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. . . the history of the theory of numbers [. . . ] is dominated by the law of reciprocity.
. . . . . . .Letter . . . . .from. . . . . . . .Andre . . . . .Weil. . .to. . . . . . . .Simone. . . . . .Weil (Bonne-Nouvelle military prison, Rouen, March 1940)

When I discovered that the sine can be expressed algebraically as a series, a barrier came tumbling
down, and mathematics became one. To this day I see the various branches of mathematics, together

with mathematical physics, as a unified whole.
. . . . . . . . . . . . . .I.M.Gelfand,. . . . . . . . . . .Interview. . . . .with. . . . . . . . . . .Quantum (Jan–Feb 1991)

These notes grew up from a brief discussion about the Langlands program we had at our Math Circles (in sections
for grades 3–4). The format of our Math Circles includes detailed reports about every meeting sent to the parents (who
are assumed to discuss them with the kids). At the meeting in question, we were intentionally vague about most of
technical details, painting only the rudimentary outline in very coarse strokes. However, it turned out that to make a
meaningful written exposition, we needed to fill these holes in the report. This resulted in a huge appendix1 to the
report to the parents; it became the bulk of these notes.

All that these notes require from the reader is a fluent working knowledge of “engineering-grade math”—and a lot
of stamina. We also had an ulterior motive: the way we wrote the “Langlands part” puts it out of reach for all but
a handful of most advanced high-schoolers. So we hope that these notes demonstrate how accessible this beautiful
landscape turns out to be, and that this may inspire one of the readers to find further simplification which would allow
detailed discussions of the Langlands Program in Math Circles for high-schoolers.

Moreover, we already know how to discuss the first segment of these notes (one dedicated to Quadratic Reciprocity)
at Math Circles. To reflect this, certain parts of this segment are written in a particular form to match what we did
with kids in our circles (Grades 1–4). We mark such parts with the sign M .

Essentially, our aim is to expose the simplest case (of those . . . .not . . . . . . . . .covered . . .by. . . . . . .Class . . . . . .Field. . . . . . . . .Theory) where both
representations connected by the Langlands program have “almost” completely elementary counterparts (“almost”
since one of them needs Fourier series. . . 2 ). In fact, we do not mention representations anywhere else in these notes.

In the appendix, we highlight features of Euler’s approach to quadratic reciprocity. This approach (“look for
symmetries”) is more suitable to generalizations than Legendre’s approach (the “reciprocity”). (However, it is the
Legendre’s approach which the “popular math” movement made better known.)

In the electronic copy there is a lot of . . . . . . . . .clickable. . . . . . . . . . . . . . . .crossreferences and . . . . .links . . .to . . . . .Web. . . . . . . . . . .resources.
The plots there allow a deep zooming in.
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This is a digest of what we did in our Math Circles. Unless you are interested in teaching, it is
OK to read this “diagonally”. (Only the results of the last two sections are going to be used in what
follows.)

Divisors of polynomial sequences: the simplest cases

The problem we investigate in these notes is describing the divisors of numbers in a given polynomial
sequence Pk. In more abstract language, this would be a particular case of solving (systems of)
polynomial equations in modular arithmetic. M However, our particular formulation allows us
to introduce this problem to the kids quickly—all that is needed is a rudimentary knowledge of
multiplication.3 An impatient reader may want to skip the examples and jump . . .to . . . .the . . . . . . . .section on p. . .14.

For every number n, we ask: does it divide one of the numbers Pk? The answer is a function of n
with values Yes or No. (For pedants: above, “one” means “one or more”.)

Start with the cases of very small degree of P . The first two are completely trivial:
• If P ≡ 0, then for every number n the answer is Yes.
• If P 6≡ 0 and degP = 0, then excluding finitely many numbers n, the answer is No.
• If degP = 1 and Pk = ak + b, then for every n mutually prime with a the answer is Yes.4

One can “fix” the last statement so that it is more similar to the preceding ones:

If degP = 1, then excluding finitely many numbers p,
every prime number p divides one of the values of Pk.

As this shows, even in the simplest cases, allowing a finite number of exceptions leads to significant
simplifications of the statements. Moreover, restricting attention to prime divisors may lead to further
similar simplifications. For example, one can cover all the cases as in:

If degP ≤ 1, then excluding finitely many numbers p,
the answer to “Is a prime number p a divisor of one of the values of Pk?”

does not depend on p.

These two ways to simplify are going to influence our formulations of similar statements for higher
degrees as well.

Wheels
0 1

2

34

5
6M One way to visualize the divisors of numbers in arithmetic progression is to

use “wheels”. To check whether, e.g., 7 is a divisor, organize residues mod 7 in a
circle, as on the right. An arithmetic progression may be imagined as a sequence
of jumps of equal length between the positions on the wheel.

The claims of the preceding section can now be restated as:

This sequence of jumps reaches all the position on the wheel if and only if the length
of the jumps is mutually prime with the size of the wheel.

3 M We introduce polynomial sequences by investigating the differences of differences of differences (etc.) and
eventually finding a sequence of 0s.

4 M For example, for n = 10, if a is odd, then the last digit of Pk would go through all the digits (unless the last
digit of a is 5). In particular, 0 appears as the last digit of Pk.

4
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Remark 1: We want to warn the reader that the wheels drawn below, when we discuss sequences
of degree 2, are going to be of very different nature. The rest of this section is, essentially, a sneak
preview of this digest. It is written very cursorily, and it may be wise to skip it at the first reading.

Above, we took a particular number n (the “potential divisor”); to answer the question: “can
it be a divisor of numbers of a sequence?”, we use the wheel of size n. The positions on this wheel
are residues modn, and we consider residues of the numbers in our sequence Pk. If one of these is
0 modn, then the answer for the number n is Yes.

This may be summarized as the first row in
Size Take positions of: Look at:

n-wheel n Numbers Pk Reaching the position 0 modn
Conductor wheel The conductor c Potential divisors n The color of the position

On the other hand, for P of degree 2, we are going to work with “the conductor wheels”. There is
going to be one such wheel per a sequence Pk,5 its size is called the conductor c of the sequence.

Assume that P is already fixed. After finding6 the corresponding conductor c, the positions on the
conductor wheel are residues mod c, and we consider such residues not of the numbers in the sequence,
but of “potential divisors” n. Moreover, the positions on the wheel are going to be colored, and the
color of the residue of a prime “potential divisors” would determine whether the answer is Yes or No.

Essentially, this means that the conductor c is the length of the period of the function in:

If degP ≤ 2, then the answer to
“Is a prime number p a divisor of one of the values of Pk?”

is a periodic function of p.

Several following sections provide examples clarifying this claim.
Remark 2: Consider this statement for degP ≤ 1. Note that there is no need to exclude a finite
number of exceptional values of p. Indeed, if p1, . . . , pr are the exceptions, then these prime numbers
do not share their positions mod p1 . . . pr with other prime numbers. Hence there is a periodic function
with period of length p1 . . . pn which takes one value (Yes or No) at these prime numbers, and the
other value at the remaining prime numbers.
Remark 3: However, if we allow a finite number of exceptions, then the laws of the preceding section
show that for degP ≤ 1 the periodic function may be taken constant (in other words: the conductor
may be taken to be c = 1).

Likewise, if we allow a finite number of exceptions for deg = 2, for many sequences the length of
the period in the law above may be decreased.7 However, for irreducible polynomials of deg = 2, the
“reduced” conductor is always greater than 1.

Example in deg = 2: pizza numbers

What we are going to discuss here is one of the most dramatic discoveries in arithmetic. The
typical expositions try to play this dramactic aspect down; while we cannot have the Chorus singing
“Something is going to happen! . . . .Just. . . . .you. . . . . . .wight,. . . . . .’enry. . . . . . . .’iggins,. . . . .just. . . . .you . . . . . . .wight!”, we want to start with
a sequence Pk having a clear combinatorial significance, and check what are the divisors of numbers
Pk.

5Unless we are going to distinguish the “conductor” and the “level”, . .as . . .we. . . .do on p. .9. . . . . . . . . .Compare. . . . . .with . . . . . . . . . .Footnote . .14.6While to shows the existence of the conductor is a very hard problem, there is a simple recipe calculating the
conductor for a quadratic P . On the other hand, while analogues of conductors exist in higher degrees (later, we discuss
degree 3), the calculation of these conductors may be very involved.

7In other words: there is a sequence with a shorter period which also matches the answers Yes and No for primes
p if we allow a finite number of exceptions. ( . . . . . . . . .Compare. . . . . .with . . . . . . . . . .Footnote . .14.)

https://www.google.com/search?q=%22just+you+wait%22+lyrics&ie=utf-8&oe=utf-8&hl=en&num=10&pws=0
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M Observe the largest number of pieces of pizza one can make with k straight cuts:

The answers join into the following table, and differences follow a simple pattern:
Cuts 0 1 2 3 4 5 6 7 8 9 10 11 12

Triangular number 0 1 3 6 10 15 21 28 36 45 55 66 78
Pieces 1

ô
+1

2
ô
+2

4
ô
+3

7
ô
+4

11
ô
+5

16
ô
+6

22
ô
+7

29
ô
+8

37
ô
+9

46
ô

+10

56
ô

+11

67
ô

+12

79

Observing this pattern leads to an immediate description of pizza numbers Pk: they are 1 more than
triangular numbers.
Indeed: M We need to show that the next cut can increase the count of pieces by at most the green number (as
above). The increase is the number of “old” pieces this cut goes through. Observe that the new cut is subdivided
into the cuts made through these pieces. Moreover, these parts of the cut are separated by the points where the
new cut meets the old cuts.

Hence to show that the pattern observed above continues forever, it is enough to show that the k th cut meets
the old cuts in at most k − 1 points.—However, there are only k − 1 old cuts!

(In fact, one also needs a bound on the other side: that k − 1 meeting points is possible. However, this is
completely obvious after one notices that the answer for pizza is exactly the same as the answer for the whole
plane. Indeed, one can shrink the cut lines until all the meeting points fit inside the pizza.)
The pattern above shows that Pk − Pk−1 = k − 1, which leads to the formula Pk = k(k + 1)/2 + 1.

Therefore P is a polynomial of degree 2.
Ask the same question as above: what are the possible divisors of (one of) the numbers Pk?

M With the following table
Side 1 2 3 4 5 6 7 8 9 10 11

4-number + 1 2 4 7 11 16 22 29 37 46 56 67

As products 1× 2 1× 4
2× 2 1× 7 1× 11

1× 16
2× 8
4× 4

1× 22
2× 11 1× 29 1× 37 1× 46

2× 23

1× 56
2× 28
4× 14
7× 8

1× 67

one can see that 1, 2, 4, 7, 8, 11, 14, 16, 22, 23, 28, and 29 can be divisors of “pizza numbers”.
Observation: M the same table shows that no other number up to 30 can divide a pizza numbers!

Indeed, conside pizza numbers modn. If n is odd, then division by 2 in the above formula for pizza
numbers makes sense modn, hence pizza numbers modn are periodic with period of length n; for
even n, a similar argument shows that there is a period of length 2n.

Moreover, if we continue pizza numbers to the left, they form a palindromic sequence: P−1−k = Pk.
Because of this, the sequence Pk modn has a palindromic period.8 Hence if numbers P0, P1, . . . , Pm
are not divisible by n, then numbers P−1, P−2, . . . , P−1−m are also not divisible by n. If 2 + 2m is at
least as long as the period of Pn modn, we can also conclude that no number Pk would be divisible
by n.

8In particular, this means that the group of symmetries of this sequence is larger than translations by nZ. It is the
infinite dihedral group.
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Conclusion: For n = 2m+ 1, it is enough to check that n does not divide P1, . . . , Pm, and then
n cannot divide any pizza numbers. Likewise for even n = m+ 1.

Looking in the list above, this means that if n ≤ 30 is not in the list, and divides one of pizza
numbers, then n > 23 for odd n, and n > 12 for even n. In particular, the list above is good up to
n = 17.

In the odd case only 25 and 27 remain—and they cannot be divisors, since we already know that
3 and 5 cannot be divisors! In the even case we know that the answer about n = 2l is No if it is
already known that l cannot divide pizza numbers; one can see that this implies indeed that the list
above is complete up to n = 30.

Conclusion: In the list

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 . . .

the green numbers are divisors of pizza numbers, and red numbers are not divisors of pizza numbers.

This distribution of colors looks completely random. However, already Euler and Legendre knew
how to find the pattern in this distribution of colors. (Moreover, Fermat might have known the answer
too: he found patterns for several other polynomials of degree 2. In fact, he could prove that these
patterns would continue forever for all similar sequences simpler9 than this one.)

M It turns out that a noticable proportion of people cannot see the pattern in the table below.
Fortunately, for the kids the proportion is quite similar to one for adults; so recognizing this pattern
is a reasonably challenging problem to give at a math circle.

1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42
43 44 45 46 47 48 49
50 51 52 53 54 55 56
57 58 59 60 61 62 63
64 65 66 67 68 69 70
71 72 73 74 75 76 77
78 79 80 81 82 83 84
85 86 87 88 89 90 91
92 93 94 95 96 97 98
99 100 101 102 103 104 105

106 107 108 109 110 111 112
113 114 115 116 117 118 119
120 121 122 123 124 125 126
127 128 129 130 131 132 133
134 135 136 137 138 139 140
141 142 143 144 145 146 147
148 149 150 151 152 153 154
155 156 157 158 159 160 161
162 163 164 165 166 167 168
169 170 171 172 173 174 175
176 177 178 179 180 181 182
183 184 185 186 187 188 189
190 191 192 193 194 195 196
197 198 199 200

Answer: to see the pattern, we need to highlight prime num-
bers, and rewrite the sequence of natural numbers using 7 columns
(on the right). It is clear that bold numbers in certain columns
are all green, and in the remaining columns they are all red.

Moreover, although the columns of 3, 5 and 6 are fully red, the
columns of 1, 2 and 4 contain a mix of red and green. This means
that the pattern, indeed, does not work for composite numbers.
(For example, 50 and 64 are composites which are in the same
column: the column of 1.)

Of course, every column on the right represents a residue
modulo 7. Hence the pattern above shows that to find whether a
prime number p can divide a pizza number, it is enough to know
p mod 7. Yet another way to state it is that

The pattern of colors is periodic
when restricted to prime numbers.

What does it mean for a function of a prime number to be periodic?!
The pattern above suggests the answer: a function f(p) is periodic if there exists a periodic function
F (n) on N such that f is a restriction of F . The function F is in fact uniquely defined on n mutually
prime with its period. (This is due to . . . . . . . . . .existence . .of. . . . . . .prime. . . . . . . . . .numbers . . .in . . . .any. . . . . . . . . . . .arithmetic . . . . . . . . . . . .progression. . . . . .with
. . . . . . . . .mutually. . . . . . .prime. . . . .step. . . . .and . . . . . . .values.)

One can illustrate this pictorially. Observe the colored sequence above; we copy it below, and, in
the next row, we write the sequence of colors with the period ••••••• (of length 7):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 . . .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 . . .

9Here the measure of simplicity is the number of necessary columns in the tables below.

https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
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As you can see, these sequences match at prime numbers (marked bold)!10

0 1
2

34

5
6Another way to restate this is to observe what happens if we ignore all the

non-bold (non-prime) numbers. Since every column in the table above matches a
particular position on the wheel of residues mod 7, we may color these position
matching the color of bold numbers in the columns (on the right).

One can call the wheel on the right “the conductor wheel”: to find out something
about “behavior of pizza numbers mod p” (“is there a pizza number which is 0 mod p”), it is enough
to know p mod 7 (provided p is prime). So we say that

The conductor for the problem of divisors of pizza numbers is 7.
Summing up . . .the. . . . . .same. . . . .way as on p. .5:

The answer to “Is a prime number p a divisor of one of pizza numbers?”
depends only on p mod 7.

Conductor of another sequence of degree 2: “squares + 3”
It turns out that the pattern of colors we observed for divisors of pizza numbers is applicable to

all polynomial sequences of degree 2.
Remark 4: In fact, some of polynomial sequences give easier answer than the others of the same
degree. For example, if the polynomial has a factor of degree 1, then we get the same answer as for
. . . . . . . . . .sequences. . .of . . . . . . .degree. .1 (see p. .4).

Recall that for pizza numbers, after ignoring non-prime numbers, the red/green color pattern
is fully controled by the residue of the (prime) number mod 7. Compare this with . . . .the . . . . . . . . .coloring . . .of
. . . . . . . . .positions. . . .on . . . . . . . .7-wheel above.

The simplest similar answer is for the sequence n2 +3. M We use a handout with a table (attached
at the end) representing the numbers in this sequence as products (similar to . . . .the . . . . . .table on p. .6) up to
n = 60. Observing the divisors of n2 + 3 in this table, one gets

1 2 3 4 6 7 12 13 14 19 21 26 28 31 37 38 39 42 43 49 52 57 . . . .
Moreover, using the same arguments as above, one can show that no other number up to 60 can
divide numbers n2 + 3.

Note that with pizza numbers, we used different notations: we marked the divisors (as the numbers
in list above are) in green, and the rest in red. This way, one gets the coloring:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 . . .
The former presentation is more compact, so reflects more data than the colored row.

Recall that the pattern we expect to see is:
• Select the prime numbers from the first list.
• Choose an approriate size of a wheel (the conductor), and write numbers 1,. . . ,60 in that
many columns.11

• Mark the prime numbers in these columns.
• Select suitable columns out of these tables.
• Then the prime numbers from the list above would coincide with prime numbers in the
selected columns.

10This is a very general observation about how patterns involving conductors behave: given a sequence, we provide
another sequence (defined by completely unrelated rules!) which matches the former sequence at prime numbers.
However, in general there may be a few “exceptional primes” where the match breaks. . . . . . . . .Observe . . .2× . . . . . . .below, on p. . .11.11Now each column matches one of the positions on the wheel.
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(Recall also that one may expect several mismatches—but there should be very few of these.)

Of course, the real challenge is to choose what stands for “appropriate” in this recipe!

The prime numbers in the list above are:

1 2 3 4 6 7 12 13 14 19 21 26 28 31 37 38 39 42 43 49 52 57 . . .

hence we arrive at the list of prime divisors

2 3 7 13 19 31 37 43 . . .

What remains is to compare this with arrangements of natural numbers into several columns.
M Below, instead of using green for divisors, and red for non-divisors, we use “circled” for (prime)
divisors, and “uncircled” for (prime) non-divisors:12

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16 17 18
19 20 21
22 23 24
25 26 27
28 29 30
31 32 33
34 35 36
37 38 39
40 41 42
43 44 45
46 47 48
49 50 51
52 53 54
55 56 57
58 59 60

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32
33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48
49 50 51 52
53 54 55 56
57 58 59 60

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50
51 52 53 54 55
56 57 58 59 60

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41 42
43 44 45 46 47 48
49 50 51 52 53 54
55 56 57 58 59 60

One can immediately see which of the tables matches: the table with 6 columns. The columns 1, 2, 3
of this table have exactly the same bold numbers as the primes in the list above!

