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Abstract. Basing on a sheaf O with a fixed section 1 on a manifold M we intro-
duce the notions of the de Rham, cyclic and Hochschild cohomological complexes
of the Alexander–Spanier type for M with coefficients in O. We show when these
complexes are quasi-isomorphic to the usual cohomology of M and how to build
cocycles for these complexes basing on cocycles for M . If O is a sheaf of algebras
with a trace on the ring A of global sections, we construct mappings from these
complexes to the corresponding cohomology of A. In the case of the ring of pseu-
dodifferential operators these mappings are isomorphisms if we consider cyclic or
Hochschild complexes.

Moreover, for an arbitrary sheaf of algebras the Hochschild complex of the alge-
bra of global sections has a natural structure of a module over the cohomological
Hochschild complex of the base (with a natural product). On the level of cohomo-
logy we get an analoguous fact: algebraic Hochschild cohomology is a module over
cohomological ring of the base. In the case of the sheaf of differential operators we
show that this module is a free module with one generator and build this generator.

These two descriptions are compatible with known descriptions of the cohomo-
logy for corresponding algebras, however they provide also explicit constructions of
cocycles. We also construct a lot of cocycles for Poisson algebras, what generalizes
the Gelfand—Mathieu construction [?GelMat] to the case of an arbitrary Poisson
manifold.
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4.3. The global cohomology 57
References 58

0. Introduction

In the last couple of years there was a big progress in construction of cocycles
for non-commutative algebras with local multiplication. In fact the first results in
this direction were achieved a long time ago, when there appeared a description
of cohomology of algebras of differential or pseudodifferential operators ([?BryGet,
?Wod]). However, these description were nonconstructive, so the first sign of the
progress was the description of one particular Lie-algebraic cocycle of the Lie algebra
of pseudodifferential operators with a use of the symbol for log ∂[?KheKra].
It was a very easy task to pinpoint the topological origin of the Khesin—Kravchenko

construction, and it seems now that the generalization of this construction is a com-
mon knowledge between specialists. The description of the cohomology obtained in
the “ancient” papers [?BryGet, ?Wod] shows that there is a tight connection between the
cohomology of the support of the algebra and the cohomology of the algebra itself. So
the generalizations assign to a topological cocycle of some kind an algebraic cocycle.
The best candidates for that are Čech cohomology and de Rham cohomology.
The discussion below has two targets: to give the simplest examples of the cocycles

we will obtain later and to provide the reader with euristics why these cocycles are in
the best cases nontrivial. We do not restrict ourselves to be absolutely correct with
the second target, therefore the reader who needs proofs should skip all the vague
arguments like “if some conditions of non-degeneracy are satisfied. . . ”. However,
even in this section any construction of cocycles is still correct, hence even the most
demanding reader can get something if he will not skip to the section 1.
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0.1. A construction of 2-cocycles. Let us give a construction of a 2-cocycle as an
example. Consider a manifoldM over a field K and a sheaf O of associative algebras
with units onM . Let A be Γ (M,O), and suppose that there is a trace on the algebra
A, i.e., a linear functional Tr : A → K such that

Tr (ab− ba) = 0

for any two elements a, b ∈ A. The best example would be the sheaf D of differential
operators, however, this sheaf allows only trivial trace Tr a = 0. We will explain how
to correct this deficiency later, when we use pseudodifferential operators.
We can consider (though approximately) a differential operator or a pseudodif-

ferential operator as a function on a cotangent bundle. In the same way the trace
on pseudodifferential operators is an analogue of integration of functions on a sym-
plectic manifold. Therefore the reader should now imagine that there is some non-
commutative deformation of the sheaf of functions on a manifold, and that the inte-

gration of functions deforms to a non-trivial trace on this algebra. Or, if the reader is
too recalcitrant, he should consider instead any sheaf of algebras with a global trace.
What we want to do is to construct a morphism from H1 (M,K) to H2

Lie (A, K). As
we see below, in good cases this morphism is an isomorphism.
We stole the following innocent statement from [?KhesKra91Coc] (though it is present

there only virtually): let X ∈ A and c1 : A → K given by

(0.1) c1 : A 7→ TrX · A

be a 1-cochain for A (here we consider, say, cochain complex for the Lie algebra that Label equ0.3,

correspond to A). Then we can rewrite a coboundary of c1

dc1 : A⊗A → K : (A,B) 7→ TrX · [A,B]

as

(0.2) dc1 (A,B) = Tr [X,A] ·B.

Let us note that we can represent any 1-cochain on A in the form (0.1) if the trace on Label equ0.6,

A is “sufficiently nondegenerate”. Therefore under this condition of non-degeneracy
any 2-coboundary for A can be written in the form (0.2). Moreover, the cochain (0.2)
is remarkable by its locality property: let us call a 2-cochain c2 local if there is a
mapping

X : O → O : Γ (U,O) ∋ ϕ 7→ X (ϕ) ∈ Γ (U,O)

such that c2 (A,B) = TrX (A) · B.
It is clear that on local cochains the closeness is a local property : if we have

a covering U of M and a set of closed local cochains on O|U , U ∈ U, that are
restrictions1 of some global cochain, then this cochain is also closed. The following
step we want to do now is to construct a local cochain that does not correspond to

1I.e., a local cochain coincides with the global on local sections with compact support, and such
sections for different U generate the set of global sections.
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any global section X . By the locality property it is closed, and since it does not
correspond to any section, it cannot be a coboundary. Therefore it is a nontrivial
cocycle!
Moreover, we want to do it for an arbitrary class in H1 (M,K). We want here

to consider a geometric realization of this cocycle as the intersection index with an
(coorientable) hypersurface H ⊂ M . Consider a pair of tubular neighborhoods U1,
U of H such that U 1 ⊂ U and a section X1 on U that is identically 0 near one
boundary of U and identically 1 near another. Let X2 be a 0 section on M r U 1.
The sections X1,2 define by (0.2) two local cochains on their domains,2 and these
cochains “coincide” on the intersection of these domains. As we explained it above,
that determines a cochain on M , and in order this cochain to be a coboundary, the
section X1 should extend to the entire M as a local constant (i.e., as a section in
K ⊂ O). We can write this cochain as

c2 (M,X1,2) : (A,B) 7→ TrX (A) · B, X (A)
def
= [X1,2, A] .

In the definition of X we should take a different function X1 or X2 depending on
the region of M we are currently in—the result X (A) does not depend on the choice
anywhere a choice is possible.
If H divides M into two parts, then X1 can be extended into one part as 0 and into

another as 1. However, in this case H represent a trivial cohomology class. Therefore
we constructed a promised mapping

H1 (M,K)→ H2
Lie (A, K) .

The cheating in this construction is the choice of the section X1. If O is indeed the
isomorphic as a sheaf to the sheaf of functions, and M is a C∞-manifold, then there
is no problem in providing such a section. Otherwise the notion of such a section
is correctly defined (since A is an algebra with unity, there is a constant subsheaf
K ⊂ O, so there is a notion of section being locally 0 or locally 1), but to find it we
need some additional “nice” properties of the sheaf O, like O being soft.
We can consider X1,2 as a (global) section of the sheaf O/K. Then the discussion

above can be rewritten in one phrase: the mapping

X : O → O : A→ [X,A]

is correctly defined even in the case when X is not an element of A = Γ (M,O), but
an element of Γ (M,O/K), and the sequence

0→ K = Γ (M,K)→ A = Γ (M,O)→ Γ (M,O/K)→ H1 (M,K)→ H1 (M,O)→ . . .

is exact. However, as the following generalization shows, this abstraction is too
concrete to sustain useful modifications.

2More precise, on the rings of global sections with compact support on their domains.
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0.2. 2-cocycles for pseudodifferential symbols. As we will see later (when we
give a precise definition of a pseudodifferential symbol on a circle), this ring is a
ring of global section over a product of two circles: one ordinary, another infinites-
imal. This manifold has 2-dimensional space H1, therefore we can construct two
2-cocycles. However, this two 2-cocycles correspond to different geometrical objects
(since the radii of the circles are so different), therefore we need two slightly different
constructions.

Example 0.1. Consider the sheaf of pseudodifferential symbols on a circle S1. We
consider them as “functions” ϕ (x, ξ) on the cotangent bundle T ∗S1. In fact these
functions are just asymptotic expansions when ξ → ∞, so they are defined on the
infinitesimal neighborhood of the infinity in the cotangent bundle. There are two
classes in H1 of this manifold: one corresponds to a hypersurface x = const, another
one to

ξ = a very-very big const .

Consider a first one of these two classes and the corresponding function X1. We
can suppose that X1 depends only on x, and that it has a “jump” near the point
x = 0. Now we want to expand X1 to be as near as it is possible to a function on a
circle, i.e., a function with period 1. This function (where defined) is 0 if x < −c, is
1 if x > c. Let us extend it as 0 on the interval −1 + c < x < −c and as 1 on the
interval c < x < 1− c. Now this function is already non-periodic, but it satisfies the
relation

X1 (x+ 1) = X1 (x) + 1

instead. Moreover, we can uniquely extend it to a function X̃1 on the entire line
leaving this relation true. However, since for any function A (x, ξ) with period 1 in x
the expression [

X̃1, A
]

is periodic with period 1, we can still apply the formula (0.2) and get a 2-cocycle

(A,B) 7→ Tr
[
X̃1, A

]
·B.

(And we do not need to know the precise law of multiplication for pseudodifferen-
tial operators, the only thing we need to know is the translation-invariance of this
multiplication.)
However, we can still simplify this formula a lot. Let as note that an addition of

a periodical function to X̃1 results in changing this cocycle by a coboundary, as the

formula (0.2) shows. Therefore we can substitute the function x instead of X̃1 (x),

since X̃1 (x) − x is a periodical function. We result in the following formula for a
cocycle:

(A (x, ξ) , B (x, ξ)) 7→ Tr [x,A] · B = −Tr
∂A

∂ξ
· B.
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Example 0.2. To deal with the second case is a little bit more tricky, especially
since we cannot formulate precisely what we mean by “a very-very big const”. Let
us proceed first as in the first example. Consider a hypersurface ξ = const and a
corresponding function X1. The big problem is that the functions we consider should
also have good symmetry properties. In the previous example they should have been
invariant with respect to translation in x, here they should have a good decomposition
with respect to the action of expansions in ξ, as the definition of a psudodifferential
symbol shows.
One way to circumvent this is to consider a family of surfaces that are “approxi-

mately invariant” with respect to expansions in ξ, say

ξ = const ·αk, k ∈ Z, α > 1.

The corresponding function X1 is locally constant away from these surfaces and has
a “jump” 1 near any one of them. This modification is in direct analogy with the

step from a locally defined function X1 to an “almost periodical” function X̃1.
This function X1 satisfies the property

X1

(
αkξ
)
= X1 (ξ) + k

of “almost-invariance” with respect to a discrete group of expansions. If we consider
instead of a discrete family of hypersurfaces a “continuous family”, or if we take the
limit α→ 1 with the corresponding scaling of X1, we get a function

X1 (ξ) = log ξ.

If the reader believes what was discussed so far, he should understand now that the
formula

(A,B) 7→ Tr [log ξ, A] · B

is correct, defines a cocycle for Lie algebra of pseudodifferential operators, and that
this cocycle cannot be a coboundary (since log ξ is not a pseudodifferential symbol).
Moreover, it should be clear that the classes of two defined cocycles are linearly
independent, since no linear combination of x and log ξ is simultaneously periodic
and a sum of homogeneous in ξ functions.

Remark 0.3. The second cocycle has certain advantages comparing with the first.
While the first cocycle is trivial after restriction on the ring of differential operators,
the second one gives (the only nontrivial) 2-cocycle for this ring. This is a reason
why the much simpler first cocycle was missed so far—and while it is discovered, the
discussed in this paper theory becomes almost obvious.
We want to note also that though it is possible to consider the second cocycle on

differential operators only, to define it we need pseudodifferential symbols.
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0.3. 3-cocycles and 4-cocycles. Here we want to construct a generalization of the
above construction to higher codimensions. Again, we want to begin with construc-
tions of (local) cochains and coboundaries.
Call an n-cochain c on A a local cochain if

c (A1, . . . , An) = 0 if

n⋂

i=1

SuppAi = ∅.

Suppose that the sheaf of algebras O is isomorphic to a sheaf of functions on M . In
this case such a cochain is just a skew-symmetric generalized function with a support
on a diagonal in Mn. Locally we can write any such function (i.e., a functional on
the space of functions) as a linear combination of the terms

A1 ⊗ · · · ⊗ An 7→ TrAltD1A1 · · · · · DnAn,

and
A1 ⊗ · · · ⊗ An 7→ TrAltD1A1 · · · · · Dn−1An−1 · f0An,

where Di are differential operators without a term of degree 0, and f is a function
on M . Now suppose that the product on O is a deformation of the commutative
product on the sheaf of functions with respect to a non-degenerate Poisson structure.
In this case we can write the operator Di as a composition of vector fields, i.e., of
Poisson brackets with functions on M . We can see that in this case we can write any
local cochain as

A1⊗· · ·⊗An 7→ TrAlt
[
f 1
1 ,
[
f 2
1 ,
[
. . . ,

[
fk1
1 , A1

]]]]
·· · ··

[
fn−1,

[
. . .
[
f
kn−1

n−1 , An−1

]]]
·f0An,

or as the analogous expression without f0. Now we can write any commutator as a
difference of products, therefore any such function can be written as

A1 ⊗ · · · ⊗ An 7→ TrAlt f1 · A1 · f2 · A2 · · · · · fn ·An.

Therefore we obtained a general formula for local cocycles, and we can write a general
formula for local coboundaries (all under the above assumptions). If we avoid the
question of a local cochain being a coboundary, but of non-local cochain only, then
to construct a non-trivial cocycle we can try to find a local coboundary that is not a
global coboundary. To do this we need to fix a geometrical realization of a class of
cohomology on M , say a submanifold in M .
Suppose that codimension is 2. Let X1, X2 be two functions on M . Consider a

cochain
c2{Xi}

(A1, A2) = Tr Alt
σ,τ∈S2

Xσ1 · Aτ1 ·Xσ2 · Aτ2 .

Then we can write a coboundary of this cochain as

dc2{Xi}
(A1, A2, An+1) = Tr Alt

σ∈S2,τ∈S3

(
1

3
[Xσ1 , Aτ1 ] · [Xσ2 , Aτ2 ] · Aτ3

+
1

12
[Aτ1 , Aτ2 ] · [Xσ1 , Xσ2 ] · Aτ3

)
.

(0.3)
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Suppose that codimension is 3. Let Xi, i = 1, . . . , 3, be functions on M . Consider a Label equ0.10,

cochain

c3{Xi}
(A1, A2, A3) = Tr Alt

σ,τ∈S3

Xσ1 ·Aτ1 ·Xσ2 · Aτ2 ·Xσ3 · Aτ3 .

Then we can write a coboundary of this cochain as

dc3{Xi}
(A1, . . . , A4) = Tr Alt

σ∈S3,τ∈S4

(
1

4
[Xσ1 , Aτ1 ] · · · · · [Xσ3 , Aτ3 ] · Aτ4

+
1

16
[Xσ1 , Aτ1 ] · [Aσ2 , Aσ3 ] · [Xτ2 , Xτ3 ] · Aτ4

+
1

16
[Xτ1 , Xτ2] · [Aσ1 , Aσ2 ] · [Xσ3 , Aτ3 ] · Aτ4

)
.

(0.4)

Now we want to show that (at least in some particular cases) we can use these two Label equ0.11,

formulae for generation of cocycles, and we can hope that in reasonable cases these
cocycles should be non-trivial. We see that in a formula for a local coboundary in
the codimension 2 and 3 any occurence of Xi is in the form

[Xi, something] .

Therefore if we know X up to a (locally defined) constant only, we can still use
these formulae and we get a cocycle. If we cannot find global Xi with the specified
non-constant part, then there is a big hope that this cocycle is non-trivial.
Now consider a submanifold S of codimension n in M and let us try to repeat the

above construction in these conditions. One particular case is when this submani-
fold is a complete intersection in its neighborhood. We mean that we can construct
hypersurfaces Hi, i = 1, . . . , n, in a neighborhood of S such that M is a transversal
intersection of Hi. Now let Xi be the functions with a change 1 in a narrow neigh-
borhood of Hi and locally constant far from it. Consider the right-hand sides of the
formulae (0.3)–(0.4). They define some (n+ 1)-cochains of A. Indeed, though Xi are
defined only in a neighborhood of S, but the function under the trace sign is non-zero
only in a smaller neighborhood. Therefore we can extend it everywhere as 0 and take
the trace.
In the same way as above what we get is a cocycle (since locally it looks as a

coboundary). If the class of S in Hn (M,K) is non-trivial, there is a big hope that
we get a non-trivial cochain.

Example 0.4. Let us combine the two discussed above examples of cocycles to
construct a 3-cocycle for pseudodifferential symbols. We get the following formula:

(A,B,C) 7→ Tr

(
∂A

∂ξ
· [log ξ, B] · C − [log ξ, A] ·

∂B

∂ξ
· C

)
.

This cocycle corresponds to the intersection of the plane x = const with the plane
ξ = const, i.e., to a cohomological class of a point.
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0.4. Higher dimensions. In the case codim > 3 we do not know if we can write
a differential of a local cochain in a form similar to (0.3)–(0.4). However, it is not
necessary. Let Xi, i = 1, . . . , n, be functions on M . Consider a cochain

cn{Xi}
(A1, . . . , An) = Tr Alt

σ,τ∈Sn

Xσ1 · Aτ1 · · · · ·Xσn
· Aτn .

Then we can write a coboundary of this cochain as

(0.5) dcn{Xi}
(A1, . . . , An, An+1) = ±Tr Alt

σ∈Sn,τ∈Sn+1

Aτ1 ·Xσ1 · Aτ2 · · · · ·Xσn
· Aτn+1 .

Now it is very easy to see that if X1 = const, then the alternation vanishes. Therefore Label equ0.12,

we can substitute a section of O/K instead of X in this formula, therefore any
argument above is still applicable. Again under some non-degeneracy conditions any
cochain can be written as a linear combination of such, therefore there is a hope to
write down a cocycle that is locally of the same form. What does the word “locally”
mean here? We can see that if any one of Xi vanishes in a neighborhood of some
point, then the expression under the trace sign vanishes there. Therefore we can
consider a function X1 ⊗ · · · ⊗Xn on M × · · · ×M :

X1 ⊗ · · · ⊗Xn (m1, . . . , mn) = X1 (m1) . . .Xn (mn) .

This function uniquely determines the corresponding cochain, moreover, the above
remark on locality shows that it is sufficient to know this function in a neighborhood
of the diagonal. So “locally” means exactly this consideration in a neighborhood of
the diagonal.
The only problem now is what to do with the case of when S is not a local intersec-

tion. In less demanding cohomological theories we could consider a decomposition of
unity. To do this in our case we should put some cut-off functions in the formula (0.5).
However, there are too many places to “put a horse into”, therefore it is not so easy
to do this in such a way that the result will remain closed. Another problem is that
we have too many degrees of freedom: we can get a mapping of cohomology groups,
but this mapping is too far away from the “cohomological dream”, when we have
mapping of complexes themselves.

0.5. The appearing of Alexander–Spanier theory. One of the possible construc-
tions is the use of Alexander–Spanier theory as a source for the initial cocycle on M .
Consider the construction of a 2-cocycle basing on a section of O/K. This section is
essentially a closed 1-form on M , if O is the sheaf of functions. In fact we can write
the basic element [X,A] from (0.2) as

X ·A · 1− 1 · A ·X.

