0.

Let C•
HAS (O) =

(
Γ
(
M,∆∗

(
O⊠•+1

))
,∆∗d

)
, • ≥ 0. Call this complex a Hochschild—

Alexander—Spanier complex for O.

Definition 1.4. Let O be a sheaf of vector spaces over M with a marked section 1.
Consider the following differential in the graded sheaf

⊕
nO

⊠n+1:

da (f0 ⊠ · · ·⊠ fn) = (−1)n f0 ⊠ 1⊠ · · ·⊠ fn + . . .

− f0 ⊠ · · ·⊠ 1⊠ fn + f0 ⊠ · · ·⊠ fn ⊠ 1, d2a = 0.

Let C•
aHAS (O) =

(
Γ
(
M,∆∗

(
O⊠•+1

))
,∆∗da

)
, • ≥ 0. Call this complex an “acyclic”

Hochschild—Alexander—Spanier complex for O.
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Remark 1.4. In what follows we are not so rigorous and use often the notation ⊗
instead of ⊠.

Definition 1.5. Consider a product V ⊗k ⊗ V ⊗l → V ⊗k+l defined by the following
rule: to define the image of

(f1 ⊗ · · · ⊗ fk)⊗ (g1 ⊗ · · · ⊗ gl)

consider all the decomposition of the set {1, . . . , k + l} into two subsets of k and l
elements. Insert the elements fi on the places of the first subset and the element gj
on the places in the second subset in the expression

• ⊗ · · · ⊗ •︸ ︷︷ ︸
k+l times

preserving the order in both sets of elements. Now sum the resulting elements with
signs corresponding to the the substitution being even or odd. Call this associative
product a shuffle product.

Definition 1.6. Consider the action of Zn in V ⊗n (here V is a vector space) by

v1 ⊗ · · · ⊗ vn
t
7→ (−1)n+1 v2 ⊗ · · · ⊗ vn ⊗ v1.

Call the space of invariants of this action (V ⊗n)
Zn the cyclic n-th power of V . It is

clear that the shuffle product sends cyclic powers into cyclic. Let Zn+1 acts in this
way on Cn

HAS, and consider the corresponding space of invariants (Cn
HAS)

Zn . Consider
a mapping of shuffle product with 1:

∧1: (Cn
HAS)

Zn →
(
Cn+1

HAS

)
Zn+1

.

Since the shuffle product is associative, the square of the mapping ∧1 vanishes. Call
this complex the cyclic Alexander—Spanier complex and denote it C•

cAS (O).

Remark 1.5. Until this moment we considered (say) the exterior power of a vector
space as a subspace in the tensor power. However, the usual definition presents
this space as a quotient of the tensor power, and the difference becomes apparent
if we consider not vector spaces in char = 0, but modules over a ring—to take an
antisymmetrization, we should be able to divide by n!. The same is applicable to the
cyclic case.
All the definitions given here allow a modification to this case. Say, in the for-

mula (1.1) we should take a summation over ordered (n+ 1)-tuples instead. In the
definition of the shuffle product for the cyclic case we should make the following
modification: in multiplication

(a0 ⊗ a1 ⊗ · · · ⊗ an) (b0 ⊗ · · · ⊗ bm) = a0 ⊗X
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we put X being the shuffle product of a1⊗· · ·⊗an and the cyclization of b0⊗· · ·⊗bm

b0 ⊗ · · · ⊗ bm + (−1)m b1 ⊗ · · · ⊗ b0 + b2 ⊗ · · · ⊗ b1 + · · ·+ (−1)m
2

bm ⊗ · · · ⊗ bm−1.

It is easy to see that the old definition coincides with the cyclization of this product
with some integer constant. This constant can be non-invertible, and in this case
this difference becomes important. Everywhere below where we use the politically
correct language of quotients we denote this (quotient) complex as CqaAS. There is a
natural mapping C•

cAS →֒ C•
qcAS. It is compatible with differentials if we multiply a

differential in C•
qcAS by the grading of its image.

The following proposition can be proved by a simple calculation:

Proposition 1.1. Consider a natural mapping π of projection from the cyclic power
of a vector space into the exterior power, the projection π1 from the tensor power to
the cyclic power, and the cyclization mapping Cycl from the cyclic power into the
tensor power. Then the following mappings commute with differentials, therefore are
mappings of complexes:

C•
aHAS (O)

π1−−−→ C•
qcAS (O)

Cycl
−−−→ C•

HAS (O)

π

y

C•
AS (O)

Alt
−−−→ C•

cAS (O)

if we multiply the differential in the complex C•
AS (O) by the gradings of its image.

Proposition 1.2. For a soft sheaf O the “acyclic” Hochschild—Alexander—Spanier
complex is acyclic indeed, the Hochschild—Alexander—Spanier and Alexander—
Spanier complexes are quasi-isomorphic to the complex of cohomology of M with
coefficients in k, and if k ⊃ Q the cyclic Alexander—Spanier complex is quasi-
isomorphic to a direct sum of an infinite number of such complexes with non-negative
even shifts.

Proof. Fix a mapping from A = Γ (M,O) to k that sends 1 ∈ A to 1 ∈ k. Let us

construct a homotopy for the complex
(
A⊠n+1, da

)
:

s · f0 ⊗ · · · ⊗ fn = ϕ (f0) f1 ⊗ · · · ⊗ fn, s · f0 = 0.

It is easy to check that sda + das = id indeed, therefore the complex is acyclic. Fix a

point m ∈ M and consider a local section ϕ of ∆∗
(
O⊠n+1

)
over U ⊂ M . Lessening

U we can suppose that ϕ corresponds to a section of O⊠n+1 over Un+1. Changing M
to U in the discussion above we get a local homotopy. This means that for any closed
local section we can find a section on a smaller subset such that the boundary of the
latter section is the former. Therefore the differential da on the complex of sheaves

C•aHAS is acyclic.
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Now the complex of vector spaces C•
aHAS is the complex of global sections of this

complex of sheaves C•aHAS. We can consider a bicomplex

C∗ (M, C•aHAS) ,

columns of which compute the cohomology of the sheaves C•aHAS. We have seen
that the rows are exact, therefore the row spectral sequence gives the total complex
associated with this bycomplex being also exact.
If the sheaf O is soft or satisfies some other nice cohomological properties, then
C•aHAS is also soft (or whatever), therefore the columns of the bicomplex are acyclic
in degree ≥ 1. Now the column spectral sequence gives the acyclity of the complex

H0 (M, C•aHAS) = C•
aHAS.

Consider now the complex C•
HAS. The same homotopy as above satisfies

sda + das = id

in degree ≥ 1, and if f ∈ A

(sda + das) f = f − ϕ (f) · 1.

Therefore the mapping
(
A⊠n+1, d

)
→ k given by ϕ if n = 0 and 0 otherwise is a

quasi-isomorphism. Hence the analogues inclusion k →
(
A⊠n+1, d

)
is also a quasi-

isomorphism. Repeating this argument on the level of sheaves, we get that the
complex of sheaves C•HAS is quasi-isomorphic to its constant subsheaf k.
To get information about the complex of global sections of this complex of sheaves

consider again the bicomplex. Again the row spectral sequence gives a quasi-isomorphism
of the total complex of this bicomplex with the cohomology of the rows, i.e., the
complex C∗ (M, k). Again, if O has nice topological properties, the total complex is
quasi-isomorphic to its first row, i.e., C•

HAS.
Consider now the complex Λk+1 (O). Here we can construct the homotopy

s · f0 ∧ · · · ∧ fn =
∑

k

(−1)k ϕ (fk) f1 ∧ · · · ∧ f̂k ∧ · · · ∧ fn, s · f0 = 0.

It is easy to see that ds+ sd = id if n > 0 and (ds+ sd) f = f − ϕ (f) 1. Therefore
the same argument as above shows that C•

HAS is also quasi-isomorphic to C∗ (M, k).
Consideration of C•

cAS is a little bit more tricky. We use an analogue of the con-
struction from [?LodQuill84Cyc]. Consider a bicomplex

C•HAS
1−t
−−→ C•aHAS

N
−→ C•HAS

1−t
−−→ C•aHAS

N
−→ . . . .(1.2)

Here t is the action of Zn+1 on CnHAS = CnaHAS, N is equal to 1 + t+ t2 + · · ·+ tn on Label equ1.20,

CnHAS. It is easy to check the conditions of bicomplex for this system of mappings.
Now the rows are acyclic in all the terms but the first, the homology in the first
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term are exactly C•cAS. Now the row spectral sequence shows that the complex C•cAS

is quasi-isomorphic to the total complex of this bicomplex.
From the other side, the column spectral sequence shows that the total complex is

quasi-isomorphic to the complex

k → 0→ k → 0→ k → . . .

of constant sheaves, or a direct sum of constant sheaves k in even degrees.