0

12

0 1
2

34
5

In fact, there is another, smaller table which also
matches—but only if we allow “a few” exceptions for the match.
In the table with 3 columns the columns 1 and 3 match all the
prime numbers in the list above—with one exception 2×.

This leads to these conductor wheels:

12 M This change of notation allows us to make this into a problem for kids: we give the students the tables (with
nothing circled yet), and ask them to circle the numbers from the list above, then find which of the tables lead to
“observable patterns” (similar to those discussed above).
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Conclusion: based on the provided data, the conductor for divisors of number2 + 3 is 6, and if we
allow one exception, conductor 3 “would also work”.13 14 Moreover, the law of quadratic reciprocity
shows that this guess is correct: if we continue the tables with 3 or 6 columns, the circled numbers
would appear only in the left column, and all the bold numbers in the left column are going to be
circled.

Divisor of sequences of deg = 2: two more cases

Start with “squares + 1”. M Again, we hand out a table presenting such numbers as products
(up to 602 + 1). This gives the list of divisors

1 2 5 10 13 17 25 26 29 34 37 41 50 53 58 . . .
The prime numbers in the list above are:

1 2 5 10 13 17 25 26 29 34 37 41 50 53 58 . . .
hence we arrive at the list of prime divisors of “squares + 1’:

2 5 13 17 29 37 41 53 . . .

As in the preceding section, we circle the numbers from this list in the tables below. Clearly, 3 columns
do not work: the circled numbers are scattered among the first 2 columns—and these columns contain
a lot of primes not in our list:
1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16 17 18
19 20 21
22 23 24
25 26 27
28 29 30
31 32 33
34 35 36
37 38 39
40 41 42
43 44 45
46 47 48
49 50 51
52 53 54
55 56 57
58 59 60

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32
33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48
49 50 51 52
53 54 55 56
57 58 59 60

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50
51 52 53 54 55
56 57 58 59 60

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41 42
43 44 45 46 47 48
49 50 51 52 53 54
55 56 57 58 59 60

13We already saw (on p.. .4) that it may be very convenient to . . . . .allow. .a. . . . . .finite. . . . . . . . .number. . .of . . . . . . . . . . . .exceptions. Note that the
lists we considered are just what is near the start of infinite lists. Comparing with these infinite lists, any finite number
of exceptions is “relatively negligible”.

14In some contexts the smaller number is called “conductor”, and the larger one “level”. Also, see p. . . .118.
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Likewise, the tables with 5 or 6 columns do not work—by the same reasons. However, the table
with 4 columns looks absolutely different: if a column contains a circled number, then all the bold
numbers in this column are circled.15 (Observe that 2 is in the “exceptional” column—containing
only 1 prime number—so for this column the description in the preceding sentence is void.)

Answer: the reasonable guess for the conductor is 4. (And, in fact, this is the correct answer: if
we continue the table with 4 columns, the circled numbers would appear only in the left column, and
all the bold numbers in the left column are going to be circled.) 0

1

2

3

Hence the conductor wheel looks like this:

Compare this with the answer from the preceding section (for “squares+ 3”): the
list of circled primes we obtained there

2×, 3, 7, 13, 19, 31, 37, 43,

matched the left and the right columns of the table with 3 columns—but to match, we needed to
exclude 2×. With “squares + 1”, we do not need to exclude anything.

Our next example is to investigate is “squares − 2”. M As above, we start with a handout
reprenting these numbers as products (up to 602 − 2). This gives the list of divisors:

1 2 7 14 17 23 31 34 41 46 47 49 . . .

Marking the prime numbers gives

1 2 7 14 17 23 31 34 41 46 47 49 . . .

leading to

2 7 17 23 31 41 47 . . .

15However, these observations are just guesses: they do not show that the observed patterns would continue forever.
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With small number of columns, this leads to

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16 17 18
19 20 21
22 23 24
25 26 27
28 29 30
31 32 33
34 35 36
37 38 39
40 41 42
43 44 45
46 47 48
49 50 51
52 53 54
55 56 57
58 59 60

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32
33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48
49 50 51 52
53 54 55 56
57 58 59 60

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50
51 52 53 54 55
56 57 58 59 60

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41 42
43 44 45 46 47 48
49 50 51 52 53 54
55 56 57 58 59 60

None of these table looks like what we want! With more columns, one can see

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42
43 44 45 46 47 48 49
50 51 52 53 54 55 56
57 58 59 60 61 62 63

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

and
1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60



IMPROVED COLORING 13
0 1

2

345

6

7For 3, 4, 5, 6, 7, 9 and 10 columns, we see that a lot of columns contain both circled
and non-circled prime numbers. This is not what we want to see.16 On the other
hand, with 8 columns we see exactly the same pattern as expected (and we do not
even need “a small number of exceptions”): columns of 1, 2 and 7 contain only circled
numbers, and there is no circled number in other columns. So, basing on the table
above (with 8 columns), it looks like the wheel on the right controls whether a prime number can
divide a number “squares− 2”: if the position of the prime number on this wheel is circled green, it
can; for red positions, it cannot.

Conclusion: the good guess for the conductor is 8. (Again, this is a correct answer: if we continue
the table with 8 columns, the circled numbers would appear only in the columns of 1 and 7, and all
the bold numbers in these column are going to be circled.)

Improved coloring

Combining together all the colorings discovered so far results in

0 1
2

34

5
6

0

12

0 1
2

34
5

0

1

2

3

0 1

2

345

6

7

However, the naive way we obtained these pictures hides another extremely important property
of these colorings. Recall: a particular position on a wheel matches a particular column in the
corresponding table, and:

The color of a position on a wheel reflects the color18 of prime numbers in the matching
column—with a few exceptional prime numbers allowed in a column.

Note that if we follow this rule literally, it is not clear how to color those columns which have
only 1 prime number (and in examples above, we saw many such columns)! Moreover, in the case
“squares− 2” (the wheel on the right), there are columns mod 8 which contain no prime numbers at
all— so in fact, we have no information about “the colors of these columns” whatsoever!

16However, these tables show the (relative) dearth of our data. Observe how the table with 5 columns contains no
circled numbers in the column of 4. If this continues forever, this would be at least a partial match with the pattern we
expect (the full match would be all columns having “all bold numbers circled”, or “all bold numbers uncircled”; but
already one column with this property is something “very interesting”17).

On the other hand, if we continue with numbers > 60, then soon we would find out that 79 divides 92 − 2 = 79,
so 79 would appear in the column in question. Likewise for other columns in which no (or few) circled numbers
appears.—The only exception is the case of 8 columns—then the observed pattern would continue forever!

17In fact, for sequence of degree 3, such “partial matches” do actually appear (see Footnote . .31). However, for
degree 2, any non-trivial “match in one column” means that this is a “complete match”—here trivial matches are the
columns which have at most one prime number.

18Well, recall that in some of the tables, instead of coloring prime numbers, we circled “the green ones”, and left
“the red ones” uncircled. M This allowed a conversion of these tables into problems for kids to solve.
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To be honest, we need to treat such columns in a special way. If we use gray color for the
corresponding positions on the wheel, the pictures become very different:

0 1
2

34

5
6

0

12

0 1
2

34
5

0

1

2

3

0 1
2

345

6

7

These coloring are either preserved, or “made opposite” by a reflection in a vertical mirror! In
particular, the coloring of the right wheel leads to a palindromic period (•)•••••••, while the other
colorings lead to anti-palindromic periods (•)••••••, or (•)••, or (•)•••••, or (•)•••. Here we assume
that −• = •, and −• = •, and put 0 in parentheses to make this symmetry of the wheels more
visible in this “linear” rendition.

Euler’s formulation

To see what is common and what is different for our colorings of these wheels, note that the leftmost
wheel (for pizza numbers) corresponds (see Remark .5 below) to prime divisors of “odd squares + 7”
(which turn out to be the same as for “squares + 7”); the remaining wheels correspond to prime
divisors of “squares +N”, with N = 3, 3, 1,−2. Observe that the size of these wheels is |N |, or |2N |
or |4N |, while positive N lead to anti-palindromic colorings, and negative N to palindromic ones.

Since what is |N |-periodic or |2N |-periodic is also |4N |-periodic, these examples suggest that
(1) Whether a prime number p can divide numbers “squares +N” depends only on p mod |4N |.
(2) For N < 0 the pattern of answers mod |4N | is palindromic.
(3) For N > 0 the pattern of answers mod |4N | is anti-palindromic.

Here we use a special answer (“gray”) for residues not mutually prime with |4N |.19

The first two of these three conditions20 constitute what is now known as “ . . . . . . .Euler’s . . . . . . . . . . . . .formulation . . .of
. . . . . . . . . . .Quadratic . . . . . . . . . . . .Reciprocity”, invented by Swiss/Russian/Prussian mathematician Euler. At his time, the
proofs were known for −5 ≤ N ≤ 4 (some of these are trivial due to factorization of x2 +N). In fact,
most of these known cases were established by Fermat (with proofs!)—almost a century before Euler.
(Note that Fermat stated his discoveries in a very different way.)

After Fermat, it took more than 150 years to prove the general case (done by Gauss—when he
was 19!).
Remark 5: Similar questions about arbitrary polynomials of deg = 2 can be reduced to questions
about squares+N . For example, note that pizza numbers Pn := n(n+1)/2+1 satisfy 8Pn = (2n+1)2+7;
hence the question about divisors of Pn can be rewritten as the question about divisors of m2 + 7 for
odd m. It is quite elementary that the latter questions has the same answer as “divisors of m2 + 7”,
and the Euler formulation implies that the colors have a period of length 28.
Remark 6: However, we saw above that the observed period in the case above has length 7. How to
use the Euler’s prediction of a period of length 28 to show that the observed period of length 7 would
continue forever?

Note that in the Euler formulation there is no need to allow exceptions. So if we know the color of
a prime number p (call it a check-prime), one knows the color of its position p mod 28 on the 28-wheel.
This means that to find the period of length 28 (predicted by Euler’s formulation), it is enough to

19Note that a gray column may contain at most one prime number, so the first condition is trivial for such primes.
Moreover, such prime p 6= 2 is a divisor of 02 +N , so is of the “can divide” type. Likewise, p = 2 divides either 02 +N
or 12 +N .

20The third condition turns out to be an immediate corollary of the periodicity for N = 1 and of top-multiplicativity
( . . . . . . . . .discussed. . . . . . .below on p. . . .113). See Remark . .71.

https://en.wikipedia.org/wiki/Quadratic_reciprocity#Other_statements
https://en.wikipedia.org/wiki/Quadratic_reciprocity#Other_statements
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find check-primes for every (non-gray) position on 28-wheel. There are 14 even positions (all gray);
additionally, 7 and 21 are gray; so there are only 12 non-gray positions on 28-wheel. And after we
know the period of length 28, there is a chance to show that length 7 will also work!

It turns out that the largest check-primes are 71 for the position 15 mod 28 and 83 for the position
−1 mod 28; the check-primes for 10 remaining non-gray position are all below 60. Finding colors of
these primes (e.g., from . . .the. . . . . .table on p. .7), one can see that the period is •••••••••••••• repeated
twice. One can immediately see that the shown sequence is ••••••• repeated twice, with every second
color replaced by gray.—And this is exactly what is needed to see that the pattern of colors in . . . .the
. . . . .table on p. .7 would continue forever.

(We describe how to find the length of the shortest period in the general case in the section
on p. . . .118.)
Remark 7: A surprising aspect of the discussions of Euler’s formulation is that the people who
already know about Quadratic Reciprocity may be at a disadvantage. The reason is that most of them
know it in a very different formulation, one which was found about 50 years after Euler’s by a French
mathematician Legendre. On the surface, . . . . . . . . . . .Legendre’s. . . . . . . . . . . . . .formulation looks much more concrete and
much more powerful. Until about 100 years ago, it was considered as “the only worthy” formulation.
Most popular-math expositions of Quadratic Reciprocity discuss only the Legendre’s formulation.21

On the other hand, as the (amazing!) progress in number theory in 20th century has shown, it is
the Euler’s formulation which has far-fetched generalizations.22 Moreover, nowadays we know that
either one of these formulations is an almost immediate corollary of the other!23

Summing up: in what follows, Legendre’s formulation does not play any role. For people who are
already fluent with the Legendre’s formulation, to make it easier to switch the gear to the Euler’s
one we discuss interconnections about these formulations in . . .the. . . . . . . . . . .Appendix on p. . . .112. (For the readers
interested only in the Langlands program: since we use the topics discussed in this appendix in just a
few very optional remarks, it may be safely skipped—unless you want to find more about Quadratic
Reciprocity.)

21It looks like the majority of people who know quadratic reciprocity found it first in popular-math expositions.
Contemporary “serious math” testbooks, and short overviews of Quadratic Reciprocity by prominent mathematicians
would highlight the Euler’s formulation.

22The key difference is in Euler’s formulation being way “more natural”: it focuses on patterns in solutions to one
particular problem about divisors of numbers in a quadratic sequence. On the other hand, Legendre’s one highlights
coincidences between answers to two different problems of this kind. (This is why “reciprocity” is a part of its name!)
Like the Euler’s one, the most important generalizations target questions about divisors of values of a particular
polynomial,—as opposed to questions about interrelations between divisors for different polynomials.

23Nowadays, the most useful application of Legendre’s formulation is to prove the . . .the. . . . . . . . . .Product . . . . . . . . .Formula. . . .for . . . . . . . .Hilbert
. . . . . . .symbol—compare with . . .the. . . . . . . .section on p. . . .122 and Footnote . . . .231 on . .84. However, this deduction is not immediate, so
using Euler’s formulation instead would not make the proof much harder.)

https://en.wikipedia.org/wiki/Quadratic_reciprocity
https://en.wikipedia.org/wiki/Hilbert_symbol#Hilbert%27s_reciprocity_law
https://en.wikipedia.org/wiki/Hilbert_symbol#Hilbert%27s_reciprocity_law
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This part completes the digest of what we did in our Math Circles (this time, just in Grades

3–4). It is still OK to read this “diagonally”. Here we only proclaim the existence of “the Langlands
pattern”— in the rest of the notes we are going to describe this pattern and the related issues.

From degree 2 to degree 3

In the investigation of divisors of polynomials of degree 2, one could restrict attention to polynomials
x2 +N (see Remark .5). As we saw, there are two different important particular cases: for N < 0 the
pattern is governed by a palindromic period, for N > 0 by anti-palindromic period. In a certain case,
“when N crosses the boundary N = 0”, there is a “phase transition”: the symmetry of the answer
makes a sudden change.

Likewise, the cases of larger degree break into two similar “regions”, and “crossing a boundary”
between these regions leads to a dramatic change in the answer. So if we want to restrict attention to a
particular collection of, say, polynomials of degree 3, it is very important to ensure that this collection
would have representatives from both regions. It turns out that this means that the collection should
have both indecomposable polynomials with 3 real roots, and indecomposable polynomials with 1
real root.

This immediately rejects the “obvious first choice” of the family “cubes + N”.24 M For our
students, triangular numbers are as natural as squares, and, with 3D shapes, tetrahedral numbers
are as natural as cubes. For them, using the sequence “tetrahedral numbers +N” with N = 1 is a
natural counterpart of “triangular numbers + 1”. Unfortunately, this polynomial is decomposable (it
has a root when side = −3); hence every prime number is going to be a divisor. So one should25 use a
different value of N , for example, N = 2.26

However, it turns out that the polynomials “tetrahedral numbers +N” taken for integer values
of N have either 1 real root (for N 6= 0), or are decomposable. Fortunately, considering a rational
N makes perfect sense (prime factors of its denominator may be considered as “exceptions” allowed
above27), so one can investigate “M · tetrahedral numbers + N”. Below, we consider cases M = 1,
N = 2, as well as the M -family with N = 1.

WhenM ∈ Z, theM -family has several elements with 1 real root, the rest has 3 real roots. Among
the latter, several have an abelian Galois group.28 This gives a rich enough zoo of polynomials of
degree 3, which is quite sufficient for our purposes.29

24This was one of the reasons for us to start with pizza numbers: since “cubes + N” is not a good choice, we
wanted to avoid “squares +N” for as long as possible.

25While they are not directly related to the Langlands program, it turns out that using our approach with
decomposable polynomial leads to very interesting effects. Compare with the section on p. . . .60.

26 M The kids also suggest another sequence: the “cake numbers”. The difference with pizza numbers is that the cake
is 3D, and we allow cuts to be non-vertical. This leads to “a tetrahedral number− a triangular number + it’s side + 1”.
Unfortunately, this is also decomposable (it vanishes when side = −1).

27For example, in Footnote . .13 on p.. . .10.28Compare with Footnote . . . .100 on p. . . .45.
29See also the section on p. . . . .122.

16
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Example: Divisors of “tetrahedral numbers + 2”
Proceeding as for deg = 2, we fill the table of divisors:

Side 1 2 3 4 5 6 7 8 9 10 11
Tetrahedral number + 2 3 6 12 22 37 58 86 122 167 222 288

As products 1× 3
1× 6
2× 3

1× 12
2× 6
3× 4

1× 22
2× 11

1× 37
1× 58
2× 29

1× 86
2× 43

1× 122
2× 61

1× 167

1× 222
2× 111
3× 74
6× 37

1× 288
2× 144
3× 96
4× 72
6× 48
8× 36
9× 32
12× 24
16× 18

This leads to possible divisors 1, 2, 3, 4, 6, 8, 9, 11, 12, . . . . Note that the numbers 5, 7, 10 do not
appear in the row “As products”. In fact, if we continue the table to the right, they would never
appear (so we may color them red).30 Extending the table far enough to the right, one may obtain
the following color pattern:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 . . .
It turns out that even after grouping into several columns, and looking only at prime numbers, the
patterns of colors we observed for sequences of degree 2 won’t work for this sequence.

For example: since 11 and 23 are of different colors, grouping into 12 columns would not help
(unless 11 or 23 are exceptional—but similar mismatches also happen further to the right). From
this it follows that grouping into 3, 4, or 6 columns cannot help either.

Likewise, the mismatch of 19 and 29 excludes 10 columns (hence 5), while mismatch of 17 and
31 excludes 14 (hence 7). The data above excludes also 16 (hence 8), 18 (hence 9), and 22 (hence 11).
Extending the table, one would exclude more and more arrangements into columns.31

Since for about 20 years now we know the actual pattern of the colors, we may definitely exclude
the patterns similar to those found above for sequences of degree 2. However, this requires using one
of the most important (and impressive) tour-de-forces of math of 20th century!32

30For pizza numbers, we found (see Observation on p. .6) how far in the table it is enough to check to be sure that
the given number would never appear as a divisor listed in the table. It is easy to do the same for the sequence above.

31While we won’t see the pattern “in some columns all primes are red, and in the remaining columns they are all
green”, in fact, with a suitable number of columns, a “partial pattern” would appear. The suitable number of columns
is 971 (this is not a misprint! Compare with Remark . . .42).

With 971 columns, about half of them would contain only green primes. However, the remaining columns would
not be “all red”, even for primes—every such column would contain a mix of red and green primes (the mix happens
to be in “proportion” 2-to-1).