In both terms A is in between, therefore we just consider the action of the element
1⊗X−X⊗1 ∈ A⊗A on A ∈ A with respect to the usual left-right action. Now come
two crucial observations: if we change X by a constant, the element 1 ⊗X −X ⊗ 1
does not change, and we need to know 1 ⊗X −X ⊗ 1 only on a neighborhood of a
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diagonal in M ×M (we consider A⊗ A as sections of O ⊠ O on M ×M). Indeed,
if an element of A⊗A is zero in a neighborhood of the diagonal, it acts as 0 on A.
Hence this element of A⊗A (i.e., a section of O⊠O on M ×M) is correctly defined
in a neighborhood of a diagonal if X is defined up to a locally constant section.
Therefore we come to the following construction: basing on a sectionX ∈ Γ (M,O/K)

we get a section 1⊗X−X⊗1 of O⊠O in a neighborhood of diagonal inM×M . Ho-
wever, this section is just a representation of dX in the Alexander–Spanier complex.
What remains to do is to find a more natural place for B from (0.2) and construct a
generalization to the case of cocycles of higher order (this is a definition of “strange
pairing”).
So the topic of this article is a strange observation that while there is a big am-

biguity in a construction of the mapping from the, say, Čech complex to a cyclic
complex, this ambiguity is washed out if we start with an Alexander–Spanier com-
plex. That means that, in fact, all the ambiguity is lying in the step from the Čech
complex to the Alexander–Spanier one.
We remind here several useful mapping (including ambiguities) from various topo-

logical complexes to the Alexander–Spanier one and construct a canonical mapping
from the latter complex to the cocyclic complex. (This in fact gives us also a map-
ping to the Hochschild complex and the Lie-algebraic one.) A remarkable property
of this mapping is that it does not depend on the structure of the algebra, only on
sheaf-theoretical structure of the corresponding sheaf.
We also show that the described set of cocycles give the entire cohomology of the

corresponding algebra in cases when this cohomology is known.
I am indebted to a lot of people for fruitful discussions and inestimable help,

among them I. M. Gelfand, A. Goncharov, D. Kazhdan, B. Khesin, M. Kontsevich,
O. Kravchenko, H. McKean, A. Radul, B. Tsygan. Another approach to what is
done here is contained in the resent works of B. Tsygan. In these papers the cyclic
cohomology is connected with the Atiyah—Singer theorem of index.
These papers together with what is written here suggest that it is interesting to

try to rewrite some “standard” proof of this theorem using the Alexander–Spanier
cohomology instead of the usual one.

1. Alexander–Spanier cohomology
Label h1

In this section, the sheaves we consider are going to be sheaves of K-modules for
a commutative algebra K with unity. The tensor products are taken over K. Unless
specified otherwise, K is going to be a field.
If you have a differential manifold M , usually there is a lot of different ways to

describe the same object: the cohomology of M . You can write a lot of different
complexes that are all quasi-isomorphic. In various geometrical situations you can
apply the complex that you feel is more suitable for it.
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However, there is one particular type of complex that appears very rare if you need
a geometrical description of cohomology. I mean the Alexander—Spanier complex,
applications of which are usually met in hard topological papers. Here I want to
show that (quite unanticipated) it is very useful in descriptions of highly geometrical
objects: cyclic cohomology, that are just a non-commutative analogue of the de Rham
cohomology.

1.1. Alexander–Spanier complex. Consider a topological spaceM and the vector
space A of (say, continuous) functions on M . Let

A ⊗̂ A ⊗̂ . . . ⊗̂ A︸ ︷︷ ︸
n times

= A⊗̂n

be the space of functions3 on Mn. We can consider the inclusion

A⊗A⊗ · · · ⊗ A︸ ︷︷ ︸
n times

= A⊗n ⊂ A⊗̂n

of the space of functions of finite rank into this space. Let me remind you that a
function of rank 1 is just a function of the form

f (m1, m2, . . . , mn) = f1 (m1) f2 (m2) . . . fn (mn) ,

and a function of rank k can be represented as a linear combination of such functions.

Let ΛkA ⊂ Λ̂kA denote the spaces of skewsymmetric functions on Mn of finite rank
and of any type correspondingly. This vector spaces form two complexes, if we
consider the operation of exterior multiplication4 by 1 ∈ A

∧1: f1 ∧ f2 ∧ · · · ∧ fn 7→ f1 ∧ f2 ∧ · · · ∧ fn ∧ 1: ΛkA → Λk+1A

as a differential of degree 1. We can extend this operation on Λ̂kA if we note that
this operation can be written as

f (x1, x2, . . . , xk) 7→ df (x1, x2, xk, . . . , xk+1) =
∑

i

(−1)k+1−i f (x1, x2, . . . , x̂i, . . . , xk+1) .

3Here the completed tensor product ⊗̂ is by definition what is written above. Since we do not
need this notion below, we skip the discussion of this notion.

4Usually, people define exterior power as a quotient of the tensor power; we consider instead a
subspace of the tensor power (they cannot be identified unless the base field/ring contains Q). On
the quotient, ∧ is naturally defined as the “quotient” of the operation ⊗; in particular, v ∧ v′ is the
image of v ⊗ v′ in the quotient. The proper definition of ∧ on skew tensors t, t′ of degrees k, k′ is∑

sgn (σ)σ (t⊗ t′) with σ running over permutations of {1, . . . , k + k′} which increase on {1, . . . , k}
and {k + 1, . . . , k + k′}. (When one can identify the subspace and the quotient space flavors, this
differs by a binomial coefficient from ∧ on the quotient space.) In particular, v∧v′ is v⊗ v′− v′⊗ v,
which is a skewsymmetrization of 2v ⊗ v′.

A similar dichotomy exists in definitions of exterior forms. While the original of [?KobNom] and
[?SteLec] define the product “as in the quotient”, [?DubNovFom] defines it “as in the subspace”. To
mud the water yet more, Russian translator of [?KobNom] adds a footnote recommending use of the
other definition. . .
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Remark 1.1. The geometrical realization of the bigger complex is as following: Call
an n-tuple of points in M considered up to an alternation a simplex in a manifold.
There is a natural operation of taking a boundary in the vector space spanned by
simplices. Now we can consider a skewsymmetric function on Mn as a function on
the set of simplices. It is easy to understand that the differential above is exactly the
combinatorial differential on the simplicial complex.

At last, let M∆ be diagonal subset in Mn, ∆: M∆ →֒Mn denote the inclusion and

∆∗
(
ΛkA

)
⊂ ∆∗

(
Λ̂kA

)
denote5 the spaces of germs of skewsymmetric continuous

functions at a neighborhood of the diagonal (of finite rank and arbitrary correspon-
dingly).

Definition 1.2. The Alexander–Spanier complex AS(A) consists of the vector spaces

∆∗
(
Λ̂kA

)
(or ∆∗

(
ΛkA

)
). The differential in this complex is the image of the diffe-

rential in the complex
(
Λ̂kA,∧1

)
(or
(
ΛkA,∧1

)
).

Remark 1.3. To get a geometrical description of this complex we should call an n-tuple
of nearby points on M a simplex. Then an element of a complex is a skewsymmetric
function on simplices, and ∧1 is dual (up to a sign) to taking a sum of faces of a
simplex.

Remark 1.4. In what follows we use primarily the smaller complex. However, it is
known that in nice situations the inclusion of the smaller complex into the bigger is
a quasi-isomorphism.

Remark 1.5. Consider a pushforward ∆∗∆
∗
(
ΛkA

)
(or the same with Λ̂). It consists of

global sections of the corresponding sheaf on Mn, and, as a vector space, is naturally
isomorphic to ∆∗

(
ΛkA

)
. If any germ near diagonal M∆ can be extended to a global

function on Mn (e.g., when A consists of global sections of soft sheaf on a locally
compact space), then ∆∗∆

∗
(
ΛkA

)
consists of functions on Mn modulo functions

vanishing near the diagonal M∆.
In general, this shows that one can multiply elements of ∆∗

(
ΛkA

)
by functions on

Mn of finite rank. On the other hand, this also demonstrates why ∆∗
(
ΛkA

)
has no

natural structure of OM -module.

1.2. A case with an arbitrary sheaf. Let us consider instead of the vector space
A of functions on M the corresponding sheaf O of vector spaces over M . We can
easily see that the definition of the complex

(
ΛkA,∧1

)
in fact does not depend on

5In other words, ∆∗ is taking the global sections of the pullback in category of sheaves of
sets/groups. While most of the sheaves considered in this paper have a structure of O-module,
we do not use the inverse image in the category of O-modules, so do not need to denote it. (Note
that when people need different flavors of pushforward/pullback, they use notations like ∆•, ∆+

etc.)
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anything but the sheaf structure of O and the global section 1 of this sheaf. So we
are going to rewrite this definition using only these data.

Definition 1.6. Let O be a sheaf of vector spaces over M . Denote as O⊠n the
exterior tensor product of the sheaf O with itself. This sheaf over Mn is defined by
the sheafification of the following rule:

Γ
(
U1 × · · · × Un,O

⊠n
)
= Γ (U1,O)⊗ · · · ⊗ Γ (Un,O) ;

in other words, the stalk of O⊠n over (m1, . . . , mn) is the tensor product of stalks
over m1, . . . , mn ([?Bredon]). It is clear that the symmetric group Sn is acting on Mn

and on the sheaf O⊠n. Denote as AltO⊠n the subsheaf of skewsymmetric sections
(i.e., sections ϕ on U ⊂ Mn such that for any s ∈ Sn the section sϕ satisfies the
relation sϕ|sU∩U = (−1)s ϕ|sU∩U).
For any fixed global section of O (call it 1) the sheafes AltO⊠n form a natural com-

plex with the exterior product by 1 as a differential; more precisely, ; then ∆∗ AltO⊠n

form a complex of sheaves on M .
Let us denote by ΛkO the sheaf ∆∗

(
AltO⊠k

)
on M∆; identify M and the diagonal

M∆. Sheaves ΛkO with differential ∧1 form a natural complex of sheaves on M
for any fixed global section 1 of the sheaf O. A section of ΛkO over U ⊂ M is
a skewsymmetric section of O⊠k over a small neighborhood of ∆ (U) ⊂ Mk. Let
Ck

AS (O) = Λk+1O, k ≥ 0.

1.3. Realization of Alexander–Spanier cocycles. Here we are going to give se-
veral examples of mappings from some complexes calculating the cohomology ofM to
the Alexander–Spanier complex. These constructions give us a possibility to provide
explicit formulae for cocycles in case we need one.

Label cs1

Case 1.7. Let M be covered by open subsets Ui. Let σi be a unity decomposition for
the covering {Ui}.

Consider a Čech cochain ci0i1...in for {Ui}. Let us associate to c the following
Alexander–Spanier cochain:

(1.1) f (x0, . . . , xn) =
∑

i0,...,in

σi0 (x0) . . . σin (xn) ci0...in .

It is easy to see that this mapping from the Čech complex to the Alexander–Spanier Label equ1.10,

complex is compatible with differentials.
A chain of the cosimplicial complex is a function on the set of embedded simplices.

To construct a chain in the Alexander–Spanier complex we need only to assosiate with
an (n + 1)-tuple of nearby points onM an embedded simplex (or a linear combination
thereof). To proceed in this way we need a further structure on M .

Label cs2

Case 1.8. M is a Riemannian manifold.
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In this case given two nearby points m1, m2 ∈ M we can consider a geodesic arc
S1 (m1m2) with ends in this points. Given a point m ∈ M and a subset V ⊂ M we
can construct

Arc (m, V ) =
⋃

v∈V

S1 (mv) .

Let us associate (using induction) to the ordered (n + 1)-tuple (m0, . . . , mn) of points
of M a simplex

Sn (m0, . . . , mn) = Arc
(
m0,S

n−1 (m1, . . . , mn)
)

in M . Note that the natural mapping from an affine n-dimensional simplex to Sn is
not C1-smooth! (The tangent cone at m0 is “curvilinear”.) However, the induction
shows that the images of faces of the affine simplex are of the form Sk (ms0 , . . . , msk)
with s0 < s1 < · · · < sk.
Taking the antisymmetrization of this map, we associate to the (n+ 1)-tuple

(m0, . . . , mn) a linear combination

1

(n + 1)!

∑

s∈Sn+1

(−1)s S (ms0 , . . . , msn)

of imbedded simplices in M . It is easy to see that this mapping is compatible with
taking a boundary.
Now given an n-form ω we can integrate it over this linear combination of simplices

(possible since any Sn is a smooth image of a cube). It is easy to see that the resulting
skew-symmetric function on Mn+1 is closed if ω is closed (essentially, it follows from
the mapping of a face of the cube being degenerate whenever the corresponding
mapping into an affine simplex is degenerate).

Label cs3

Case 1.9. Let M be covered by subsets Ui with an identification of Ui with an open
convex subset in an affine space. Let σi be a unity decomposition for the covering
{Ui}. Let ω be a differential k-form on M .

In this case we can proceed as in the previous one. If ω has a support in one of
subsets Ui we can define the following Alexander–Spanier cochain in Ui: to k+1 given
points in Ui we associate the integral of ω over the oriented convex hull of this points.
We can extend this function to the entire M (more precise, to the neighborhood of
the entire diagM inMn) to get a cochain onM . Now we can apply this construction
to the forms σiω.

1.4. The analogues for the cases of cyclic and Hochschild complexes. We
will see below that the discussed above complex is adopted to the case of cohomology
of Lie algebra. Here we introduce two other complexes adopted to calculations of
cyclic and Hochschild cohomology. In what follows, K is a commutative ring; unless
explicitly specified otherwise, K is assumed to be a field.
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Althow the definitions below are stated in terms of sheaves of vector spaces, the
case of M being a point is interested as well. In this case, one deals with one vector
space V instead of a sheaf O.

Definition 1.10. Let O be a sheaf of vector spaces over M with a marked section
1. Consider the following differential in the graded sheaf

⊕
n ∆

∗O⊠n+1:

d (f0 ⊠ · · ·⊠ fn) = (−1)n+1 1⊠ f0 ⊠ · · ·⊠ fn

+ (−1)n f0 ⊠ 1⊠ · · ·⊠ fn + · · ·+ f0 ⊠ · · ·⊠ fn ⊠ 1, d2 = 0.

Let C•
HAS (O) =

(
Γ
(
M,∆∗

(
O⊠•+1

))
, d
)
, • ≥ 0. Call this complex a Hochschild–

Alexander–Spanier complex for O.

Definition 1.11. Let O be a sheaf of vector spaces over M with a marked section
1. Consider the following differential in the graded sheaf

⊕
nO

⊠n+1:

da (f0 ⊠ · · ·⊠ fn) = (−1)n f0 ⊠ 1⊠ · · ·⊠ fn + . . .

− f0 ⊠ · · ·⊠ 1⊠ fn + f0 ⊠ · · ·⊠ fn ⊠ 1, d2a = 0.

Let C•
aHAS (O) =

(
Γ
(
M,∆∗

(
O⊠•+1

))
,∆∗da

)
, • ≥ 0. Call this complex an “acyclic”

Hochschild–Alexander–Spanier complex for O.

Remark 1.12. In what follows we are not so rigorous and use often the notation ⊗
instead of ⊠.

When we want to consider a particular graded component of d or da, we use the

notations d[n+1] and d
[n+1]
a for the components written above. (So in this notation we

use the grading by the valence of the tensor d or da acts on.)

Definition 1.13. Consider a product V ⊗k ⊗ V ⊗l → V ⊗k+l defined by the following
rule: to define the image of

(f1 ⊗ · · · ⊗ fk)⊗ (g1 ⊗ · · · ⊗ gl)

consider all the decomposition of the set {1, . . . , k + l} into two subsets of k and l
elements. Insert the elements fi on the places of the first subset and the element gj
on the places in the second subset in the expression

• ⊗ · · · ⊗ •︸ ︷︷ ︸
k+l times

preserving the order in both sets of elements. Now sum the resulting elements with
signs corresponding to the the substitution being even or odd. Call this associative
product a shuffle product.

Definition 1.14. Consider the action t = tk of Zk in V ⊗k (here V is a vector space)
by

v1 ⊗ · · · ⊗ vk
t
7→ (−1)k+1 vk ⊗ v1 · · · ⊗ vn−1.
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Call the space of invariants of this action
(
V ⊗k

)Zk the cyclic k-th power of V . Consi-
dering action of t on one term of shuffle product shows that the shuffle product sends
cyclic powers into cyclic powers. Let Zn+1 acts in this way on Cn

HAS, and consider the

corresponding space of invariants (Cn
HAS)

Zn . Consider a mapping of shuffle product
with 1:

∧1: (Cn
HAS)

Zn →
(
Cn+1

HAS

)Zn+1
.

Since the shuffle product is associative, the square of the mapping ∧1 vanishes. Call
this complex the cyclic Alexander–Spanier complex and denote it C•

cAS (O).

Define the operator N = Nk = 1 + tk + · · ·+ tk+1
k : V ⊗k → V ⊗k; denote by 1lL and

1lR the operators of tensor multiplication by 1 on the left and right correspondingly.
Then 1lL = (−1)k tk+11lR = (−1)k t−k

k+11lRt
k
k on V ⊗k; moreover, the operators da, d on

V ⊗k may be written as
∑k−ε

l=0 t
−l
k+11lRt

l
k on V ⊗k for ε = 1, 0 correspondingly. This

immediately implies that (1− t) d = da (1− t), and Nda = dN. Note that the first
of these identities shows that Ker (1− t) is preserved by d, hence C•

cAS is indeed a
subcomplex of C•

HAS.
Note also that the subsheaf C•

AS consisting of skew-symmetric sections of C•
HAS

(and of C•
cAS) is preserved by d. Hence one gets inclusion of complexes C•

AS ⊂
C•

cAS ⊂ C•
HAS. Similarly, consider subsheaf C•

AS’ of C
•
aHAS consisting of sections skew-

symmetric in all indices but the first one; it is preserved by da. Hence one gets
inclusion of complexes C•

AS’ ⊂ C•
aHAS. (Later we construct duality between C•

AS and
the Lie-algebraic complex C• (g, k), g = Γ (M,O); likewise C•

AS’ will turn out to be
dual to C• (g, g).)

Remark 1.15. Until this moment we considered (say) the exterior power of a vector
space as a subspace in the tensor power. However, the usual definition presents this
space as a quotient of the tensor power, and the difference becomes apparent if we
consider not vector spaces in char = 0, but finite characteristic, or modules over a
ring—to take an antisymmetrization, we should be able to divide by n!. The same is
applicable to the cyclic case.
Investigate shortly how things change in this “politically correct” case. Denote

“quotient” spaces of tensors with certain symmetry by prepending q to the lower
index, as in CqcAS, CqAS, CqAS’. Given spaces VG, VH of coinvariants of action of
groups H ⊂ G in V , there are natural mappings of projection Π = ΠHG : VH → VG,
and of symmetrization

∑
g : VG → VH ; the latter map exists if [G : H ] < ∞, and

summation is over a set of representatives of H\G. For example, the operator Nn+1

works as a symmetrization operator Cn
qAS → Cn

qAS’. For what follows, denote by NS

the operator
∑
g with sum going over all permutations; likewise, use N ′

S
for sum

over permutations stabilizing the first element; obviously, operators NS send vector
spaces C•

qAS to C•
HAS; likewise, N

′
S
send C•

qAS’ to C
•
HAS.