Remark 1.6. We can consider an analogue of (1.2)

. . .
N
−→ C•HAS

1−t
−−→ C•aHAS

N
−→ C•HAS

1−t
−−→ C•aHAS.

The rows are quasi-isomorphic to C•qcAS, the columns to

· · · → k → 0→ k → 0.

However, this bicomplex is in a “wrong” quadrant, therefore we should not (and do
not) have the isomorphisms of cohomology. Anyway, consideration of the homotopy
s for C•aHAS leads to a mapping B : C•HAS → C

•
qaAS [−1], B = π1 ◦ s ◦ (1− t):

f0 ⊗ f1 ⊗ f2 ⊗ · · · ⊗ fn 7→ (ϕ (f0) f1 − ϕ (f1) f0)⊗ f2 ⊗ · · · ⊗ fn.

It is easy to see that this mapping is compatible with differentials. We use it below in
the exact sequence relating cyclic and Hochschild Alexander—Spanier cohomology.

In the proof of the proposition we have seen that the cyclic complex is always quasi-
isomorphic to the total complex of the bicomplex (1.2). In the bicomplex (1.2) there
is a remarkable periodicity operation S: the translation on two columns to the right.
It commutes with the differentials, therefore it results in an operation in cohomology.
The remarkable fact is that we can express this operation on the quasi-isomorphic
complex CcAS.

Definition 1.7. Let the shift S send the class of a0⊗· · ·⊗ an in Cn
qcAS into the class

of
∑

0≤k≤l≤n

(2 (l − k)− n− 1) a0 ⊗ · · · ⊗ ak ⊗ 1⊗ ak+1 ⊗ · · · ⊗ al ⊗ 1⊗ al+1 ⊗ · · · ⊗ an

in Cn+2
qcAS.

Proposition 1.3. The operation of shift is correctly defined and commutes with
differential. If k ⊃ Q, then S is quasi-isomorphic to the operation of translation on
two columns to the right in (1.2). The natural inclusion of CcAS into the first column
of (1.2) is a quasi-isomorphism to the quotient by the image of the shift operator.
The image ImS is therefore quasi-isomorphic to the kernel of the cyclization Cycl,
moreover, the corresponding sequence of cohomology

. . .
Cycl
−−→ Hn+1

HAS

B
−→ Hn

qcAS

S
−→ Hn+2

qcAS

Cycl
−−→ Hn+2

HAS

B
−→ Hn+1

qcAS → . . .
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is exact.

Remark 1.7. We see that if k ⊃ Q and O is soft, C∗
cAS (O) is quasi-isomorphic to

C∗ (M, k [S]) as k [S]-module. This mapping is given by the inclusion of the constant
sheaf k [S] into C•qcAS:

1 7→ 1 ∈ O = C0qcAS, Sk 7→ Sk · 1 = const · 1⊗ · · · ⊗ 1︸ ︷︷ ︸
2k+1 times

∈ C2kqcAS.

Remark 1.8. We have seen that the differential sends a skewsymmetric element of
C•

qcAS (O) to a skewsymmetric element, therefore the Alexander—Spanier complex
is a subcomplex of a cyclic Alexander—Spanier complex. Moreover, a differential
sends a cyclically symmetric element of C•

HAS (O) to a cyclically symmetric element,
therefore the cyclic complex is in turn a subcomplex of the Hochschild complex.
Therefore the above constructions of Alexander—Spanier cocycles gives in fact cyclic
and Hochschild Alexander—Spanier cocycles. The application of the mapping S
allows to construct in this way any class of the cocycle in the case of soft O and
k ⊃ Q.

2. Complexes in algebraic situation

2.1. Definitions of complexes. Let K be a commutative ring over Q. We use
here several complexes associated with an associative algebra A over K.

Definition 2.1. The Hochschild homological complex consists of vector spaces CHk (A) =
A⊗k+1 with the differential

d : f0 ⊗ · · · ⊗ fk 7→
∑

l

(−1)l f0 ⊗ · · · ⊗ (fl · fl+1)⊗ · · · ⊗ fk + (−1)k (fk · f0)⊗ f1 ⊗ · · · ⊗ fk.

The acyclic Hochschild complex differs from this one only by the absence of the
last term in differential. The cyclic complex CC∗ consists of coinvariant “in” the
Hochschild complex with respect to the following action of Zk+1 on A⊗k+1:

t : f0 ⊗ · · · ⊗ fk 7→ (−1)k f1 ⊗ · · · ⊗ fk ⊗ f0.

(It is easy to see that the above differential sends indeed coinvariants
(
A⊗k+1

)
Zk+1

into coinvariants
(
A⊗k

)
Zk

.)

In the same way we can consider the corresponding dual cohomological complexes.

We can also consider the corresponding to A Lie algebra Lie (A) (this algebra
coincides with A as a vector space and has commutator as a Lie operation) and
homological and cohomological complexes CLie

∗ (Lie (A)) and C∗
Lie (Lie (A)).

This definition has a big resemplance with the definitions of corresponding objects
in the topological situation. As then, we have some maps between these complexes,
however not any map extends to the topological situation.
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Definition 2.2. The mapping of shift S sends the class of f0 ⊗ · · · ⊗ fk in CCk into
the class of
∑

l

(3− k) f0 ⊗ · · · ⊗ (fl · fl+1 · fl+2)⊗ · · · ⊗ fk

+
∑

l+1<m

(2 (m− l)− k + 1) f0 ⊗ · · · ⊗ (fl · fl+1)⊗ · · · ⊗ (fm · fm+1)⊗ · · · ⊗ fk.

in CCk−2. The mapping B sends the class of f0 ⊗ · · · ⊗ fk in CCk into the element

∑

i

(−1)ik 1⊗ fi ⊗ · · · ⊗ (fk · f0)⊗ · · · ⊗ fi−1 +
∑

i

(−1)(i+1)m fi ⊗ · · · ⊗ fi−1 ⊗ 1

of CHk+1.

The mappings S and B commute with differentials, therefore define an exact se-
quence of cohomologies

· · · → HHk+1 → HCk → HCk−2 → HHk−1→ . . . .

2.2. The Lie algebra complex and the cyclic complex. We can consider any
given associative algebra A as a Lie algebra Lie (A) with the commutator operation.
Consider the inclusion of the homological Lie-algebraic complex for Lie (A) to the
homological cyclic complex for A that sends X1∧· · ·∧Xn ∈ Λng to the corresponding
element of g⊗n/Zn. It is easy to see that differential of these two complexes are
compatible (up to a factor 2), hence there is a corresponding mapping of homologies:

HLie
∗ (Lie (A))→ HC∗ (A)

and of cohomologies

HC∗ (A)→ H∗
Lie (Lie (A)) .

2.3. The Hochschild complex and the cyclic complex. In the same way
as above we can consider a projection from the Hochschild complex to the cyclic
complex, that is (by definition) compatible with differentials. Together with the
mapping from the previous section we get a diagram

CLie
∗ (A) −−−→ CC∗ (A)∥∥∥∥

CH∗ (A) −−−→ CC∗ (A) .

We defined above three pairings of these complexes with complexes
(
CLie

∗ (A) ,∧1
)
,

(CC∗ (A) ,∧1) and (CH∗ (A) , m (1)). It is easy to see that there exists a dual diagram
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to the previous diagram:
(
CLie

∗ (A) ,∧1
)

α
←−−− (CC∗ (A) ,∧1)

∥∥∥∥

(CH∗ (A) , m (1))
β

←−−− (CC∗ (A) ,∧1) .

The mappings α and β are projection and symmetrization correspondingly.

2.4. A case with a commutative ring. Suppose that the ring A in the above
situation is commutative. In this case it is possible to compute the cohomology
explicitly at least in the case when A is smooth in the algebraic-geometrical case.
The simplest possible answer is in the situation of Lie algebra homologies. The

differential in the homological complex vanishes, therefore

HLie
∗ (A) = Λ∗A.