Existence of such “all green” and “red/green mix” columns was first discovered even before Gauss; it was proven to
hold in general about 100 years ago. However, until recently, the question

Describe the pattern of colors inside a mixed red/green column

could be answered only in the particular cases covered by the Class Field Theory (compare with . . . .the . . . . . . . .section on p. . . .66).
We discuss this in more details in Remark . .43 on p. . .52.

(Actually, the particular polynomial considered above has negative . . . . . . . . . . . . .discriminant (−3,884 = −22 × 971), so it is
covered by the Class Field Theory. See Remark . .12 on p. . .23.)32In fact, . .in. . . .his . . . . . . .review. . . . . . . .written. . .in. . . . . .1972 (before the importance of the Langlands program was fully realized), Wyman
claims that it is possible to exclude these patterns using only the tools of the Class Field Theory. However, I do not
recollect seeing this argument actually written down.

https://www.jstor.org/stable/pdf/2317083.pdf


18 Degree 3: a coarse-grained approach (Grades 3–4, Ilya 2018-05)

Recent developments: the Langlands program

The sequence of colors above is a part of a big zoo of sequences. One can start with different
polynomials of degree 3; one may also consider polynomials of higher degrees.

As usual, having a wider collection of examples may uncover a more beautiful landscape—and
sometimes this makes the previously known examples easier to understand. In our settings, this
happens with introduction of polynomials in several variables.

However, in this case instead of coloring a number according to whether it can divide a value of
the polynomial, one should mark how often a given number is a divisor of the values. Compare with
. . . . .what. . . .we . . .do on p. . .45.

In fact, another extension of the pool of examples happens when one considers common zeros of
several polynomials.

These sequences of colors remained mysterious for a long time. M A few weeks before considering
this topic at Math Circles, we discussed discrete logarithms. One of the main messages was that
mathematicians expect that this problem (“how discrete logarithms depend on the size of the wheel”)
does not follow any pattern. Until recently, there was no clue whether the color sequences above
would all have a pattern (but possibly, a very complicated pattern), or sometimes the situation could
be as with discrete logarithms.

Things changed about 50 years ago, when a Canadian mathematician Langlands started to ask
his colleagues some “crazy” questions; a few years later, these questions crystallized into a chain of
conjectures connecting

• questions about divisibility in polynomial sequences and tables (really hard; considered very
important, but impenetrable before), and
• questions of mathematical analysis (hard, but much easier to handle).

These connections would show that all these problems about divisibility have a pattern in the
answers—however, this pattern is extremely complicated even to describe (not mentioning proving
this!). At the coarsest possible level, one can say that the symmetries we saw in red/green coloring of
prime numbers in the case of a polynomial of degree 2— periodicity and mirror (anti)symmetry33—are
replaced by “hidden symmetries”.

M To be able to expose the pattern of hidden symmetries, one needs to understand many different
concepts:

• Wheels;
• symmetric tessellations (or “tilings”);
• curved geometries,
• working with infinities,
• fractals,
• harmonies, harmonics and waves (“. . . . . . . . . .Harmonic. . . . . . . . . .Analysis”),
• heat propagation.

Similar to the case of degree 2, there is a particular size of the wheel (the conductor) which is
related to a particular sequence. However, it controls the sequence not directly, but by selecting a
particular “size”34 of a tessellation of a curved geometry (as mentioned above) in which we consider
the heat propagation.35

33In other words: (anti)palindromicity of the period.
34Note that in the “usual” geometry, given a tessellation, we can rescale it, and it remains a tessellation. However,

curved geometries allow no rescaling—so every “type” of tessellation may exist in one size only.
35An alternative approach is to say that the conductor controls “the laws of fractality” of the graph of Fourier

transform of the sequence in question. (However, if one calculates this Fourier transform “naively”, one would get
infinite values! We will start addressing this in Remark . .14 on p. . .24.)

https://en.wikipedia.org/wiki/Harmonic_analysis
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These conjectures (called the Langlands program) explain (among other things) how to find the
conductor—however, the recipe is not straightforward. Before going half-way in writing these notes,
I had no clue what the conductor for the sequence “tetrahedral numbers + 2” above (and similar
sequences) may be!36

One must keep in mind that initially Langlands has been working on a very specific circle of
problems. Until his dreams crystallized, nobody expected these problems to be related to the questions
of red/green coloring we consider here.

Following . . .the. . . . . . . . .parable . . . . . .about. . . . . . .blind . . . . .men . . . . .and . . .an. . . . . . . . . .elephant, Langlands have been investigating an
ear of an elephant, while our questions concern the trunk of the elephant. What happened next is
that, contrary to the parable, he could figure out the general appearance of the whole elephant using
just the data from his research of the ear. From this, he unraveled how to access all the particular
features of the elephant in a uniform way.

Meanwhile, during these 50 years, mathematicians managed to investigate “the trunk” by following
the recipes of Langlands. Other mathematicians could prove that what Langlands visualized actually
holds in “the particular case of the trunk”. So today, we can discuss the trunk of an elephant in
detail—which has not been dreamed of before Langlands.

After the Langlands program was thought up, it became one of the most important focus points
of contemporary mathematics. A lot of mathematicians work on realizing this program. Moreover,
about 20 years ago, one of the major way points of the program was achieved: the Langlands program
was proved in the cases connected to 2D tessellations (as opposed to higher dimensions).

Such 2D tessellations are related to polynomial sequences up to degree 4.37 In particular, this
leads to a proof of Langlands’ pattern for our sequence of colors for “tetrahedral numbers + 2”.38

M Moreover, just a few weeks before we discussed that at our Math Circles, the achievements of
Langlands were formally recognized as well: he won what is considered the most prestigious award
for mathematicians: . . .the. . . . . .Abel. . . . . .prize. This prize is in fact much more prestigious than the Nobel
Prize. For example, every year 2 or 3 physicists are awarded the Nobel Prize—but typically, only
one mathematician a year wins the Abel prize.

36After finding the conductor, the Langlands program leads to a recipe describing certain integrals (see Remark .9
on p. . .22). The values of these integrals are whole numbers matching the colors above: for example, the number may be
0, 1 or 3 (with 0 for red, 1 and 3 for green; . . . . . . . . .compare . . . . .with p. . . .45).

One can calculate these integrals approximately, then round to the closest integer. This gives a “practical” (meaning:
computationally feasible) recipe to find colors of arbitrarily large prime numbers.

37They also cover polynomials of degree 5 if the . . . . . . . . . . . . .discriminant is a perfect square.
38When discussing this in Math Circles, we cheated, and pretended that to treat this sequence one needs the

Langlands program. In fact, this particular sequence of degree 3 is covered by the Class Field Theory.
One must massage this sequence a bit so that one needs Langland’s approach to see the pattern. For example, one

may consider “20× tetrahedral numbers + 1.” See Remark . .12 on p. . .23.

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant
https://en.wikipedia.org/wiki/Abel_Prize


The simplest Langlands’ patterns in more detail

Bread crumbs: A very coarse outline of the Langlands’ pattern

We did not discuss what follows at Math Circles.

On p. . .18 . . .we . . . . .gave. . . . .very. . . . . . .vague. . . . . .hints about what one should be fluent with to be able to understand
the Langlands’ patterns for our sequence of . . . . . .colors. . . . . . . . . . .encoding . . . . . . . .divisors. . .of. . . . . . . . . . . . . . . . . . . . . . . . . . . . .“tetrahedral numbers + 2”
(on p. . .17). These patterns also fit other similar sequences of colors constructed, for example, from
divisors of “20× tetrahedral numbers + 1” (although the finer details for this example would be very
different; we postpone them until Remark . . .12 on p. . . .23). Here we want to leave a tiny bit more bread
crumbs on this path.

This section is just a very coarse outline. Later we are going to clarify the details.
While we tried to keep this outline as accessible as possible, there is a limit to this. Your mileage

may vary. All discussions below are heuristical only; it would take 100s of pages to give rigorous
arguments.

Exposing the pattern goes in 3 steps.
• First one needs to apply several “transliterations” to the colors. They are very straightforward,
though the technical details are quite involved. To cut the long story short: in the outcome,
we replace colors with “suitable” whole numbers.

It is simplest to describe what happens to “bold” colors (colors of prime numbers): for
sequences of degree 3, we replace red by −1; green becomes either 0 (“non-interesting green”)
or 2 (“interesting green”). (Which of the greens are “interesting” will be discussed later.39)
Moreover, a few prime numbers40 may need a special treatment.

In fact, this is the step where we forget about colors of non-prime numbers: for example,
the whole number assigned to pq does not depend on the color of pq, but only on the whole
numbers assigned to p and to q.41 We discuss this in more detail in the section “Transliteration
rules” (starting on p.. . .45).
• Denote the resulting sequence of numbers by Nn. The second step is to take the . . . . . . . .Fourier

. . . . . . . . . .transform of this sequence. This is, automatically, a periodic function F (t) = ∑
nNn cosnt.42

39So, in fact, it is not “pure transliteration”: we need a bit more information than our colors! However, the extra
information is contained in what we already know: the color sequence corresponding to a certain polynomial of degree
2. For our example, it is “square numbers + 971” (this is not a misprint!). See Remark . .34 on p. . .48 for details.

40Divisors of the . . . . . . . . . . . . .discriminant, of the denominators of coefficients, and of the numerator of the leading coefficient.
41For sequences of degree 2, already this first step exposes the pattern (so we do not perform the other two steps):

the sequence Nn is periodic. In fact, we already saw this result (in disguise): it is . . . .the . . . . . . .second. . . . .row . . .of . . . . . .colors on p. .7.
To unmask the disguise, note that in this case, the numbers Nn given by transliteration rules are either −1 or 1.

For example, red or green primes p are replaced by Np = −1 or Np = 1 correspondingly (but it is more complicated for
Nn for composite n). Since Nn takes only two possible values, one can change Nn “back to” red/green colors. This
makes it into a “double transliteration”: “colors”→ Numbers Nn → “colors”. It turns out that it . . . . . . . .replaces. . . . .our . . . .row. . .of
. . . . . .colors. . .by. .a. . . . . . . . . .periodic . . . .row. . .of . . . . . . .colors (see p. .7). On prime n, the colors are automatically unchanged.

(Here we ignore “the exceptional primes” of the preceding footnote. They may lead to a mismatch between these
two rows of colors in a few bold places.)

The obtained sequence Nn is called the . . . . . . . . . . .“Legendre . . . . . . . . .symbol”. ( . . . . . . . . .Compare. . . . . .with p. . . . .113.)
42A lot of things become simpler if we consider FC(t) :=

∑
nNneint instead, so F = ReFC. However, since until

. . .the. . . . . . . . . . . .discussion on p. . .68 we are concerned mostly with plotting, it is much easier to ignore the imaginary part of FC(t).
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• At last, we can state how the Langlands program describes the pattern of numbers Nn. This
goes through fractal properties of the function F (t):43

The graph of F (t) is an exact fractal.

Note that the word “fractal” is used in math with two different meanings:
– A shape where every small part may be obtained from the whole by certain transforma-
tions, called “the fractality laws” (we call such a shape an “exact fractal”).

– A shape of fractional . . . . . . . . . .Hausdorff . . . . . . . . . . .dimension.
It is the first meaning which we need above.45 Here is an example of such a fractal behavior
of a graph from . . .an . . . . . . . . . . . . . . . . . . . .about-15-years-old . . . . . . .paper:

The function (1.1) is merely the tip of an iceberg. In this Letter, we continue the

study, begun in [12], of the properties of automorphic distributions for subgroups of

finite index C � SLð2;ZÞ. These automorphic distributions have continuous an-

tiderivatives which are nondifferentiable everywhere, or everywhere with the exception

certain rational points, as in the case of the function (1.1). We establish more: the

continuous antiderivatives satisfy global Hölder conditions jfðyÞ � fðxÞj ¼
Oðjy� xjaÞ, but definitely violate the pointwise Hölder conditions jfðxÞ � fðx0Þj ¼
Oðjx� x0jcÞ, b < cO1, for values b ¼ bðx0ÞPa which depend on the arithmetic

properties of x0. This behavior reflects a high degree of oscillation around all rational

points. Figure 1, for example, plots the real part of the antiderivative /ðxÞ of the

automorphic distribution corresponding to the Maass form of smallest nonzero

eigenvalue for C ¼ SLð2;ZÞ; Re /ðxÞ is continuous, but everywhere nondifferen-

tiable. Near the origin /ðxÞ � jxj1þk/ð1=xÞ, with k � 27:56 i, and this behavior is

replicated at all rational points. The absolute value of /ðxÞ also oscillates rapidly, as

is illustrated by Figure 2. Near the origin j/ðxÞj evidently displays fractal behavior –

see Figure 3.

Modular forms of weight one are another source of continuous, nowhere differ-

entiable functions. The holomorphic function
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Figure 1. The real part of the antiderivative /ðxÞ of the automorphic distribution cor-

responding to the Mass form for SLð2;ZÞ with k � 27:56 i:

0.7

0.6

0.5

0.4

0.3

0.2

0.2 0.4 0.6 0.8 1
x

0.1

|f (x)|

Figure 2. The absolute value of same function /ðxÞ as in Figure 1.

STEPHEN D. MILLER AND WILFRIED SCHMID266

Note the pattern in the graph near x = 0. This pattern is in fact repeated near every point of
this graph. The copy may be centered at any rational point x = R/S—though the larger S is,
the smaller is the copy (zooming into this graph can uncover many such copies corresponding
to small S). Moreover, every “oscillation” of this pattern is, in fact, a particular “fractal
transform” of the period of the graph (on this period x changes between 0 and 1).

Remark 8: Let us clarify in which sense the “fractal properties” above may be thought of as “a
pattern in the sequence of numbers Nn” (or, transliterating back, as a “pattern of the sequence of
colors”). If we know just “a very coarse overview” of the graph of F (t), the fractality laws translate
this information to “the coarse overview” of every small piece of this graph; combining these together,
one gets “a much finer overview” of the graph. Repeating the process, one gets more and more details
about F (t). In a certain sense, the fractality laws “fill in” the information about the fine details of
the graph which was missing in the overview.

So it should not be surprising that given the fractality laws and sufficiently many details of “the
coarse overview”, one can reconstruct the whole graph of F (t). Since the “coarse overview” of a
periodic function is given by its first few Fourier coefficients, it is natural to expect that

The fractality laws and the first few numbers Nn determine all the numbers Nn.

43This may look very indirect as far as we are interested in numbers Nn—or red/green colors. However, first, this
is expected to be “as good as it gets”: probably, there is no pattern which is “more direct” than this. Second, currently
mathematicians gradually learn how to extract “more useful” information about Nn out of such fractal properties.44

44This started with . . . .the . . . . . .circle . . . . . . . . .method . .of. . . . . . . . . . . . . . . . . . . .Hardy–Littlewood.
45The corresponding law is the red-framed formula in Footnote . . .65 on p. . . .29.

https://en.wikipedia.org/wiki/Hausdorff_dimension
https://arxiv.org/abs/math/0402382
https://en.wikipedia.org/wiki/Hardy%E2%80%93Littlewood_circle_method
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And this is what actually happens!46 Moreover, this is exactly what one expects from “a sequence
having a pattern”: knowing “the type of the pattern”47 and a few first terms, “the pattern” would
allow us to reconstruct the rest of the sequence.

For example, for the graph above, it looks like all the “bumps” on the graph are fractality-law
images of the “principal oscillation” on the graph. Then knowing the period (1) and amplitude (≈ 0.7)
of the “principal oscillation” would allow one to find heights (and positions) of all the “bumps” on
the graph, in effect reconstructing the whole graph.

We discuss how the regions where we “fill in the details” are positioned with respect to each other
in the section starting on p. . .71.
Remark 9: Note that to find whether a prime number p may be a divisor of numbers in our sequence
of degree 3, it is enough to calculate the whole number Np. On the other hand, if we know F (t) then
Np is just a certain integral (the “inverse Fourier transform”) involving F (t) and p.

This shows that the questions of divisibility are inherently related to the questions of calculus.48

Remark 10: In discussions on the future (and history) of science, the prevailing mood is to claim
that science becomes more and more fractured, so that even specialists in relatively similar areas
cannot understand each other. Nevertheless, many leading mathematicians champion the exactly
opposite point of view.

Yes, if one observes what happens on the bleeding edge of science now, one would see that people
may focus on quite narrow questions. However, there is nothing new in this— this is the natural way
the human mind works. Moreover, such narrow interests might be just “tactical” in nature, and such
a close focus can be temporary only. (This is the synchronous view on science.)

On the other hand, the diachronous view would show a completely different perspective. Instead
of looking at what people thought about what was “the bleeding-edge research” at that particular
moment of time, this point of view focuses on a particular theme, and observes how it was perceived
at different moments of time, from the time it was “bleeding-edge” till today. It turns out that as
time goes we understand more and more the interrelations of these themes. What may have looked
“very specific and narrow” when it was discovered, later would turn out to be included in wider and
wider vistas. New points of view appear all the time; they interconnect things which were previously
thought to be completely dissimilar.

This confluence of mathematical theories leads to the idea of “ . . . . . .Unity . .of. . . . . . . . . . . . . .mathematics”.49 Remark . .9
provides one of the most striking examples of such a unity.
Remark 11: While “Unity of mathematics” is a very captivating phenomenon, it may also lead to
hard-to-surmount difficulties. This is what happens with the Langlands Program!

It brings together a dazzling amount of very different branches of contemporary mathematics.
Even if one could make an intelligible sketch of every one of these themes, the sheer count of the
involved topics would overwhelm all but the most persisting readers.

To cope with this, we go over the same ideas in several passes, trying to increase the amount
of details gradually. Additionally, inside every pass we attempt to use strokes as bold as possible,
cloaking all the “fine print” into footnotes, and interconnecting50 the passes by cross-references.

46After explanations above, it should not be too surprising. What is surprising is that all this “filling in of details”
does not lead to contradictions. In other words, the existence of any non-0 function satisfying the fractality laws is an
amazing miracle!

47For example, in the case of the pattern of periodicity, the “type” is the length of the period. If we know that
many first numbers Nn in a periodic sequence, the rest may be reconstructed by periodicity.

48Moreover, the famous . . . . .circle. . . . . . . . .method . . .of . . . . . . . . . . . . . . . . . . .Hardy–Littlewood is based on a very similar observation. Compare with
Footnote . .43 on p. . .21.49. . . although for most mathematicians, maturing to this idea takes much longer than it took I.M.Gelfand in . . .an
. . . . . . . . .epigraph. . .to . . . . . .these. . . . . .notes!