In our case, we consider complexes instead of vector spaces, and both d, ∧1 = 1lR,
and da have the form

∑L
l=0 dl with d0 = 1lR, and dl = t−ld0t

l. Note that any
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dl has a property that dlg = g[l]dlg ; here l, g are arbitrary, and lg, g[l] are choosen
appropriately. (Moreover, for groups of permutation of all indices, and all indices
but the first one, one can take lg = l, and g[l] = ιl (g) with appropriate inclusion ιl of
permutation groups. When one wants g and g[l] be in cyclic permutations, one may
need to take lg distinct from l.) We want to investigate when there are mappings
between complexes of coinvariants which are intrinsic in the sense that they exist in
any such situation. For the differential to send H-coinvariants into H ′-coinvariants,
one needs l 7→ lh to be a permutation of indices l appearing in differential

∑
dl for

any h ∈ H , and one needs h[l] to be in H ′. The former condition is automatically
satisfied when one consider all permutations, or permutations stabilizing the first
element; hence all operators 1lR, da, d induce mappings of spaces of coinvariants C•

qAS

or C•
qAS’. In fact, 1lR, da, d (and dl) induce proportional mappings in C•

qAS; likewise,
1lR, da (and dl except the last one) induce proportional mappings of C•

qAS’.
In the case of cyclic permutations of k elements, lt must be l + 1 if 0 ≤ l <

k − 1, kt = 1, and there are two possible choices for (k − 1)t: either 0, or k. One

concludes that in the cyclic case, only da =
∑k−1

0 dl sends gives a mapping of spaces

of coinvariants Ck−1
qcAS → Ck

qcAS.
The next question is: given two complexes C•

α, C
•
β of coinvariants, when a se-

quence of symmetrization mapping gives an intrinsic mapping of complexes? Given
H ⊂ H ′ and G ⊂ G′, a mappings

∑
l∈L dl from H-coinvariants to G-coinvariants,

likewise for
∑

l∈L′ dl, and mappings of symmetrization
∑

g∈RH
g and

∑
g∈RG

g (with

RH being representatives for H\H ′, likewise for RG), one wants to check commu-
tative square conditions. One must compare

∑
l∈L′ dl

∑
g∈RH

g =
∑

l∈L′

∑
g∈R g[l]dlg

with
∑

g∈RG
g
∑

l∈L dl; for an “intrinsic” equality, one wants the summations to be

identical. This leads to a necessary condition [H ′ : H ] |L′| = [G′ : G] |L|.
Joining all together, one gets a diagram

(
C•

qAS, da (d, 1lR)
) N
−−−→ (C•

AS, d)∥∥∥
xΠ

(
C•

qAS’, da (1lR)
) Π
−−−→

(
C•

qAS, da (d, 1lR)
)

(C•
HAS, d)

Π

x[1lR]

yN ′

S
Π

x[1lR]

yN ′

S

xι

(C•
aHAS, da)

Π
−−−→

(
C•

qcAS, da
) N

−−−→ (C•
cAS, d)

ι

x
xι

(C•
AS’, da) (C•

AS’, da)
N
−−−→ (C•

AS, d) .

Additionally, there is a diagonal arrow NS from
(
C•

qAS, 1lR
)
to (C•

AS, d). (One can also
add the map of complexes 1− t : (C•

HAS, d)→ (C•
aHAS, da) we know already; however,

it is of different nature than other maps in this diagram.)
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In this diagram, Π denotes a natural projection of coinvariants, ι a natural inclusion
of invariants. The notation (C•, d1 (d2, . . . dn)) means that (C•, dn) is a complex,
and any dk is proportional to dn; unless indicated otherwise, we consider d1 as the

differential in C•. Finally, (C•, d1 (d2, . . . ))
[dk ]

f

−−→ (C ′•, d) means that f is a mapping of
complexes (C•, dk)→ (C ′•, d). Note that absense of intrinsic maps between complexes
in this diagram which are not compositions of arrows in the diagram may be shown
using the necessary condition above; the fact that the mappings N , NS, N

′
S
in the

diagram are mappings of complexes are easy to deduce.
In the case of characteristic 0 the natural projection from a subcomplex to the

corresponding quotient complex is an isomorphism. Therefore the diagram above
can be contracted to a smaller one.
On the other hand, note that there is a natural pairing between invariants of Zk

in V ⊗k and coinvariants of Zk in (V ∗)⊗k; likewise for any subgroup of permutations.
Since our interest in Alexander–Spanier complexes is due to their pairing with cor-
responding (Hochschild, cyclic or Lie-algebraic) complexes in algebraic situation, one
should work with invariants in geometric (Alexander–Spanier) situation if one wants
to work with coinvariants in the algebraic situation.

Remark 1.16. To clarify the notion of “intrinsic” maps and “intrinsic” identities,
consider permutation objects : assume given an additive category C with finite limits
and colimits; then for action of a group, one can consider invariants and coinvariants.
Consider a (semi)simplicial object (Ck,dkl), 0 ≤ l ≤ k, with C•, d• in C. Assume
that the permutation groups Sk act by automorphisms pk (g) of Ck, g ∈ Sk, so that
pk+1 (g)dkl = dkl′pk (g

′); here l′ = g (l + 1), and g′ is (l′ k + 1)◦ g ◦ (l k + 1) restricted
to become a permutation of {1, . . . , k}.
Composing d• and p• (g), one gets a functor from category with objects being sets
{1, . . . , n} and morphisms being injective mappings. (In the same way, cyclic objects

correspond to restricting attention to injective mappings which preserve the cyclic
order.) The “intrinsic” maps considered above are maps which are associated to
spaces of (co)invariants of any permutation object.
Consider an example of how the constructions above are applicable to permutation

objects. Given a morphism ψ : G → AutC, C ∈ C, consider H ⊂ G with finite
[G : H ], put Ψ :=

∑
g∈R ψg ∈ EndC with R being a particular set representatives of

H\G. Consider H− and G-coinvariants of C, given by ΠH : C ≫ CH , ΠG : C ≫ CG

(which are coequalizers of ψg, g ∈ H and g ∈ G correspondingly). Then ΠH ◦
Ψ ◦ g = ΠH ◦ Ψ for any g ∈ G, which induces a mapping Φ: CG → CH such that
ΠH ◦ Ψ = Φ ◦ ΠG. Moreover, ΠH ◦ Ψ does not depend on the choice of the set R.
If H = {e}, so R = G, then Ψ can be passed through the inclusion CG →֒ C of
invariants of G. Above, in the case of N : C•

qAS → C•
qAS’, R was a subgroup of cyclic

permutations, Ψ = N .
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Denote by O1 the (constant) subsheaf of O consisting of sections locally propor-
tional to the section 1 of O. Consider the corresponding to O1 complexes (HAS,
qAS etc); they are naturally subcomplexes of the corresponding complexes for O;
moreover, the differential on aHAS is acyclic, and on HAS or AS it is acyclic in de-
gree > 0, and has cohomology K in degree 0. Note that in the case of HAS/AS this
implies that the hypercohomology of the complex of sheaves corresponding to O1 is
quasi-isomorphic to cohomology of M with coefficients in K (the quasi-isomorphism
is given by inclusion of K = O1 into the complex). In the case of cAS the complex
has cohomology 2K = {2x | x ∈ K} in positive even degrees and is quasi-isomorphic
to its cohomology. (These statements hold even if O is not a complex of K-algebras,
but a complex of rings if one replaces K by K/Ann 1.)
Call a sheaf S of groups on M space-acyclic if Hk (M,S) = 0 for k > 0.

Theorem 1.17. (1) Assume that the sheaves ∆∗O⊠n are space-acyclic. Then
the “acyclic” Hochschild–Alexander–Spanier complex is acyclic indeed, the
Hochschild–Alexander–Spanier complex is quasi-isomorphic to the complex
of cohomology of M with coefficients in K. If K ⊃ Q the cyclic Alexander–
Spanier complex is quasi-isomorphic to a direct sum of an infinite number of
such complexes with non-negative even shifts.

(2) If the sheaves ΛnO are space-acyclic, the Alexander–Spanier complex is quasi-
isomorphic to the complex of cohomology of M with coefficients in K.

(3) If the sheaves C•qAS’ are space-acyclic, the complex
(
C•

qAS’, 1lR
)
is exact.

(4) If the sheaves C•qAS are space-acyclic, the the complex
(
C•

qAS, 1lR
)
is quasi-

isomorphic to the complex of cohomology of M .

Proof. Fix a mapping ϕ from A = Γ (M,O) to K that sends 1 ∈ A to 1 ∈ K. Let us
construct a homotopy for the complex

(
A⊠n+1, da

)
:

s · f0 ⊗ · · · ⊗ fn = ϕ (fn) f0 ⊗ · · · ⊗ fn−1, s · f0 = 0.

It is easy to check that sda + das = id indeed, therefore the complex is acyclic. Fix a
point m ∈ M and consider a local section Ψ of ∆∗

(
O⊠n+1

)
over U ⊂ M . Lessening

U we can suppose that ϕ corresponds to a section of O⊠n+1 over Un+1. Changing M
to U in the discussion above we get a local homotopy. This means that for any closed
local section we can find a section on a smaller subset such that the boundary of the
latter section is the former. Therefore the differential da on the complex of sheaves

C•aHAS is acyclic.
Now the complex of vector spaces C•

aHAS is the complex of global sections of this
complex of sheaves C•aHAS. Recall that the cohomology of a sheaf S may be calcula-
ted by taking cohomology of a complex C∗ (M,S); here C∗ (M, •) is an appropriate
functor from sheaves of abelian groups on M to complexes of abelian groups; moreo-
ver, one may assume that the functor C∗ (M, •) is exact. Applying this functor to
elements and arrows in C•aHAS, one gets a bicomplex

C∗ (M, C•aHAS) ;
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its columns (i.e., • = const) compute the cohomology of the sheaves C•aHAS. By
exactness, the rows of this complex are exact, therefore the row spectral sequence
implies that the total complex associated with this bicomplex is also exact.
By assumption of space-acyclicity, the columns of the bicomplex are acyclic in de-

gree ≥ 1; hence, by the column spectral sequence, the total complex of the bicomplex
is quasi-isomorphic to the subcomplex of vertically-closed elements of the first row,
which are

H0 (M, C•aHAS) = C•
aHAS.

Consider now the complex C•
HAS. The same homotopy as above satisfies

sd+ ds = id

in degree ≥ 1, and if f ∈ A

(sd+ ds) f = f − ϕ (f) · 1.

Therefore the mapping (A⊗n+1, d) → K given by ϕ if n = 0 and 0 otherwise is a
quasi-isomorphism. Hence the analogues inclusion K → (A⊗n+1, d) is also a quasi-
isomorphism; one concludes that the corresponding to K → A : α 7→ α · 1 inclusion
of the complex (K⊗n+1, d) into (A⊗n+1, d) is a quasi-isomorphism. Repeating this
argument on the level of sheaves, one can see that the complex of sheaves C•HAS is
quasi-isomorphic to its constant subsheaf K, and to its subcomplex corresponding to
replacing O by O1.
To get information about the complex of global sections of this complex of sheaves

consider the corresponding bicomplex C∗ (M, C•HAS) and its row spectral sequence.
Since an exact functor applied to complexes sends quasi-isomorphisms of complexes
to quasi-isomorphisms, inclusion of O1 into O gives a quasi-isomorphism of the terms
E1 of the spectral sequence; moreover, since E1 is concentrated in the first row, the
spectral convergence converges at this term. Therefore one gets a quasi-isomorphisms
of total complexes of the bicomplexes between themselves, and with the cohomology
of the rows, i.e., the complex C∗ (M,K). Again, by space-acyclicity, the total complex
is quasi-isomorphic to its first row, i.e., C•

HAS.
Obviously, s preserves the graded subspaces C•

AS and C•
AS’. The same way as

above, one concludes that when space-acyclicity is applicable, the complex of sheaves
(C•

AS’, da) is acyclic, and the complex of sheaves (C•
AS, d) is quasi-isomorphic to its

constant subsheaf K in grading 0. Of course, the similar statements on relation of O
and O1 hold.
Consider now the quotient complexes

(
C•

qAS, 1lR
)
etc. Consider a homotopy

sε · f0 ⊗ · · · ⊗ fn :=

n∑

k=ε

(−1)n−k ϕ (fk) f0 ⊗ · · · ⊗ f̂k ⊗ · · · ⊗ fn, s · f0 = 0.

Obviously, s0 descends to the quotient C•
qAS, and s1 descends to C•

qAS’. It is easy to
see that 1lRs0 + s01lR = id if n > 0 and (1lRs0 + s01lR) f0 = f0 − ϕ (f0) 1. Likewise,
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1lRs1 + s11lR = id. Therefore the same argument as above shows that
(
C•

qAS’, 1lR
)
is

an acyclic complex of sheaves, and
(
C•

qAS, 1lR
)
is quasi-isomorphic to C∗ (M,K).

Consideration of C•
cAS in the case K ⊃ Q is a little bit more tricky. We use an

analogue of the construction from [?LodQuill84Cyc]. Consider a bicomplex

(1.2) C•HAS
1−t
−−→ C•aHAS

N
−→ C•HAS

1−t
−−→ C•aHAS

N
−→ . . . .

Here t is the action of Zn+1 on CnHAS = CnaHAS, N is equal to 1 + t + t2 + · · ·+ tn on Label equ1.20,

CnHAS. It is easy to check the conditions of bicomplex for this system of mappings.
Now the rows are acyclic in all the terms but the first, the homology in the first
term are exactly C•cAS. Now the row spectral sequence shows that the complex C•cAS

is quasi-isomorphic to the total complex of this bicomplex.
On the other side, the column spectral sequence shows that the total complex is

quasi-isomorphic to the complex

K → 0→ K → 0→ K → . . .

of constant sheaves, or a direct sum of constant sheaves K in even degrees. �

Remark 1.18. If K ⊃ Q, then space-acyclicity of C•HAS implies space-acyclicity of
other sheaves mentioned in the theorem. Indeed, these sheaves are isomorphic to
direct summands of C•HAS.
Note that the sequence (1.2) is not exact if charK > 0 (apply it to constant sheaf).

Hence these arguments do not work unless K ⊃ Q.
One can consider an analogue of (1.2)

. . .
N
−→ C•HAS

1−t
−−→ C•aHAS

N
−→ C•HAS

1−t
−−→ C•aHAS.

The rows are quasi-isomorphic to C•qcAS, the columns to

· · · → K → 0→ K → 0.

However, this bicomplex is in a “wrong” quadrant, therefore we should not (and do
not) have the isomorphisms of cohomology (as one can see comparing to cohomology
of C•

cAS—which is isomorphic provided K ⊃ Q).

As duality with the theory of cyclic cohomology will show, it is “more correct” to
consider a different definition of the cyclic complex: as associated complex C•

dcAS of
the bicomplex of global sections of (1.2).

Amplification 1.19. With C•
dcAS replacing C•

cAS, in the preceding theorem, the
restriction K ⊃ Q may be dropped.

Proof. As above, consideration of the total complex of the bicomplex (1.2) is redu-
ced to consideration of the corresponding complex of sheaves. Therefore, one must
consider the total complex of bicomplex of stalks corresponding to (1.2).
Considering the column spectral sequence, it is enough to shwo that the inclusion

of direct sum of K in the direct sum of columns C•HAS gives a is a quasiisomorphism.
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And it since it is enough to do separately for each column, the considerations above
are sufficient. �

Another generalization of the theorem comes from replacing the definition of C•
HAS

from global section of C•HAS to global sections with compact support (or with support
in arbitrary “system of supports” Φ).

Amplification 1.20. Homology of the resulting complexes C•
HAS,Φ etc. may be com-

puted the same way as in the preceeding theorem provided the corresponding sheaves
C•HAS etc are Φ-space acyclic, and one replaces cohomology of M by cohomology of
M with supports in Φ.

In fact, with Φ being consisting of compact sets, this leads to an important corol-
lary:

Corollary 1.21. If O is soft and M is locally compact, then the conclusions of the
theorem hold.

Proof. In fact, it is enough to assume that O is compact-soft.6 Recall that external
tensor power preserves compact-softness on locally compact spaces. (See [?Bre] Exer.
???.) And pullback to a closed subset preserves compact-softness on ??? Hausdorff
spaces. �

Remark 1.22. Another case when acyclicity of C•
HAS follows from acyclicity of O is

the case when O is a quasicoherent sheaf on an affine scheme. One can immediately
see that ∆∗∆

∗O⊠n is quasicoherent as well (however, recall that ∆∗ and ∆∗ are taken
in the category of sheaves of abelian groups, not sheaves of OM -modules), hence
∆∗∆

∗O⊠n is acyclic. On the other hand, cohomologies of Mn with coefficients in
∆∗∆

∗O⊠n coincide with cohomology of M with coefficients in ∆∗O⊠n.

Would the same hold over a Stein variety??? Yes if one replaces the ten-
sor product by the completion. . . Note that the duality extends to com-
pletion for algebras of locally finite order (filtered so that operators of
multiplication on subquotients are given by differential operators of finite
order).
In the bicomplex (1.2) there is a remarkable periodicity operation Sbi: the trans-

lation on two columns to the right. It commutes with the differentials, therefore it
results in an operation in cohomology. The remarkable fact is that for K ⊃ Q one
can express this operation on the complex CcAS (which is quasi-isomorphic to the
total complex of the bicomplex provided K ⊃ Q).
In general, assume that horizontal arrows δ in a bicomplex C•• with differentials δ, d

allow a homotopy sδ. Then in the total complex, id is homotopic to −σ, σ = dsδ+sδd
(which has degree (−1, 1)), hence to any power of −σ; note that σ is a morphism of
bicomplexes. Hence σ sends Ker δ to Ker δ; and, when restricted to Ker δ, σ coincides

6I.e., any section of Φ over a compact subset may be extended to a global section.
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with σ0 = δsδdsδ; likewise, σ
N coincides with σN

0 on Ker δ. Note that if s2δ = 0, then

sδδsδ = sδ, hence σ
N
0 may be simplified to δsδ (dsδ)

N . Therefore there is a mapping

homotopic to id which sends c ∈ Ker δ to δsδ (−dsδ)
N c.

We would apply this with N = 2 to an element of the form c = Sbic0 with c0 ∈
Ker d. Note that S = δsδ (dsδ)

2 Sbi has grading (0,2), so acts inside one column of
the bicomplex (1.2). Taking an even column, Ker δ consists of cyclically symmetric
chains, and d coincides with differential in C•

HAS. Since S would preserve Ker δ, it
would give a mapping in the cyclic complex commuting with differential.
To construct homotopy for horizontal arrows in (1.2) it is enough to find operators

τ and ν commuting with t such that τ (1− t)+νN = id; to ensure s2δ = 0, it is enough
to take ν proportional to N , and τN = 0. Since N is proportional to a projection,
one can take ν = νn+1 = Nn+1/(n+ 1)2; here n is is the degree in C•

HAS, so n + 1
is the valence of the tensors. Now one can solve for (1− t) τ + νN = id; requiring
that t vanishes on the ImN , one concludes that τ = τn+1 = τ̂n+1/(2 (n+ 1)) with
τ̂n+1 =

∑n
l=0 (n− 2l) tln+1. Hence on must assume K ⊃ Q.