The situation with Hochschild homology is also very simple. If A is a space of
functions on the manifold M , define Ω∗

A as the space of differential forms on M .
It is possible to define this space in terms of A itself, but we do not need such
complications, therefore leave this as an exercise to a reader.

Proposition 2.1. Consider a mapping from the Hochschild complex for a commu-
tative algebra A into the complex Ω∗

A with zero differential:

f0 ⊗ · · · ⊗ fk 7→
∑

σ∈Sk

f0dfσ1
∧ · · · ∧ dfσk

∈ Ωk
A.

This mapping induces an isomorphism on homologies.

In the case of cyclic homology the description is a little bit more complicated. We
need to use the mapping of shift S : CCk → CCk−2 here. The first observation is that
the above mapping Hk (A,A) → Ωk

A sends an element with a trivial projection on
the space CCk (A) into a closed form. Therefore the same formula as above defines
a mapping

CCk (A)
α
−→ Ωk

A/dΩ
k−1
A .

We can again consider this mapping as a mapping in the complex with zero differen-
tial. Now the compositions α ◦ Sm define a mapping of complexes

CCk (A)
β
−→ Ωk

A/dΩ
k−1
A ⊕ Ωk−2

A /dΩk−3
A ⊕ Ωk−4

A /dΩk−5
A ⊕ . . . .

Consider the following subspace of the space in the right-hand side:

Wk = Ωk
A/dΩ

k−1
A ⊕Hk−2

DR (A)⊕Hk−4
DR (A)⊕ · · · ⊂ Ωk

A/dΩ
k−1
A ⊕ Ωk−2

A /dΩk−3
A ⊕ Ωk−4

A /dΩk−5
A ⊕ . . . .

We claim that the image of a cycle in CCk (A) lies in that subspace, and
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Proposition 2.2. The corresponding to β mapping of homology is an isomorphism
onto the subspace W∗.

It is easy to understand that the corresponding to S operator on W∗ is

Ωk
A/dΩ

k−1
A Hk−2

DR (A)Hk−4
DR (A) . . .

y
yin

yid

0 Ωk
A/dΩ

k−1
A Hk−2

DR (A). . . .

Here in is the canonical inclusion.
The described above mappings from Hochschild complex and Lie complex into the

cyclic complex are correspondingly taking the quotient by dΩk−1
A and taking the jet

on a diagonal ∆M in Mk+1 (which is a k-form) and taking the same quotient.
In particular, we can see that any class of cyclic homology from KerS has a rep-

resentative that is a skewsymmetric chain. Moreover, in the commutative case there
are natural mappings

CLie
∗ (A)→ CH∗−1 (A,A) ,

CC∗−1 (A)→ CLie
∗ (A) .

3. Cocycles for the algebra of global sections

3.1. A strange pairing. Let A be an associative K-algebra with a trace Tr : A→
K (a trace is a linear mapping satisfying Tr [x, y] = 0).

Definition 3.1. Consider a cyclic complex CCk (A) = A⊗k+1/Zk+1. Consider the
following pairing between CCk (A) and itself:

((x0, . . . , xk) · (y0, . . . , yk)) =
∑

l

(−1)kl Trx0ylx1yl+1 . . . xkyk+l

(here yk+1+l
def
= yl). It is correctly defined, hence it sends the graded vector space

CC∗ (A) into the complex CC∗ (A). Let us denote this mapping as i.

The first question is: can we describe what differential (of degree +1!) on CC∗ (A)
“corresponds” to the differential on CC∗ (A) under this inclusion. A priory we cannot
expect that such a differential exists at all.

Proposition 3.1. The following diagram is commutative:

CCk (A)
∧1
−−−→ CCk+1 (A)

i

y i

y

CCk (A)
d

−−−→ CCk+1 (A) .
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Here ∧1 denotes the mapping of the shuffle product with 1 ∈ A.

Remark 3.1. Due to associativity of the shuffle product it is evident that the square
of the operation of the shuffle product with 1 is 0:

(a ∧ 1) ∧ 1 = a ∧ (1 ∧ 1) = 0.

Therefore we got the mapping of complexes

(CC∗,∧1)→ CC∗.

The remarkable fact about this mapping is that the structure of the first (but not
the second!) complex does not depend on the ring structure of A at all.

Remark 3.2. It is easy to see that in the same way we can define strange pairings

between CLie
∗

def
= Λ∗ Lie (A) and itself:

(f1 ∧ · · · ∧ fk, g1 ∧ · · · ∧ gk) = Tr
∑

σ,τ∈Sk

σ1=1

fσ1
gτ1 . . . fσk

gτk ,

and between the Hochschild complex (or the acyclic Hochschild complex) CH∗ (A) =
A⊗∗+1 and itself:

(f0 ⊗ · · · ⊗ fk, g0 ⊗ · · · ⊗ gk) = Tr f0g0 . . . fkgk.

The dual to the differentials mappings (of degree 1) in these graded vector spaces are
the wedge product with 1 in the case of the Lie algebra cohomology,

f0 ⊗ · · · ⊗ fk
m(1)
7→ (−1)k+1 1⊗ f0 ⊗ · · · ⊗ fk − (−1)k+1 f0 ⊗ 1⊗ · · · ⊗ fk + . . .

+ f0 ⊗ · · · ⊗ fk ⊗ 1,

and

f0 ⊗ · · · ⊗ fk
m(1)
7→ − (−1)k+1 f0 ⊗ 1⊗ · · · ⊗ fk + · · ·+ f0 ⊗ · · · ⊗ fk ⊗ 1

in two Hochschild complexes correspondingly (up to a sign).

3.2. A mapping from the Alexander—Spanier complex. Now we want to
consider a sheaf of associative algebras O over a topological space M with an algebra
A of global sections. Suppose again that the algebra A has a trace

Tr: A/ [A,A]→ K.

We construct here a mapping from the Alexander—Spanier complex for O to the
Lie-algebraic complex of the algebra A considered as a Lie algebra.
We have already constructed the mapping I from the complex (Λ•A,∧1) to the

cochain complex (Λ•A∗, (∧1)∗). So the only fact we need is what this mapping can
be routed via the Alexander—Spanier complex, that is a factor of (Λ•A,∧1).
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We want to prove now that the mapping I can be direct via the space Γ
(
M,ΛkO

)

(that is a factor of the space ΛkA = Γ
(
Mk,AltO⊠k

)
). We need to prove that if

the function f (x1, . . . , xk) ∈ ΛkA is zero in a neighborhood of the diagonal, then
〈I (f) , g〉 is zero for any chain g = (g1, . . . , gk) ∈ CCk (A). Consider a representation
of f of the form

f (x1, . . . , xk) =
∑

α

f
(α)
1 (x1) ∧ · · · ∧ f

(α)
k (xk) ,(3.2)

We have Label equ5.2,

〈I (f) , g〉 =
∑

α

∑

σ∈Sk

(−1)σ Tr
(
f (α)
σ1
g1f

(α)
σ2
g2 . . . f

(α)
σk
gk
)
.

We want to prove that in fact already
∑

α

∑

σ∈Sk

(−1)σ f (α)
σ1
g1f

(α)
σ2
g2 . . . f

(α)
σk
gk = 0. (5.3)

Indeed, consider a point m ∈M . If U is a sufficiently small neighborhood of m, then
f |U×···×U = 0, therefore in calculation of (?equ5.3?) in U we can substitute instead of
representation (3.2) just f (x1, . . . , xk) = 0.
This defines in fact the mappings

C∗
AS (O)

I
−→ C∗

Lie (Γ (O))

of complexes and the corresponding mapping of homologies:

H∗
AS (O)

I
−→ H∗

Lie (Γ (O)) .

We want to remind that the left-hand side does not depend on the multiplication
law in O! Moreover, if the sheaf O coinsides as a sheaf of vector spaces with the
structure sheaf of M , then the left-hand side coincides with the singular cohomology
of M (under mild general-topological assumptions).
A simple generalization gives the

Theorem 3.1. The strange pairing defines the following mappings of complexes that
are compatible with differentials, with natural inclusions and projections and the
mappings B and S:

C∗
HAS (O)→ HC∗ (Γ (O) ,Γ (O)∗) ,

C∗
AS (O)→ C∗

Lie (Lie (Γ (O))) ,

C∗
cAS (O)→ CC∗ (Γ (O)) ,

C∗
aHAS (O)→ HC∗ (Γ (O)) .
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We claim that these mappings are compatible with natural mappings between com-
plexes in the left-hand side (described above) and mappings between the complexes
in the right-hand side (described, say, in [?LodQuill84Cyc]). We should note, howev-
er, that the situation with algebraic complexes is not so simple as with topological
complexes, where two complexes in question were subcomplexes in the third. In the
algebraic case we have defined the following mappings only:

HC (A) ←−−− CC (A) ←−−− HC (A,A∗)
y

CLie (Lie (A))

,

and the natural mapping CLie (Lie (A))
Alt
−→ CC (A) is not compatible with differ-

ential. The existance of other mappings in the topological case cannot suggest the
existance in the algebraic situation since there is an additional hypothesis of existance
of the trace.