50. . . as sparsely as possible, to avoid making these notes into Borges’ Ts’ui Pên’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Garden of Forking Paths.

https://www.google.com/search?q=%22unity+of+mathematics%22&ie=utf-8&oe=utf-8&hl=en&num=100&pws=0
https://en.wikipedia.org/wiki/Hardy%E2%80%93Littlewood_circle_method
https://en.wikipedia.org/wiki/The_Garden_of_Forking_Paths
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The appetizers for what follows

We continue laying the bread crumbs on the way to the Langlands Program. This is still just a
very coarse outline!
Remark 12: As an appetizer for the following discussion, here are the “real-life examples” of two
types of behaviour of plots of functions related to our sequences of colors for polynomials of degree 3:

1.6438

-1.6393
-1 9

1.7372

-1.7457
-1 9

0.4968

-0.54
0 0.45

0.33583

-0.33583
-0.002 0.1

0.13843

-0.03054
0.24818 0.29818

0.051343

-0.10728
0.079 0.091

For each of two columns above, we picked a polynomial of the corresponding type for which the
patterns of fractality are easiest to recognize.51 Each plot in the top row shows two graphs: about 1½
periods for the real and the imaginary part of the function F (−1)

C (t) (see Footnote . . .42 on p. . . .20). The
51Mathematically, this means that the conductor is as small as possible.
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second row zooms into the red graph of the graph above it near the origin; the third row zooms yet
more into the plot above it near its most interesting point.

One can see that the “shape of oscillation” in the second row matches the period in the first
row—but on the left it matches the violet shape, while on the right it matches the red shape. However,
for both columns, the “shape of oscillation” in the bottom row matches the red shape of the top row.

This difference between these two columns suggests that one may need to consider two different
flavors of fractality—and this is what actually happens. By historical reasons, in math these flavors
are called by unrelated names: “ . . . . . . . . .modular . . . . .form” fractality, and “ . . . . . .Maass. . . . . .form” fractality. (Due to
harder-to-explain mathematical arguments of the Langlands Program, nowadays they are also called
“the odd case”—on the left,—and “the even case”.)52

The “odd” case was understood a few decades before Langlands—but before the Langlands
Program it was just a mathematical curiosity. The investigations of the “even” case succeeded only
very recently.53 We examine another approach to these two cases in Remark . .18. See also Remark . .30,
and . . .the. . . . . . . .section on p.. . .66.

Remark 13: In the outline above, we needed to cheat to circumvent certain delicate points. Note
that . . .the. . . . . . .graph. . . . . . .above, on p. . .21, plots not the function F (t), but its antiderivative F (−1)(t). (Same for
plots of Remark . .12.)

The reason for this is that, in a naive sense, the function F (t) has no value anywhere: the Fourier
series defining F (t) diverges for every value of t. In particular, the graph of F (t) itself does not make
a lot of sense. However, the antiderivative of F (t) has “a much milder” Fourier series; and it has an
honestly defined graph. (Note how this is similar to the relation of “white noise” and “Brownian
motion”—see Remark . .26 on p.. . .35.)

Essentially, the phrase “the fractal properties of the graph of F (t)” should be understood as a
metaphor. To proceed any further, one needs to assign a precise meaning to this metaphor. There
are two approaches to “infinities” which are used to “define F without defining its values F (t) at
particular values of t”.

t

t

t

t

t

s

Remark 14: One approach provides ways
to work with these infinities directly. This
has immediate advantages of “visually ob-
vious” fractality (see the plots above—and
below). It also helps to internalize why the
fractality laws allow a few initial values of
Nn to define the rest of values of Nn, as
we discussed in Remark .8. (See the section
on p. . .35 for details.)

The plots of functions shown above (and
those below!) are results of application of
this approach.

Remark 15: The other approach “regular-
izes” the infinities away altogether. Here
“regularization” means a particular way to

52In elementary terms, these cases correspond to the polynomials having 1 or 3 real roots. Alternatively, they are
the cases of a negative or positive . . . . . . . . . . . . .discriminant.

53This is just my reconstruction— I could not find any appropriate reference.
It looks like during the last couple of decades, there is a widespread understanding that ”this follows directly”

from what is already proven about the Langlands Program.—However, apparently, nobody wrote this statement down
explicitly.

https://en.wikipedia.org/wiki/Modular_form
https://en.wikipedia.org/wiki/Maass_forms
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morph a function which makes it “more smooth”. In fact, this morphing process can be applied repeat-
edly (as done above). So one can “regularize” with different “strength”; the “strength” parameter s
shows how many steps of “morphing” were used. Moreover, interpolation is possible, so the parameter
s may be fractional as well.

Start with the function F (t) and apply regularization with strength s; this leads to a function of
two variables f(t, s) (as on the plots above). For more details, see . . . . . . .Section on p. . .68.

(In fact, these pictures54 illustrate a repeated application to F (t) of a certain type of low-pass
filtering with lower and lower cut-off frequency 1/s. Compare with the discussion in Remark . . .26
on p. . .35.)

Remark 16: At first, the fact that we need to work with a function of 2 variables may be seen as an
inconvenience. On the other hand, with 2 variables one gets many more possibilities in interpreting
what these variables mean. In particular, while all geometries with 1 degree of freedom are essentially
the same, with 2 degrees of freedom a new opportunity appears: some of these geometries are “curved”
(somewhat similar to how the geometry of the surface of Earth is “curved”).

It turns out that
• If one chooses a “suitable” way to regularize, and
• if one chooses a “suitable” curved 2-dimensional geometry,

then the transformations of the fractality law for F (t) become just “rotations” (or “shifts”) in this
curved plane of parameters (t, s). One gets the following translation rules:

Fractality laws for F (t) ←→ Rotational/Translational symmetries for f(t, s).

Moreover, the “rotations” (or “shifts”) in question happen to be symmetries of a tessellation (or tiling)
of this . . . . . . . . . . . . . . . . . . . . . . . . . .“Lobachevsky” geometry. (We return to this topic later, in . . . .the . . . . . . . .section starting on p. . .68.)

t = −∞
t = +∞

Remark 17: In the second approach, the domain of definition of the
function F (t) becomes “the absolute”, or the “horizon” of the curved
geometry.55 A point t of the absolute encodes “the azimuth” ϕ of the
direction going to this point (the encoding is similar to the rule t = tan ϕ

2
in the usual geometry which sends (−π, π) to (−∞,∞)).56 In Remark . .16,
we worked with a point of Lobachevsky geometry writing it as (t, s) with
s > 0. This is . . .the. . . . . . . . . . .half-plane. . . . . . . .model of this geometry; however, there is another, equally useful model

54For technical reasons, these plots are based not on our function F (t), but on a function Φ(t) with random Fourier
coefficients of approximately the same magnitude as for F (t). However, since “the degree of smoothness” of a graph
depends on how quickly the Fourier coefficients decrease, “the roughness” of these graphs is very similar to the graphs
for f(t, s). (However, because of randomness, Φ(t) allows no fractality laws.)

To unclutter the picture, we avoid small values of s: they would result in very high spikes; these spikes would ruin
the plots. Above, s changes in [0.015 . . . 0.095], while t changes in [0 . . . 14].

In fact, the scales of variables s and t are closely interconnected (see Remark . .16). This means that we scaled s up
about 200 times. So the plots show what happens in a very narrow strip near the line {s = 0}.

55A point of the absolute is “a point at the ‘infinity’ of the geometry”; different points of the absolute correspond
to different azimuths: “directions to look at” (this assumes that we look at something “very far” away).

This notion works equally well in non-curved (Euclidean) and in Lobachevsky geometries. While each observer
living in this geometry would have their own coordinate system for “azimuths”, what is crucial for existence of the
absolute is that if two cowboys ride “to infinity”, and their azimuths become closer and closer for one observer, the
same would happen with any other observer. So a particular value of azimuth for one observer “matches” a certain
value of azimuth for another observer.

This identifies “the absolute” with something observant-independent. We do not want to reuse the word “horizon”
in this context since we need it below in the non-curved situation.

56People familiar with the . . . . . . . . . . . . . . . . . . . . . . . . . .Stereographic Projection may recognize . . .the. . . . . . . . . . . . .significance of this formula.

https://en.wikipedia.org/wiki/Lobachevsky_geometry
https://en.wikipedia.org/wiki/Hyperbolic_geometry#The_Poincar%C3%A9_half-plane_model
https://en.wikipedia.org/wiki/Stereographic_projection
https://en.wikipedia.org/wiki/Stereographic_projection#Tangent_half-angle_substitution
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in .a . . . . .disk,57 where the absolute is the circle which is the boundary of this disk. One point of this circle
matches t =∞, the rest is identified with the t-axis.

The pairs of numbers (t, s), s > 0, used above are coordinates on a half-plane. However, they may
be also thought of as curvilinear coordinates in this disk; very vaguely speaking, s corresponds to
how far away from the boundary is the point. In particular, points with s = 0 are on the absolute,
matching the setup of Remark . .16.

58 Moreover,

Regularization F (t)→ f(t, s) is the interpolation of F (t)
from the boundary to the inner part of the Lobachevsky disk.

Assume that F (t) describes “the temperature on the absolute”. In other words, F (t) is the
temperature “far away in the direction encoded by t”. Keep this temperature on the boundary steady,
and let the temperature inside the Lobachevsky plane “settle down”, eventually reaching a steady
state. What may be the distribution of temperature in this state of stable equilibrium? The answer
to this question turns out to be exactly our choice of f(t, s).

In this language, f(t, s) is “the steady-state-heat-propagation interpolation” of F (t) from the
boundary of the unit disk into the whole disk. Moreover, F (t) may be interpreted as the “bound-
ary trace” of f(t, s). Hence, when the description above is applicable, one gets an . . . . . . . . . . . . .“intertwining”
compatibility rule:

If the function F (t) on the boundary has a symmetry,
then its interpolation f(t, s) has a “similar” symmetry.

and vice versa.
Moreover, it turns out that “fractality laws” for F (t) may be considered as such symmetries.

Hence
If F (t) is an exact fractal, then f(t, s) is highly symmetrical.

(And vice versa.) This is the reason for the rules from Remark . . .16.

Remark 18: In the preceding remark, we hid a very important effect: it turns out that the ordinary
process of heat propagation in our familiar non-curved geometry has two analogues in the case of
curved geometry. Some of the features of steady-state temperature distributions in our “flat” geometry
are inherited by one analogue, while some other features are inherited by the other.59

These two different analogues of the heat transfer process lead to two different choices of the
interpolation f(t, s) of F (t) into the disk.

Compare this with two flavors of “fractality laws” mentioned in Remark . .12. It so happens that
one of them is compatible (in the sense of preceding section) with one type of heat transfer, while the
other one is compatible with the other type. This way, modular/Maass forms corresponds to different
kinds of heat propagation in a curved geometry.60 We illustrate this in section “Maass fractality laws”
starting on p. . .41.

57There is no best way to visualize this curved geometry. Sometimes . . .the . . . . . . . . . . .half-plane. . . . . . .model ((t, s) with s > 0) used
in Remark . .16 is more convenient; sometimes the disk model.

58We . . . . . . . . . .illustrate these coordinates on p. . . .69.
59This is, eventually, related to so-called “non-amenability”: the area of the circle in this curved geometry grows

exponentially with its radius. Therefore, even if you heated a part of radius 999 of a disk of radius 1,000, when this
heat propagates to the whole disk, the temperature would drop several times.

Essentially, all our intuition breaks in this case. Mathematically, this corresponds to appearence of a “. . . . . . . . .spectral . . . .gap”
for the heat propagation operator. One analogue of heat propagation “ignores” this gap, the other analogue introduces
a new term cancelling this gap.

60In fact, this is how these forms were first discovered: not on the absolute, but on the Lobachevsky plane.

https://en.wikipedia.org/wiki/Hyperbolic_geometry#The_Poincar%C3%A9_disk_model
https://en.wikipedia.org/wiki/Representation_theory#Equivariant_maps_and_isomorphisms
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https://en.wikipedia.org/wiki/Spectral_gap_(physics)
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Remark 19: We must stress out that what people recognize as exact fractals are the fractals
“optimized for beauty”. When repeated due to fractality laws, the features of such shapes can remain
sufficiently large to be immediately recognizable. This makes these shapes attractive enough to be
put on a wall.

Unfortunately, most (or all?) examples of fractals in these notes are not “beautiful” in the above
sense. One needs to zoom in to recognize repetition of features. In fact, the smallest needed zoom
ratio is the conductor—and there are no polynomials of degree 3 with a small conductor!

However, even if not “beautiful enough to be put on a wall”, exact fractals remain exact fractals.
While the pictures below require zooming in to see the self-similarities, mathematically, they are on
equal footing with “beautiful fractals”.

Remark 20: For example, . . .the. . . . .plot. . . . . . .above (on p.. . .21) is optimized for beauty: it has conductor 1. To
achieve this, the authors used a certain “tuning parameter” λ (mentioned in the caption to the plot).61

In our context λ must be 0. In fact, they took the smallest |λ| allowing conductor 1.

In more detail

The exposition of the previous two sections was intentionally made very sketchy, to avoid drowning
the reader in excessive details. I expect that for many readers, already the level of details in the
sketches above may be an overkill—and then here is a good place to stop reading.

On the other hand, the rest of this report is written for people left unsatisfied by the vagueness of
the preceding exposition. From this point on, the notes are going to become way more technical.

Anyway, to make the level of difficulty raise as slow as possible, we start with topics which allow a
“more visual” presentation, and would postpone “dry algebraic” themes for as long as possible.

Unfortunately, the usual way the Langlands program is stated is extremely technical and very
far removed from the simplified point of view discussed above. Translation to down-to-earth terms
is error-prone if one is not a specialist; on the other hand, there are very few published attempts
to do this—and all the attempts I know cover just the cases of negative discriminant (such as
“tetrahedral numbers + 2”), which were, in fact, understood well before Langlands. (Compare with
Remark . .12.)

The (pseudo-)exposition we did in class (and do in these notes) is based on scratches of information
extracted from “the attempts mentioned above” combined with what I could distill from the original
papers. As I said, this is an error-prone process; apply salt as needed—one grain may be not enough.

Fractality laws: the simplified example

The first thing we want to describe more precisely is the “fractal transformations”. Recall that
these transformations map the whole graph of the function to its small parts. In fact, we want to
start with a “toy example”: it does not match “the actual transformation” exactly, but is its very
close cousin.

Take a graph of a periodic function g(t):

squeezed between two horizontal lines. The graph continues forever to the left and to the right; image
it drawn on a horizontal floor, and look at this graph from above. When our gaze follows the graph

61This number is related to the eigenvalue for this eigenfunction of the heat transfer operator.
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to the horizon, near the horizon we see the picture like this:

Here two red lines “converge” near the horizon like rails of a straight railroad.
As it is customary done in . . . . . . . . . . .“Projective. . . . . . . . . . . . .Geometry”, above the horizon we put the reflected picture

of what is “behind us”:

Note that rotating this, we can make it into a graph of a function (on
the right). And this is the transformation we had in mind.

As it is easy to see, given any periodic function g(t), the graph on
the right is the graph of the function tg(−1/t). (This assumes that the
intersection of the red lines is the origin.)62 Call this the toy transformation
of the graph of g(t).

With this transformation defined, we may state the required “toy fractal
property” of the graph of the function F (t): (after appropriate rescaling
and horizontal shift) every small piece of the graph of F (t) coincides with
the “toy-transformed” graph of F (the graph of tF (−1/t)).63

More precisely: In fact, even more is true. Shift the graph of g(t) so that a point P of the graph moves to the
origin. Suppose that there is a periodic function gP (t) such that the shifted graph is the “toy-transformed” graph
of gP (t). We say that near P , the graph of g(t) is horizon-similar to gP (t).64

The periodicity of gP (t) is already an extremely strong condition on the graph of g. For the function g(t) = F (t),
it holds for any P whose t-coordinate is t = 2πR/S with whole numbers R, S. Furthermore, the exact-fractality
property can be restated as this amplification: “for many” such points P , the function gP (t) is “a shifted and
rescaled” function g(t) itself. In other words, gP (t) = AP g(BP t+ CP ). Such points P appear arbitrarily close to

62Moving our “observation point”, one can also get functions tG(−1/t) with G(t) = Ag(Bt+ C).
63What we said above is a simplification; in fact, instead of applying this law to the graph of F (t), it should be

applied to the graph of 1/F (t).
This may be restated as follows: one should apply not the “toy transformation” tF (−1/t), but the “actual

transformation” F (−1/t)/t. (This restatement is applicable even though 1/F does not make sense for “white-noise-like”
generalized functions F we consider in our notes. Compare with Footnote . . .74 on p. . . .34.)

64In other words, g(t+ 2πR/S) = tg2πR/S(1/t).

https://en.wikipedia.org/wiki/Projective_geometry
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any given point of the graph. Which particular points of the form t = 2πR/S “work this way” is determined by the
conductor; call them “horizon-self-similar points”.65

Remark 21: Above, what we did “above the horizon” looks very logical—provided one knows
projective geometry. Indeed, when we look in some direction, our gaze “hits” everything on the
half-line starting at our pupil, and going in the direction we look at. Now, half-lines are not very
natural geometric objects; a projective geometer would try to replace them with whole lines.

After such a replacement, we imagine that we “can see” not only along the “forward” half-line,
but also along “backward” one. How would it play out in practice?

When one looks above horizon, there is nothing along the “forward” half-line, but along the
“backward” half-line one “can see” the objects hit by the “backwards continuation of our gaze”—which
are below the horizon! So the objects on the ground behind us “would appear” above horizon in front
of us. (This is the central symmetry with the fixed point in our pupil.) This is exactly how we plotted
the illustration above. In turn, this led us to the fractality law tF (−1/t) stated above.

For many years, this law was known to “provide” the pattern in sequences of colors considered
above, at least for some of polynomials of degree 3 (those of negative discriminant, see Remark . .12).
On the other hand, a lot of polynomials were not covered by this kind of fractality.

Eventually, due to the Langlands program, it was understood that to cover these “remaining”
cases, we need to change what we do “above the horizon”. There is another way to attach the top
part of the picture above: reflect it flipping left and right:

This way, the “reflected” “toy” fractality law sends the graph of F (t) to the graph of |t|F (−1/t), and
the “reflected” “actual” fractality law sends it to F (−1/t)/|t|.

These absolute values are very unnatural, almost sores in the eye—but this is what turned out to
actually work (in the cases of positive discriminant; see Remark . .12). The contrast between having t
and |t| leads to the difference of the graphs in Remark . .12: the right one needs |t|.

65Using the formula from Footnote . .63, horizon-similarity “to G(t)” at t = 0 means:

F (t) = ε · F (−1/γt)/t. Alternatively: tF (t) = ε ·G(−1/γt).

With “self-similarity” G = F . Likewise, horizon-self-similarity at t = 2πR/S can be written as

tF (t+ 2πR/S) = ε · F (ζ − 1/γt).

for certain constants ε, ζ, and γ. (Note that the relation between the arguments of F on the right and on the left
coincides with what is described in the section on p. . . .53.)

Below, we illustrate the notions of “horizon-similar” and “horizon-self-similar” with many plots.66

We quantify the notion of “many such points P ” in the sections on p. . . .54, p. . .74, p. . .80. Moreover, the possible values
of R and S—and the corresponding ζ and γ—are described in Footnote . . .132 on p. . .54.

66However, since what we plot is F (−1)(t) we need the transformation law for the antiderivative of F . For visual
comparison, it turns out to be very similar to the toy law! (See the section on p. . .29.)
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The zoo of fractality laws

Let us collect together the fractality laws we use in these notes:

The “actual” fractality law

F (t) ù F (−1/t)/t
or tF (t) ù F (−1/t)
From Footnotes . .63, . .65.