One concludes that the operator S = Nνdτdaν of degree 2 in C•
HAS (and C•HAS)

preserves the subcomplex C•
cAS and commutes with differential on C•

cAS. Note that
Nνdτdaν : C

n
HAS → Cn+2

HAS is a shortcut forNn+3νn+3dτn+2daνn+1 =
1

2(n+3)(n+2)(n+1)2
Nn+3dτ̂n+2daNn+1

(since Nkνk = Nk/k).
One can make further simplifications: if one replaces da by d in this formula,

and notes that τ is divisible by 1 − t (say, τ = (1− t) υ), one can note that τdν =
υda (1− t) ν = 0; hence the result is 0. Therefore, one can replace da by da−d = ±1lL
without changing the result. Moreover, replacing d in the formula by da gives 0, since
Ndaτ = dNτ = 0; thus one can replace d by d − da = ±1lL; the signs match, hence
one can replace Ndτdaν by N1lLτ1lLν.
When tαn+31lLt

β
n+21lLt

γ
n+1 is applied to f0⊗· · ·⊗fn, 1s appear at positions (α)n+3+1

(with the leftmost position indexed as 1) and
(
α + (β)n+2 + 1

)
n+3

+ 1 in the ten-

sor product; here (k)l is the minimal nonnegative representative of k mod l. The
index of the first f• “after” (in the cyclic sense) these 1s are f(−(β)n+2−γ)

n+1

and

f(−γ)n+1
. Hence up to permutation of these 1s, tαn+3, t

β
n+2, t

γ
n+1 are uniquely deter-

mined by the result (provided 1 and fk are independent). One gets a dependency

between tαn+31lLt
β
n+21lLt

γ
n+1 and t

α+(β)n+2+1

n+3 1lLt
−1−β
n+2 1lLt

(β)n+2+γ

n+1 ; indeed, 1lLt
β
n+21lL and

tβ+1
n+31lLt

n+1−β
n+2 1lLt

β
n+1 result in proportional monomials for 0 ≤ β ≤ n + 1. Compare

the sign of resulting monomials: 1lLt
β
n+21lL involves (n+ 3)β, and tβ+1

n+31lLt
n+1−β
n+2 1lLt

β
n+1

involves (n+ 4) (β + 1)+ (n+ 3) (n + 1− β)+ (n + 2)β ≡2 1+ (n + 1)β. Hence the
signs are opposite.
On the other hand, the terms with β = β0 and β = n+1−β0 already have opposite

coefficients in the formula for τ̂n+2. Therefore, in the formula
∑

αβγ

(
n + 1− 2 (β)n+2

)
tα1lLt

β1lLt
γ

for Nn+31lLτ̂n+21lLNn+1 one can restrict summation so that only one of two terms
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above is included if one multiplies the result by 2. Hence

Sn =
1

(n+ 3) (n + 2) (n+ 1)2

∑

0≤α≤β≤n+1
0≤γ≤n

(n+ 1 + 2α− 2β) tαn+31lLt
β−α
n+2 1lLt

γ
n+1 : C

n
HAS → Cn

HAS,

and between these terms, there is no cancellation. Note that we are going to restrict
this operator to subspace Cn

cAS of cyclically symmetric tensors, hence the last factor
tγn+1 acts as 1. Choose one particular value of γ; it is convenient to take γ = −β, so
that the order of initial tensor factors is preserved. One arrives at

1

(n+ 3) (n + 2) (n+ 1)

∑

1≤α<β≤n+3

(n + 3 + 2α− 2β) tα−1
n+31lLt

β−α−1
n+2 1lLt

2−β
n+1

(here we shifted α by 1, β by 2, so they denote positions of 1s) which coincides with Sn

on Cn
cAS. The sign of a term is associated with (n + 4) (α− 1)+(n+ 3) (β − α− 1)+

(n+ 2) (2− β) ≡2 nα+ (n+ 1) (α + β) + nβ + 1 = α+ β + 1. Therefore, one is lead
to consider

U = U [n+1] =
∑

1≤α<β≤n+3

(−1)β−α−1 (n + 3 + 2α− 2β) 1l
[n+1]
αβ : V ⊗n+1 → V ⊗n+3;

here 1l
[k]
αβ sends v1⊗· · ·⊗vk to v1⊗· · ·⊗fα−1⊗1⊗fα⊗· · ·⊗fβ−2⊗1⊗fβ−1⊗· · ·⊗fk

(so 1s are at positions α, β). (Define 1l[k]α1...αl
: V ⊗k → V ⊗k+l likewise.)

One can immediately see that d[n+3]U [n+1] = (n+ 1)T [n+1] with T [n+1] =
∑

α<β<γ (−1)
α+β+γ 1l

[n+1]
αβγ ,

and U [n+2]d[n+1] = (n+ 4)T [n+1]. (This is why one needs denominator (n+ 3) (n + 2) (n+ 1)

in the definition of operator Sn which commutes with d.) Define U
[n+1]
a by the same

formula as U [n+1], but with summation over 1 < α < β ≤ n + 3. Then a calculation
immediately shows that Ua (1− t) = (1− t)U and UN = NUa.

Define d̂ = d̂[k], d̂′a = d̂′a
[k] as

∑k+1
α=ε (−1)

k+1−α (k + 1− α) 1l[k]α with ε = 0, 1 corres-

pondingly. One can immediately see that td̂ =
(
d̂′a + da

)
t, and that

d̂d =
∑

α<β

(−1)β−α (β − α) 1lαβ, dd̂ = −
∑

α<β

(−1)β−α (β − α− 1) 1lαβ

(similar formulae hold for d̂′ada and d′ad̂a with α = 1 removed from the summation).

Hence kd̂[k+1]d[k]+ d[k+1] (k + 2) d̂[k] = U [k], likewise kd̂′a
[k+1]d

[k]
a + d

[k+1]
a (k + 2) d̂′a

[k] =

U
[k]
a ; this implies that the anticommutator

[
d, d̂[k]

k(k+1)

]
+
is U [k]

k(k+1)(k+2)
, likewise for a-

flavors. Note that in these formulae one can replace d̂ by d̂ + εd with arbitrary ε;

likewise for d̂′a; the formula for td̂ shows it is more convenient to consider d̂a = d̂′a+da.

Basing on these formulae, define operator D̂k+1 : H
k
HAS → Hk+1

HAS asDk+1 =
d̂k+1

(k+1)(k+2)
;

define D̂a,k+1 likewise.
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Given a pair of operators Y, Ya acting in C•
HAS and C•

aHAS correspondingly, denote
by Yv an operator in the cyclic bicomplex acting as Y in HAS-columns, and as −Ya
in aHAS-columns. Define the operator k as acting by multiplication by k in tensors

of valence k. Then
[
d̂v

1
k(k+1)

, dv

]
+

= Sv; note that dv coincides with the vertical

component of the differential in bicomplex.

Moreover,
[
d̂v, 1− t

]
+

acts as d̂ − d̂′a − da on even columns. Note that d̂[k] −

d̂′a
[k] = k

(
d[k] − d

[k]
a

)
; hence

[
d̂v, 1− t

]
+

= nd[k] − d
[k]
a (k + 1). In other words,

[
d̂v

1
k(k+1)

, 1− t
]
+
= 1

k+1
d[k] − d

[k]
a

1
k
. Note that the RHS can be written as

[
1
k
, dv
]
+
.

The next step is to find how d̂v commutes with the operator N : C•
HAS → C•

aHAS.

One can write d̂N −Nd̂a as
∑

(−1)k+1−α (k + 1− α) 1l[k]α t
β−

(
∑

β<α−1

(−1)k+1−α (k + 1− α + β) 1l[k]α t
β +

∑

β≥α−1

(−1)k+1−α (k + 1− α′) 1l[k]α t
β

)
;

here α′ = k + α − β; in the last term we used tβ
′

1l
[k]
α′ = (−1)β

′−1+k 1l[k]α t
β′−1 for

α = α′ + β ′ − k − 1 if α′ + β ′ > k + 1, 1 ≤ β ′ ≤ k. Hence

d̂N −Nd̂a = −
∑

(−1)k+1−α β1l[k]α t
β + k

∑

β≥α−1

(−1)k+1−α 1l[k]α t
β .

The first term is−dτ̃ , with τ̃ =
∑k−1

β=1 βt
β
k . Note that, as above, τ̃ da =

∑
(−1)k+1−α′

β ′tβ
′

1l
[k]
α′ =∑

β<α−1 (−1)
k+1−α β1l[k]α t

β +
∑

β≥α−1 (−1)
n+1−α (β + 1) 1l[k]α t

β. Therefore dτ̃ − τ̃da =

−
∑

β≥α−1 (−1)
k+1−α 1l[k]α t

β .

One concludes that d̂N−Nd̂a = − (k + 1) dτ̃+kτ̃da; in other words,
[
d̂v

1
k(k+1)

, N
]
+
=

−
[
τ̃
k
, dv
]
+
. Basing on these commutators of d̂v with the components 1− t and N of

the horizontal part dh of differential in the cyclic bicomplex, define d̂h as an operator
in bicomplex of degree (1,0) acting as − id from C•

HAS to C•
aHAS, and as τ̃ from C•

aHAS

to C•
HAS. One can write the found commutators in a compact form

[
d̂v

1

k (k + 1)
, dh

]

+

+

[
d̂h
k
, dv

]

+

= 0.

In other words,
[
d̂v

1
k(k+1)

+ d̂h
k
, dh + dv

]
+

contains only terms of degree (2,0) and

(0,2). An immediate calculation shows that the term of degree (2,0) is −Sh; i.e., up
to the sign it is a shift to the right by 2 units. Therefore Sh is homotopic to the term

of degree (0,2), which is
[
d̂v

1
k(k+1)

, dv

]
+
= Uv

1
k(k+1)(k+2)

.
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On the other hand, coefficients in Un+1 are even if n is odd; hence it is more na-
tural to define SZ

n as Un+1/ gcd (n+ 1, 2). Now dn+2S
Z
n = (n+ 1)//2 Tn, S

Z
n+1dn =

(n+ 4)//2 Tn; here m//l := m/ gcd (m, l). Hence a natural operator in the complex

to consider is SQ
n := 6

(n+3)//2 (n+2)//2 (n+1)//2
SZ
n = 12 gcd(n+1,2)

(n+3)(n+2)(n+1)
SZ
n . Note that in charac-

teristic p, p ≥ 5, it has no advantages over Sn (it is defined for the same values of
n as Sn); however, Sn is not defined in characteristics 2,3, but SQ

n is defined in cha-
racteristic 3 unless n ≡9 −1,−2,−3, and in characteristic 2 unless n ≡8 −3,−2,−1;
hence there are many values of n for which both SQ

n and SQ
n+1 are defined, and

dn+2S
Q
n = SQ

n+1dn.

Two of operators SQ
n have integer coefficients: SQ

0 = 2SZ
0 , S

Q
1 = SZ

1 . Note also
that SQ

n = 0 in characteristic 2 if 8|n. In slightly different vane, one can consider

S
[p]
n = 1

(n+3)//p∞ (n+2)//p∞ (n+1)//p∞
SZ
n ; this operator is defined for any n in characteristic

p, and satisfies dn+2S
[p]
n = S

[p]
n+1dn unless p = 2 or n ≡pk −1,−4 with k = 2 for p = 3,

k = 1 otherwise.

Remark 1.23. Note that we defined the operator Un+1 via compatibility with Sn in
Ker (1− t). This gives no reason for SQ

n to commute with d on the whole space Cn
HAS.

However, this is what a calculation shows. We do not know any “deeper” explanation
of this phenomenon.

Note that in characteristic 2 the operators SQ
n are defined for n 6≡8 −3,−2,−1 and

vanish for n ≡8 0, 4; extend them to n ≡8 −3,−2,−1 as 0. One can immediately see

that these 0 values “guard” the undefined values, so the resulting sequence S
{8}
n still

commutes with d. In fact, take any sequence an of integers; then a⌊n8 ⌋
S
{8}
n commutes

with d.
In fact, one can do the same modulo 4, or even modulo pe with e = 2 for p ≤ 3,

and e = 1 otherwise. Indeed, take n0 = mpe
′

, e′ ≥ e, p ∤ m; then n0/12S
Q
n is has

p-integral coefficients for n0 − 4 ≤ n ≤ n0 and vanishes for n = n0 − 4, n0. So

define S
{p}
n as n0/12S

Q
n if n may be written as n0 − n′, pe|n0, 1 ≤ n′ ≤ 3, and as

0 otherwise. Then the operators with graded components a⌊ n
pe ⌋
S
{p}
n are well-defined

in characteristic p (provided a• takes integer values), and commute with d in C•
HAS.

One can check that if pe|n0, then S
{p}
n0−1 = cSZ

n0−1, S
{p}
n0−2 = −SZ

n0−2, S
{p}
n0−3 = cSZ

n0−3

with c = 1 for even n0, and c = 1/2 for odd n0.
Note a significant difference of S{2} compared with S{p}, p > 2: for the latter,(
S{p}

)3
= 0. However, S{2} is not nilpotent.

Sum up the properties of operator SZ
v . Taking into account that SQ

v commutes with
dv, 1− t and N of the cyclic bicomplex (if K ⊃ Q), one concludes that (if K ⊃ Q):

d̂vdvk//2 + k//2 dvd̂v = SZ
v , k//2 dvS

Z
v = SZ

v dv k//2;

(1− t)SZ = SZ
a (1− t) , NSZ

a = SZN.
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In particular, these properties hold if V is a vector space over Q; since all mentioned
operators have integer coefficients, this holds if V is a free module over K = Z too.
Therefore, these identities hold in arbitrary module V without assuming K to be a
field; likewise, these hold for arbitrary sheaf of K-modules.
In particular, the operator SZ acts in C•

cAS (but is not commuting with d). It

acts on cyclic cocycles the same as k//2 dd̂; hence it sends them to cyclic cocycles
(moreover, it sends them into dCHAS). Moreover, if n//2 is invertible in K, then
SZd is proportional to dSZ on Cn−1

HAS; hence SZ sends a coboundary in Cn
cAS to a

coboundary in Cn
cAS provided n//2 is invertible in K. Under this assumption, SZ de-

fines an operator in cohomology Hn
cAS → Hn+2

cAS . More specifically, σ = SZ (k − 1)//2
satisfies σd = k//2 dSZ k//2, hence sends a coboundary to a coboundary; therefore

σ = k//2 dd̂ (k − 1)//2 = dd̂ (k − 1) (k + 2)/2. induces an operator in cyclic coho-
mology H•

cAS.

On the other hand, since dd̂dN = dd̂Nda = dNd̂ada + d (c1dτ̃ + c2τ̃ da) da =

dNd̂ada, the operator dd̂ sends d ImN to d ImN . However, ImN in Cn−1
HAS coin-

cides with Cn−1
cAS unless charK | n (moreover, nCn−1

cAS ⊂ ImN for any K); hence

dd̂ (k − 1) send dKer (1− t) to d ImN ; hence it defines an operator in cyclic co-

homology. Therefore dd̂ (k − 1)//2 defines an operator in cyclic cohomology (since
gcd (k, k (k + 3)/2) = k//2).

Note, however, that dd̂ does not preserve the subcomplex dKer (1− t) of cyclic
coboundaries even if M is a point. Indeed, take v ∈ V = O which is not pro-
portional to 1; then v⊗k ∈ Ck−1

cAS (and, if charK|k, v⊗k /∈ ImN). We claim that

dd̂d
(
v⊗k
)
/∈ dKer (1− t) if charK|k (while d

(
v⊗k
)
∈ dKer (1− t)) (at least if

charK 6= 2). Indeed, if c ∈ V ⊗k, then dd̂dc = −c ∨ (1⊗ 1⊗ 1); here ∨ denotes
the shuffle product. Note that charK ∤ k + 2, hence Ker (1− t) coincides with

ImN in V ⊗k+2. If dd̂d
(
v⊗k
)
∈ Im dN , then dd̂d

(
v⊗k
)
= N1lLd

∑
α fα1l

[k]
α v

⊗k for
some coefficients fα, α = 1, . . . , k + 1. A calculation shows that the condition
that N1lLd

∑
α fα1l

[k]
α v

⊗k and v⊗k ∨ (1⊗ 1⊗ 1) are proportional may be written as

(−1)(k+1)α hβ−α + (−1)(k+1)(β+1) hγ−β + (−1)(k+1)(γ+1) hk+3+α−γ does not depend on

a choice of 1 ≤ α < β < γ ≤ k + 3; here hm = (−1)m
(
fm + (−1)(k+1)m fk+2−m

)
.

If 2|k, this immediately implies hm = 0; if k is odd, then this can be reduced to
hn + hm− hn+m−1 not depending on n,m ≥ 1 with n+m ≤ k+2; plugging in n = 2
shows that h is a linear function; this, together with hk+2−m = −hm, implies that hm
is proportional to k + 2− 2m.
However, for this choice of hn, hn + hm − hn+m−1 vanishes in K. This implies

N1lLd
∑

α fα1l
[k]
α v

⊗k = 0. Therefore dd̂d
(
v⊗k
)
/∈ dKer (1− t).
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Definition 1.24. Let the shift S send the class of a0 ⊗ · · · ⊗ an in Cn
qcAS into the

class of∑

0≤k≤l≤n

(2 (l − k)− n− 1) a0 ⊗ · · · ⊗ ak ⊗ 1⊗ ak+1 ⊗ · · · ⊗ al ⊗ 1⊗ al+1 ⊗ · · · ⊗ an

in Cn+2
qcAS.

Proposition 1.25. The operation of shift is correctly defined and commutes with
differential. If k ⊃ Q, then S is quasi-isomorphic to the operation of translation on
two columns to the right in (1.2). The natural inclusion of CcAS into the first column
of (1.2) is a quasi-isomorphism to the quotient by the image of the shift operator.
The image ImS is therefore quasi-isomorphic to the kernel of the cyclization Cycl,
moreover, the corresponding sequence of cohomology

. . .
Cycl
−−→ Hn+1

HAS

B
−→ Hn

qcAS

S
−→ Hn+2

qcAS

Cycl
−−→ Hn+2

HAS

B
−→ Hn+1

qcAS → . . .

is exact.

Note also that when C•
aHAS is acyclic, it has a homotopy haHAS

• (as any acyclic
complex of vector spaces). However, it must not have a direct relationship to the the
local homotopy s for C•aHAS; in nontrivial cases, this operator is “global” in nature.
Indeed, by inspection, haHAS

• would allow one to reconstruct f−f (x0) given a germ of
f (x)− f (y) near diagonal x = y ∈M which is morally equivalent to reconstruction
of f − f (x0) given df. Here x0 is a fixed in advance point of M .
The homotopy haHAS

• leads to the mapping B : C•
HAS → C•

cAS [−1], B = −N ◦
haHAS
• ◦ (1− t). It is easy to see that this mapping is compatible with differentials.

We use it below in the exact sequence relating cyclic and Hochschild–Alexander–
Spanier cohomology.

Remark 1.26. In general, the complex C•
aHAS of vector spaces does not allow an

explicit homotopy haHAS. Above, we did not construct a homotopy, but only used
local homotopies for complex C•aHAS of sheaves of vector spaces to deduce that a global
homotopy exists. However, there is a situation in which such an explicit homotopy
may be constructed: assume that the vector space of global sections of O (with a
distinguished element 1) allows a (not necessarily associative) multiplication ⊙ for
which 1 is an identity (in fact, “a right unit” is enough for our purposes). Then

haHAS
n : f0 ⊗ · · · ⊗ fn 7→ (−1)n (f0 ⊙ f1)⊗ f2 · · · ⊗ fn

is a (global) homotopy for C•
aHAS. Note that for this case, we do not need the

assumption of space-acyclicity.
Note that existence of the product ⊙ may be broken into two parts: first, that the

mapping f 7→ f ⊗ 1: O → O⊗O is an injection, and, second, that the image of this
mapping is a direct summand of O ⊗O. The first condition7 is equivalent to Supp 1

7For the second condition, it is not clear whether assumption of space-acyclicity would allow to
simplify it.
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coinciding with SuppO (or, if K is not a field, equivalent to Ann 1 ⊂ Ann f holding
locally for any local section f).

Denote by C••HAS2 the part of bicomplex (1.2) consisting of the first two columns;
use C•HAS2 for the total complex; likewise for C••

HAS2, C
•
HAS2. The exact sequence

0 → C••dcAS

Sbi−→ C••dcAS
π
−→ C••HAS2 → 0 leads to the corresponding long exact sequence

of cohomology of total complexes. Note that the column spectral sequence for C••
HAS2

(or, what is the same, the long exact sequence for the inclusion C•
aHAS [1] →֒ C•

HAS2)
shows that the natural projection C•

HAS2 → C•
HAS is a quasiisomorphism provided the

complex C•
aHAS is acyclic. This implies that

. . .
π
−→ Hn+1

HAS

Bd−→ Hn
dcAS

Sbi−→ Hn+2
dcAS

π
−→ Hn+2

HAS

Bd−→ Hn+1
dcAS → . . .

is exact; here Bd is the operator B described above composed with inclusion of C•
cAS

into C•
dcAS as the first column.