Example 3.1. Let us show that the natural mapping of skewsymmetrization CC2 (A)→
CLie

3 (Lie (A)) is not compatible with differentials. Indeed, the differential of (c0, c1, c2)
in CC contains only the products in the order c0c1, c1c2, c2c3, therefore in the non-
commutative case its skewsymmetrization should not coinside with the differential of
the skewsymmetrization, that contains also the product c1c0.

In fact we described some “topological part” of the different cohomological com-
plexes for the ring Γ (O) and can write explicit cocycles for this part.

3.3. A case of a commutative algebra. It is clear that in the case of the
commutative algebra a lot of the discussion above becomes degenerate.

Proposition 3.2. LetO be a sheaf of commutativeK-algebras overX , A = Γ (X,O).
Consider a linear functional Tr: A → K. Then the mapping

Ck
AS (X,O)→ Ck

Lie (A)

vanishes for k > 0, the mapping

Ck
cAS (X,O)→ CCk (A)

vanishes for odd k and coincides with the mapping

(f0, f1, . . . , fk) 7→ f0f1 . . . fk

for even k. Here we consider A as included in CCk (A) by the rule

g 7→ ((c0, . . . , ck) 7→ Tr gc0 . . . ck) .
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3.4. A case of an almost commutative algebra. Here we investigate the co-
homology of an algebra that is approximately commutative. Let A be a K-algebra,
and * be an associative product on A⊗K K [[h]] such that A [[h]] with this product
is a K [[h]]-algebra. We can “fix an infinitesimally small” h and consider the cor-
responding associative product ·h on A. In this way we get a family of associative

products on A parametrised by infinitely small parameter h. Suppose that ·0
def
= · is

commutative. We can write this condition in terms of the product *:

fg − gf = O (h) .

In this case we can consider the speed of change of the product ·h with respect to h,
more precise, how quick this product becomes non-commutative:

{f, g}
def
= lim

h→0

f ·h g − g ·h f

h
.

It is clear that this bracket satisfies the Leibniz identity with respect to the commu-
tative product · and the Jacobi identity. The product · and the bracket {, } form so
called “first approximation” to the product *. The formalization of this situation is
the following

Definition 3.2. A Poisson algebra A is a vector space with a commutative product
· and a skewsymmetric bracket {, } : A ⊗ A → A that satisfy the Leibniz and the
Jacobi identities.

Consider a Poisson algebra A. Then we have a Poisson bracket on X = SpecA.
If X is smooth, we have a bivector field η (i.e., a section of Λ2TX) on X defined by
the rule

〈η|x, df ∧ dg|x〉 = {f, g} |x.

Indeed, the right-hand side depends only on df |x, dg|x because of the Leibniz identity,
therefore can be written as the left-hand side with an appropriate η.
In any case the Poisson bracket is local, therefore we get a sheaf of Lie algebras O

with the bracket {, } on SpecA. From the other side, for any h we get a sheaf of Lie
algebras O with the bracket [, ]h,

[f, g]h = f ·h g − g ·h f.

It is easy to see that the bracket {, } is the scaled limit of the brackets [, ]h:

{, } = lim
h→0

[, ]h
h
.

Consider what is an analogue of trace in the Poisson situation. It should be a
mapping Tr: Γ (O) → K satisfying the relation Tr {f, g} = 0. If SpecA is smooth
and compact (or proper), then this defines a measure on SpecA, that is invariant
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with respect to the Hamiltonian flow of any function on SpecA. We suppose that
there is a fixed Tr on A.
Consider a class in H∗

AS (X) and the images of this class in H∗
Lie (Lie (A, [, ]h)).

Below we show that these classes have a scaled limit when h goes to 0. Therefore we
get a mapping

H∗
AS (X)→ H∗

Lie (Lie (A, {, }))

(moreover, the corresponding mapping of complexes). We show below that this map-
ping can be written using only the data · and {, }.

Theorem 3.2. Let A be a Poisson algebra corresponding to the family of products
·h, and a linear function Tr on A that is a trace with respect to any product ·h. Con-
sider an arbitrary element cn ∈ Cn

AS (SpecA) = Λn+1A. Consider the corresponding
element c̃nh ∈ C

n+1
Lie (Lie (A, ·h)) = Λn+1A∗. Then

c̃nh = ĉnhn +O
(
hn+1

)

for some ĉn =
∑

k

(
n−k−1

k

)
ĉn(k) ∈ Λn+1A∗,

and if cn = f0 ∧ · · · ∧ fn, then the value of ĉn(k) on g0 ∧ · · · ∧ gn ∈ Λn+1A can be
written as

ĉn(k) (g0 ∧ · · · ∧ gn) = Tr Alt
σ,τ∈Sn+1

{fσ0
, fσ1
} · {fσ2

, fσ3
} · . . . ·

{
fσ2k−2

, fσ2k−1

}

· {gτ0 , gτ1} · {gτ2, gτ3} · . . . ·
{
gτ2k−2

, gτ2k−1

}

· {fσ2k
, gτ2k} ·

{
fσ2k+1

, gτ2k+1

}
· . . . ·

{
fσn−1

, gτn−1

}
· fσn

· gτn.

Moreover, for any Poisson algebra A with trace Tr the above formula determines (by
additivity) a mapping ĉ∗ from the complex C∗

AS (SpecA) into the complex C∗
Lie (Lie (A)),

and this mapping is compatible with differentials.

Proof. We should compute

Alt
σ,τ∈Sn+1

fσ0
·h gτ0 ·h fσ1

·h gτ1 ·h . . . ·h fσn−1
·h gτn−1

·h fσn
·h gτn .

up to terms of order n + 1 in h. Let us consider one summand in this formula and
write an expression that contains a lot of commutators and gives the same result
after alternation. First, let us move all fσi

with i ≥ 1 to the left of gτ0 one by one
beginning from fσ1

using the identity

af = fa+ [a, f ] .

The resulting expression can be written as a sum of the expressions of the following
form: it begins with a product of the terms fi, and the remaining factors are of the
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form

[. . . [[gj , fi1] , fi2] , . . . , fil] , l ≥ 0.

Any such product has a coefficient 0 or 1 in this expression.
Some terms gj occurs without a commutator in this expression. Let us move such

a term to the right using the formula

ga = ag + [g, a] .

As a result we get a sum of products that begin with some number of fi, end with
some number of gi and contain terms of the form

[gj1, [gj2, . . . [gjm, [. . . [[gj , fi1] , fi2] , . . . , fil]] . . . ]] , l ≥ 1, m ≥ 0.

in between. It is clear that the number of commutators in this term is no less than half
the number of letters in this term, and the equality can occur only in the case l + 1,
m = 0. On the other hand, consider the beginning of such a product fi1 ·h . . . ·h fik .
We can write the alternation of this expression in i1, . . . , ik as the alternation of

2−k/2 [fi1 , fi2 ] ·h . . . ·h
[
fik−1

, fik
]

if k is even, and of

2−(k−1)/2 [fi1 , fi2] ·h . . . ·h
[
fik−2

, fik−1

]
fik .

if k is odd. Therefore the alternation contains commutators in quantity no less than
half the number of letters in this product minus 1

2
. The same is true for the product

of g’s that finishes the term we consider.
That means that we can change the expression under the alternation sign in the

theorem to a sum of expressions with no less than n commutators, and any expression
with exactly n commutators is of the form

2−2k [fi1 , fi2 ] ·h . . . ·h
[
fi2k−1

, fi2k
]
·h fi2k+1

·h [gj1, fl1 ] ·h . . .
[
gjn−2k

, fln−2k

]

·h [gt1 , gt2 ] ·h . . . ·h
[
gt2k−1

, gt2k
]
·h gt2k+1

.