The “honest law for antiderivative”
Φ(t) ù tΦ(−1/t) + extra term
Introduced in the section on p. . .36

The “toy” fractality law
g(t) ù tg(−1/t)

Illustrated by the pictures above.

Visually very similar (see . . . .the . . . .plot on p. . .57)

Antiderivative
Φ = F (−1). . . . . . . . .F = 1/g

(The extra term comes from integration by parts. See . . .the. . . . . . . . . . . .calculation on p. . .57 for details.)
Moreover, every one of these laws comes in two flavors: one is as above, the other has |t| instead

of t as a factor or a denominator.
In these notes, we play with the “toy” fractality law only for instructive purposes, because
• It is so simple to deal with.
• It has a very strong visual similarity to the “honest” fractality law.
• The dashed connection above (F = 1/g) permitted us to quickly introduce the “actual”
fractality law (in Footnote . . .63 on p. . . .28).67

Recall (see the section on p.. . .20) that we are interested in particular (generalized) functions F (t):
the Fourier transforms of “arithmetic” sequences Nn. The main message of these notes is that these
functions satisfy the “actual” fractality law. However, the graphs of functions F (t) . . . . .turn. . . .out. . .to. . . .be
. . . . . . . . . . . . . .“unplottable” (see the section on p. . .35), and the best choice we have is to plot their antiderivatives;
in this context the blue arrow above leads to the “honest” fractality laws.

Finally, the “honest” law leads to pictures practically indistinguishable from those of the “toy”
law—hence the features of such “fractal plots” are easy to recognize. The only important difference
is that the “extra term” can move these features up or down on the graph. (See the . . . . . . .section. . . . . . .“The
. . . . . . .honest . . . . . . . . . .fractality. . . . . . . . .law. . . ” on p. . . .57 for details.)

Example: the toy fractality law as a symmetry

Now we want to demonstrate how the “toy” transformation discussed above works as a part of a
fractality law. We want to simplify the situation above yet more so that we may discuss a handy
example. With this in mind, replace . . .the. . . . . . . . . .property stated on p. . . .28 before Remark . . .21 by a much weaker
property:

The origin P = (0, 0) of the graph is “horizon-similar” to the function itself.

(So, first, we require horizon-self-similarity near one point P only. Second, we do not need to shift the
graph.)

In other words:
The graph is a rescaled toy transformation of itself.

67Recall that the particular function F (t) we study cannot be written as 1/g(t). Hence the dashed connection
above is again “didactic only”. (Compare with Footnote . . .74 on p. . . .34.)
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Can this happen with a periodic function? Since the typical gut reaction to this question was: “this
is not possible”, we start with an example of such a graph.

The idea of our construction is very simple:

Force the graph to be preserved by toy transform, and force periodicity.

Forcing preservation by toy transform is easy: keep the given definition of the function far from 0,
and define it near 0 by the formula for the toy transform. Likewise forcing periodicity is easy: one can
extend any function on [−π, π] periodically.68 We are going to apply these two steps alternatingly,
and see what happens.

So we start with a smooth function g0(t), then define g1(t) as tg0(−1/t) on [−π/2, π/2], and
extend periodically so that the shift g1(t+ π/2) of the resulting function g1(t) is even. Then we get
g2(t) likewise, etc.69 Every next function would have “a thicker pool” of non-smooth points than the
previous one.

Very quickly (for plotting purposes, it reaches the limit already about n = 8) the process above
leads to a sequence of functions flipping between 4 states. Essentially, gn+2(t) almost coincides with
−gn(t) when n � 0. In other words, putting G(t) := gn(t) − ign+1(t) with n � 0 gives a function

68For continuity, it is better to start with [−π/2, π/2], then extend it to [−π/2, 3π/2] so that f(t+ π/2) is even. Then
one can extend from [−π/2, 3π/2] by 2π-periodicity.

This is what we do below. However, to improve the visibility of the pattern, we rescale the t-axis; essentially,
we use gk+1(t) := tgk(−C/t)/

√
C with C = π/2. (This particular choice has no significance except for t = 0.5 being

non-smooth.)
(Note that this creates discontinuity of derivative at t = π/2. With a bit more ingenuity one could extend avoiding

this discontinuity. Instead, we are going to just ignore this defect.)
69However, to improve the visibility of the pattern, we rescale the t-axis; essentially, we use gk+1(t) := tgk(−C/t)/

√
C

with C = π/2. (This particular choice has no significance except for t = 0.5 being non-smooth.)
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such that tG(−1/t) is iG(t); in other words, it is G(t) rescaled by the imaginary unit i. Observe:
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The first graph plots a bit more than 2 periods of this function. The second shows a small part of its
period.70

The Cantor set of non-smooth points on the example plot

Here we continue inspecting what happens if a periodic function G(t) is symmetrical w.r.t. the toy
fractality law.

Automatically, the graph of G(t) near the origin looks “at least as bad” as . . . .the . . . . . .graph on p. . . .28
used in the definition of the toy transform. In fact, it must be much worse! That graph was a “toy
transformation” of a smooth function g(t)—and this transformation had a “very non-smooth point”

70It should not be “very surprising” that we obtained a complex-valued function. Recall that above we promised
that FC(t) is easier to deal with than F (t). Indeed, FC(t) has “better” fractal properties than F (t)—and it takes
complex values.

The simplification comes from the fact that we allow our fractal transform to rescale the function—and there are
“more ways to rescale” a complex number than a real number. For example, one can multiply it by i. (Algebraically,
appearence of i is unevitable since the toy transform chained with itself sends G(t) to −G(t).)
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with oscillating behavior near the origin.71 However, as the example graph of the preceding section
shows, there is a process “proliferating” already known non-smooth points.

Proceed marking the already known non-smooth points in color:
• The origin is a “bad” (“non-smooth”) point for G(t):

• By periodicity, G has many such “non-smooth” points going to infinity:

• Since the graph of G(t) near the origin is a “toy transformation” of such a non-smooth graph
of G(t), these non-smooth points “near the horizon” (so when t ≈ ∞) are transformed to
non-smooth points accumulating near the origin:

• Now take the periodicity into account again: this red “family” of non-smooth points near the
origin must be repeated near every blue point:

• Use the toy transform again. The red points near the origin were “toy transforms” of the blue
points. However, now every blue point is surrounded by “a red family”. So every red point
near the origin must be surrounded by a (tiny!) “toy transform” of the red family near the
corresponding blue point; draw this in green. Here we zoom about 10 times near the origin:

Together, the red and green points accumulating at the origin form a “super-family”.
(The origin is surrounded by red points, and every red point is surrounded by green points.)
• By periodicity, there is a repetition of this super-family near every blue point.
• Time to use the toy transform again! Since every green point near the origin is a toy
transform of a red point, and now we know that every red point is surrounded by points of a
super-family, near every green point there is a toy transform image of this super-family. This
forms “a super-duper-family”. (The origin is surrounded by red points, every red point is
surrounded by green points, and every green point is surrounded by its own family.)

Etc.
Conclusion: every non-smooth point of the graph of G(t) is surrounded by a whole “pool” of non-
smooth points. Taken together, these points form an exact fractal. Call it the Cantor hyper-family.72

Warning: do not confuse the exact fractality of this set with exact fractality of the graph of F (t).
This fractal is formed by the arguments t of the function G(t) where it has singularities (so it is
a fractal in dimension 1). (The latter function is still too uncomplicated for its graph to have the
required fractality property!)

Fortunately for our construction of the graphs of the functions gn(t) in the preceding section, while
new steps add “more and more points of oscillation”, it turns out that every next step “thickens” the
pool in smaller and smaller increments. So, as far as visualization is concerned, this leads to a very
quickly converging process.

Remark 22: Due to the nature of toy transform, the constructed functions gn(t) vanish at their
non-smooth points. Hence the non-smooth points on the graphs above are where the graphs meets

71This is yet more pronounced when the “toy transformation” tg(−1/t) is replaced by the “actual transformation”
g(−1/t)/t.

72
. . . .The. . . . . . . .closure of this hyper-family is .a . . . . . . . .Cantor . . . .set (a closed totally disconnected subset of R of full cardinality; it is

homeomorphic to {0, 1}N).
For those who know . . . . . . . . . .continued . . . . . . . . . .fractions, this set is quite similar to the set of numbers such that the coefficients an

of their continuous fractions are all larger than c. Here c depends on how much we shrink the transformed graph of
G(t) to match the graph of G(t) (and we allow negative numbers as coefficients).

In examples related to the Langlands Program, c depends on the conductor.

https://en.wikipedia.org/wiki/Closure_(topology)#Closure_of_a_set
https://en.wikipedia.org/wiki/Cantor_set#Topological_and_analytical_properties
https://en.wikipedia.org/wiki/Continued_fraction
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the t-axis. For our plots of F (−1)(t), which are symmetric w.r.t. the “honest” fractal transform, the
“extra term” (see p. . .29) can move these points off the t-axis.

Remark 23: Since the non-smooth points of the graph form a fractal, “for most73 of the points t”
the function G(t) is smooth and non-0. In particular, 1/G(t) makes sense “for most of the points t”.

Moreover, since G(t) satisfies the rule above with the “toy transformation”, H(t) := 1/G(t)
satisfies the similar rule with the “actual transformation” H(1/t)/t instead. This gives an example of
a function satisfying the “actual fractal transformation” law for one point P : the origin.

We do not plot the graph of H(t): if we want its interesting parts to fit the page, most of them
are going to be too small. However, it is not hard to imagine how this graph looks like.74

Remark 24: One can see that near any point from the Cantor hyper-family the graph above looks
like a toy transform of itself. And indeed, this is what necessarily happens. (In other words: chaining
any number of operations of the toy transform and shifts of the arguments would not give any new
transformation comparing to just “shift argument, then toy-transform, then shift argument again”.
We discuss more of this on p. . . .53.)

Summarizing: if we know that a graph of a periodic function allows a fractality law which works
at t = 0 (in other words, the function is not changed by a “toy transformation” at one point 0 ),
then there is a huge collection of other points t for which the fractality law holds. These points are
. . . . . . . . . . . . . . . . . . . .horizon-self-similar (see p. . .28 before Remark . . .21).

These points (together with their accumulation points) break the real line into intervals; in every
one of these intervals the mentioned above fractality laws do not restrict the behaviour of Re g
whatsoever. (Recall that above we, essentially, defined the function ReG in such an interval almost
arbitrarily.) Two plots above show an example when the function changes smoothly on such an interval
(with a few corner points).

Moreover, our fractal transforms interchange these intervals; combining these transforms, one can
send any such interval to any other. Additionally, there is a fractal transform which “inverts” a given
interval (and multiplies the function by i). In particular, if we know the graph of Re g in one of the
intervals, it determines g on the whole real line.

For more details, see Remark . .45 on p. . .54.
Remark 25: The fractality laws of the preceding remark work at particular points t (the horizon-
self-similar points), and these points avoid certain intervals. This allows us to define the function
Re g arbitrarily on one of these intervals. This means that these fractality laws still leave infinitely
many degrees of freedom for the choice of function g.

Compare this with the promised fractality laws for the function F : the horizon-self-similar points
appear in every interval.75 Moreover, the fractality laws determine F up to a finite number of degrees
of freedom (compare with the discussion near Footnotes . . .46 and . . .47 on p. . . .22).

In fact, the contrast between these situations reflects what was happening in number theory for
half a century before Langlands. In 1918 Erich Hecke has shown that our function F (t) is horizon-
self-similar at 0 (hence in all points from the “Cantor hyper-family” on the graphs above).76 Until
Langlands, mathematicians wouldn’t suspect that there must be many more points of self-similarity,

73. . . meaning: outside of a “. . . . . . . .meagre set . .of. . . . . . . . .measure. .0”.74In fact, this trick with replacing F (t) by 1/F (t) may be a complete red herring. Here, we could use it only
because G(t) was behaving nice at a lot of points—and this won’t happen for functions satisfying the fractality law at
every point 2πR/S.

The functions F (t) considered below are “too singular”— I do not know any mathematical approach which would
make sense of the expression 1/F (t). One is forced to proceed as in Footnotes . .63, . . .65 on p. . . .28.

75In a certain very precise sense a positive fraction of the set of numbers 2πR/S are horizon-self-similar. Compare
with Footnote . . . .136 on p. . .55.76In fact, he found another—equivalent— formulation. (In Footnote . . .90 on p. . . .40 we have a few more details.)

https://en.wikipedia.org/wiki/Meagre_set
https://en.wikipedia.org/wiki/Null_set
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and that these laws would severely restrict how our red/green coloring (or numbers Nk; see p.. . .20)
may look like.77

All the fractal transformations together: infinities and regularizations

Return back to the situation when “horizon-self-similar points”78 appear everywhere. Now every
small piece of the graph contains a smaller piece which ”looks the same” as “what happens with the
graph near horizon”. Comparing with two graphs above, the function should be at least as pathological
as that—but the behavior of the graph above near the origin should now happen near every point of
the graph. With “actual” fractality law we get a pole instead of each zero on the graph—and this
means that such functions are not possible to graph at all!

How can it happen that a function is impossible to graph? Above, we described F (t) as the
Fourier transform of the sequence Nn. On the other hand, numbers Nn are whole numbers; one can
immediately see that at any real point t, the series ∑nNneint diverges! In other words: we defined
the function F (t) using a summation which does not makes sense anywhere!

Did we cheat? In fact, no! Mathematicians established a solid foundation for working with
similarly divergent series (in a certain sense, “to work with infinities”) already in mid-20th century.

For example, one can write F (t) = −H ′′(t), with H(t) being the Fourier transform of the sequence
Nn/n

2. This sequence decreases quickly enough for its Fourier transform to make perfect sense; so H(t)
is a well-defined continuous function. While not every continuous function has a derivative which makes
sense as a “usual function”, every continuous function may be thought of as “a . . . . . . . . . . .generalized. . . . . . . . .function”79,
and any generalized function has a derivative which is also a generalized function. Conclusion: F (t)
makes perfect sense as a generalized function.

We can describe this generalized function as a second derivative of a continuous function. In other
words, the second antiderivative of F (t) is continuous. This gives us a way to work with F (t) via “its
regularization” H(t) (since it carries all the info about F (t)!); this is what we meant in Remark . . .14
on p. . .24.

In fact, already the first antiderivative of F (t) is plottable. In what follows we work with this
antiderivative F (−1)(t) as a “regularization” of F (t).
Remark 26: The reason why this generalized function “is impossible to plot” is that it has “too
much energy” in high-frequency harmonics; the situation is quite similar to the theory of “white
noise”.80 When we filter out high frequencies from white noise (low-pass filtering), we get “a usual
function” with well-behaving graph. However, adding higher and higher frequencies (i.e., raising the
cut-off frequency) adds more and more “bumps” on this graph, and the amplitude of these bumps
grows larger and larger. When we draw the graphs of results of low-pass filtering with growing cut-off
frequencies together, the lengths of these graphs increase, so every next graph “requires much more
ink than the previous graph”. The “un-inked white space” left on these graphs “shrinks” when we
raise the cut-off frequency.81

Conclusion: the graph of unfiltered white noise “would fill the whole plane”. The same would
happen with the graph of F (t).

77Indeed, since there is just a finite number of degrees of freedom, knowing a color of a few prime numbers plus the
fractality laws should determine the colors of the rest of prime numbers.

78These are . . . . . . . .defined on p. . . .28 before Remark . .21.79In other words, “a function which may have no value at any particular point, but ‘weighted averages’ of these
values still make perfect sense”.

80Any particular white noise function is also “only a generalized function”. It is a derivative of the corresponding
Brownian motion—which is a continuous function with “no derivative in the ‘usual’ sense”.

81Compare this with the plots in Remark . .15 on p. . .24. While the filters there are not the “usual” low-pass filters
(they are much stronger on high frequencies), these filters also have a characteristic frequency which goes down as s
grows.

https://en.wikipedia.org/wiki/Generalized_function
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Remark 27: If the graph of F (t) does not make sense, what is the description that “it is an exact
fractal” good for? Indeed, this should be understood “as a metaphor only”.

On the other hand, the property like “F (t) is the same as F (−1/t)/t up to rescaling” makes
perfect sense for generalized functions as well.82 So our description of the fractal behavior of the
graph is a metaphor for the “transformation properties” of the function F (t).

Fractality law for antiderivative

In the previous section, we established that
• The function F (t) satisfies the “actual” fractality law—but we cannot plot F (t).
• The antiderivative F (−1)(t) may be plotted.

Fortunately, the antiderivative F (−1)(t) also satisfies a certain “fractality law”.
However,
• When written down as a formula, this law looks way more complicated than the “toy” and
“actual” fractality laws considered above. For example, it includes integration.
• On the other hand, in these notes we use fractality laws only “visually”: essentially, we
observe graphs, and recognize “features” related to a fractality law.

It turns out that for the purpose of visual comparison,

the fractality law for the graph F (−1)(t) is indistinguishable from the toy fractality law.

In fact, this claim has one exception. Essentially, there is “an extra term” in the fractality law,
and this term “moves the features of the graph up and down a bit”—comparing to the toy law.83

For example, compare . . . .the . . . . . .graph on p. . .32 with . . . .the . . . . . . .graph on p. . .21. With purely-toy fractality law,
all the non-smooth points are on the t-axis—while in the “Maass” plot the similar features appear at
different heights.

From this moment on, all our plots are graphs of antiderivatives of functions
satisfying the “actual” fractality laws.

Such graphs closely resemble a graph of a function satisfying “the toy law”, except for vertical
shifts.

So to recognize the type of fractality dictated by the Langlands program, we inspect the graph of
F (−1)(t) looking for features related to the toy fractality law—but we allow these features to appear
at different heights. (We return to this theme and show some plots in . . . . . . . .Section . . . . . .“The . . . . . . .honest. . . . . . . . . . .fractality
. . . . . . . .law. . . ” on p. . . .57.)

The first “real life” case

Return back to the function F (t) which was constructed based on our sequence of . . . . . . . . . .red/green . . . . . . .colors
. . . . . . .related. . .to. . . . . . . . . . . . . . . . . . . . . . . . . . . . .“tetrahedral numbers + 2” (on p. . .17). Recall that (see p. . . .20) we “transliterate” a sequence
of colors to a sequence of numbers Nn, and the function F (t) is the Fourier transform of this sequence.
We claimed that the graph of this function follows the fractality laws described in the last three
sections (at least in a “metaphoric sense”).

Hopefully, the preceding section gives an idea which kinds of nastiness one may expect from this
graph:

• This function is impossible to plot directly.
• Its antiderivative is plottable.
• This plot satisfies a fractality law very similar to the “toy fractality law”.

82At least if one understands it as tF (const · t) = const · F (−1/t), as in Footnote . .65 on p. . .29.83We discuss this extra term . . . . . .below, on p. . . .57.
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• However, in contrast to the “toy fractality law”, the “matching pieces” may be at different
heights.

Essentially, these expectations are fully satisfied by . . . .the . . . . . .graph on p. . .21. For example, near the origin
this graph looks very similar to a “toy transform” of itself”.