Indeed, using acyclicity of C•
aHAS via homotopy h•aHAS, one can lift C•

HAS into C
•
HAS2

as ι : cn 7→ cn ⊕ (−hnaHAS (1− t) cn) (compatibility with differential may be checked
immediately). When H•

HAS is replaced with H•
HAS2 above, one gets a long exact

sequence of inclusion Sbi; denote its connecting mapping by ∂. So all one needs to
check is that B = ∂ι which is immediate.
One concludes that if k ⊃ Q (so all versions of cyclic complex are quasiisomorphic)

and C•
aHAS is acyclic, then

. . .
j
−→ Hn+1

HAS

B
−→ Hn

cAS
SQ

−→ Hn+2
cAS

j
−→ Hn+2

HAS

B
−→ Hn+1

cAS → . . .

is exact; here j is the mapping induced by inclusion C•
cAS into C•

HAS. Note also that
the operator B : C•

HAS → C•−1
cAS depends on the choice of homotopy haHAS, but the

induced operator H•
HAS

B
−→ H•−1

cAS does not. Moreover, one can replace the operator
SQ by any proportional operator, e.g., SZ. In fact, since SZ

k = U [k]/ gcd (2, k) =

k//2 d̂[k+1]d[k] + (k + 2)//2 dd̂[k+1][k], when SZ is applied to cocycles, it coincides with

(k + 2)//2 dd̂[k+1][k]. Therefore, one can replace SQ in the exact sequence by dd̂.
Now, analyse what changes if one drops the assumption k ⊃ Q. The operator SQ

does not make sense in general, but proportional operators SZ and dd̂ do. Obviously,
the “smallest” choice of integer multiple of SQ when acting on cycles in C•

cAS is

dd̂. However, already showing that dd̂ actually induces an operator in H•
cAS is not

completely straightforward.

One needs to show that dd̂dC•
cAS ⊂ dC•

cAS. One can see that dd̂dc = 1⊗3 ∨ c; here

∨ stands for shuffle product. Given coefficients b•, define Db as
∑k

m=0 bm1l
[k]
1m+2; we

want to find b so that dNDbc = d d̂dc if c = tc.
Note that ta1l

[k]
1mt

−a is 1l
[k]
1+am+a if a ≥ 0, m + a ≤ k + 2, and ta1l

[k]
1mt

−a+1 is

(−1)k+1 1l
[k]
m+a−k−2 1+a ifm+a > k+2, a ≤ k+1. HenceNDb =

∑
l<m 1l

[k]
lm

(
bm−l−1t

1−l + (−1)k+1 bk−m+l+1t
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So denote b̃m = (−1)m
(
bm + (−1)k+1 bk−m

)
; obviously, b̃m = −b̃k−m, and this is the

only restriction on values of b̃m. One can see that dNDbc = (−1)l+m+n+1∑
l<m<n

(
b̃n−m−1 − b̃n−l−2 + b̃n−

if tc = c. Therefore we want to solve equations b̃r + b̃s − b̃r+s = −1, b̃r = −b̃k−r.
The first equation implies that br = ar − 1; the second one implies that there is no
solution if charK|k.
Taking c = v⊗k, one can immediately see that tc = c, c /∈ ImN when charK|k, 2 ∤

k. If v is not proportional to 1, then the argument above implies that dd̂dc /∈ Im dN
if charK|k, 2 ∤ k (even if one considers c locally). Since these conditions imply that

charK ∤ k + 2, hence ImNk+2 = Ker (1− tk+2), one gets that dd̂ does not induce a
mapping Hk

cAS → Hk+2
cAS .

If 2 6= charK|k, k = 2k′, then take two non-proportional vectors v′, v′′; one can see

that if c = (v′ ⊗ v′′)⊗k′ − (v′′ ⊗ v′)⊗k′, then c ∈ Ker (1− t), c /∈ ImN . Assume that
v′, v′′ are not proportional to 1; extending {1, v′, v′′} to a basis in V gives a grading in
tensor power of V by the number of occurrence of 1, of v′ and of v′′. To check whether
1⊗3 ∨ c = Ndc′ for some c′, consider elements of gradings (3, k1, k1) (for 1

⊗3 ∨ c) and
(2, k1, k1) (for c

′). In the former subspace, consider span of tensor monomials starting
with v′, where v′ may be followed only by v′′, and v′′ and 1 may be followed only by
1 or v′. One may assume that monomials appearing in c′ start with 1 and satisfy
the same “follow” rules. Now one can immediately see that the matrix coefficients of
Nd between these two subspaces are exactly the same as those considered in the case
c = v⊗k (only with k replaced by k′); the correspondence consists of replacing v′⊗ v′′

by v. Therefore 1⊗3∨ c /∈ ImNd, hence dd̂ does not induce a mapping Hk
cAS → Hk+2

cAS .
However, c ∨ 1⊗3 = c ∨ (1⊗2 ∨ 1) = d (c ∨ 1⊗2). Therefore, it is enough to show

that (1− t) (c ∨ 1⊗2) = 0 if c = tc. Recall that for a ∈ V ⊗α, b ∈ V ⊗β, a ∨ b is
sum of (−1)σP σP (a⊗ b); here σP is a permutation corresponding to a partition P
of {1, . . . , α + β} into two subsets σP {1, . . . , α}, σP {α + 1, . . . , β}. Denote by t

the cyclic permutation (so that t = (−1)t t). Now t acts on the set of partitions
so that tα+βσP = σtP (tα × idβ) or tα+βσP = σtP (idα×tβ) depending on whether
σP |α+β = α+β; here × denotes a mapping of permutation groups Sα×Sβ → Sα+β.

Unfortunately, dd̂ does not send8 cyclic coboundaries to cyclic coboundaries, so

does not induce an operator Hn
cAS → Hn+2

cAS if charK | n + 2, charK 6= 2 (so dd̂ is

not proportional to SZ when acting on cocycles). (If charK = 2, then (1− t) d̂d =

d̂ada (1− t) − kdad vanishes on Cn
cAS if 2|n + 3, and then dd̂ sends dCn

cAS to dCn
cAS;

on the other hand, if 2 ∤ n+ 1, then Cn
cAS = NCn

HAS, and dd̂dN = dNd̂ada.)

To circumvent this problem, define H̊n
cAS as Zn/B̊n; here Zn = Ker d : Cn

cAS →

Cn+1
cAS , and B̊n = dNCn−1

HAS ⊂ dCn−1
cAS . Now dd̂ sends Zn to Zn+2 since (1− t) dd̂ =

dad̂ (1− t) + dadk; moreover, it sends B̊n to B̊n+2 since dd̂dN = 0 = dNd̂ada. Hence

8Demonstrate this??? Same for “smallest choice”???
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one gets an operator dd̂ : H̊n
cAS → H̊n+2

cAS . If K ⊃ Q, or charK ∤ n + 1//2, then

H̊n
cAS = Hn

cAS; in general, there is a surjection H̊n
cAS → Hn

cAS. Since Bd = −dB,
B Im d ⊂ d ImN and BKer d ⊂ Ker d ∩ ImN ; hence B defines an operator Hn

HAS →

H̊n−1
cAS . The kernel of H̊n

cAS → Hn
cAS is dCn−1

cAS / Im dNCn−1
HAS, or dKer (1− t)/d ImN ;

this vanishes unless charK|n.

With a change of H•
cAS to H̊•

cAS, a simple calculation shows that the diagram

remains a complex even with the “smallest” choice dd̂ of the replacement for SQ.

Indeed, the only nontrivial statement is that dd̂B on cocycles gives something in

Im dN. However, d̂N = Nd̂a + τ̃dak − kdτ̃ ; the first term contributes an element
of Im dN , the last term contributs 0; so what remains is to consider dτ̃dah (1− t) c
with dc = 0. Obviously, dah (1− t) c = (1− t) c, and τ̃ (1− t) = N − k · id; now N
contributes an element of Im dN , and id contributes dc = 0.

Remark 1.27. Since −dd̂ − d̂d = ∧1⊗2 = 1⊗2∧ (the operators of shuffle product on

the right and on the left) on Im d, dd̂ coincides with −∧1⊗2. Therefore, the operators

H̊n
cAS → H̊n+2

cAS induced by dd̂ and −∧1⊗2 coincide. So in this arrow of the complex,

one can use any one of 3 operators S, dd̂ and −∧1⊗2; the last two coincide, and the
first one is proportional to them.

Since one gets a complex

(1.3) . . .
j
−→ Hn+1

HAS → H̊B n
cAS → H̊dd̂ n+2

cAS

j
−→ Hn+2

HAS → H̊B n+1
cAS → . . . ,

the next step is to inspect its cohomology. Start with the only term B ◦ j which Label equ1.55,

does not involve S; one can replace H̊ by H . Note that KerB consists of d-cocycles
c ∈ Ck

HAS with Bc = dc′′ and (1− t) c′′ = 0. Now, start walking over the bicomplex;
dc = 0 immediately implies dah (1− t) c = (1− t) c, so putting c′ = h (1− t) c one
gets relations dc = 0, (1− t) c = dac

′, Nc′ = dc′′, (1− t) c′′ = 0, c′ ∈ Ck−1
aHAS, c

′′ ∈
Ck−2

HAS; moreover, c′ is defined uniquely up to addition of dac1 (this adds Nc1 to c′′).
If the row of theh bicomplex containing c′′ is exact, one can kill c′′, hence one may
assume Nc′ = 0. If, additionally, the row of the bicomplex containing c′ is exact, one
can write c′ = (1− t) c2; then replacing c by c − dc2 allows one to replace c′ by 0;
therefore c− dc2 is a cyclic cocycle, which implies exactness of the complex (1.3) at
terms H•

HAS.

BS starts here:

Note that if charK = p > 0, then only rows C l
(a)HAS with p|l are not exact; hence

at most one of rows k − 1, k − 2 containing c′ and c′′ is not exact. Assume that the
row containing c′′ is exact; then the equations on c, c′, c′′ may be reduced to dc = 0,
(1− t) c = dac

′, Nc′ = 0 with c′ defined up to addition of da (1− t) c2 = (1− t) dc2.
Changing c to c + dc̄ changes c′ to c′ + (1− t) c̄, changing c by a cyclic cocycle does
not change c′. This boils down to an injection KerB/ Im j →֒ KerN/(Im (1− t) + Z)
from cohomology of (1.3) to a quotient of row-cohomology of the bicomplex; here
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Z = KerN ∩Ker da. The image consists of classes of c′ such that dac
′ ∈ (1− t) Ker d.

Note that given c′ with Nc′ = 0, one can assume that dac
′ = (1− t) c̃ (one may

assume that cohomology of the row containing c′ is non-trivial; then cohomology of
the row containing dac

′ is trivial), and c̃ is defined up to addition of Nc2. Hence
dc̃ is defined up to Im dN. If c′ = (1− t) c3, then dc̃ may be assumed to be 0.
One obtains a mapping Ξ: c′ 7→ dc̃ : KerNk−1/ Im (1− tk−1) → Im d/ Im dNk, and
cohomology of (1.3) at term H•

HAS coincides with kernel of this mapping (assuming
the row containing c′′ is acyclic).
On the other hand, KerN/ Im (1− t) in V ⊗pl, here V is a vector space over K,

charK = p, can be easily described: it consists of tensors b⊗p, b ∈ V ⊗l, and b is defined
modulo Im (1− tl). Note that b 7→ b⊗p gives an inclusion Fp : V

⊗l →֒ V ⊗pl compa-
tible with action of t and identifying Coker (1− tl) with KerNpl/ Im (1− tpl); while
Fp is non-linear, the image in KerNpl/ Im (1− tpl) is Zp-linear (and K-semilinear). A
similar statement holds for spaces C•

HAS provided the sheaves C•HAS (and a few related
sheaves) are space-acyclic. Indeed, the observation about Fp is applicable on the level
of sheaves. On the other hand, if ϕ : S• → T • is a quasiisomorphism of complexes of
sheaves, and sheaves in S•, T • are space-acyclic, then Γ (S•)→ Γ (T •) is a quasiiso-
morphism (apply the double-complex trick with C∗ (S•) to the cone of ϕ). Taking
T • to be the row of cyclic double complex, one identifies KerNpl/ Im (1− tpl) with
Γ (Coker (1− tl)); here tl acts in ClaHAS (provided Coker (1− tl) is space-acyclic—
which follows from space-acyclicity of ClaHAS if p ∤ l since then Coker is a direct
summand). Likewise, if both Coker (1− tl) and Im (1− tl) are space-acyclic, then
Γ (Coker (1− tl)) coincides

9 with Coker (1− tl) acting in C l
aHAS.

Calculate the image Z̃ of Z in KerNk/ Im (1− tk); we claim that it is spanned

by (Ker da)
⊗p and Ẑ; here Ẑ = 0 if 2 ∤ k = lp, and Ẑ =

{
ψ1⊗k

}
otherwise; here ψ

runs over locally constant functions. Let s̃ be the local homotopy s defined above
on C>0

aHAS, and is defined as ϕ on C0aHAS. If da (c
⊗p) = 0, then c⊗p = da (s · c

⊗p) =
da (c

⊗p−1 ⊗ s̃ · c) = c⊗p−1⊗da (s̃ · c)±da (c
⊗p−1)⊗ s̃ ·c. If l > 1, then s̃ ·c = s ·c, hence

da (s̃ · c) = c− s̃ · dac, hence c
⊗p−1 ⊗ s̃ · dac = ±da (c

⊗p−1)⊗ s̃ · c. Assume s̃ · dac 6= 0;
decomposing tensors as in V ⊗l(p−1)⊗V ⊗V p−1, one concludes that locally there exists
a section f of O such that da (c

⊗p−1) = c⊗p−1⊗f , and da (s̃ · c) = ±f⊗s̃·c; the former
formula (together with dac

⊗p = 0) implies that dac = ±f ⊗ c and s̃ · dac = ±f ⊗ s̃ · c.
Together with the latter formula, this shows that c = const ·f ⊗ s̃ · c; plugging the
LHS into the RHS repeatedly implies that c = const ·f⊗l. Since dac is proportional
to c, f must be proportional to 1, and c to 1⊗l.
In the case s̃ · dac = 0, one may assume s̃ · c 6= 0; hence da (c

⊗p−1) = 0. Therefore
da (c

⊗p) = 0 implies that c⊗p−1 ⊗ dac = 0, hence dac = 0.

9One should be careful in these considerations; e.g., if K contains l-th roots of unity, and allows
l-th roots, then Ker (1− tl) coincides locally with f⊗l, f being a section of O. However, globally
this identification does not hold even if K ⊃ Q: e.g., a global section-up-to-monodromy f may lead
to an honest global section f⊗l if the monodromy is an l-th root of unity.
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If l = 1, then s̃·c is a scalar and the formula above simplifies to c⊗p = (s̃ · c) da (c
⊗p−1) =

± (s̃ · c) (dac
⊗p−2) ⊗ c + (s̃ · c) cp−2 ⊗ dac. Again, this implies dac = f ⊗ c; since

dac = c⊗1, c must be proportional to 1. To finish description of Z̃, it is enough to
note that da1

⊗k = 0 iff 2|k.
Conjecture: so far I could not find any element of the kernel of the mapping

Ξ from (KerNk/ Im (1− tk))/Z̃. I expect that the kernel is 0, hence c′ does not
contribute to cohomology!
Choose a basis {vs}s∈S in V containing 1. Identify V ⊗l with words in alphabet

S of length l; consider a Z-grading Gs0,L on V ⊗l given by number of occurences of
vs0, s0 ∈ S, in positions in L ⊂ {1, . . . , l}. We will use Zm-gradings components
of which are Gs0,L. The basis in (KerNk/ Im (1− tk)) is given by monomials µ⊗l,
here charK = p|l|k, and µ is a word of length k/l without cyclic symmetries. Here
µ should be chosen as a representative of “circular words”, i.e., classes of words up
to cyclic rotations). To choose such a representative, one can take the minimal (in
lexicographical order) representative in a class; here one needs an ordering in S;
assume that s1 = 1, and s ≤ 1 for any s in S.
For a word ν, denote by ν̄ its reduction: the word obtained from ν by removing

symbols 1. Consider the grading of the tensor power of V by the circular word of ν̄,

here a monomial in V ⊗n is considered as a word ν; note that t, da, d, d̂, d̂a preserve
this grading. So one can focus the attention on one of these gradings.
Decompose µ̄ = λl

′

as a power; here λ has no circular symmetries; to do this,
one must assume that µ contains a symbol distinct from 1 (if µ = 1⊗k, this re-
quires a separate consideration—but it is trivial). Let λ′ be the minimal repre-
sentative of the circular class of λ (one may have λ′ 6= λ; e.g., take µ = aba1a1,
λ′ = aaab). Our grading is determined by (λ′, l′). Apply Ξ to the monomial µ⊗l;
consider the component of the result corresponding to words not starting with 1,
and the reduced word being λ′ll

′

. Note that (1− tm) τ̃
[m] = Nm − m. If Nc′ = 0,

then Ndac
′ = 0, hence (k + 1) c + τ̃ dac

′ is killed by (1− t); note that k + 1 is in-

vertible in K. Hence to calculate KerΞ, one can replace Ξ by Ξ̂ = dτ̃da. Let
R consist of 0 ≤ r < k/l such that trµ does not start with 1, and trµ = λ′l

′

(hence |R| = l′). Then the component of Ξ̂
(
µ⊗l
)
of required grading coincides

with the component of
∑

r∈R

∑l
r′=0

∑1
ε=0 (r + r′k/l + ε) dtr+r′k/l+εda,r+r′k/l,ε

(
µ⊗l
)
;

here da,r,0 = da − da,r,1, da,r,1 =
∑r−1

s=0 ds. (This decomposition of da corresponds

to da (w1 ⊗ w2) = (−1)|w2| (daw1)⊗ w2 + w1 ⊗ daw2 with |w2| = r.)

Note that tr+1d
[k]
a,r,1 = d

[k]
a,k−r,0t

r, trd
[k]
a,r,0 = d

[k]
a,k−r,1t

r; plugging into the preceeding
formula, one gets that the componet coincides with

∑

r∈R

l∑

r′=0

1∑

ε=0

(r + r′k/l + ε) dda,k−r−r′k/l,1−εt
r+r′k/l

(
µ⊗l
)
=
∑

r∈R

l∑

r′=0

ζr
′

d
(
(r + r′k/l) da + da,k−r−r′k/l,0

)
tr
(
µ



34 ILYA ZAKHAREVICH

here ζ = (−1)(k+1)k/l. Since
∑l

r′=0 ζ
r′ (r + r′k/l) = 0, one concludes that the com-

ponent is
∑

r∈R

∑l
r′=0 ζ

r′dda,k−r−r′k/l,0t
r
(
µ⊗l
)
=
∑

r∈R fαβrl1l
[k]
αβt

r
(
µ⊗l
)
; here10 if ζ =

1, then fαβrl is the number of integers r′ with (2− β + r) l/k ≤ r′ < (2− α + r) l/k;
otherwise fαβrl is the number of such integers which are even minus number of odd
ones.
Consider now the secondary gradings; note that λ′ starts with a basis element

which is not 1. Fix P such that charK = p|P and P | (ll′); let L = k/P ; consider
words of length k + 2 such that the symbol at positions 1 + nL is not 1, and in
the interval 1 + (n− 1)L . . . nL there are exactly l′|λ′| non-1s for n = 1, . . . , P − 2.
Clearly, these words form a graded component in one of secondary gradings and

that the component of Ξ̂
(
µ⊗l
)
in this grading corresponds to α, β > (P − 2)L. In

particular, if P = p ≥ 3, then the first L symbols in the word appearing in this

component of Ξ̂
(
µ⊗l
)
form one of the words tr

(
µ⊗L/l

)
, r ∈ R.