Any term with more than n commutators is O (hn+1), and in the terms with n
commutators we can change ·h to the commutative product ·, and [, ] to h {, }, with
an error of order O (hn+1). Moreover, any term appears with a coefficient 0 or 1.
Therefore the only thing we need to compute is which terms appear indeed in the
resulting sum.
The indices iα and tβ are uniquely determined by the set of indices jγ and lδ. It is

clear that jγ are in the same order as τi. Suppose that the substitutions σ = τ = id.
Then the sequence jγ increases, and the sequence lδ is bigger than jγ : lγ > jγ and
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contains no repeating terms. It is easy to see that any such pair of sequences appears
in the sum. From the other side, suppose that for some γ < δ we have lγ > jδ.
Then we can exchange lγ and lδ and get another term of this expression. However, it
is clear that the sum of two such terms vanishes after alternation, therefore we can
consider only terms with jγ < lγ ≤ jγ+1. In particular, the sequence lγ increases.
On the other hand, if jγ < lγ < jγ+1, then this sequence and the sequence with lγ

increased by 1 give opposite terms after alternation. Therefore we can consider only
sequences with lγ = jγ + 1, and odd jγ+1 − jγ and n− jn−2k. All such sequences give
the same contribution into the alternation, therefore it is sufficient to consider one
of them (with the biggest possible j∗) and compute the number of such sequences.
However, this number is the number of decompositions of k into n− 2k summands,

i.e.,
(
n−k−1

k

)
.

Now let us prove the claim of the theorem about Poisson algebras that may
not allow deformation to an associative algebra over K [[h]]. Consider the dif-
ference of strange pairings between (a0, . . . , an−1) and ∂ (x0, . . . , xn), and between
d (a0, . . . , an−1) and (x0, . . . , xn). Here we consider cyclic complexes, ∂ and d are
differentials in the cyclic complex and the cyclic Alexander—Spanier complex corre-
spondingly. We know that these two quantities are equal, therefore the difference is
0, however, we want to do it in a more invariant way. Therefore remember that the
strange pairing is a value of Tr on some expression, and compute the difference of
these expressions instead. It is easy to see that this difference is

∑

k

[akx0ak+1x1 . . . ak−1xn−1, xn] .

(The trace of this expression vanishes since it is manifestly a sum of commutators.)
Now we can note if we take pairings between skewsymmetric tensors, we can apply

the same procedure as above to the skewsymmetrization of the term akx0ak+1x1 . . . ak−1xn−1.
As a result we present it as an expression containing n− 1 commutator in any term.
That means that we have represented the incompatibility of the mapping from the

theorem with differentials as a trace of a sum of commutators. Moreover, the expres-
sions in these commutators have a proper scaled limit when h goes to 0, and these
limits can be expressed in terms of the commutative product and Poisson bracket
only.
Therefore we have specific formula expressing the difference between the expres-

sions in the strange pairings, and this formula is written in terms of commutative
product and the Poisson bracket only. However, we have proved this formula only
in the case when the Poisson algebra structure is obtained basing on the associative
product over K [[h]]. However, we can use the structure theorem for Poisson mani-
fold, which says that an open subset of a Poisson manifold allows deformation to an
associative algebra. This means that the difference coincides with the sum of com-
mutators on an open subset, therefore everywhere. Hence the trace of the difference
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vanishes, and the mapping of complexes is compatible with differentials.
Several words about the structure theorem. In the usual formulation it says that in

points of an open subset we can find m ∈ N and a coordinate system (x1, . . . , x2k+m)
such that the Poisson bracket can be written as

{f, g} =
k∑

l=1

(
∂f

∂xl

∂g

∂xl+k

−
∂g

∂xl

∂f

∂xl+k

)
.

Now we can write the deformation as

f ·h g =
∑

n≥0

k∑

l=1

hn

n!

∂nf

∂xnl

∂ng

∂xnl+k

.

3.5. The case of a Poisson algebra. Consider a Poisson algebra A. We defined
a mapping

C∗
AS (SpecA)→ C∗

Lie (Lie (A))

that is compatible with differentials. Now we want to show that this mapping can
be routed via much more coarse complexes. Indeed, there is a natural mapping (of
taking the minimal possible jet) from the Alexander—Spanier complex into the de
Rham complex

f0 ∧ · · · ∧ fn
J
7→
∑

l

(−1)l fldf0 ∧ · · · ∧ df̂l ∧ · · · ∧ dfn,

and there is another mapping from the complex of differential forms with the Koszul
differential into the Lie-algebraic complex for the Lie algebra of functions with Poisson
bracket. We are going to show that the mapping I can be written as a mapping from
the de Rham complex into the Koszul complex.
Consider a chain g0 ∧ · · · ∧ gn ∈ Λn+1 Lie (A). Let us associate a differential form

∑

l

(−1)l gldg0 ∧ · · · ∧ dĝl ∧ · · · ∧ dgn

on SpecA to this chain. We will denote this mapping by the same letter J . It is
very simple to compute the operation on differential forms that corresponds to a
differential in a Lie-algebraic complex. It is

g0dg1 ∧ · · · ∧ dgn
δ
7→
∑

l

(−1)l {g0, gl} dg1 ∧ · · · ∧ dĝl ∧ · · · ∧ dgn

+
∑

l<m

(−1)l+m g0d {gl, gm} ∧ dg0 ∧ · · · ∧ dĝl ∧ · · · ∧ dĝm ∧ · · · ∧ dgn.

(This differential was considered by Koszul.) We can write the operation δ as

δ = d ◦ i (η) + i (η) ◦ d,
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where η is the defined above bivector field associated to the Poisson bracket on SpecA.
Indeed, {f, g} = i (η) df ∧ dg.
Now we can easily see that the defined above pairing between F = f0 ∧ · · · ∧ fn ∈

Cn
AS (SpecA) and G = g0 ∧ · · · ∧ gn ∈ Λn+1 Lie (A) can be written as

Tr
∑

l

αn,li (η)
n−l

((
i (η)l J (F )

)
∧
(
i (η)l J (G)

))

with appropriate constants αn,l. In particular,

Corollary 3.1. The above formula defines the mapping from the de Rham complex
for the Poisson manifold M with a trace to the cohomological Lie-algebraic complex
for the Lie algebra of functions on M with respect to the Poisson bracket.

Remark 3.3. The above analysis is applicable in the case of a Poisson manifold with
a trace on functions. However, in a lot of important cases Poisson manifolds carry
only a trace on the set of functions with compact support, and this trace satisfies
the relation Tr {f, g} = 0 if one of the functions f or g has a compact support. We
can easily see that in this case the above mapping is well-defined as a mapping from
the de Rham complex with compact support or Alexander—Spanier complex with
compact support (that is obviously defined).

Remark 3.4. In the above theorem we have shown that the pairing is of order O (hn).
The above remarks shows that this pairing is not of a smaller order. The following
example will show that this pairing can be nontrivial even on the level of homol-
ogy. Moreover, this example is a simplified version of the more elaborate example
of pseudodifferential symbols which we use as a main component of the proof of
non-degeneracy theorem.

Example 3.2. Let us consider the Poisson algebra P of germs of functions on a
symplectic manifold M . Darboux theorem says that we can choose a coordinate
system such that this manifold is equipped with the standard Poisson structure

{f, g} =
k∑

l=1

(
∂f

∂xl

∂g

∂xl+k
−
∂g

∂xl

∂f

∂xl+k

)
.

This manifold carries no trace, however, we can define a trace on functions with
compact support as

Tr f
def
=
∫
f (x) dx1 . . . dx2n.

Therefore we get a mapping from the de Rham complex with compact support to the
Lie-algebraic complex for the Poisson algebra of functions. We want to show here
that this mapping induces inclusion on cohomology.
To show this it is sufficient to provide one Alexander—Spanier cocycle with com-

pact support and one Lie-algebraic cycle with nontrivial pairing between them (since
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the Alexander—Spanier cohomology with compact support is one-dimensional). Con-
sider a step function s (x) in one variable, i.e., a smooth function such that s′ = 0
outside a small neighborhood of x = 0 and s (−∞) = 0, s (∞) = 1. A simple
calculation shows that

1 ∧ s (x1) ∧ s (x2) ∧ · · · ∧ s (x2n) ∈ C
2n
AS

has a compact support. Moreover, this function is manifestly a cocycle, since it
contains 1 as a factor.
On the other hand, consider a Lie-algebraic chain

1 ∧ x1 ∧ x2 ∧ · · · ∧ x2n ∈ Λ2n+1P.