However, the actual graph84 of the antiderivative F (−1)(t) (about 11
2 periods)

2.1396

-2.1356
-1 9

does not look this way—there is no piece similar to the toy transform of this periodic graph! What
is the reason for this?

Answer: what is spoiling the fun in the graph above is the conductor! For . . .the. . . . . . .graph on p.. . .21, the
conductor was 1. For the graph above, the conductor is 971—and the larger is the conductor, the
smaller are the parts where “the patterns of toy transformation” are clearly visible.

84The specs of blue (hardly) visible on this graph are due to this being two graphs of top of each other: blue for
500,000 terms of Fourier series, red for 1,000,000 terms. So where blue is visible, this means that 500,000 terms were
not enough to get the required precision of calculation.
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So, to see this pattern near the origin, we need to zoom into the graph with a very strong
magnification (about 971 times):

0.08725

-0.079238
-0.0001 0.008

Now the pattern is clearly visible.85 Moreover, it can be seen that while this looks like a toy transform
of a periodic function, this is a toy transform of a function different from F (−1)(t) (for example, the
parts below the t-axis look very different from the parts above).86

To see the part of the graph which is recognizable as the toy transform of F (−1)(t) itself (we
called such points . . . . . . . . . . . . . . . . . . . . . .“horizon-self-similar”, see p. . .28), we need to zoom again scaling 971 times near,
for example, 2π/971. Unfortunately, the computational facilities accessible to me right now are not
enough for doing this plot: without further speedups, it would take several weeks to plot this! (We
revisit graphs of this function . .in . . . . . . . .section on p. . .54. For a heuristic estimate of zoom factors needed to
expose the extent of fractality see Remark . .62 on p. . .84.)

A simpler-to-plot example: M = 6
As the preceding section shows, the plots related to the polynomial “tetrahedral numbers + 2”

turn out to be very hard to draw. However, eventually, to get closer to the situation which could not
85Note how the graph gets separated from the (violet and purple) straight lines when we get closer to the origin.

This is due to numerical errors. There are two contributions: first, the finite number of terms of Fourier series we take
(4,000,000 for the red graph). Second, as we get closer to the origin, the plot gets fewer and fewer samples on one
“period” of oscillation, missing the maximal/minimal values more and more (in the graph, we used 5,000 samples).

Zooming in, one can see a completely flattened region near 0. The experiments show that it is a result of the first
contribution (as above)—but I cannot invent any simple argument explaining this!

86Additionally, recall that F (t) is even (by definition), hence F (−1)(t) is odd. If we can write F (−1)(t) = tΦ(−1/t),
then Φ must be even—so it cannot be F (−1)(t) rescaled! (Indeed, looking at the graph of F (−1)(t), no shift would
make this function even.)

However, it turns out that Φ(t) is ImF
(−1)
C (t) rescaled. We return to this theme in Footnote . .90 and in . . .the . . . . . . . .section

on p. . .57.
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be dealt with without Landlands program,87 we would need to consider different sequences anyway.
For example, for a fixed number M , one can consider the sequence88 “M × tetrahedral numbers + 1”.

The difficulty encountered in the previous section is related to the fact that . . . . . . . . . . . . . .discriminants of
polynomials of degree 3 tend to be quite large in magnitude (hence the conductors are also expected
to be large). For the example of the preceding section, the discriminant is −4 × 971. In fact, the
smallest value for the magnitude of discriminant is 23, for discriminant −23.

Fortunately for us, this smallest value is reached on one of the example sequences we just defined,
for M = 6. Moreover, zooming twice into the graph, each time scaling 23 times is quite within the
grasp of the software I have. Finally, this discriminant is negative, so one does not need the Langlands
program to see that “the toy transformation” is going to be applicable to the graph.89

So let’s redo what we did above, starting with the polynomial “6× tetrahedral numbers + 1”.
• Assign colors to numbers according to whether they can be divisors of “6×tetrahedral numbers+

1”.
• Transliterate colors to numbers Nn (for details, see . . .the. . . . . . . .section on p. . .45).
• Take the Fourier transform F (t) of the sequence Nn.
• Plot the antiderivative F (−1)(t)

Here is the result (about 1½ periods)

1.6438

-1.6393
-1 9

87See the section on p.. . .66.
88Note that doubling this sequence to become “2M × tetrahedral numbers + 2” leads to the same prime divisors,

with a possible exception of 2. However, such an exclusion is “negligible”, since when matching the patterns of colors,
we allow a few primes to be exceptional anyway (compare with . .2×. . . . . . .above, on p. . .11).

This shows that the sequence “tetrahedral numbers + 2” is, for all practical purposes, also covered by this scheme,
since it is “2M × tetrahedral numbers + 2” with M = 1

2 .89Again, compare with the section on p. . .66.
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This time, one can guess that the region near 0 may resemble the toy transform of a periodic function.
Still, with this graph, it takes a leap of faith to trust that it actually happens.

Now zoom in (about 23 times) near the origin:

0.4968

-0.54
0 0.45

The pattern “a toy transform of a periodic function” is again clearly visible. In . . . . . . . . . .notations . . . . . . . . . . . .introduced
on p. . .28 before Remark . . .21, this periodic function is (F (−1))0(t). Moreover, the same as in the previous
section, comparison of two preceding graphs shows (F (−1))0(t) is different from F (−1)(t). Again, the
parts below the t-axis look very different from the parts above.90

Next, zoom again with scale 23 times near, for example, the point with t = 2π/23 ≈ 0.27318.
This point is clearly visible on the graph above; around it is the largest region away from 0 which

90In fact, this is one of the situations where FC(t) is easier to deal with than F (t). One indication of this is that
F0(t) = ImF

(−1)
C (t). (Compare with the violet graph of ImF

(−1)
C (t) in the top-left plot of Remark . .12.)

It turns out that the point t = 0 is very special from historical point of view. Its horizon-similarity can be explained
by . . . .the . . . . . . . . . . .functional . . . . . . . . . .equation . . .for. . . .the. . . . . . . . . . .Dedekind . . . . . . . . . . .ζ-function which was discovered more than 100 years ago—half a century
before the Langlands program. See . . .the . . . . . . . .section on p.. . .66 for details.

https://en.wikipedia.org/wiki/Dedekind_zeta_function#Analytic_continuation_and_functional_equation
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resembles “a toy transform of F (−1)(t) itself ”:

0.13843

-0.03054
0.24818 0.29818

Finally, this part of the graph indeed looks very similar to the toy transform of the whole graph—as
expected! Indeed, every “oscillation” of the graph is similar in shape to the period of the whole graph.
(So here we encounter the first “real” example of . . . . . . . . . . . . . . . . . . . . . .“horizon-self-similar”91 point—defined on p. . .28.)

Maass fractality laws

Above, all our graphs were for the “odd case” (or “modular forms”), when the fractality laws for
the function F (t) . . . . .could. . . . . .have . . . . .been. . . . . . . . . . .described. . .by. . . .the. . . . . . .Class . . . . . .Field . . . . . . . .Theory (see p. . .66). This happens for
polynomials “M × tetrahedral numbers + 1” with a whole number M ≤ 15. At last, here we consider
what happens in “the other” case.

Unfortunately, the smallest conductor in “the other” case is c = 22 × 37 = 148 (for M = 24, when
the . . . . . . . . . . . . .discriminant is 24 × 37). In general, this would require zooming in 1482 times for our method of
plotting. This may be too large for the software we use (would take days to calculate).

91With a correction that here we get not a “toy” transform, but the “honest” fractality law (see p. . .57).
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Fortunately, “an extra coincidence” happens, leading to extra symmetries in this case, which make
zooming feasible:

1.7372

-1.7457
-1 9

Above, M = 24; the plot of the corresponding function F (−1)(t) is in red, and the corresponding
imaginary part ImF

(−1)
C (t) is in violet. Note the mirror symmetry of the red graph w.r.t. the line

x = π/2.
This extra symmetry (which may be suspected from the factor 22 in the conductor c = 22 × 37 =

148)92 makes our zooming factors behave as if this number was about 4 times smaller. This makes
plotting feasible.93

1.4209

-1.4036
-1 9

Aside: It is interesting to note that the zooming factors needed for the
simplest polynomials in the cases of positive and negative discriminant
(37 and 23, with M = 24 and M = 6 correspondingly) are of the same
order of magnitude—although the smallest conductors in these cases
(148 and −23) are very different in magnitude.94 (On the other hand,
this coincidence may be a red herring: a similar symmetry may decrease
the needed zoom factor in the “odd” case as well. On the right, we
show what happens when M = 12: the conductor is −22 ·11; it is larger
than 23 in magnitude, but the zooming factor of 11 is enough. So it is
not 37 vs. 23, but 37 vs. 11.95 )

92This mirror symmetry is due to the transliteration rules for the prime 2 following the last case of Step ( .d) on p. . . .46.
Because of this, N2k = 0 for any k, which implies N2k = 0 for any k by the rule of Step (.e).

93For the graphs below, we used Nn for n up to 1, or 4, or 16 millions.
94Recall that the case M = 6 is the cubic polynomials with negative discriminant, which are . . . . . . . .covered. . .by. . . . .the . . . . . .Class

. . . . .Field. . . . . . . . .Theory (see p. . .66)— so do not need the Langlands program.
95On the other hand, . . . . . . . . .Arnold’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Principle of Fragility of Good Things96 focuses on behaviour of roots of x3+px+q = 0

for small p, q; just “a minority” of these have 3 real roots. This scarcity may explain why we cannot find such polynomials
with conductors which are “large enough” for general polynomials.

96. . . referenced in . . . . . . . . . . .WikiPedia . . . . . . .article on “Anna Karenina principle”.

https://www.maths.ed.ac.uk/~v1ranick/papers/arnold14.pdf#page=8
https://en.wikipedia.org/wiki/Anna_Karenina_principle#General_mathematical_backgrounds
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In this section, we focus on the case M = 24.
Recall what we saw in the left column of Remark . .12 (discussed in the section on . . . .the . . . . .case . . . . . . . .M = 6

on p. . .38): in the “odd case” what happens near 0 on the red graph is visually indistinguishable from
the toy transform of the violet graph. Now the situation is, in a certain sense, much easier (this is the
right column of Remark . . .12): near t = 0 the graph is visually indistinguishable from the toy transform
of itself :

0.33583

-0.33583
-0.002 0.1

0.70525

-0.70525
-0.002 0.21

Remark 28: Note that the rightmost maximum,
near the violet asymptote, is the transform of the
maximum of the first red graph near −3π

2 . In
particular, we could have used 3 times smaller
magnification so that the extended graph would
also include the transform of the minimum at
−π

2 (on the right). Unfortunately, the difference
between the honest fractal transform and the toy
transform becomes very large in such an extended
domain97. In particular, this minimum is far away
from the green asymptote of our graph—and this
makes the extended graph too confusing (compare
with Remark . . .47).

Near the right edge of the large graph above (close to t = 0.085 and near the t-axis) one can see
what looks like a tiny “copy” of this whole picture. This much more magnified view of what happens

97Compare with the section on p. . .36, where we called this difference “the extra term”.
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near the point t = π
37 ≈ 0.0849079 confirms this: the graph behaves similarly to t ≈ 0:

0.051343

-0.10728
0.079 0.091

Conclusion: in this case considering the complex-valued function FC(t) gives no benefits— the whole
theory becomes completely real! The shapes of oscillations in all these red graphs match each other.
Remark 29: Recall what we did in Remark . .15: in the “odd” (“modular forms”) case, we would
extend the function F (t) to a function f(z) on the upper-half plane (with z = t+ is); this changes
FC(t) := ∑

nNneint to f(t, s) := ∑
nNneint−ns. In other words, we replaced Nn by NnR(ns) with

R(s) = e−s being the “regularizing factor”. (See also . . . .the . . . . . . . .section on p. . . .68.)
Such a replacement turned out to be compatible with fractal transforms (in the sense of Remark . .17).

In the “even” case we use |t| instead of t as a factor in our fractal transform—so for compatibility, we
need a different regularization. The Langlands theory predicts which regularization is needed, leading
to the case of “algebraic Maass forms”.

The answer: instead of R(s) := e−s used for the “modular forms” regularization, one should write
R(s) :=

√
|s|K0(|s|) with K0 the . . . . . . .Bessel . . . . . . . . .function.98 In particular, instead of looking at f(t+ is) :=∑

nNneinte−ns, one should write f(t + is) := ∑
nNn

√
|s|eintK0(|ns|). Additionally, this summation

involves negative indices n as well; in particular, one needs a way to extend Nn to negative values of
n (for the plots above, we use N−n := Nn).

This time, f(z) is not complex-analytic (but it is still real-analytic). The formula above ensures
that F (t) is “the trace” of f(z) on the absolute: the main term in the asymptotic of f(z) when
s = Im z → 0 is F (t)

√
s log s. Moreover, taking “the trace” is compatible with Lobachevsky-moves

( . . . . . . . . . . . . . . . .“intertwinging”), which means that the fractal trasforms of F (t) are the traces of Lobachevsky-moves
of f(z).

This means that with this “‘intertwingingly’ compatible” regularization, f(z) should behave in
the same way with respect to the tessellation as in the “odd” case: knowing f(z) on one piece, one

98The precise form of K0 is not important for our purposes.

https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1
https://en.wikipedia.org/wiki/Representation_theory#Equivariant_maps_and_isomorphisms
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can find it everywhere: a Lobachevsky-rotation or Lobachevsky-translation which sends one piece to
the other preserves f(z).

The properties of K0(S) show that there is another condition on f(z) replacing the complex-
analyticity; it is one of a curved-geometry analogues of the condition of being harmonic in flat geometry
(compare with Remark . .18). Functions satisfying this condition are called algebraic Maass forms.

Remark 30: Historically, the “odd case” was easier to deal with since it could be treated using the
techniques of the . . . . .Class. . . . . .Field. . . . . . . . .Theory, developed about 90 years ago.99 In fact, the first conjectures
about particular examples of the “odd case” started to appear yet before Gauss; the first proofs for
the cases of these examples were discovered by Gauss.100

I cannot find precise references for who completed the “even case” (for polynomials of degree 3) and
when. I expect that this case should be completely understood now, judging basing on the (essentially)
second-hand information about which parts of the Langlands Program are already completed.

Remark 31: The last graph is very special among the graphs of these notes. It is the only graph
which requires the Langlands program to explain it. For details, see . . .the. . . . . . . .section on p. . .66.

The transliteration rules

Here we explain how to construct the sequence Nn from a polynomial of degree 3.
Recall our process; essentially, we do this (compare with the section on p. . . .20):
• Start with a particular polynomial sequence of integers (of degree 3);
• Collect all the possible divisors of the numbers in this sequence;
• Color all the whole numbers: green for possible divisors (as above), red for the rest;
• Transliterate this sequence of colors into a sequence of numbers Nn;
• Take Fourier Transform of the obtained sequence;
• Inspect the fractal properties of this function.

What is left unexplained is the transliteration process. As we said, it is quite straightforward (with
the exception of how to treat prime divisors of the . . . . . . . . . . . . .discriminant).

Below, we first go through the steps of transliteration, listing only the rules one should follow to
perform these steps. In the next chapter, we try to demystify these rules—as far as it is possible: no
matter how trivial the step may look, all of them have extremely deep connections to very profound
themes of contemporary math.101

(a) In the sequences above (see . . . . . . . .example. . . .for. . . . . . . .degree . .2 on p. .8 and . . .one. . . .for. . . . . . .degree. .3 on p. . .17), we
used two colors: red and green. Recall how to color a particular number n: we use the
residues modn, and write down residues of several elements of the sequence. We know that
these residues should be periodic, and know the length of the period; after we have that
many residues, we can check whether 0 modn appears in this period. If it appears, we mark
the number n green, otherwise red.

99Recall again: this theory was a triumph for mathematics of the first half of 20th century. However, nowadays it
settled down to be a run-of-the-mill feature of mathematical landscape.

100In addition to “odd” and “even” cases discussed above, there is also “a special” case of . . .the. . . . . . . . .abelian,. . .or. . . . . . .cyclic
polynomials of degree 3. In this special case (also covered by the Class Field Theory), the colors follow the exactly the
same pattern as in the case of degree 2: prime numbers are colored according to their position on the conductor-wheel.
(See also . . .the. . . . . . . .section on p. . .66 and Remark . . .53 on p. . . .65.)

This happens when the . . . . . . . . . . . . .discriminant is a complete square. For the polynomials of the type we consider here,
M × Tetrahedral Numbers + 1, for integer M this happens for M = (k + 35/k)/2 with integer k, which means
M = 18, 42, 122. (Likewise for rational M .)

101The manipulations below may look purely algebraic in nature. However, one of the major achievements of math
of 20th century was to expose very deep connections of such steps to setups of geometry. Unfortunately, the format of
these notes does not allow us to dwell on this connection.

https://en.wikipedia.org/wiki/Class_field_theory#History
https://en.wikipedia.org/wiki/Cubic_field#Definition
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For degrees higher than 2, and for several variables (as in the beginning of . . . .the . . . . . . . .section
on p. . .17), one should replace these colors by more detailed information: instead of marking
whether the residue 0 modn occurs in the sequence or not, mark how many times it occurs
in the shortest period. While nothing special happens to red (it is transliterated to 0), green
“attains several tints”: it may be replaced by different numbers.

Call this count Ñ res
n (for the residues modn). For a polynomial of degree 3, for almost all

prime numbers p the value Ñ res
p is 0, 1 or 3.102

(b) We obtained a sequence (Ñ res
n ) of numbers which are 0, 1, or 3 at all prime positions (with a

few exceptions). To get a fractal behavior for F (t), we need to “purify” this sequence a bit.
Recipe: Put Np := Ñ res

p − 1 for a prime number p (with exceptions from Footnote . . .102;
we cover them in Step ( .d)).

(c) Next, we need to define Nq for q = pk with a prime number p. Recipe:103 for every prime p,
choose one of the following sequences:
• −1, 0, 1, −1, 0, 1, . . . (3-periodic);
• 0, 1, 0, 1, 0, 1, . . . (2-periodic);
• 2, 3, 4, 5, 6, 7, . . . (a linear function),

so that its first number matches the known value for Np. Assign these values to Npk .
(d) For an “exceptional” prime number p (of Footnote . . .102), one cannot find Npk given Ñ res

p only,
even for k = 1. The procedure is quite involved; it suffices to say that for the sequence Npk

one should choose one of the sequences above, or one of:
• 1, 1, 1, 1, 1, 1, 1, . . . (1-periodic);
• 0, 0, 0, 0, 0, 0, 0, . . . (1-periodic).

While there is a recipe explaining which of 5 variants to choose,104 it is easier to note that
since only finitely many primes p are involved, this ambiguity leads to only finitely many
choices of the sequence Nn. Exactly one of these choices would lead to the desired fractal
behavior of F (t).105

(e) For composite indices of the form pkqr with different primes p and q, put Npkqr := NpkNqr .
Likewise for indices with more than 2 distinct prime factors.