What is important to us is that this word determines l; therefore, the words with
the same (λ′, l′l) but different l do not “mix”, and one can consider words with the
same (λ′, l′) separately. Taking this into account, put L = l, P = k/l; now the first
l symbols determine trµ, therefore r. In particular, a certain graded component of

Ξ̂c depends only on the graded component of c of type (λ′, l′), and consists of terms
with r = 0, α, β > k − 2l.
Choose the minimal µ1 of words t

rµ, r ∈ R; since µ is chosen to be a certain repre-
sentative of its circular class, and so far we did not care which of the representatives
it is, we may assume that µ = µ1. One concludes that the graded component may
be written as µ⊗l−2 ⊗ ϕ (µ) plus terms νq ⊗ κq with |νq| = |µ| (l − 2) and ν1 later
than µ⊗l−2, here ϕ (µ) is a word of length 2k/l+2. Therefore, to show that Ξ has no
kernel on graded component of type (λ′, l′), it is enough to show that ϕ (µ) 6= 0

for any word µ with µ̄ = λ′l
′

; here ϕ (µ) =
∑

αβ fα+|µ|(l−2) β+|µ|(l−2) 0l1l
[k]
αβµ

⊗2 =

±
∑|µ|+1

α=2

∑2|µ|+2
β=|µ|+2 1l

[k]
αβµ

⊗2 = ± (daµ)
⊗2. One can see that for c in the complement to

1⊗k, Ξ̂c = 0 iff dac = 0 (provided p > 2).
The case of charK = p = 2 is much more delicate. The argument above allows

only “the first step of refinement”, one with P = p; it does not exclude a “mixing”
of different l, µ and r, as well as mixing different µ with the same λ′. Therefore

one should consider Ξ̂c with c being a linear combination of words wp with w of
type (λ′, k/(p|λ′|)); in turn, w may be of the form µl/p with µ having no circular
symmetries. What one can do using secondary gradings is to ensure that the symbol
at position k/p+2 is non-1, and in positions 1 . . . k/p+1 there are exactly |λ′|l′k/(pl)
non-1s; this corresponds to α ≤ k/p+ 1, β ≥ k/p+ 3.
One should be more careful: l is a running parameter, and one should

show that Ker does not contain linear combinations with different l!!! In
fact, since µ

k/pl
1 uniquely determines l, this is not an obstacle—if l > 2.

10Signs???
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All this argument is BS: first, it works only when the base is a point,
when exactness in the term Hk

HAS allows a simple handling; second, it
ignores taking quotient by Im dN.
Check exactness in the term H̊n+2

cAS ; a cocycle in Ker j can be written as dc with
(1− t) dc = 0, c ∈ Cn+1

HAS, and c is defined up to HAS-cocycle. The C•
cAS-cohomology

class of dc is determined by c up to addition of c̄ with (1− t) c̄ = 0; hence this
class is determined by c1 = (1− t) c which must satisfy dac1 = 0, and is defined up
to addition of (1− t) Ker d. If da is acyclic, then (1− t) c = dac

′; now c′ satisfies
dac

′ ∈ Im (1− t) and is defined up to addition of “negligible” elements c̃′, i.e., such
that dac̃

′ ∈ (1− t) Ker d.
On the other hand, the stricter condition dac̃

′ ∈ (1− t) Im d = Im (da (1− t)) shows
that any c̃′ ∈ Im (1− t) is negligible. If the row containing c′ is acyclic, the class of
C•

cAS-cohomology of dc is determined by c′1 = Nc′; note that it satisfies (1− t) c′1 = 0,
dc′1 = 0. Moreover, up to negligible elements, c′ can be replaced by 1

k
c′1. Then

dac
′ = ±1lLc

′ and tc′ = c′.
Now recall the construction of the homotopy S when applied to elements c̄′ with

dc̄′ = 0, (1− t) c̄′ = 0: we solve Nc̄′−1 = c̄′, then solve (1− t) c̄ = dac̄
′
−1; now Sc̄′ = dc̄.

In fact, we take solutions to these equations given by homotopies for the rows of the
cyclic bicomplex which contain c̄′, c̄; however, if these rows are acyclic, it is clear that
the arbitrariness in the choice of c̄′−1 does not contribute into dc̄, and the arbitrariness
in the choice of c̄ contributes an element in Im dN , hence does not contribute into
the class of dc̄ in H̊•

cAS. We saw that modulo Im dN , dc̄ coincides with an element

proportional to Sc̄′Z and proportional to dd̂c̄′ (under the assumptions, the coefficients
are invertible).

Apply this observation to c̄′ = c′1; one concludes that the class of dc in H̊n+2
cAS is

proportional to the class of dd̂c′1. Hence Ker j ⊂ Im dd̂ in the term H̊n+2
cAS if charK ∤

n+ 1, n+ 2.
If the row containing c1 is exact, then the condition on c′ may be rewritten as

Ndac
′ = 0. If d is exact at the cell of c, then c1 is determined up to addition

of Im ((1− t) d) = Im (da (1− t)), hence c′ is defined up addition of Ker da and
Im (1− t). If, additionally, the row containing c′ is exact, then c′ is defined up to
addition of Ker da and KerN ; hence the cAS-class of dc is determined by c′1 = Nc′ up
to addition of N Ker da = ImNda = Im dN. Under these assumptions, c′1 must satisfy
dc′1 = 0, (1− t) c′1 = 0. (If the row below c′ is exact, then c′1 becomes a uniquely
determined class of cyclic cohomology.)

Now inspect the term H̊n
cAS; let c

′
1 be a representative of an element of H̊n

cAS. As
above, an element c′1 in Ker (1− t)∩Ker d may be extended to solutions of Nc′ = c′1,
(1− t) c = dac

′ if charK ∤ n+ 1, n+ 2. Moreover, dc differs from an element propor-

tional to dd̂c′1 by something in Im dN , which is a contribution of the arbitrariness of

the choice of c. If the class of dd̂c′1 in H̊n+2
cAS vanishes, one can choose c so that dc =
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0; hence c represents a class of Hn+1
HAS. Obviously, B maps this class to the class of c′1

in H̊n
cAS. One obtains exactness in the term H̊n

cAS provided charK ∤ n + 1, n+ 2.
If one replaces SQ by SZ (or S{charK}), the complex makes a perfect sense also if

char k > 0, but there is no hope that it is exact.

Remark 1.28. We see that if k ⊃ Q and O is soft, C∗
cAS (O) is quasi-isomorphic to

C∗ (M, k [S]) as k [S]-module. This mapping is given by the inclusion of the constant
sheaf k [S] into C•qcAS:

1 7→ 1 ∈ O = C0qcAS, Sk 7→ Sk · 1 = const · 1⊗ · · · ⊗ 1︸ ︷︷ ︸
2k+1 times

∈ C2kqcAS.

Remark 1.29. We have seen that the differential sends a skewsymmetric element of
C•

qcAS (O) to a skewsymmetric element, therefore the Alexander–Spanier complex is a
subcomplex of a cyclic Alexander–Spanier complex. Moreover, a differential sends a
cyclically symmetric element of C•

HAS (O) to a cyclically symmetric element, therefore
the cyclic complex is in turn a subcomplex of the Hochschild complex. Therefore the
above constructions of Alexander–Spanier cocycles gives in fact cyclic and Hochschild
Alexander–Spanier cocycles. The application of the mapping S allows to construct
in this way any class of the cocycle in the case of soft O and k ⊃ Q.

2. Complexes in algebraic situation

2.1. Definitions of complexes. Let K be a commutative ring over Q. We use here
several complexes associated with an associative algebra A over K.

Definition 2.1. The Hochschild homological complex consists of vector spaces CHk (A) =
A⊗k+1 with the differential

d : f0⊗· · ·⊗fk 7→
∑

l

(−1)l f0⊗· · ·⊗(fl · fl+1)⊗· · ·⊗fk+(−1)k (fk · f0)⊗f1⊗· · ·⊗fk.

The acyclic Hochschild complex differs from this one only by the absence of the
last term in differential. The cyclic complex CC∗ consists of coinvariant “in” the
Hochschild complex with respect to the following action of Zk+1 on A⊗k+1:

t : f0 ⊗ · · · ⊗ fk 7→ (−1)k f1 ⊗ · · · ⊗ fk ⊗ f0.

(It is easy to see that the above differential sends indeed coinvariants
(
A⊗k+1

)
Zk+1

into coinvariants
(
A⊗k

)
Zk
.)

In the same way we can consider the corresponding dual cohomological complexes.

We can also consider the corresponding to A Lie algebra Lie (A) (this algebra
coincides with A as a vector space and has commutator as a Lie operation) and
homological and cohomological complexes CLie

∗ (Lie (A)) and C∗
Lie (Lie (A)).

This definition has a big resemplance with the definitions of corresponding objects
in the topological situation. As then, we have some maps between these complexes,
however not any map extends to the topological situation.
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Definition 2.2. The mapping of shift S sends the class of f0 ⊗ · · · ⊗ fk in CCk into
the class of

∑

l

(3− k) f0 ⊗ · · · ⊗ (fl · fl+1 · fl+2)⊗ · · · ⊗ fk

+
∑

l+1<m

(2 (m− l)− k + 1) f0 ⊗ · · · ⊗ (fl · fl+1)⊗ · · · ⊗ (fm · fm+1)⊗ · · · ⊗ fk.

in CCk−2. The mapping B sends the class of f0 ⊗ · · · ⊗ fk in CCk into the element
∑

i

(−1)ik 1⊗ fi ⊗ · · · ⊗ (fk · f0)⊗ · · · ⊗ fi−1 +
∑

i

(−1)(i+1)m fi ⊗ · · · ⊗ fi−1 ⊗ 1

of CHk+1.

The mappings S and B commute with differentials, therefore define an exact se-
quence of cohomologies

· · · → HHk+1 → HCk → HCk−2 → HHk−1→ . . . .

2.2. The Lie algebra complex and the cyclic complex. We can consider any
given associative algebra A as a Lie algebra Lie (A) with the commutator operation.
Consider the inclusion of the homological Lie-algebraic complex for Lie (A) to the
homological cyclic complex for A that sends X1∧· · ·∧Xn ∈ Λng to the corresponding
element of g⊗n/Zn. It is easy to see that differential of these two complexes are
compatible (up to a factor 2), hence there is a corresponding mapping of homologies:

HLie
∗ (Lie (A))→ HC∗ (A)

and of cohomologies

HC∗ (A)→ H∗
Lie (Lie (A)) .

2.3. The Hochschild complex and the cyclic complex. In the same way as
above we can consider a projection from the Hochschild complex to the cyclic com-
plex, that is (by definition) compatible with differentials. Together with the mapping
from the previous section we get a diagram

CLie
∗ (A) −−−→ CC∗ (A)∥∥∥

CH∗ (A) −−−→ CC∗ (A) .

We defined above three pairings of these complexes with complexes
(
CLie

∗ (A) ,∧1
)
,

(CC∗ (A) ,∧1) and (CH∗ (A) , m (1)). It is easy to see that there exists a dual diagram
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to the previous diagram:
(
CLie

∗ (A) ,∧1
) α
←−−− (CC∗ (A) ,∧1)∥∥∥

(CH∗ (A) , m (1))
β

←−−− (CC∗ (A) ,∧1) .

The mappings α and β are projection and symmetrization correspondingly.

2.4. A case with a commutative ring. Suppose that the ring A in the above
situation is commutative. In this case it is possible to compute the cohomology
explicitly at least in the case when A is smooth in the algebraic-geometrical case.
The simplest possible answer is in the situation of Lie algebra homologies. The

differential in the homological complex vanishes, therefore

HLie
∗ (A) = Λ∗A.

The situation with Hochschild homology is also very simple. If A is a space of
functions on the manifold M , define Ω∗

A as the space of differential forms on M .
It is possible to define this space in terms of A itself, but we do not need such
complications, therefore leave this as an exercise to a reader.

Proposition 2.3. Consider a mapping from the Hochschild complex for a commu-
tative algebra A into the complex Ω∗

A with zero differential:

f0 ⊗ · · · ⊗ fk 7→
∑

σ∈Sk

f0dfσ1 ∧ · · · ∧ dfσk
∈ Ωk

A.

This mapping induces an isomorphism on homologies.

In the case of cyclic homology the description is a little bit more complicated. We
need to use the mapping of shift S : CCk → CCk−2 here. The first observation is that
the above mapping Hk (A,A) → Ωk

A sends an element with a trivial projection on
the space CCk (A) into a closed form. Therefore the same formula as above defines
a mapping

CCk (A)
α
−→ Ωk

A/dΩ
k−1
A .

We can again consider this mapping as a mapping in the complex with zero differen-
tial. Now the compositions α ◦ Sm define a mapping of complexes

CCk (A)
β
−→ Ωk

A/dΩ
k−1
A ⊕ Ωk−2

A /dΩk−3
A ⊕ Ωk−4

A /dΩk−5
A ⊕ . . . .

Consider the following subspace of the space in the right-hand side:

Wk = Ωk
A/dΩ

k−1
A ⊕Hk−2

DR (A)⊕Hk−4
DR (A)⊕· · · ⊂ Ωk

A/dΩ
k−1
A ⊕Ωk−2

A /dΩk−3
A ⊕Ωk−4

A /dΩk−5
A ⊕. . . .

We claim that the image of a cycle in CCk (A) lies in that subspace, and

Proposition 2.4. The corresponding to β mapping of homology is an isomorphism
onto the subspace W∗.
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It is easy to understand that the corresponding to S operator on W∗ is

Ωk
A/dΩ

k−1
A Hk−2

DR (A)Hk−4
DR (A) . . .y

yin

yid

0 Ωk
A/dΩ

k−1
A Hk−2

DR (A). . . .

Here in is the canonical inclusion.
The described above mappings from Hochschild complex and Lie complex into the

cyclic complex are correspondingly taking the quotient by dΩk−1
A and taking the jet

on a diagonal ∆M in Mk+1 (which is a k-form) and taking the same quotient.
In particular, we can see that any class of cyclic homology from KerS has a repre-

sentative that is a skewsymmetric chain. Moreover, in the commutative case there
are natural mappings

CLie
∗ (A)→ CH∗−1 (A,A) ,

CC∗−1 (A)→ CLie
∗ (A) .

3. Cocycles for the algebra of global sections

3.1. A strange pairing. Let A be an associative K-algebra with a trace Tr : A→ K
(a trace is a linear mapping satisfying Tr [x, y] = 0).

Definition 3.1. Consider a cyclic complex CCk (A) = A⊗k+1/Zk+1. Consider the
following pairing between CCk (A) and itself:

((x0, . . . , xk) · (y0, . . . , yk)) =
∑

l

(−1)kl Trx0ylx1yl+1 . . . xkyk+l

(here yk+1+l
def
= yl). It is correctly defined, hence it sends the graded vector space

CC∗ (A) into the complex CC∗ (A). Let us denote this mapping as i.

The first question is: can we describe what differential (of degree +1!) on CC∗ (A)
“corresponds” to the differential on CC∗ (A) under this inclusion. A priory we cannot
expect that such a differential exists at all.

Proposition 3.2. The following diagram is commutative:

CCk (A)
∧1
−−−→ CCk+1 (A)

i

y i

y

CCk (A)
d

−−−→ CCk+1 (A) .

Here ∧1 denotes the mapping of the shuffle product with 1 ∈ A.

Remark 3.3. Due to associativity of the shuffle product it is evident that the square
of the operation of the shuffle product with 1 is 0:

(a ∧ 1) ∧ 1 = a ∧ (1 ∧ 1) = 0.
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Therefore we got the mapping of complexes

(CC∗,∧1)→ CC∗.

The remarkable fact about this mapping is that the structure of the first (but not
the second!) complex does not depend on the ring structure of A at all.

Remark 3.4. It is easy to see that in the same way we can define strange pairings

between CLie
∗

def
= Λ∗ Lie (A) and itself:

(f1 ∧ · · · ∧ fk, g1 ∧ · · · ∧ gk) = Tr
∑

σ,τ∈Sk
σ1=1

fσ1gτ1 . . . fσk
gτk ,

and between the Hochschild complex (or the acyclic Hochschild complex) CH∗ (A) =
A⊗∗+1 and itself:

(f0 ⊗ · · · ⊗ fk, g0 ⊗ · · · ⊗ gk) = Tr f0g0 . . . fkgk.

The dual to the differentials mappings (of degree 1) in these graded vector spaces are
the wedge product with 1 in the case of the Lie algebra cohomology,

f0 ⊗ · · · ⊗ fk
m(1)
7→ (−1)k+1 1⊗ f0 ⊗ · · · ⊗ fk − (−1)k+1 f0 ⊗ 1⊗ · · · ⊗ fk + . . .

+ f0 ⊗ · · · ⊗ fk ⊗ 1,

and

f0 ⊗ · · · ⊗ fk
m(1)
7→ − (−1)k+1 f0 ⊗ 1⊗ · · · ⊗ fk + · · ·+ f0 ⊗ · · · ⊗ fk ⊗ 1

in two Hochschild complexes correspondingly (up to a sign).

3.2. A mapping from the Alexander–Spanier complex. Now we want to consi-
der a sheaf of associative algebras O over a topological space M with an algebra A
of global sections. Suppose again that the algebra A has a trace

Tr: A/[A,A]→ K.

We construct here a mapping from the Alexander–Spanier complex for O to the
Lie-algebraic complex of the algebra A considered as a Lie algebra.
We have already constructed the mapping I from the complex (Λ•A,∧1) to the

cochain complex (Λ•A∗, (∧1)∗). So the only fact we need is what this mapping can
be routed via the Alexander–Spanier complex, that is a factor of (Λ•A,∧1).
We want to prove now that the mapping I can be direct via the space Γ

(
M,ΛkO

)

(that is a factor of the space ΛkA = Γ
(
Mk,AltO⊠k

)
). We need to prove that if

the function f (x1, . . . , xk) ∈ ΛkA is zero in a neighborhood of the diagonal, then
〈I (f) , g〉 is zero for any chain g = (g1, . . . , gk) ∈ CCk (A). Consider a representation
of f of the form

(3.1) f (x1, . . . , xk) =
∑

α

f
(α)
1 (x1) ∧ · · · ∧ f

(α)
k (xk) ,
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We have Label equ5.2,

〈I (f) , g〉 =
∑

α

∑

σ∈Sk

(−1)σ Tr
(
f (α)
σ1
g1f

(α)
σ2
g2 . . . f

(α)
σk
gk
)
.

We want to prove that in fact already
∑

α

∑

σ∈Sk

(−1)σ f (α)
σ1
g1f

(α)
σ2
g2 . . . f

(α)
σk
gk = 0. (5.3)

Indeed, consider a point m ∈M . If U is a sufficiently small neighborhood of m, then
f |U×···×U = 0, therefore in calculation of (?equ5.3?) in U we can substitute instead of
representation (3.1) just f (x1, . . . , xk) = 0.
This defines in fact the mappings

C∗
AS (O)

I
−→ C∗

Lie (Γ (O))

of complexes and the corresponding mapping of homologies:

H∗
AS (O)

I
−→ H∗

Lie (Γ (O)) .

We want to remind that the left-hand side does not depend on the multiplication
law in O! Moreover, if the sheaf O coinsides as a sheaf of vector spaces with the
structure sheaf of M , then the left-hand side coincides with the singular cohomology
of M (under mild general-topological assumptions).
A simple generalization gives the

Theorem 3.5. The strange pairing defines the following mappings of complexes
that are compatible with differentials, with natural inclusions and projections and
the mappings B and S:

C∗
HAS (O)→ HC∗ (Γ (O) ,Γ (O)∗) ,

C∗
AS (O)→ C∗

Lie (Lie (Γ (O))) ,

C∗
cAS (O)→ CC∗ (Γ (O)) ,

C∗
aHAS (O)→ HC∗ (Γ (O)) .

We claim that these mappings are compatible with natural mappings between com-
plexes in the left-hand side (described above) and mappings between the complexes in
the right-hand side (described, say, in [?LodQuill84Cyc]). We should note, however, that
the situation with algebraic complexes is not so simple as with topological complexes,
where two complexes in question were subcomplexes in the third. In the algebraic
case we have defined the following mappings only:

HC (A) ←−−− CC (A) ←−−− HC (A,A∗)y
CLie (Lie (A))

,
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and the natural mapping CLie (Lie (A))
Alt
−→ CC (A) is not compatible with diffe-

rential. The existance of other mappings in the topological case cannot suggest the
existance in the algebraic situation since there is an additional hypothesis of existance
of the trace.

Example 3.6. Let us show that the natural mapping of skewsymmetrization CC2 (A)→
CLie

3 (Lie (A)) is not compatible with differentials. Indeed, the differential of (c0, c1, c2)
in CC contains only the products in the order c0c1, c1c2, c2c3, therefore in the non-
commutative case its skewsymmetrization should not coinside with the differential of
the skewsymmetrization, that contains also the product c1c0.

In fact we described some “topological part” of the different cohomological com-
plexes for the ring Γ (O) and can write explicit cocycles for this part.

3.3. A case of a commutative algebra. It is clear that in the case of the commu-
tative algebra a lot of the discussion above becomes degenerate.