This chain is obviously a cycle, and obviously has a nontrivial pairing with the above
Alexander—Spanier cocycle. Therefore both the cycle and the cocycle are non-trivial,
and the pairing is nontrivial.

3.6. The S-operations. Consider an Alexander—Spanier cochain c ∈ Ck+1
AS (X,O).

We described the image Ic of c in the Lie-algebraic complex of A = Γ (X,O). On
the other hand, we can consider c as an element of Ck+1

cAS (X,O) via the mapping

Ck+1
AS (X,O)→ Ck+1

cAS (X,O) ,

and the image of c in the cohomological cyclic complex of A. In this representa-
tion we can consider also the action of S-operation on c and the cyclic cochains
Sk (Ic) = ISk (c). However, though in the algebraic situation we have no mapping
that associates to a Lie-algebraic cochain a cyclic cochain, there is a mapping in
the opposite direction. This means that we can consider Sk (Ic) as a Lie-algebraic
cochain.
Hence we constructed a mapping from C∗

AS [1]⊗K K [S] into CLie (Lie (A)). More-
over, the latter complex is a differential graded algebra (DGA), therefore we can
consider the mapping from the free DGA FreeDGA(C∗

AS [1]⊗K K [S]) generated by
C∗

AS [1] ⊗K K [S] into CLie (Lie (A)). Let us remind that the free DGA is just a
symmetric power in the case of vector superspaces.
This construction is defined so while only in the case whenO is a sheaf of associative

algebras. However, we know already that if we forget about S-operations the mapping
above can be correctly defined also in the case of sheaves of Poisson algebras. Below
we show that a similar approximation is true also in the case of S-operations: we
can compute a main term in h of the image of Sk (Ic) in the Lie-algebraic cochain
complex. However, this main term coincides with an image of some element of higher
degree (????), therefore the difference of these two elements has a higher order in h,
and the above calculations do not give the main term of this difference. Moreover,
it is possible to show that this main term is not determined by the Poisson algebra
structure and it depends on the higher order terms in the product. We discuss this
situation below.
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Definition 3.3. Consider a family of products ·h in A and the corresponding map-
ping I from C•

AS [1]⊗K K [S] into Λ•A∗ [[h]] = C•
Lie (Lie (A [[h]] , ·h)). Define a filtra-

tion on C•
AS [1] ⊗K K [S] as F k =

{
c | Ic = O

(
hk
)}

. Define a mapping GrI from

the corresponding graded quotient GrF • into Λ•A∗ as

F k/F k+1 = Grk F ∋ c 7→ lim
h→0

Ic

hk
.

The following fact is obvious:

Lemma 3.1. Consider a Lie algebra P associated with the family of priducts ·h.
There are natural differentials in GrF • and in C•

Lie (P) = Λ•A∗, and the mapping
GrI is compatible with differentials.

In their paper [?GelMat92Coh] I. Gelfand and O. Mathieu consider the Poisson algebra
P = P (T2n) of functions on a symplectic torus. They have constructed an (ad hoc)
DGA (that is quasi-isomophic to the above one) with a mapping from it into C•

Lie (P).
They also stated a conjecture that is equivalent to the positive answer to the following
question in the case of X = T2n

Question. Consider a symplectic manifoldX and the Lie algebra P (X) of functions
on X with respect to the Poisson bracket. Suppose that ·h is the deformation of the
commutative product on X that corresponds to the Poisson bracket on X . Is the
above mapping from the symmetric power of the Alexander—Spanier complex with
a compact support

FreeDGA
(
Gr
(
C•

ASc
[1]⊗K K [S]

))
→ C•

Lie (P)

a quasi-isomorphism?

Though there are some indications that the Gelfand—Mathieu conjecture can be
valid in the toric case, there can be additional complications in the case of an arbitrary
manifold even in the compact case. The structure of the above mapping is nearly
related to the failure of the Lefschetz theory in the symplectic case, therefore in the
case of (say) twisted torus of Witten [?Wit] the structure of this mapping can be yet
more complicated.
However, we want to describe the image of the element I (Src) in the Lie-algebraic

cohomology of the Poisson algebra A.

Theorem 3.3. LetA be a Poisson algebra corresponding to the family of products ·h,
and a linear function Tr on A be a trace with respect to any product ·h. Consider an
arbitrary element cn ∈ Cn

AS (SpecA) = Λn+1A. Since Cn
AS (SpecA) ⊂ Cn

cAS (SpecA),
we can consider Sr (cn) ∈ Cn+2r

cAS (SpecA). Consider the corresponding element c̃n,rh ∈
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CCn+1+2r (A, ·h) = A∗⊗n+1+2r/Zn+1+2r, and restrict this cochain to skewsymmetric
chains, that gives as a cochain ĉn,rh ∈ Λn+2r+1A∗ for the Lie algebra Lie (A, ·h). Then

ĉn,rh = ĉn,rhn+2r +O
(
hn+1+2r

)

for some ĉn,r =
∑

k

(
n−k−1

k

)
(????) ĉn,r(k) ∈ Λn+1+2rA∗, (I should compute it yet)

and if cn = f0 ∧ · · · ∧ fn, then the value of ĉn,r(k) on g0 ∧ · · · ∧ gn+2r ∈ Λn+1+2rA can
be written as

ĉn,r(k) (g0 ∧ · · · ∧ gn+2r) = Tr Alt
σ∈Sn+1,τ∈Sn+1+2r

{fσ0
, fσ1
} · {fσ2

, fσ3
} · . . . ·

{
fσ2k−2

, fσ2k−1

}

· {gτ0 , gτ1} · {gτ2, gτ3} · . . . ·
{
gτ2k−2+2r

, gτ2k−1+2r

}

·
{
fσ2k

, gτ2k+2r

}
·
{
fσ2k+1

, gτ2k+1+2r

}
· . . . ·

{
fσn−1

, gτn−1+2r

}
· fσn

· gτn+2r
.

Moreover, for any Poisson algebra A with trace Tr the above formula determines
(by additivity) a mapping ĉ∗,r from the complex C∗

AS (SpecA) into the complex
C∗

Lie (Lie (A)), and this mapping is compatible with differentials.

Proof. We can proceed in the same way as with the proof of the theorem . . . . The
operation Sr inserts 2r ones in the given word in all possible places (with some
coefficients). Let us consider one particular ordering of the letters fα and gβ and
one particular insertion of ones in the word f0f1 . . . fn. Let us call the resulting
word f̃0f̃1 . . . f̃n+2r, any f̃γ being fα or 1. The strange pairing gives as a word

f̃0g0f̃1g1 . . . f̃n+2rgn+2r. Call two noncommutative polynomials congruent if they be-
come the same after alternation in indices α and β. Now we can make the same
transformations as before with the polynomial f̃0g0f̃1g1 . . . f̃n+2rgn+2r,
until we write this expression as a sum of terms of the form

f̃i1 ·h . . . ·h f̃i2k+1
·h [gj1, fl1 ] ·h . . .

[
gjn−2k

, fln−2k

]
·h gt1 ·h . . . ·h gt2k+1+2r

and of a remainder of order O (hn+2r).

Here f̃• denotes either some fi or 1. We can suppose again that j1 < l1 ≤ j2 < l2 ≤
· · · ≤ jn−2k < ln−2k. Moreover, if ji < li < l′i ≤ ji, both f̃li and f̃l′i are some fα, and

any f̃γ is 1 for li < γ < l′i, then the exchange of li and l
′
i results in the change of the

sign of the alternation. Therefore we can suppose that in the set
{
f̃ji+1, . . . , f̃ji+1

}

there is odd numbers of fγ. Now it is easy to check that if we choose li to be the

maximal possible index li ≤ jl+1 such that f̃li is some fγ , then two different choices
of {jδ} contribute the same share in the alternation, and this share does not depend
on the choice of places we inserted ones in.

we should fix the number of fα in
{
f̃ji+1, . . . , f̃ji+1

}
and count the contri-

bution.
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It is clear now that the theorem is true up to a choice of coefficients in the decompo-
sition of ĉn,r in ĉn,r(k). However, since any insertion of ones give the same contribution,
we should only compute the sum of coefficients at all the insertions.
The proof that the formula of the theorem gives a mapping of complexes in the

case of a Poisson manifold can be carried out in the same way as we did before,
without Sr.