Example: For “tetrahedral numbers + 2”, the discriminant is −4× 971, so small prime numbers
greater than 3 are covered by the rule ( .c). Inspect the sequence of colors on p. . . .17. This shows that 11
is green, and 7 is red. So N7 = −1; moreover, checking . . .the. . . . . .table on p. . .17 shows that 11 divides only
one number of our sequence for sides 1,. . . ,11—which is the shortest period of our sequence mod 11.
Hence Ñ res

11 = 1, and N11 = 0. Picking up a matching sequence above, N112 = 1 (the second number
in the sequence 0, 1, 0, 1, 0, 1, . . . ), and N74 = −1 (the 4th number in the sequence −1, 0, 1, −1, 0,
1, . . . ). Finally since say, 290,521 = 74 × 112, we conclude that N290,521 = −1.106

Keep in mind that any error made during transliteration would ruin the function F (t)—it won’t
have the desired fractal behavior. To obtain the graphs used in this report, we followed these steps
precisely (treating divisors of . . . . . . . . . . . . .discriminant by hand—which turned out to be very error-prone107).

102The exceptions are the prime divisors of the . . . . . . . . . . . . .discriminant, where the value may be 2 as well. Moreover, one
should include the divisors of the leading coefficient (and of denominators of coefficients, if present), and p = 2 or p = 3,
when the period is longer than p.

103See Remark . .37 for more details.
104See . . .the . . . . . . . .section on p.. . .59.105Compare to . . .the. . . . . . . . .answer. . . .of . . . . . . . . . . . .2010-08-14. . . .in . . . . .the . . . . . . . . . . .discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Zeta Functions: Dedekind Versus Hasse-Weil. . . .in

. . . . . . . . . . . .n-Cat Café discussing how the errors at “exceptional” primes would break the horizon-self-similarity at t = 0 (which is
due to . . . . . . . .Hecke’s. . . . . . . . . . .functional. . . . . . . . . .equation—see . . . .the . . . . . . . .section on p. . .66 for details).

106This illustrates that in general, whole numbers |Nn| grow very slowly.
107Compare with Footnote . . . .105.

https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html#c034304
https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html#c034304
https://en.wikipedia.org/wiki/Dedekind_zeta_function#Analytic_continuation_and_functional_equation
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Remark 32: Replacing the sequence of colors by the sequence of counts Ñ res
n (as in Step ( .a)) was

not needed for sequences of degree 2: then for the residues mod a prime number p the count is 0 or 2
(except for a finitely many p s—and since above we allowed a few exceptions in the pattern of colors
anyway, these would not matter). So two colors were enough to encode all the information in these
counts for prime n (and eventually, we ignored the colors for non-prime n anyway!).
Remark 33: As we explained, for degree 3 and residues mod a prime number, the count Ñ res

n may be
0, 1 or 3 (with exceptions as above). The count 3 appears less often than the others; in the . . . . .part . .of. . . . .the
. . . . . . .colored. . . . . . . . . .sequence. . . . . . . .shown . . . . . .above (on p. . .17), it appears only for prime 3. The first few other occurrences
are for the primes 37, 61, 83, . . . .

Essentially, this finishes our first goal (started on p.. . .20): to give the simplest possible self-contained
rough outline of how to get a fractally-symmetrical function starting with a polynomial of degree 3.
This example exposes both sides of the Langlands program: on the arithmetic side we have a problem
about divisors of numbers in a polynomial sequence; the other side is related to fractal symmetries of
F (t) (or Lobachevsky-symmetries of f(t, s)).

In the rest of these notes, we unravel a few clarifications and finer points related to the steps of
this outline.

In fact, a few months ago an α-release of GP/PARI mathematician’s calculator (version 2.10.1) changed this: it
has tools to automate these tasks.
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If all you have is a hammer, everything looks like a nail.
Abraham Maslow, The Psychology of Science, 1966

The preceding chapter sets up the minimal possible context for stating how the Langlands program
works in the simplest possible cases. Here we provide more bread crumbs to connect this setup with
more customary accounts of the topics related to the Langlands program. We also expose a few
beautiful effects which we kept hidden in the rough outline of the preceding chapter.

It turns out that when “the fractality of F (t)” is our hammer, a lot of themes related to the
Langlands program happen to work very well as nails!

Finer points of the transliteration rules

What we discuss here is an immediate continuation of what we did in the last section of the
preceding chapter.108

Remark 34: Note that we already know that Ñ res
p = 0 if a prime number p is red. (As usual, we

need to omit a few exceptional p s.) When p is green, we need to decide whether Ñ res
p = 1 or Ñ res

p = 3.
Above, we said that one should consider residues mod p of our polynomial sequence of degree 3;
count 0 mod p s among the first p of them. On the other hand, all we need is 1 bit of information to
distinguish these two case.

In fact, already in the time of Gauss mathematicians knew how to get this extra bit of information.
Answer: One should take a certain other sequence of degree 2, and color numbers into red and green
according to whether they are divisors of numbers in this second sequence.

For example, for our sequence “tetrahedral numbers + 2” of degree 3 we should consider the
sequence “squares + 971” of degree 2. Now we have two colors assigned to a number n: one according
to whether n may divide numbers in the first sequence, the other according to whether it can divide
numbers in the second sequence. Finally, for prime p one can find Ñ res

p from the following table:

Second color
� �

First color � 3 1
� 0 ×

(with× meaning “cannot appear”).
Now we remind that Quadratic reciprocity says that the second color depends only on the position

of p on the “conductor” 971-wheel, similarly to . . .the. . . . . . . . .coloring. . .of. . . .the. . . . . . .wheel on p. . . .12. Conclusion: One
can find Ñ res

n knowing the first color of the number n and the position of n on 971-wheel.109

Remark 35: The counts Ñ res
n form a very fundamental mathematical object, leading to the notion

of an . . . . . . . . . . .L-function—another math tool as important as the functions F (t) and f(z) we discussed
above. However, comparing our definition of Ñ res

n with the formal definition of the “coefficients” of
the corresponding L-function, one can discover that we oversimplified a bit; our definition is “correct”
just for “about 61% of indices n”! (We explain it below.) Moreover, removing this “oversimplification”
would allow replacing Steps ( .c), (.d) on p. . .46 above by something much easier to explain.

108The only reason we made a chapter break in the middle of this discussion was to signal the readers with less
stamina that the remaining parts are just clarifications of the process outlined above.

109The polynomial we considered above has (cubic) . . . . . . . . . . . . .discriminant −3,884 = −22 × 971. This means that finding
solutions is related to taking the square root of −971; . . . . .since. . . . . . . . . . . .−971 ≡4 1, the conductor wheel related to this square root
is the 971-wheel (see p. . . .118).
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To see where we “cheated”, inspect the particular case n = 9. Our (Gauss’!) 9-wheel is an
example of a “new” arithmetic which has only 9 different “numbers” (residues mod 9). We can
add/subtruct/multiply in this arithmetic; we may also divide by any “number” but 0 mod 9, 3 mod 9
and 6 mod 9. What we do above to find Ñ res

9 is we “replant” our polynomial to this arithmetic, and
look how many times it takes the value 0 mod 9.

However, already in 1830 a French mathematician Évariste Galois (with . . . .very . . . . . . . . . .romantic. . . . . . . . . . .biography;
he was 19 when he published this) found out that there is another arithmetic with 9 “numbers”—and
in this arithmetic one can divide by every number except 0. So Galois’ arithmetic is, in a certain sense,
“better” than Gauss’!110 111 In fact, to get the fractal behavior, and/or the remarkable properties of
L-functions, one must use Galois’ arithmetic in place of Gauss’ when finding Ñ res

9 .
So instead of finding the count Ñ res

9 of residues where the polynomial takes value 0, we do the
same in the Galois arithmetic. Denote these counts ÑGal

n (here n is a power of prime). However, as
we already saw, the residues mod a prime number already have the required property: division by any
non-0 residue is possible. This leads to ÑGal

n = Ñ res
n provided n is prime; this also works if n is not

divisible by any square (except 12).112 It turns out that this holds for . . . . . .about. . . . .61%. . .of. . . . . . . . . .numbers! (The
exact fraction turns out to be 6

π2 ≈ 0.6079.)

Remark 36: We said that to obtain fractal behavior, one must use the counts ÑGal
n instead of Ñ res

n .
How come that the recipe for Nn given above does not mention ÑGal

n ?
In fact, polynomials of degree ≤ 3 are very special: one can find ÑGal

pk for prime p provided one
knows Ñ res

p . Moreover, this is almost exactly the process we apply on Step (.c) of p. . .46! Conclusion:
Step (.c) hides recalculation from Ñ res

pk to ÑGal
pk . One can omit this step if one uses suitable formulas

like Np2 = (ÑGal
p2 + (ÑGal

p )2)/2− ÑGal
p etc.113

Remark 37: The recipes of Steps ( .c), ( .d) on p. . .46 look coming out of a clear blue sky. In fact, they
come from a very general principle:

The numbers ÑGal
pk satisfy a simple . . . . . . . . .recursion. . . . . . . . .relation in k.

(This relation is very similar to one for Fibonacci numbers: Fn = Fn−2 + Fn−1; for examples, see
Footnote . . .116.) In fact, the same holds for the sequence (Npk).114 Additionally, instead of our
polynomial of degree 3, one can take any polynomial; the same works for polynomials of any number
of variables115 —and even when one counts “common zeros”: arguments where several polynomials all
take value 0 mod pk (or 0 in Galois’ arithmetic).

The simplicity of these statements is completely deceptive. It turns out that they constitute
another triumph of mathematics of 20th century. To make a long story short: in 1973 a Belgian/French
mathematician Pierre Deligne finished his proof of . . . .Weil. . . . . . . . . . . . . .Conjectures (which were invented about 25
years before this). The conjectures (and the proof) are based on a revolutionary approach erasing
boundaries between geometry and arithmetic. (As . . . .Yu. . .I.. . . . . . . .Manin . . . . . . .writes, this “forever chang[ed] our

110Gauss’ notebooks show that he also knew about this arithmetic—but he did not publish this.
111Essentially, Galois’ “numbers” is the answer to the question: what are analogues of complex numbers if one starts

with residues mod p instead of reals? (For others results of Galois we use in these notes see Footnote . . . .152 on p.. . .60.)
112For example, Ñ res

30 is OK, but Ñ res
60 needs to be recalculated, since 22 = 4 divides 60.

113The first term on the right-hand side is not as mysterious as it looks like. Denote it by Np2 . Then . . . .the . . . . . . . .general
. . . . . . . .formula is 1 +

∑
kNpkτk = exp

∑
k Ñ

Gal
pk τk/k (equality of Taylor series in τ).

The subtraction of the second term ÑGal
p is harder to explain, since it is due to purification process of Step (. .b).

Essentially, in the formula above we may replace N by N if we replace ÑGal
pk by ÑGal

pk − 1.
114Moreover, the same also holds for Ñ res

pk —but this is trivial: for most p the numbers Ñ res
pk do not depend on k.

115Compare with the beginning of the section on p. . .17.
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understanding of the relationships between continuous and discrete.”) In fact, these recursion relations
make a significant part of these conjectures.

In case of our polynomials of degree 3, the recursion relations simplify so much that we can write
down all the possible solutions. This is what we did in Steps (.c), ( .d) on p.. . .46.

116

Warning: quite often in math, when there is a recursion relation between counts of objects of certain
types, they come from simple “matching arguments”: the relation between counts reflects “relations
between individual objects”. However, Weil relations between “counts of solutions” are much deeper:
the solutions themselves have no relation to each other!

Unfortunately, with this topic our intuition can easily deceive us: what gets in the way is that
for residues mod pk, there is an obvious “connection” between nearby values of k: a particular
residue mod pk gives us a residue mod pk−1. Contrarily, an analoguous “connection” between Galois’
arithmetics has very different properties:

The “related” powers pk and pl of p are “far away”: the connection works117 only if k|l.

(For example, the only things in common between the Galois’ replacements for mod p3, mod p4, mod p5

are the p residues mod p.118) This is the reason why Weil conjectures are so deep (and, for many
people, much deeper than they look on the first sight).
Remark 38: Nowadays, one could consider Weil relations as the first tiny but general enough step in
the direction of the Langlands approach. It looks like Weil arrived at these relations by doing many
“numerical experiments”.

To see how revolutionary all this was at the time, note that when Hasse conjectured what is
essentially . . . .the . . . . .next. . . . .step,119 Weil himself . . .did. . . .not. . . . . . . .believe that Hasse conjectures can keep water.120

“Purification” and Motives

The operation we did on Step ( .b) on p. . . .46 looks very innocuous: all we do is subtracting 1. In fact,
an explanation of why this leads to appearance of fractal properties is related to very deep branch of
mathematics of today, . . . . . . . . . . . . . . . . . . . .Theory of Motives. It is a very hot and not yet fully settled down theme in
contemporary math.

Essentially, “the motive of zeros of our polynomial” consists of two independent “pure” parts.
Each “pure” part has it own symmetries (maybe “hidden”), but these symmetries are so different that
when they are “overlapped” on top of each other, no recognizable pattern remains. (This is similar
to playing two very different pieces of music at the same time: if they are sufficiently dissimilar, no
theme would remain recognizable.)

This section turns out to be the most technical in this report.121 I did not find a way to make it
simpler; however, nothing else in this report depends on the explanations of this part, so feel free to
skip it altogether.

116The relations boil down to Npk+2 = aNpk + bNpk+1 , with (a, b) being (−1,−1), (1, 0), (−1, 2), (0, 1) and (0, 0) in
5 cases of Steps ( .c), ( .d). (If we do not know which case is applicable, then the Weil conjectures do not predict anything
better than “the merge” of these recursion relations Npk+6 = Npk+5 +Npk+4 −Npk+2 −Npk+1 +Npk .)

117Another difference: this connection goes in “the opposite direction” comparing to one with residues: an element
for smaller pk induces an element for larger pkm.

118Moreover, the real show-stopper is that these 3 arithmetics have “interesting sets of symmetries”—but these
symmetries are “not compatible”. This alone breaks any attempt to “match” solutions between these arithmetics—except
for the solutions which already exist mod p. (We discuss such symmetries in Footnote . . .152 on p. . .60.)119This probably happened before WWII. The simplest case of this conjecture was proven about 20 years
ago—essentially, together with the proof of . . . . . . . . .Fermat’s . . . . .Last. . . . . . . . . .Theorem.

120Later he changed his mind and confirmed the conjecture in a few cases—and now it is named “Hasse–Weil
conjecture”.

121Except for . . .our. . . . . . . . . . . . .calculations. . . . . .with . . . . . . . . . . .Eisenstein. . . . . . .series on p. . . .85.
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Remark 39: One way to explain what happens in Step ( .b):
There is a hierarchy of “difficulty” of sequences, and:

“Purification” means: “remove” from the given sequence any trace of “simpler” sequences.

Sequences simpler than degree=3 are sequences of degree 0, degree 1 and degree 2. Conclusion: in
our sequence Ñ res

n , we need to
• find “the traces” of “Ñ res

n for sequences of degree 2”,
• find “the traces” of “Ñ res

n for sequences of degree 1” (and degree 0), and
• subtract these traces from our sequence Ñ res

n .
Essentially, we want to write down our counts Ñ res

n related to a sequence of degree 3 as

Ñ res
n ≡ Tn + (Ñ res

n − Tn),

with Tn being a combination of counts related to sequences of degree 0, 1 or 2, and Ñ res
n − Tn “having

no similarity to counts Ñ res
n related to sequences of degree 0, 1, or 2”.

Remark 40: It turns out that it is easy to characterize sequences “having no similarity to counts
Ñ res
n related to sequences of degree 0, 1, 2”:

The average value of such a sequence on primes in any arithmetic progression is 0.

(We must ignore progressions containing just one prime. This happens when the step is not mutually
prime with the elements; otherwise the progression . . . . . . . .contains. . . . . . . . . .infinitely. . . . . . .many . . . . . . .primes.) In other words,
the sequence Ck is of this form if the average value of the sequence Cak+b restricted to prime values of
ak + b is 0 provided a > 0 and a and b are mutually prime.122

Moreover, putting Tn ≡ 1 in the formula above achieves the goal:

The average value of the sequence Ñ res
n on primes in any arithmetic progression is 1.

Indeed, numbers Tn ≡ 1 are counts of 0 modn s related to the sequence 1,2,3,. . . of degree 1. Indeed,
in residues modn the shortest period of this sequence has length n, and the count of 0 modn s in
this period is exactly Tn = 1. This leads to

There is no trace related to degree 2. The trace related to degree 1 is Tn ≡ 1.

Clearly, this immediately leads to the rule of Step (.b). As a result, the counts Ñ res
p = 0, 1, 3 at prime

indices p become −1, 0, and 2.

Remark 41: It is not that hard to explain the meaning of the rule in the red frame.
First of all, degree 0 leads to Ñ res

p = 0 for most of primes p—so we may forget about it.123 Note
that degree 1 leads to Ñ res

p = 1 for most of primes p.

122As usual, we needed to over-simplify a bit. In fact the framed rule describes not the dichotomy “the degree is 0,
1 or 2” vs. “the rest”, but a related dichotomy abelian (or even cyclic; it happens for degree up to 2, as well as “ . .in
. . . . .some. . . . . .cases. . .of . . . . . . .higher. . . . . . . .degree”) vs. purely-nonabelian (which may be restated as “covered by the . . . . . .Class . . . . . .Field . . . . . . . .Theory for
Q” vs. “needing the Langlands program”; compare with . . .the . . . . . . . .section on p. . . .66). However, since anything of degree 0, 1,
or 2 lives in the “abelian” realm, and we do not consider the abelian case of degree 3 (except for Remark . . .53 on p. . . .65),
this is enough for our purposes.

123On the other hand, tuning an equation of degree 0 (such as an equation 35 = 0 in an unknown x—which does
not enter the equation!) allows us to get “exceptional counts of solutions” in a prescribed list of prime (such as p = 5, 7
in the example above: any x is a solution modulo such p). This shows that when “removing traces of degree 0” allows
to ignore a few “exceptional values” of p where the general approach gives “wrong answers” for the number of solutions.

https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
https://en.wikipedia.org/wiki/Cubic_field#Definition
https://en.wikipedia.org/wiki/Cubic_field#Definition
https://en.wikipedia.org/wiki/Class_field_theory#History


52 Appendix: More patterns, and additional pictorial examples

Next, recall the pattern we observed for “Ñ res
n for sequences a 2

n of degree 2”: it appears when we
write numbers in a suitable number of columns. Every column is an arithmetic progression with the
step equal to the conductor for a 2

n , and:

The value Ñ res
p on primes p in any such arithmetic progression is the same (for degree=2).

Moreover, one can show that this is “the whole pattern”: a similar average in other arithmetic
progressions is 0 unless the progression is related to the columns (which means: its step is not
mutually prime with the conductor). And: the same rule works for degrees 0 and 1.

Conclusion: to “purify”, all we need to do is to avoid the pattern in the box above. Note that any
finite sequence can be written as “a constant sequence” + “a sequence with average 0”, and these two
parts are “orthogonal” to each other. Although we deal with infinite sequences, a similar approach
still works—and this leads to the rule in the red frame.