Proposition 3.7. Let O be a sheaf of commutative K-algebras over X , A =
Γ (X,O). Consider a linear functional Tr: A → K. Then the mapping

Ck
AS (X,O)→ Ck

Lie (A)

vanishes for k > 0, the mapping

Ck
cAS (X,O)→ CCk (A)

vanishes for odd k and coincides with the mapping

(f0, f1, . . . , fk) 7→ f0f1 . . . fk

for even k. Here we consider A as included in CCk (A) by the rule

g 7→ ((c0, . . . , ck) 7→ Tr gc0 . . . ck) .

3.4. A case of an almost commutative algebra. Here we investigate the coho-
mology of an algebra that is approximately commutative. Let A be a K-algebra,
and * be an associative product on A⊗K K [[h]] such that A [[h]] with this product
is a K [[h]]-algebra. We can “fix an infinitesimally small” h and consider the cor-
responding associative product ·h on A. In this way we get a family of associative

products on A parametrised by infinitely small parameter h. Suppose that ·0
def
= · is

commutative. We can write this condition in terms of the product *:

fg − gf = O (h) .

In this case we can consider the speed of change of the product ·h with respect to h,
more precise, how quick this product becomes non-commutative:

{f, g}
def
= lim

h→0

f ·h g − g ·h f

h
.
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It is clear that this bracket satisfies the Leibniz identity with respect to the commu-
tative product · and the Jacobi identity. The product · and the bracket {, } form so
called “first approximation” to the product *. The formalization of this situation is
the following

Definition 3.8. A Poisson algebra A is a vector space with a commutative product
· and a skewsymmetric bracket {, } : A ⊗ A → A that satisfy the Leibniz and the
Jacobi identities.

Consider a Poisson algebra A. Then we have a Poisson bracket on X = SpecA.
If X is smooth, we have a bivector field η (i.e., a section of Λ2TX) on X defined by
the rule

〈η|x, df ∧ dg|x〉 = {f, g} |x.

Indeed, the right-hand side depends only on df |x, dg|x because of the Leibniz identity,
therefore can be written as the left-hand side with an appropriate η.
In any case the Poisson bracket is local, therefore we get a sheaf of Lie algebras O

with the bracket {, } on SpecA. From the other side, for any h we get a sheaf of Lie
algebras O with the bracket [, ]h,

[f, g]h = f ·h g − g ·h f.

It is easy to see that the bracket {, } is the scaled limit of the brackets [, ]h:

{, } = lim
h→0

[, ]h
h
.

Consider what is an analogue of trace in the Poisson situation. It should be a
mapping Tr: Γ (O) → K satisfying the relation Tr {f, g} = 0. If SpecA is smooth
and compact (or proper), then this defines a measure on SpecA, that is invariant
with respect to the Hamiltonian flow of any function on SpecA. We suppose that
there is a fixed Tr on A.
Consider a class in H∗

AS (X) and the images of this class in H∗
Lie (Lie (A, [, ]h)).

Below we show that these classes have a scaled limit when h goes to 0. Therefore we
get a mapping

H∗
AS (X)→ H∗

Lie (Lie (A, {, }))

(moreover, the corresponding mapping of complexes). We show below that this map-
ping can be written using only the data · and {, }.

Theorem 3.9. Let A be a Poisson algebra corresponding to the family of products
·h, and a linear function Tr on A that is a trace with respect to any product ·h. Consi-
der an arbitrary element cn ∈ Cn

AS (SpecA) = Λn+1A. Consider the corresponding
element c̃nh ∈ C

n+1
Lie (Lie (A, ·h)) = Λn+1A∗. Then

c̃nh = ĉnhn +O
(
hn+1

)

for some ĉn =
∑

k

(
n−k−1

k

)
ĉn(k) ∈ Λn+1A∗,
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and if cn = f0 ∧ · · · ∧ fn, then the value of ĉn(k) on g0 ∧ · · · ∧ gn ∈ Λn+1A can be
written as

ĉn(k) (g0 ∧ · · · ∧ gn) = Tr Alt
σ,τ∈Sn+1

{fσ0 , fσ1} · {fσ2 , fσ3} · · · · ·
{
fσ2k−2

, fσ2k−1

}

· {gτ0, gτ1} · {gτ2 , gτ3} · · · · ·
{
gτ2k−2

, gτ2k−1

}

· {fσ2k
, gτ2k} ·

{
fσ2k+1

, gτ2k+1

}
· · · · ·

{
fσn−1 , gτn−1

}
· fσn

· gτn .

Moreover, for any Poisson algebra A with trace Tr the above formula determines (by
additivity) a mapping ĉ∗ from the complex C∗

AS (SpecA) into the complex C∗
Lie (Lie (A)),

and this mapping is compatible with differentials.

Proof. We should compute

Alt
σ,τ∈Sn+1

fσ0 ·h gτ0 ·h fσ1 ·h gτ1 ·h · · · ·h fσn−1 ·h gτn−1 ·h fσn
·h gτn .

up to terms of order n + 1 in h. Let us consider one summand in this formula and
write an expression that contains a lot of commutators and gives the same result
after alternation. First, let us move all fσi

with i ≥ 1 to the left of gτ0 one by one
beginning from fσ1 using the identity

af = fa+ [a, f ] .

The resulting expression can be written as a sum of the expressions of the following
form: it begins with a product of the terms fi, and the remaining factors are of the
form

[. . . [[gj , fi1] , fi2] , . . . , fil] , l ≥ 0.

Any such product has a coefficient 0 or 1 in this expression.
Some terms gj occurs without a commutator in this expression. Let us move such

a term to the right using the formula

ga = ag + [g, a] .

As a result we get a sum of products that begin with some number of fi, end with
some number of gi and contain terms of the form

[gj1, [gj2, . . . [gjm, [. . . [[gj , fi1] , fi2] , . . . , fil]] . . . ]] , l ≥ 1, m ≥ 0.

in between. It is clear that the number of commutators in this term is no less than half
the number of letters in this term, and the equality can occur only in the case l + 1,
m = 0. On the other hand, consider the beginning of such a product fi1 ·h · · · ·h fik .
We can write the alternation of this expression in i1, . . . , ik as the alternation of

2−k/2 [fi1 , fi2 ] ·h · · · ·h
[
fik−1

, fik
]

if k is even, and of

2−(k−1)/2 [fi1, fi2 ] ·h · · · ·h
[
fik−2

, fik−1

]
fik .
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if k is odd. Therefore the alternation contains commutators in quantity no less than
half the number of letters in this product minus 1

2
. The same is true for the product

of g’s that finishes the term we consider.
That means that we can change the expression under the alternation sign in the

theorem to a sum of expressions with no less than n commutators, and any expression
with exactly n commutators is of the form

2−2k [fi1 , fi2] ·h · · · ·h
[
fi2k−1

, fi2k
]
·h fi2k+1

·h [gj1, fl1 ] ·h . . .
[
gjn−2k

, fln−2k

]

·h [gt1 , gt2 ] ·h · · · ·h
[
gt2k−1

, gt2k
]
·h gt2k+1

.

Any term with more than n commutators is O (hn+1), and in the terms with n
commutators we can change ·h to the commutative product ·, and [, ] to h {, }, with
an error of order O (hn+1). Moreover, any term appears with a coefficient 0 or 1.
Therefore the only thing we need to compute is which terms appear indeed in the
resulting sum.
The indices iα and tβ are uniquely determined by the set of indices jγ and lδ. It is

clear that jγ are in the same order as τi. Suppose that the substitutions σ = τ = id.
Then the sequence jγ increases, and the sequence lδ is bigger than jγ : lγ > jγ and
contains no repeating terms. It is easy to see that any such pair of sequences appears
in the sum. From the other side, suppose that for some γ < δ we have lγ > jδ.
Then we can exchange lγ and lδ and get another term of this expression. However, it
is clear that the sum of two such terms vanishes after alternation, therefore we can
consider only terms with jγ < lγ ≤ jγ+1. In particular, the sequence lγ increases.
On the other hand, if jγ < lγ < jγ+1, then this sequence and the sequence with lγ

increased by 1 give opposite terms after alternation. Therefore we can consider only
sequences with lγ = jγ + 1, and odd jγ+1 − jγ and n− jn−2k. All such sequences give
the same contribution into the alternation, therefore it is sufficient to consider one
of them (with the biggest possible j∗) and compute the number of such sequences.
However, this number is the number of decompositions of k into n− 2k summands,
i.e.,

(
n−k−1

k

)
.

Now let us prove the claim of the theorem about Poisson algebras that may
not allow deformation to an associative algebra over K [[h]]. Consider the diffe-
rence of strange pairings between (a0, . . . , an−1) and ∂ (x0, . . . , xn), and between
d (a0, . . . , an−1) and (x0, . . . , xn). Here we consider cyclic complexes, ∂ and d are
differentials in the cyclic complex and the cyclic Alexander–Spanier complex corres-
pondingly. We know that these two quantities are equal, therefore the difference is
0, however, we want to do it in a more invariant way. Therefore remember that the
strange pairing is a value of Tr on some expression, and compute the difference of
these expressions instead. It is easy to see that this difference is

∑

k

[akx0ak+1x1 . . . ak−1xn−1, xn] .
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(The trace of this expression vanishes since it is manifestly a sum of commutators.)
Now we can note if we take pairings between skewsymmetric tensors, we can apply

the same procedure as above to the skewsymmetrization of the term akx0ak+1x1 . . . ak−1xn−1.
As a result we present it as an expression containing n− 1 commutator in any term.
That means that we have represented the incompatibility of the mapping from the

theorem with differentials as a trace of a sum of commutators. Moreover, the expres-
sions in these commutators have a proper scaled limit when h goes to 0, and these
limits can be expressed in terms of the commutative product and Poisson bracket
only.
Therefore we have specific formula expressing the difference between the expres-

sions in the strange pairings, and this formula is written in terms of commutative
product and the Poisson bracket only. However, we have proved this formula only
in the case when the Poisson algebra structure is obtained basing on the associative
product over K [[h]]. However, we can use the structure theorem for Poisson mani-
fold, which says that an open subset of a Poisson manifold allows deformation to an
associative algebra. This means that the difference coincides with the sum of com-
mutators on an open subset, therefore everywhere. Hence the trace of the difference
vanishes, and the mapping of complexes is compatible with differentials.
Several words about the structure theorem. In the usual formulation it says that in

points of an open subset we can find m ∈ N and a coordinate system (x1, . . . , x2k+m)
such that the Poisson bracket can be written as

{f, g} =
k∑

l=1

(
∂f

∂xl

∂g

∂xl+k

−
∂g

∂xl

∂f

∂xl+k

)
.

Now we can write the deformation as

f ·h g =
∑

n≥0

k∑

l=1

hn

n!

∂nf

∂xnl

∂ng

∂xnl+k

.

�

3.5. The case of a Poisson algebra. Consider a Poisson algebra A. We defined a
mapping

C∗
AS (SpecA)→ C∗

Lie (Lie (A))

that is compatible with differentials. Now we want to show that this mapping can
be routed via much more coarse complexes. Indeed, there is a natural mapping (of
taking the minimal possible jet) from the Alexander–Spanier complex into the de
Rham complex

f0 ∧ · · · ∧ fn
J
7→
∑

l

(−1)l fldf0 ∧ · · · ∧ df̂l ∧ · · · ∧ dfn,

and there is another mapping from the complex of differential forms with the Koszul
differential into the Lie-algebraic complex for the Lie algebra of functions with Poisson
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bracket. We are going to show that the mapping I can be written as a mapping from
the de Rham complex into the Koszul complex.
Consider a chain g0 ∧ · · · ∧ gn ∈ Λn+1 Lie (A). Let us associate a differential form

∑

l

(−1)l gldg0 ∧ · · · ∧ dĝl ∧ · · · ∧ dgn

on SpecA to this chain. We will denote this mapping by the same letter J . It is
very simple to compute the operation on differential forms that corresponds to a
differential in a Lie-algebraic complex. It is

g0dg1 ∧ · · · ∧ dgn
δ
7→
∑

l

(−1)l {g0, gl} dg1 ∧ · · · ∧ dĝl ∧ · · · ∧ dgn

+
∑

l<m

(−1)l+m g0d {gl, gm} ∧ dg0 ∧ · · · ∧ dĝl ∧ · · · ∧ dĝm ∧ · · · ∧ dgn.

(This differential was considered by Koszul.) We can write the operation δ as

δ = d ◦ i (η) + i (η) ◦ d,

where η is the defined above bivector field associated to the Poisson bracket on SpecA.
Indeed, {f, g} = i (η) df ∧ dg.
Now we can easily see that the defined above pairing between F = f0 ∧ · · · ∧ fn ∈

Cn
AS (SpecA) and G = g0 ∧ · · · ∧ gn ∈ Λn+1 Lie (A) can be written as

Tr
∑

l

αn,li (η)
n−l
((
i (η)l J (F )

)
∧
(
i (η)l J (G)

))

with appropriate constants αn,l. In particular,

Corollary 3.10. The above formula defines the mapping from the de Rham complex
for the Poisson manifold M with a trace to the cohomological Lie-algebraic complex
for the Lie algebra of functions on M with respect to the Poisson bracket.

Remark 3.11. The above analysis is applicable in the case of a Poisson manifold with
a trace on functions. However, in a lot of important cases Poisson manifolds carry
only a trace on the set of functions with compact support, and this trace satisfies
the relation Tr {f, g} = 0 if one of the functions f or g has a compact support. We
can easily see that in this case the above mapping is well-defined as a mapping from
the de Rham complex with compact support or Alexander—Spanier complex with

compact support (that is obviously defined).

Remark 3.12. In the above theorem we have shown that the pairing is of order
O (hn). The above remarks shows that this pairing is not of a smaller order. The
following example will show that this pairing can be nontrivial even on the level
of homology. Moreover, this example is a simplified version of the more elaborate
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example of pseudodifferential symbols which we use as a main component of the proof
of non-degeneracy theorem.

Example 3.13. Let us consider the Poisson algebra P of germs of functions on a
symplectic manifold M . Darboux theorem says that we can choose a coordinate
system such that this manifold is equipped with the standard Poisson structure

{f, g} =

k∑

l=1

(
∂f

∂xl

∂g

∂xl+k
−
∂g

∂xl

∂f

∂xl+k

)
.

This manifold carries no trace, however, we can define a trace on functions with
compact support as

Tr f
def
=

∫
f (x) dx1 . . . dx2n.

Therefore we get a mapping from the de Rham complex with compact support to the
Lie-algebraic complex for the Poisson algebra of functions. We want to show here
that this mapping induces inclusion on cohomology.
To show this it is sufficient to provide one Alexander–Spanier cocycle with compact

support and one Lie-algebraic cycle with nontrivial pairing between them (since the
Alexander–Spanier cohomology with compact support is one-dimensional). Consider
a step function s (x) in one variable, i.e., a smooth function such that s′ = 0 outside
a small neighborhood of x = 0 and s (−∞) = 0, s (∞) = 1. A simple calculation
shows that

1 ∧ s (x1) ∧ s (x2) ∧ · · · ∧ s (x2n) ∈ C
2n
AS

has a compact support. Moreover, this function is manifestly a cocycle, since it
contains 1 as a factor.
On the other hand, consider a Lie-algebraic chain

1 ∧ x1 ∧ x2 ∧ · · · ∧ x2n ∈ Λ2n+1P.

This chain is obviously a cycle, and obviously has a nontrivial pairing with the above
Alexander–Spanier cocycle. Therefore both the cycle and the cocycle are non-trivial,
and the pairing is nontrivial.

3.6. The S-operations. Consider an Alexander–Spanier cochain c ∈ Ck+1
AS (X,O).

We described the image Ic of c in the Lie-algebraic complex of A = Γ (X,O). On
the other hand, we can consider c as an element of Ck+1

cAS (X,O) via the mapping

Ck+1
AS (X,O)→ Ck+1

cAS (X,O) ,

and the image of c in the cohomological cyclic complex of A. In this representa-
tion we can consider also the action of S-operation on c and the cyclic cochains
Sk (Ic) = ISk (c). However, though in the algebraic situation we have no mapping
that associates to a Lie-algebraic cochain a cyclic cochain, there is a mapping in
the opposite direction. This means that we can consider Sk (Ic) as a Lie-algebraic
cochain.
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Hence we constructed a mapping from C∗
AS [1] ⊗K K [S] into CLie (Lie (A)). Mo-

reover, the latter complex is a differential graded algebra (DGA), therefore we can
consider the mapping from the free DGA FreeDGA(C∗

AS [1]⊗K K [S]) generated by
C∗

AS [1] ⊗K K [S] into CLie (Lie (A)). Let us remind that the free DGA is just a
symmetric power in the case of vector superspaces.
This construction is defined so while only in the case whenO is a sheaf of associative

algebras. However, we know already that if we forget about S-operations the mapping
above can be correctly defined also in the case of sheaves of Poisson algebras. Below
we show that a similar approximation is true also in the case of S-operations: we
can compute a main term in h of the image of Sk (Ic) in the Lie-algebraic cochain
complex. However, this main term coincides with an image of some element of higher
degree (????), therefore the difference of these two elements has a higher order in h,
and the above calculations do not give the main term of this difference. Moreover,
it is possible to show that this main term is not determined by the Poisson algebra
structure and it depends on the higher order terms in the product. We discuss this
situation below.

Definition 3.14. Consider a family of products ·h in A and the corresponding map-
ping I from C•

AS [1]⊗K K [S] into Λ•A∗ [[h]] = C•
Lie (Lie (A [[h]] , ·h)). Define a filtra-

tion on C•
AS [1]⊗KK [S] as F k =

{
c | Ic = O

(
hk
)}

. Define a mapping GrI from the
corresponding graded quotient GrF • into Λ•A∗ as

F k/F k+1 = Grk F ∋ c 7→ lim
h→0

Ic

hk
.

The following fact is obvious:

Lemma 3.15. Consider a Lie algebra P associated with the family of priducts ·h.
There are natural differentials in GrF • and in C•

Lie (P) = Λ•A∗, and the mapping
GrI is compatible with differentials.

In their paper [?GelMat92Coh] I. Gelfand and O. Mathieu consider the Poisson algebra
P = P (T2n) of functions on a symplectic torus. They have constructed an (ad hoc)
DGA (that is quasi-isomophic to the above one) with a mapping from it into C•

Lie (P).
They also stated a conjecture that is equivalent to the positive answer to the following
question in the case of X = T2n

Question . Consider a symplectic manifoldX and the Lie algebra P (X) of functions
on X with respect to the Poisson bracket. Suppose that ·h is the deformation of the
commutative product on X that corresponds to the Poisson bracket on X . Is the
above mapping from the symmetric power of the Alexander–Spanier complex with a
compact support

FreeDGA
(
Gr
(
C•

ASc
[1]⊗K K [S]

))
→ C•

Lie (P)

a quasi-isomorphism?
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Though there are some indications that the Gelfand—Mathieu conjecture can be
valid in the toric case, there can be additional complications in the case of an arbitrary
manifold even in the compact case. The structure of the above mapping is nearly
related to the failure of the Lefschetz theory in the symplectic case, therefore in the
case of (say) twisted torus of Witten [?Wit] the structure of this mapping can be yet
more complicated.
However, we want to describe the image of the element I (Src) in the Lie-algebraic

cohomology of the Poisson algebra A.