Corollary 3.2. Let M be a Poisson manifold with a trace Tr, and P be the sheaf of
functions with the Poisson bracket. The “shifted strange pairing” between SrCn

AS (M,P)
and CLie

n+1+2r (Lie (Γ (M,P))) can be routed via the pairing between ΩnM and Ωn+2rM .
This pairing can be written as

〈
ωn, ωn+2r

〉
= Tr

∑

k

αki
(
ηn−2k

) (
i
(
ηk
)
ωn ∧ i

(
ηk+r

)
ωn+2r

)

for appropriate constants αk.

4. Example: pseudodifferential symbols

4.1. The sheaf of pseudodifferential symbols. Here we use a synthetic ap-
proach and intertwine definitions of pseudodifferential operators and pseudodifferen-
tial symbols. However, the operators are only intermediate steps in the process of
definition of symbols for us.

Definition 4.1. A function Ã (x, ξ) on T ∗Rn is a classical pseudodifferential symbol
of order k ∈ Z if for any given N it has a decomposition

Ã (x, ξ) =
k∑

j=−N

Aj (x, ξ) + A(N) (x, ξ) ,

where Aj is a smooth (outside 0 section of T ∗Rn) homogeneous in ξ function of

homogeneity degree j and A(N) is o
(
ξ−N

)
locally in x when ξ →∞. We say that

Ã (x, ξ) ≃
k∑

j=−∞

Aj (x, ξ)

is the asymptotic expansion of Ã.
We consider two symbols the same if they have the same asymptotic expansion.

Consider an operator A : C∞ (Rn) → C∞ (Rn). Consider the point x0 ∈ Rn, the
δ-function δx0

in this point and the linear functional

A∗δx0
: f 7→ (Af) (x0) .

on C∞ (Rn). Let us translate this generalized function on the vector −x0

f (x) 7→ fx0
(x) = f (x+ x0) 7→ (Afx0

) (x0)
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and denote it ϕA,x0
. For not to worry about the behavior at large x, fix a cut-off

function ω (x) and denote ωϕA,x0
by ϕ̃A,x0

.

Definition 4.2. An operator A : C∞ (Rn) → C∞ (Rn) is a classical pseudodifferen-

tial operator with a symbol Ã (x, ξ) =
∑k

j=−∞Aj (x, ξ) if the generalized function
ϕ̃A,x0

(x)

ϕA,x0
: f 7→ 〈ϕA,x0

, f〉 = ω (x)A (f (x+ x0)) |x0

has Fourier transform FϕA,x0
(ξ) with the asymptotic expansion

FϕA,x0
(ξ) ≃

k∑

j=−∞

Aj (x0, ξ) , |ξ| → ∞.

Example 4.1. The operator Mα of multiplication by the function α (x) is pseudod-
ifferential with symbol A (x, ξ) = α (x). Indeed, in this case the generalized function
ϕx0

is just the δ-function at 0 (this is why we shift the argument of the function f in
the definition) with coefficient α (x0), and the Fourier transform of the δ-function is
1.

Example 4.2. The operator ∂
∂x1

is pseudodifferential with symbol iξ1. Moreover,
any vector field corresponds to a pseudodifferential operator and the symbol is the
corresponding linear function on T ∗Rn.

Proposition 4.1. A composition of two pseudodifferential operators is again a pseu-
dodifferential operator and its symbol has the following asymptotic expansion:

Ã ◦B =
∑

N≥0

1

N !

∂|N |

∂ξN
Ã (x, ξ)

∂|N |

∂xN
B̃ (x, ξ) .(4.1)

(The terms in this sum have the order that goes to infinity, therefore to compute Label equ6.3,

a component of Ã ◦B of given homogeneity degree we need to compute a sum of a
finite number of summands.)
If the symbol of a pseudodifferential operator vanishes, then this operator is an

operator with a smooth kernel K (x, y) dy, x, y ∈ Rn:

f (x) 7→ (Af) (x) =
∫
K (x, y) f (y) dy.

Now we want to define a notion of a pseudodifferential operator on a manifold.
Consider a pseudodifferential operator P on Rn and a pair of cut-off functions ϕ and
ψ defined in a neighborhood of x ∈ Rn. Then ψPϕ is the operator sending a locally
defined function into a locally defined function with a compact support. It is obvious
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that this operator is pseudodifferential, moreover, if for any functions ϕi, ϕj from a
decomposition of unity

∑

i

ϕi = 1

the operator ϕiPϕj is pseudodifferential then the initial operator P is also pseudod-
ifferential. This gives a localization of the notion of a pseudodifferential operator,
therefore we can define a pseudodifferential operator on a manifold. However, we
want also define a notion of pseudodifferential symbol on a manifold, and this is a
little bit more tricky.
We know that the operators with a smooth kernel on a manifold should form a

kernel of the mapping from operators to symbols. in any local chart M ⊃ U → Rn

we can associate to the pseudodifferential operator its symbol, that is an asymptotic
expansion in T ∗Rn. Consider two intersecting local charts. The symbol in one of
them determines the operator up to addition of an operator with a smooth kernel,
therefore it determines the symbol in the part of the other chart that corresponds to
intersection of charts.
What we get is the action of “local diffeomorphisms” of Rn on pseudodifferential

symbols. This action is difficult to describe explicitly, however, if we could do it, then
we could just define the notion of a pseudodifferential symbol on a manifold without
a reference to pseudodifferential operators. For convinience of the reader we want to
show that this action is not a new entity, but just a corollary of the formula for the
multiplication.
Indeed, consider for simplicity the differential operators on Rn. We know how

diffeomorphisms of Rn acts on this algebra, however, we can deduce this action as a
corollary of the commutation law for differential operators. Indeed, we can represent
a diffeomorphism as an intergral of a flow corresponding to some vector field. Now
the change in some small time of the operator under the action of this flow is described
by the commutator of the vector field and the operator. Now we can integrate these
changes and get the image under this diffeomorphism. We can repeat this program
literally in the case of pseudodifferential operators.

Corollary 4.1. Consider a 1-parametric group of diffeomorphisms ht of Rn corre-
sponding to a vector field V . It can be raised to T ∗Rn, so it determines a group of
diffeomorphisms h′t of T

∗Rn and a vector field V ′ on T ∗Rn. Consider a pseudodiffer-
ential symbol P0 and the equation

−
d

dt
Pt = V ◦ Pt − Pt ◦ V.

Call a solution of this equation the translation of P by the flow ht.
The leading terms of [V, P ] and of the Lie derivative of the symbol P with respect to

the field V ′ coincide, hence the leading term of Pt moves with the flow h′t. Moreover,
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in the equation above we can restict our attention to any fixed number of terms in
the symbol P , since the commutator with V preserves degree. Hence if P =

∑
Pj,

and

P
(t)
j = (h′t)

∗
Pj,t

then the equation on P
(t)
j is upper-triangular:

d

dt
P

(t)
j =

∑

k>j

αk

(
P

(t)
k

)
.

Here α are some differential operators. Therefore the solution always exists, its
leading term is a translation of the leading term of P0 by the action of h′t, and any
term of the translation depends only on the values of the terms with the same of
higher order in the preimage of a given point on T ∗Rn.

Consider a manifold M and an operator A : C∞ (M) → C∞ (M). We call this
operator a pseudodifferential operator on M if it is locally of such type, i.e., if for
a local chart h : M ⊃ U → Rn it acts on functions with compact support in U as
some psuedodifferential operator in Rn. This means that for a cut-off function σ with
support on U the corresponding operator

h−1∗ ◦Mσ ◦ A ◦Mσ ◦ h
∗ : C∞ (Rn)→ C∞ (Rn)

is pseudodifferential. It is easy to see that we can consider the symbol of this operator
in this coordinate frame and that the highest order term of this symbol is correctly
defined function on T ∗M . We can consider a complete symbol of A as an asymptotic
expansion of a function on T ∗M with a “twisted” transformation law under chart
changes on M : only the highest term is just transferred by the flow, to the lower
terms some additional terms (depending on the higher order terms) are added.
However, we can see that if in one chart the symbol of the operator A is 0 when

ξ goes to infinity inside a given open conic subset of T ∗M , then this condition is
satisfied in any other coordinate chart. The composition law (4.1) shows that a
product of such operator with any other operator is again of this type. This means
that the restriction of the symbol of the product to an open conic subset is uniquely
determined by values of the symbols of factors on the given subset.
Therefore we can consider the set ΨDS (M) of pseudodifferential symbols on M ,

define the multiplication law of such symbols and transformation laws under diffeo-
morphisms. It easy to see that this ring has a natural structure of a sheaf of rings
over the “infinity in the cotangent bundle”.
So consider a projective (or better, spherical) completion PT ∗M and the infinity

PT ∗M in this completion. We can consider a symbol on M as a function on the
“punctured infinitesimal neighborhood of PT ∗M in PT ∗M”. We call this (formal)
manifold DT ∗M . It is fibered over PT ∗M with a “punctured disk of infinitesimally
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small radius” as a fiber. The fiber has two connected components, corresponding to
the positive part of the disk and the negative one.
Here we want to show that the cyclic cohomogy of this ring is exhausted by the

“topological type” cocycles defined above. To do this we use the description of
the cyclic cohomology obtained in the papers [?BryGet], [?Wod] and compare this
description with the image of the mapping I.