Theorem 3.16. Let A be a Poisson algebra corresponding to the family of pro-
ducts ·h, and a linear function Tr on A be a trace with respect to any product ·h.
Consider an arbitrary element cn ∈ Cn

AS (SpecA) = Λn+1A. Since Cn
AS (SpecA) ⊂

Cn
cAS (SpecA), we can consider Sr (cn) ∈ Cn+2r

cAS (SpecA). Consider the corresponding
element c̃n,rh ∈ CCn+1+2r (A, ·h) = A∗⊗n+1+2r/Zn+1+2r, and restrict this cochain to
skewsymmetric chains, that gives as a cochain ĉn,rh ∈ Λn+2r+1A∗ for the Lie algebra
Lie (A, ·h). Then

ĉn,rh = ĉn,rhn+2r +O
(
hn+1+2r

)

for some ĉn,r =
∑

k

(
n−k−1

k

)
(????) ĉn,r(k) ∈ Λn+1+2rA∗, (I should compute it yet)

and if cn = f0 ∧ · · · ∧ fn, then the value of ĉn,r(k) on g0 ∧ · · · ∧ gn+2r ∈ Λn+1+2rA can

be written as

ĉn,r(k) (g0 ∧ · · · ∧ gn+2r) = Tr Alt
σ∈Sn+1,τ∈Sn+1+2r

{fσ0 , fσ1} · {fσ2 , fσ3} · · · · ·
{
fσ2k−2

, fσ2k−1

}

· {gτ0 , gτ1} · {gτ2, gτ3} · · · · ·
{
gτ2k−2+2r

, gτ2k−1+2r

}

·
{
fσ2k

, gτ2k+2r

}
·
{
fσ2k+1

, gτ2k+1+2r

}
· · · · ·

{
fσn−1 , gτn−1+2r

}
· fσn

· gτn+2r .

Moreover, for any Poisson algebra A with trace Tr the above formula determines
(by additivity) a mapping ĉ∗,r from the complex C∗

AS (SpecA) into the complex
C∗

Lie (Lie (A)), and this mapping is compatible with differentials.

Proof. We can proceed in the same way as with the proof of the theorem . . . . The
operation Sr inserts 2r ones in the given word in all possible places (with some
coefficients). Let us consider one particular ordering of the letters fα and gβ and
one particular insertion of ones in the word f0f1 . . . fn. Let us call the resulting

word f̃0f̃1 . . . f̃n+2r, any f̃γ being fα or 1. The strange pairing gives as a word

f̃0g0f̃1g1 . . . f̃n+2rgn+2r. Call two noncommutative polynomials congruent if they be-
come the same after alternation in indices α and β. Now we can make the same

transformations as before with the polynomial f̃0g0f̃1g1 . . . f̃n+2rgn+2r,
until we write this expression as a sum of terms of the form

f̃i1 ·h · · · ·h f̃i2k+1
·h [gj1, fl1] ·h . . .

[
gjn−2k

, fln−2k

]
·h gt1 ·h · · · ·h gt2k+1+2r

and of a remainder of order O (hn+2r).
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Here f̃• denotes either some fi or 1. We can suppose again that j1 < l1 ≤ j2 < l2 ≤

· · · ≤ jn−2k < ln−2k. Moreover, if ji < li < l′i ≤ ji, both f̃li and f̃l′i are some fα, and

any f̃γ is 1 for li < γ < l′i, then the exchange of li and l
′
i results in the change of the

sign of the alternation. Therefore we can suppose that in the set
{
f̃ji+1, . . . , f̃ji+1

}

there is odd numbers of fγ. Now it is easy to check that if we choose li to be the

maximal possible index li ≤ jl+1 such that f̃li is some fγ , then two different choices
of {jδ} contribute the same share in the alternation, and this share does not depend
on the choice of places we inserted ones in.

we should fix the number of fα in
{
f̃ji+1, . . . , f̃ji+1

}
and count the contri-

bution.
It is clear now that the theorem is true up to a choice of coefficients in the decompo-

sition of ĉn,r in ĉn,r(k). However, since any insertion of ones give the same contribution,

we should only compute the sum of coefficients at all the insertions.
The proof that the formula of the theorem gives a mapping of complexes in the

case of a Poisson manifold can be carried out in the same way as we did before,
without Sr. �

Corollary 3.17. Let M be a Poisson manifold with a trace Tr, and P be the
sheaf of functions with the Poisson bracket. The “shifted strange pairing” between
SrCn

AS (M,P) and CLie
n+1+2r (Lie (Γ (M,P))) can be routed via the pairing between

ΩnM and Ωn+2rM . This pairing can be written as

〈
ωn, ωn+2r

〉
= Tr

∑

k

αki
(
ηn−2k

) (
i
(
ηk
)
ωn ∧ i

(
ηk+r

)
ωn+2r

)

for appropriate constants αk.

4. Example: pseudodifferential symbols

4.1. The sheaf of pseudodifferential symbols. Here we use a synthetic approach
and intertwine definitions of pseudodifferential operators and pseudodifferential sym-
bols. However, the operators are only intermediate steps in the process of definition
of symbols for us.

Definition 4.1. A function Ã (x, ξ) on T ∗Rn is a classical pseudodifferential symbol

of order k ∈ Z if for any given N it has a decomposition

Ã (x, ξ) =
k∑

j=−N

Aj (x, ξ) + A(N) (x, ξ) ,
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where Aj is a smooth (outside 0 section of T ∗Rn) homogeneous in ξ function of
homogeneity degree j and A(N) is o

(
ξ−N

)
locally in x when ξ →∞. We say that

Ã (x, ξ) ≃
k∑

j=−∞

Aj (x, ξ)

is the asymptotic expansion of Ã.
We consider two symbols the same if they have the same asymptotic expansion.

Consider an operator A : C∞ (Rn) → C∞ (Rn). Consider the point x0 ∈ Rn, the
δ-function δx0 in this point and the linear functional

A∗δx0 : f 7→ (Af) (x0) .

on C∞ (Rn). Let us translate this generalized function on the vector −x0

f (x) 7→ fx0 (x) = f (x+ x0) 7→ (Afx0) (x0)

and denote it ϕA,x0. For not to worry about the behavior at large x, fix a cut-off
function ω (x) and denote ωϕA,x0 by ϕ̃A,x0.

Definition 4.2. An operator A : C∞ (Rn)→ C∞ (Rn) is a classical pseudodifferential

operator with a symbol Ã (x, ξ) =
∑k

j=−∞Aj (x, ξ) if the generalized function ϕ̃A,x0 (x)

ϕA,x0 : f 7→ 〈ϕA,x0, f〉 = ω (x)A (f (x+ x0)) |x0

has Fourier transform FϕA,x0 (ξ) with the asymptotic expansion

FϕA,x0 (ξ) ≃
k∑

j=−∞

Aj (x0, ξ) , |ξ| → ∞.

Example 4.3. The operatorMα of multiplication by the function α (x) is pseudodif-
ferential with symbol A (x, ξ) = α (x). Indeed, in this case the generalized function
ϕx0 is just the δ-function at 0 (this is why we shift the argument of the function f in
the definition) with coefficient α (x0), and the Fourier transform of the δ-function is
1.

Example 4.4. The operator ∂
∂x1

is pseudodifferential with symbol iξ1. Moreover,
any vector field corresponds to a pseudodifferential operator and the symbol is the
corresponding linear function on T ∗Rn.

Proposition 4.5. A composition of two pseudodifferential operators is again a pseu-
dodifferential operator and its symbol has the following asymptotic expansion:

(4.1) Ã ◦B =
∑

N≥0

1

N !

∂|N |

∂ξN
Ã (x, ξ)

∂|N |

∂xN
B̃ (x, ξ) .

(The terms in this sum have the order that goes to infinity, therefore to compute Label equ6.3,
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a component of Ã ◦B of given homogeneity degree we need to compute a sum of a
finite number of summands.)
If the symbol of a pseudodifferential operator vanishes, then this operator is an

operator with a smooth kernel K (x, y) dy, x, y ∈ Rn:

f (x) 7→ (Af) (x) =

∫
K (x, y) f (y) dy.

Now we want to define a notion of a pseudodifferential operator on a manifold.
Consider a pseudodifferential operator P on Rn and a pair of cut-off functions ϕ and
ψ defined in a neighborhood of x ∈ Rn. Then ψPϕ is the operator sending a locally
defined function into a locally defined function with a compact support. It is obvious
that this operator is pseudodifferential, moreover, if for any functions ϕi, ϕj from a
decomposition of unity ∑

i

ϕi = 1

the operator ϕiPϕj is pseudodifferential then the initial operator P is also pseudo-
differential. This gives a localization of the notion of a pseudodifferential operator,
therefore we can define a pseudodifferential operator on a manifold. However, we
want also define a notion of pseudodifferential symbol on a manifold, and this is a
little bit more tricky.
We know that the operators with a smooth kernel on a manifold should form a

kernel of the mapping from operators to symbols. in any local chart M ⊃ U → Rn

we can associate to the pseudodifferential operator its symbol, that is an asymptotic
expansion in T ∗Rn. Consider two intersecting local charts. The symbol in one of
them determines the operator up to addition of an operator with a smooth kernel,
therefore it determines the symbol in the part of the other chart that corresponds to
intersection of charts.
What we get is the action of “local diffeomorphisms” of Rn on pseudodifferential

symbols. This action is difficult to describe explicitly, however, if we could do it, then
we could just define the notion of a pseudodifferential symbol on a manifold without
a reference to pseudodifferential operators. For convinience of the reader we want to
show that this action is not a new entity, but just a corollary of the formula for the
multiplication.
Indeed, consider for simplicity the differential operators on Rn. We know how

diffeomorphisms of Rn acts on this algebra, however, we can deduce this action as a
corollary of the commutation law for differential operators. Indeed, we can represent
a diffeomorphism as an intergral of a flow corresponding to some vector field. Now
the change in some small time of the operator under the action of this flow is described
by the commutator of the vector field and the operator. Now we can integrate these
changes and get the image under this diffeomorphism. We can repeat this program
literally in the case of pseudodifferential operators.
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Corollary 4.6. Consider a 1-parametric group of diffeomorphisms ht of Rn corres-
ponding to a vector field V . It can be raised to T ∗Rn, so it determines a group of
diffeomorphisms h′t of T

∗Rn and a vector field V ′ on T ∗Rn. Consider a pseudodiffer-
ential symbol P0 and the equation

−
d

dt
Pt = V ◦ Pt − Pt ◦ V.

Call a solution of this equation the translation of P by the flow ht.
The leading terms of [V, P ] and of the Lie derivative of the symbol P with respect to

the field V ′ coincide, hence the leading term of Pt moves with the flow h′t. Moreover,
in the equation above we can restict our attention to any fixed number of terms in
the symbol P , since the commutator with V preserves degree. Hence if P =

∑
Pj,

and

P
(t)
j = (h′t)

∗
Pj,t

then the equation on P
(t)
j is upper-triangular:

d

dt
P

(t)
j =

∑

k>j

αk

(
P

(t)
k

)
.

Here α are some differential operators. Therefore the solution always exists, its
leading term is a translation of the leading term of P0 by the action of h′t, and any
term of the translation depends only on the values of the terms with the same of
higher order in the preimage of a given point on T ∗Rn.

Consider a manifold M and an operator A : C∞ (M) → C∞ (M). We call this
operator a pseudodifferential operator on M if it is locally of such type, i.e., if for
a local chart h : M ⊃ U → Rn it acts on functions with compact support in U as
some psuedodifferential operator in Rn. This means that for a cut-off function σ with
support on U the corresponding operator

h−1∗ ◦Mσ ◦ A ◦Mσ ◦ h
∗ : C∞ (Rn)→ C∞ (Rn)

is pseudodifferential. It is easy to see that we can consider the symbol of this operator
in this coordinate frame and that the highest order term of this symbol is correctly
defined function on T ∗M . We can consider a complete symbol of A as an asymptotic
expansion of a function on T ∗M with a “twisted” transformation law under chart
changes on M : only the highest term is just transferred by the flow, to the lower
terms some additional terms (depending on the higher order terms) are added.
However, we can see that if in one chart the symbol of the operator A is 0 when

ξ goes to infinity inside a given open conic subset of T ∗M , then this condition is
satisfied in any other coordinate chart. The composition law (4.1) shows that a
product of such operator with any other operator is again of this type. This means
that the restriction of the symbol of the product to an open conic subset is uniquely
determined by values of the symbols of factors on the given subset.
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Therefore we can consider the set ΨDS (M) of pseudodifferential symbols on M ,
define the multiplication law of such symbols and transformation laws under diffeo-
morphisms. It easy to see that this ring has a natural structure of a sheaf of rings
over the “infinity in the cotangent bundle”.
So consider a projective (or better, spherical) completion PT ∗M and the infinity

PT ∗M in this completion. We can consider a symbol on M as a function on the
“punctured infinitesimal neighborhood of PT ∗M in PT ∗M”. We call this (formal)
manifold DT ∗M . It is fibered over PT ∗M with a “punctured disk of infinitesimally
small radius” as a fiber. The fiber has two connected components, corresponding to
the positive part of the disk and the negative one.
Here we want to show that the cyclic cohomogy of this ring is exhausted by the

“topological type” cocycles defined above. To do this we use the description of the
cyclic cohomology obtained in the papers [?BryGet, ?Wod] and compare this description
with the image of the mapping I.

4.2. Cohomology of symbols: the Poincaré lemma. In the section on Poisson
algebras we have shown that the strange pairing determines an inclusion of cohomo-
logy in the case of germs of functions on a symplectic manifold. Here we want to
show the same fact in the case of germs of pseudodifferential symbols.
The sheaf of pseudodifferential symbols lives on the formal manifold DT ∗M , which

is a product of a punctured formal infinitesimal disk and the spherization of the
cotangent bundle. Therefore the cohomology of the base is the product of cohomology
of the spherization and cohomology of the punctured disk. A punctured disk looks like
a circle homotopically, therefore the cohomology should be 1-dimensional in degrees
0 and 1. The corresponding cocycles in the de Rham complex are 1 and dz/z. The
corresponding representatives in the Alexander—Spanier complex are f (z) = 1 and
g (z1, z2) = log z2

z1
. Let us note that we can write the second cocycle as 1∧ log z if we

allow log z as an additional function on the disk. The fact that log z is outside the
ring of functions we consider ensures the non-triviality of this cocycle.
The trace on pseudodifferential symbols is correctly defined on symbols with com-

pact support along the spherization. Therefore we get a mapping from the Alexander—
Spanier complex of DT ∗M with complex support along the spherization to the Lie-
algebraic complex for the Lie algebra of pseudodifferential symbols. This is in a
complete analogy with what we did in the case of Poisson algebra on a symplectic
manifold.

Example 4.7. Consider a small (convex) open conic subset C of T ∗M and the
Lie algebra of symbols of pseudodifferential operators in this subset. Taking the
coordinates xi on M we get the corresponding coordinates xi, ξi on T

∗M . We can
suppose that C is a neighborhood of xi = 0, i > 0, ξj = 0, j > 1, ξ1 > 0.
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Consider a step function s (y) on R, s′ 6= 0 only in a small neighborhood of the
y = 0. We can consider now two Alexander—Spanier cochaines on C:

1 ∧ s
(
x1
)
∧ · · · ∧ s (xn) ∧ s (ξ2/ξ1) ∧ · · · ∧ s (ξn/ξ1)

and

1 ∧ log ξ1 ∧ s
(
x1
)
∧ · · · ∧ s (xn) ∧ s (ξ2/ξ1) ∧ · · · ∧ s (ξn/ξ1) .

(We can understand 1∧log z as an entity or as an exterior product with log z added to
the ring of functions.) The same reasons as in the case of a Poisson algebra show that
these cochains are cocycles and have a compact support along the spherization. The-
refore they define two Lie-algebraic cocycles for the Lie algebra of pseudodifferential
symbols in C via the strange pairing.
On the other hand, we can provide two Lie-algebraic chains for the same algebra:

1

ξ1
∧ x2 ∧ · · · ∧ xn ∧ ξ1 ∧ · · · ∧ ξn and 1 ∧ x1 ∧ · · · ∧ xn ∧ ξ1 ∧ · · · ∧ ξn.

Again, the simple calculation shows that these chains are cycles and that they have
a nondegenerate strange pairing with the above Alexander—Spanier cocycles. This
shows that all four (co)cycles are nontrivial and the pairing is nontrivial.

Corollary 4.8. Consider a small (convex) conic subset C of T ∗M . The strange
pairing defines a mapping from the Hochschild—Alexander—Spanier complex (with
compact support along S∗M) of the neighborhood of infinity in C to the Hochschild
complex of the ring of pseudodifferential symbols in C. This mapping is a quasi-
isomorphism. The same is true with the mapping from the cyclic Alexander—Spanier
complex into the cyclic complex.

Proof. Let us proof the claim about the cyclic complexes first. It is known that in
this case the cyclic cohomology forms a free module over K [S] with two generators in
degrees 2n and 2n+1 [?Wod, ?BryGet]. (Let us remind that the operation S has degree
2.) From the other side, the description of cyclic Alexander—Spanier cohomology
shows that it is a free module over K [S] in degrees 2n− 1 and 2n. Since two actions
of S on two complexes in question are compatible, it is sufficient to show that the
generators of cyclic Alexander—Spanier cohomology go to non-trivial cyclic cocycles.
Therefore it is sufficient to provide two cyclic cycles with nontrivial strange pairing
with these basic cyclic Alexander—Spanier cocycles.
However, the Alexander—Spanier complex is a subcomplex of the cyclic Alexander—

Spanier complex, and the Lie-algebraic homological complex is a subcomplex of the
cyclic homological complex, therefore the above example gives us the necessary in-
gredients. Now the proof for the case of the Hochschild complex is trivial, because in
both the topological and algebraic situation the Hochschild complex and the cyclic
complex are related by a long exact sequence. �
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Remark 4.9. In the above argument we used the calculations with Lie-algebraic com-
plexes. The irony of the situation is that we can nevertheless give no description of
the Lie cohomology of the algebra in question.

4.3. The global cohomology. In the previous section we gave a simple example of
cocycles in the situation of the Poincaré lemma. We exploited the fact that the coho-
mology in question is known to show that the strange pairing is a quasi-isomorphism
in this case. Here we exploit the fact our description of complexes and of the strange
pairing is functorial to show that it is a quasi-isomorphism in the general case too.
Consider a manifoldM and a sheaf O of K-algebras over X . Then we can consider

a (Hochschild) complex of presheaves X ⊃ U 7→ CH∗ (Γ (U,O)) and the associated
complex of sheaves CH∗ (O). In the same way we can consider the cyclic complex
CC (O) and the Lie-algebraic complex CLie (Lie (O)). We can consider hypercohomo-
logy of such a complex and compare it with the corresponding cohomology of the
algebra Γ (X,O) of global sections.
There is a natural mapping

CH (Γ (X,O))→ Γ (X, CH (O))

and analoguous mappings in the cases of cyclic and Lie-algebraic complexes. In the
following we use the following example: as X we consider the spherization S∗M of
the cotangent bundle T ∗M , and as O we consider the sheave of pseudodifferential
symbols over M . It is known [?BryGet] that in this case the above mapping is a
quasi-isomorphism.
On the other hand, we have a strange pairing between the (say) cyclic Alexander—

Spanier complex with compact support and the cyclic complex, and this pairing is
correctly defined for any open subset U ⊂ X . Therefore we get a mapping from
the cyclic complex of sheaves into the complex of sheaves that is dual to cyclic
Alexander—Spanier complex with compact support. In the considered above case
we know already that this mapping is a quasi-isomorphism of complexes of sheaves,
since the corresponding mapping on sections is a quasi-isomorphism in the case of a
small open subset.
Now the proof is almost at hand. Consider the spectral sequences associated with

these two complexes of sheaves. The E1 terms are (????)

E1
pq = Hp (X,HH−q (O)) and Hp (X,Hq (D)) ,

and the strange pairing induces an isomorphism of these two complexes. However, we
know that the first spectral sequence converges to the homology of the algebra of glo-
bal sections, therefore the strange pairing is indeed nondegenerate in the Hochschild
case. The same proof works in the cyclic case. We proved

Theorem 4.10. Consider a manifold M and the ring of global pseudodifferential
symbols ΨDS (M) on M . Then the strange pairings between C•

HASc
(DT ∗M) and
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CH• (ΨDS (M)) or between C•
cASc

(DT ∗M) and CC• (ΨDS (M)) induce nondegene-
rate pairings on cohomology. Moreover, the same is true if we change T ∗M to an
open conic subset in T ∗M , or if we consider pseudodifferential symbols with compact
support and Alexander—Spanier chains with arbitrary support.
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