4.2. Cohomology of symbols: the Poincaré lemma. In the section on Poisson
algebras we have shown that the strange pairing determines an inclusion of cohomol-
ogy in the case of germs of functions on a symplectic manifold. Here we want to show
the same fact in the case of germs of pseudodifferential symbols.
The sheaf of pseudodifferential symbols lives on the formal manifold DT ∗M , which

is a product of a punctured formal infinitesimal disk and the spherization of the
cotangent bundle. Therefore the cohomology of the base is the product of cohomology
of the spherization and cohomology of the punctured disk. A punctured disk looks like
a circle homotopically, therefore the cohomology should be 1-dimensional in degrees
0 and 1. The corresponding cocycles in the de Rham complex are 1 and dz/z. The
corresponding representatives in the Alexander—Spanier complex are f (z) = 1 and
g (z1, z2) = log z2

z1
. Let us note that we can write the second cocycle as 1∧ log z if we

allow log z as an additional function on the disk. The fact that log z is outside the
ring of functions we consider ensures the non-triviality of this cocycle.
The trace on pseudodifferential symbols is correctly defined on symbols with com-

pact support along the spherization. Therefore we get a mapping from the Alexander—
Spanier complex of DT ∗M with complex support along the spherization to the Lie-
algebraic complex for the Lie algebra of pseudodifferential symbols. This is in a
complete analogy with what we did in the case of Poisson algebra on a symplectic
manifold.

Example 4.3. Consider a small (convex) open conic subset C of T ∗M and the Lie
algebra of symbols of pseudodifferential operators in this subset. Taking the coordi-
nates xi on M we get the corresponding coordinates xi, ξi on T

∗M . We can suppose
that C is a neighborhood of xi = 0, i > 0, ξj = 0, j > 1, ξ1 > 0.
Consider a step function s (y) on R, s′ 6= 0 only in a small neighborhood of the

y = 0. We can consider now two Alexander—Spanier cochaines on C:

1 ∧ s
(
x1
)
∧ · · · ∧ s (xn) ∧ s (ξ2/ξ1) ∧ · · · ∧ s (ξn/ξ1)

and

1 ∧ log ξ1 ∧ s
(
x1
)
∧ · · · ∧ s (xn) ∧ s (ξ2/ξ1) ∧ · · · ∧ s (ξn/ξ1) .

(We can understand 1∧ log z as an entity or as an exterior product with log z added
to the ring of functions.) The same reasons as in the case of a Poisson algebra show
that these cochains are cocycles and have a compact support along the spherization.
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Therefore they define two Lie-algebraic cocycles for the Lie algebra of pseudodiffer-
ential symbols in C via the strange pairing.
On the other hand, we can provide two Lie-algebraic chains for the same algebra:

1

ξ1
∧ x2 ∧ · · · ∧ xn ∧ ξ1 ∧ · · · ∧ ξn and 1 ∧ x1 ∧ · · · ∧ xn ∧ ξ1 ∧ · · · ∧ ξn.

Again, the simple calculation shows that these chains are cycles and that they have
a nondegenerate strange pairing with the above Alexander—Spanier cocycles. This
shows that all four (co)cycles are nontrivial and the pairing is nontrivial.

Corollary 4.2. Consider a small (convex) conic subset C of T ∗M . The strange
pairing defines a mapping from the Hochschild—Alexander—Spanier complex (with
compact support along S∗M) of the neighborhood of infinity in C to the Hochschild
complex of the ring of pseudodifferential symbols in C. This mapping is a quasi-
isomorphism. The same is true with the mapping from the cyclic Alexander—Spanier
complex into the cyclic complex.

Proof. Let us proof the claim about the cyclic complexes first. It is known that in
this case the cyclic cohomology forms a free module over K [S] with two generators
in degrees 2n and 2n + 1 [?Wod], [?BryGet]. (Let us remind that the operation S
has degree 2.) From the other side, the description of cyclic Alexander—Spanier
cohomology shows that it is a free module over K [S] in degrees 2n−1 and 2n. Since
two actions of S on two complexes in question are compatible, it is sufficient to show
that the generators of cyclic Alexander—Spanier cohomology go to non-trivial cyclic
cocycles. Therefore it is sufficient to provide two cyclic cycles with nontrivial strange
pairing with these basic cyclic Alexander—Spanier cocycles.
However, the Alexander—Spanier complex is a subcomplex of the cyclic Alexander—

Spanier complex, and the Lie-algebraic homological complex is a subcomplex of the
cyclic homological complex, therefore the above example gives us the necessary in-
gredients. Now the proof for the case of the Hochschild complex is trivial, because in
both the topological and algebraic situation the Hochschild complex and the cyclic
complex are related by a long exact sequence.

Remark 4.1. In the above argument we used the calculations with Lie-algebraic com-
plexes. The irony of the situation is that we can nevertheless give no description of
the Lie cohomology of the algebra in question.

4.3. The global cohomology. In the previous section we gave a simple example of
cocycles in the situation of the Poincaré lemma. We exploited the fact that the coho-
mology in question is known to show that the strange pairing is a quasi-isomorphism
in this case. Here we exploit the fact our description of complexes and of the strange
pairing is functorial to show that it is a quasi-isomorphism in the general case too.
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Consider a manifoldM and a sheaf O of K-algebras over X . Then we can consider
a (Hochschild) complex of presheaves X ⊃ U 7→ CH∗ (Γ (U,O)) and the associated
complex of sheaves CH∗ (O). In the same way we can consider the cyclic complex
CC (O) and the Lie-algebraic complex CLie (Lie (O)). We can consider hypercohomol-
ogy of such a complex and compare it with the corresponding cohomology of the
algebra Γ (X,O) of global sections.
There is a natural mapping

CH (Γ (X,O))→ Γ (X, CH (O))

and analoguous mappings in the cases of cyclic and Lie-algebraic complexes. In the
following we use the following example: as X we consider the spherization S∗M of
the cotangent bundle T ∗M , and as O we consider the sheave of pseudodifferential
symbols over M . It is known [?BryGet] that in this case the above mapping is a
quasi-isomorphism.
On the other hand, we have a strange pairing between the (say) cyclic Alexander—

Spanier complex with compact support and the cyclic complex, and this pairing is
correctly defined for any open subset U ⊂ X . Therefore we get a mapping from
the cyclic complex of sheaves into the complex of sheaves that is dual to cyclic
Alexander—Spanier complex with compact support. In the considered above case
we know already that this mapping is a quasi-isomorphism of complexes of sheaves,
since the corresponding mapping on sections is a quasi-isomorphism in the case of a
small open subset.
Now the proof is almost at hand. Consider the spectral sequences associated with

these two complexes of sheaves. The E1 terms are (????)

E1
pq = Hp (X,HH−q (O)) and Hp (X,Hq (D)) ,

and the strange pairing induces an isomorphism of these two complexes. However, we
know that the first spectral sequence converges to the homology of the algebra of glob-
al sections, therefore the strange pairing is indeed nondegenerate in the Hochschild
case. The same proof works in the cyclic case. We proved

Theorem 4.1. Consider a manifold M and the ring of global pseudodifferential
symbols ΨDS (M) on M . Then the strange pairings between C•

HASc
(DT ∗M) and

CH• (ΨDS (M)) or between C•
cASc

(DT ∗M) and CC• (ΨDS (M)) induce nondegen-
erate pairings on cohomology. Moreover, the same is true if we change T ∗M to an
open conic subset in T ∗M , or if we consider pseudodifferential symbols with compact
support and Alexander—Spanier chains with arbitrary support.
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