Given a general sequence νn, how to “purify” it, making the average of νp on primes p in every
arithmetic progressions to be 0 after purification? It looks like for every arithmetic progressions we
need to subtract the “averaged” value in this progression.124

This may look like a hopeless task: progressions with different steps may overlap, and dealing with
such overlaps may lead to contradictions. Miraculously, this does not happen for Nn: the average in
every progression is the same: and is equal 1 (see the green frame above!).

Remark 42: To illustrate the miracles which must happen to have the “average over primes” in
all arithmetic progression to be the same, 1, note that the most interesting arithmetic progressions
related to our example above (“tetrahedral numbers + 2”) have step 971. Indeed, in Remark . .34 we
saw that the counts Ñ res

p for prime p are controlled by our green/red colors, and by the position on
971-wheel. As the table in this remark shows, in some of these progressions only the count 1 appears,
while in the others only the counts 0 and 3 appear.125

Obviously, the average of Ñ res
p for prime p in the former kind of the progression is 1. It is very

natural to expect that the average for the latter kind is going to be different (such as 1.5)—but this
does not happen!

This was discovered about 150 years ago— it was the first precursor of the Langlands Program (a
very remote precursor!). This is called . . . . . . . . . . . . . . .Chebotaryov’s . . . . . . . .density. . . . . . . . . .theorem.126 In our case, it says that
Ñ res
p = 1 for 1

2 of primes p (this matches127 our claim that 1
2 of 970 arithmetic progressions have “the

second color red” in the table of Remark . .34), while Ñ res
p = 0 for 1

3 of primes p and Ñ res
p = 3 for 1

6 of
primes p.

So under the condition “the second color is green” in the table of Remark . .34,
2
3 of the primes are

going to have Ñ res
p = 0, and the remaining 1

3 of them have Ñ res
p = 3. Obviously, this leads to the

average being 1.

Remark 43: The discussion above leads to another question: what happens inside one of 970
arithmetic progressions of the preceding remark? (We excluded the dull one, where the only prime is
971.) Half of them are not very interesting: only Ñ res

p = 1 appears there (for prime p)— so the all the
primes there are green. In the other half, primes are red and green matching Ñ res

p = 0 and Ñ res
p = 3.

124This is the limit of averages on longer and longer parts of this sequence.
125Actually, out of 971 possible progressions with this step, one does not have infinitely many prime numbers (just

one prime 971). Out of 970 remaining progressions, half are of one kind, half of the other.
126In fact, for our question, . . .the. . . . . . . .earlier . . . . . . . .version . . . . . . . . . . .discovered. . .by. . . . . . . . . . . .Frobenius is enough.
127Well, this also involves the . . . . . . . . .Dirichlet. . . . . . . . .theorem. . . .on . . . . . . . .primes . .in. . . . . . . . . . . .arithmetic . . . . . . . . . . . . . .progressions.
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For example, in the progression starting with 1 (so it goes 1, 972, 1,943, 2,914, 3,885, 4,856, . . . )
the sequence of colors is

◦◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦◦◦•◦◦◦◦◦•◦◦◦•◦◦◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦• . . .

Here ◦ stand for non-prime numbers. Removing even numbers (which are always ◦) allows to see more
colored circles (note that the step now is 2× 971, so this progression goes as 1, 1,943, 3,885, . . . ):

◦◦◦•◦◦◦◦◦◦•◦◦•◦•◦◦◦•◦◦◦◦◦◦◦◦•◦◦◦◦◦•◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦◦◦•◦◦◦◦◦◦•◦•◦◦•◦◦•◦◦◦•◦◦◦◦•◦◦•◦. . .

To see yet more colored circles, remove all ◦ s, leaving just the prime numbers:

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• . . .

This did not help: still no pattern is visible!128

Conclusion: inside this arithmetic progression there is no observable pattern.

On the other hand, there are transliterations rules similar to those discussed above which are tuned
to these sequences of colors •, • and ◦. They translate them to numbers Mn such that their Fourier
transform G(t) := ∑

Mneimt also has fractal properties. (However, the fractality law for G(t) is a bit
more complicated than what we considered above: it has extra factors of the form exp i(at+ b/t).)

Conclusion: to expose the patterns in colors in these arithmetic progressions one needs to go
through the steps very similar to those for our initial sequence of red/green colors. There is no
simplification due to restriction of attention to such progressions!

Fractional-linear transformations

In Section . . . . .“The . . . .toy. . . . . . . . . .fractality. . . . .law . . .as . .a. . . . . . . . . . . . .symmetry” (see p. . .30) we constructed an example of a
2π-periodic function g(t) which has a horizon-self-similar point t = 0.129 As we saw, the non-smooth
points of any such function G(t) are images of t =∞ under chains of transformations130 t′ = −1/γt
and translations t′ = t± 2π (with a certain fixed γ; what we used was γ = ±2/π—the choice of the
sign is irrelevant since our seed function g0 was odd).

Remark 44: In fact, chains of transformations t′ = −1/γ0t and t′ = t ± 2π may be controlled to
some extent: these chains may result only in transformations of a very specific form. Indeed, both
transformations can be written as t′ = αt+β

γt+δ , one with α0 = δ0 = 0, β0 = −1, the other with
α1 = δ1 = 1, β1 = 2π, γ1 = 0. Since composition of such (. . . . . . . . . . . . . . . . .fractional-linear) transformations is again a
fractional-linear transformation, any chain of toy-transforms and shifts results in a fractional-linear
transforms of t.

128. . . except the approximate pattern we mentioned above: the ratio of green:red is close to 1:2. Indeed, the
observed value is 26:57—which is reasonably close to 1:2 for a sample of size less than 100. If we consider longer and
longer chunks of our sequence, the ratio would go closer and closer to 1:2.

129Note that for self-similarity, we needed to use the imaginary unit i as a scaling factor. If we want to have real
scaling factors, then what we constructed is a pair of functions ReG(t) and ImG(t) such that near t = 0, ReG(t) is
horizon-similar to − ImG(t), and ImG(t) is horizon-similar to ReG(t).

130The −-sign is very convenient. With it, the transformation is (locally) increasing; moreover, it enables the
relation αδ − βγ = 1 used below. (See also Footnote . . .174 on p. . .69.)

https://en.wikipedia.org/wiki/Linear_fractional_transformation
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Moreover, if 4π2γ0 is an integer,131 then using the new variable T = t/2π, these fractional-linear
transformations are going to have integer coefficients α, β, γ, δ.132

Remark 45: It turns out that if π2γ0 > 1 (as in the example in the section on p. . . .30, where γ0 = 2/π,
and as in all examples related to divisors of polynomial sequences), then there are other restrictions.
The preceding remark restricts the transformation obtained by chaining both qualitatively (they
should be fractional-linear) and quantitatively (see footnotes: there are divisibility properties related
to the conductor c). However, there is another metric as well: look at how far the image of the point
t = 0 (if it exists) can go from multiples of 2π.

Indeed, if a point near 0 is inside |t| < π − ε, then its non-trivial translations by multiples of 2π
are in |t| > π + ε > 1/πγ + ε, hence applying t′ = 1/γt to these points sends them again into |t| < π− ε
(with an appropriate choice of ε). (Compare with what we do on p. . .33.) Hence starting with t = 0,
shifting by multiples of 2π, and applying t′ = 1/γt (and combining these transformations in an arbitary
order) would never get the point further than π − ε from a multiple of 2π. Hence there is going to be
a zone (π − ε, π + ε) which the image of 0 cannot visit!135

In fact, we already saw this effect in pictures of the section on p. . . .30, when such a “prohibited
zone” appeared as a “smooth” zone in the graph near t = π. In the following section (on p. . .32) we
saw that going from a “family” to “super-family” to “super-duper-family” etc. could never extend
these sets close to the boundary of [−π, π].

The moment we know one such “prohibited” zone appears, one can proliferate this zone along R
using the transformations above. This puts a “copy” of such a zone between any 2 given “possible
images of 0”, hence these copies “appear everywhere”: near any point of R, there is such a “prohibited
zone”. In fact, “possible images of 0” form what is called a “. . . . . . . .meagre” subset . .of . . . . . . . . .measure. .0.

Prime conductors and “Tetrahedral + 2” again

Recall that when discussing the graph for F (−1)(t) for the polynomial “Tetrahedral numbers+2”, we
eventually abandoned plotting this function near horizon-self-similar points: it is not computationally
feasible. So we could not fully demonstrate that our description of the visual Langlands pattern

131This is what happens in examples related to divisors of numbers in polynomial sequences, when γ0 = c/4π2 with
c being the conductor.

132To understand the example graphs below, it is crucial that one can say more. Call a fractional-linear transforma-
tion T ′ = αT+β

γT+δ with integer coefficients, with αδ−βγ = 1 and with c|γ “. . . . . . . . . . . .congruence”, and with extra conditions α ≡c 1
(then automatically δ ≡c α) “strongly-congruence”. Then any transformation τ we may encounter in chains as above is
either strongly congruence, or τ ◦ (−1/cT) is strongly congruence. (Here c = 4π2γ̃0, here the base transformation is
written as t′ = −1/̃γt.)

Actually, it is very important for us that the strongly congruence transformations form a “sufficiently small” collection
of fractional-linear transformations: this makes the tesselations of . . .the. . . . . . . .section on p. . .71 possible. The Lobachevsky-
rotations sending one “tile” of tesselation to another one coincide with the strongly-congruence transformations.133

The Langlands program predicts that any congruence transformation gives a fractal symmetry of F (t) (possibly
changing the sign of oscillations). About half of them (including all strongly-congruence) preserve the sign as well
(compare with Footnote . . .137).

133Moreover, for c > 4 the arguments in Remark . . .45 on p. . .54 show that just a tiny part of the collection of
strongly-congruence transformations may be formed by chaining T ′ = −1/cT and T ′ = T ± 1.134

Indeed, the latter collection was already discussed in Remark . . .24 on p. . .34; as we saw, the corresponding horizon-
self-similar points avoid certain intervals. (There is no such avoidance when one considers all strongly-congruence
transforms; see Footnote . . .135. We discuss such an example in Remark . .46 on p. . .56.)

With the pictures of . . . .the . . . . . . . .section on p. . .71 one will be able to see that chaining T ′ = −1/cT and T ′ = T ±1 corresponds
to “walking” between the gray disks through the tangency points. Moreover, since the green lines separate these gray
disks, from a particular gray disk one cannot walk to all the gray disks. (See Footnote . . .189 on p. . .72.)134Note that the transform T ′ = −1/cT is not a strongly-congruence (and not even congruence!). However,
combinations as above involving an even number of these transforms are going to be strongly-congruence.

135Compare with strongly congruence transformations: it is not hard to see that for any c, one can make the image
β/δ of 0 to be arbitrarily close to any given number.

https://en.wikipedia.org/wiki/Meagre_set
https://en.wikipedia.org/wiki/Null_set
https://en.wikipedia.org/wiki/Congruence_subgroup
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works for this function. (We needed to switch to a polynomial 6 × Tetrahedral + 1 with a much
smaller conductor to do so.) Recall that this description (. . . . . .stated on p. . .28 before Remark . .21) can be
summarized as:

Near every t there is a number 2πR/S which is a horizon-self-similar point for F (t).

(Recall that the “actual” transform for F (t) . . . . . . . .implies “the honest transform for antiderivative” for
F (−1)(t); see p. . .29.)

However, the conductor c = 997 for “Tetrahedral + 2” is a prime number. It turns out that for
prime conductors, there is a very simple and powerful generalization of this pattern. It is especially
strong if the . . . . . . . . . . . . .discriminant d is positive (in other words: if the polynomial has 3 real roots; the “Maass
case” of Remark . .12 on p. . .23):

If c is prime and d > 0, then every number 2πR/S is horizon-self-similar.

For negative discriminant (the “modular form case”), the situation can be described as

If c is prime and d < 0, then every number 2πR/S is horizon-similar to either F (t), or ImFC(t).

We already saw indications of this in our plots of F (−1)(t) near t = 0: these plots were fractal
transforms of ImF

(−1)
C (t). Now we know that something similar is going to happen for every rational

point: F (−1)(t+ 2πR/S) is going to be (up to additive constant) similar to136 the toy transform either
of a shift F (−1)(t+ C2πR/S) of F (−1)(t), or to the toy transform of a shift of ImF

(−1)
C (t).

Going back to the case of the prime conductor 997 with d < 0: while reaching horizon-self-similar
points requires zooming about c2 times, many points which are “horizon-similar to the imaginary

136The first case happens when c divides S. Note how the transform x 7→ −1/|c|x exchanges this subset of Q and
its complement.

(If c is not prime, this happens when c divides S, while the other case happens when S is mutually prime with c.
In particular, there are yet other cases!)
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part” may require much smaller magnification. For example, here is what happens for R/S = 1/2:

0.067337

-0.067236
3.1376 3.1456

Comparing to . . .the. . . . . . .graph. . . . .near. . . . . . .x = 0 on p.. . .37, one can observe 3 differences:
• The “oscillating zone” is half as wide for the new graph.
• The sign of oscillations is inverted.137 Indeed, focus on the right half of the graphs; the
minima on the new graph match in shape the maxima on the old graph.
• To match these two graphs, one needs a non-linear “transform of the variable t”. Indeed, the
outermost of the minima on the new graph is about 3 times as far from the “center” as the
next minimum (and the next such ratio is about 12/3). For the maxima on the old graph, the
corresponding ratio is about 2 (and the next one is about 1½).138

Remark 46: We want to stress that all the preceding examples of graphs of F (−1)(t) but . . . .one on p. . . .44
and the last one were for t ≈ t0 with t0 for which the horizon-similarity could be explained by chaining
the transformation T ′ = 1/cT of Hecke’s functional equation139 and the translations by multiples of 2π
(which preserve F (t) by definition). This means that horizon-similarity at these points t0 could have
been discovered during the half-a-century between Hecke’s discovery and the rise of the Langlands
program.140

137It turns out that this is due to 2 mod 971 being not a square. With . . . . . . . . . .Legendre . . . . . . . .symbol from p. . . . .113,
( 2
−971

)
=(2

3
)

= −1.
138This non-linear transformation is fractional-linear (see p.. . .53): T 7→ 1/2 + T/2(971T + 2); here T = t/2π.
The reader may find it interesting that composition with non-linear transformation T 7→ T/2(971T + 2) sends an odd

function F (−1)(t) to an odd function F (−1)(t+ π). This cannot happen for an arbitrary odd periodic function; this
reflects extra “fractal” symmetries of F .

139See . . .the . . . . . . . .section on p.. . .66 for details.
140I do not know whether such observations were actually made during this period.
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However, the last graph illustrates a phenomenon which (as far as I know) cannot be explained
by Hecke’s result alone.141 (In fact, the majority of points 2πR/S are of this type; see Footnote . . . .133
on p. . .54.)

The honest fractality law for F (−1)(t)

. . . . . .Above, on p. . .36, we claimed that the fractality law for the antiderivative F (−1)(t) is “almost
visually indistinguishable” from the toy fractality law. In particular, F (−1)(t) is very similar to a toy
transform of a suitable function.

Example: (matching . . . .the . . . . . . . . . . .discussion from p. . .39): the red curve is the plot of the toy transform of
F (−1)(t), the blue curve plots ImF

(−1)
C (t) (for conductor 23),142 and violet plots the difference:143

1.4438

-1.5583
-1 9

The graph for difference is scaled up 10 times; it is, obviously, completely “negligible”. Moreover, it is
much smoother than the functions we subtract. Obviously, without plotting the red and blue graphs
“on top of each other” there would be no way to tell them apart.
Calculation: Assume that F and F̃ are related by the “actual” fractality law, so F (t) = F̃ (1/t)/t. Integrate
by part, denoting the antiderivatives of F and F̃ by g and g̃ (so F (t) = g′(t) and F̃ (t) = g̃′(t)). Then g(t) =

141We need to repeat: since this is the case of negative discriminant, it is covered by the Class Field Theory for
imaginary quadratic fields. So this particular case of horizon-similarity could have became known about a decade after
Hecke (but it is doubtful people noticed it before 50s). For more details, see . . .the . . . . . . . .section on p. . . .66.

142Compare with Footnote . . .90.
143The “thickness” of the graph of difference is a result of numerical errors due to ignoring the higher Fourier

coefficients. It decreases roughly as the inverse of the number of terms to sum. The actual graph is quite smooth—but
even 16,000,000 Fourier coefficients are not enough to demonstrate this! (Recall that this is the simplest case, with very
small conductor, 23. To do a similar graph with higher precision, or a larger conductor would require prohibitive time
for computation, of order of magnitude of weeks—or I would need to add features like FFT to the software I use.)

On this graph one can also recognize that F (−1)(t) is proportional to the derivative of the “negligible” term—as it
should be, due to “integration by parts” (see below).
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−tg̃(1/t) + Rest(t) (here Rest′(t) = g̃(1/t)). These three terms are exactly what is plotted above. These relations
explain the observations above.144

Conclusion: the fractality law for F (−1)(t) has two terms—and the principal one is exactly the
“toy fractality law”. The remaining term is “negligible”: on our graph, its contribution cannot be
seen—with one exception.

Indeed, all that the “negligible” term does is “moving” the features of the graph up and down a
bit. The reason for this is that this term is much more smooth than the principal term. Essentially,
comparing to wild variations of values of F (−1)(t) in any small region in t, this extra term is practically
constant. Hence adding this term would just move the graph up or down.

Remark 47: Of course, moving the features up or down too far may make the “visual pattern of toy
transform” harder to recognize. Compare with . . .the . . . . . .small. . . . .plot on p. . .43.

Plots for degree 2

A very natural question to ask is: what happens if we make a plot following the same recipe as
before, but starting with a polynomial of degree 2 instead of degree 3? It turns out that . . . .the . . . .list . . .of
. . . . . . .recipes for numbers Npk (see Item ( .c) on p. . .46) should be augmented: while the first recipe below was
relevant for degree 3 too, the other two are new.

Now the modified recipes are: for every odd prime p which is not “exceptional”, choose one of the
following sequences:

• 1, 1, 1, 1, 1, 1, . . . (1-periodic; for green primes);
• −1, 1, −1, 1, −1, . . . (2-periodic; for red primes).

Assign these values to Npk . (Note that the first number matches the value for Np given by recipe ( .b)
on p. . .46.)

For “exceptional” primes (divisors of the discriminant, of the denominators of coefficients, of the
leading coefficient, and possibly for p = 2) there is an additional possible choice:

• 0, 0, 0, 0, 0, 0, . . . (1-periodic)
(we postpone the recipe how to check which of 3 choices should be used until . . . .the . . . . .next. . . . . . . .section).

1.8147

-1.7902
-0.7 7

Above, we wanted to write the recipe in the
form similar to our recipe for degree 3 (see (.c), (. .d)
on p. . .46). However, observing these 3 sequences,
one can see that there is a remarkable shortcut
(not possible in degree 3): Npk = Nk

p . In particu-
lar, the sequence Nm is . . . . . . . .“totally . . . . . . . . . . . . . . . .multiplicative”:
Nab = NaNb.

Moreover, using the Legendre symbol
from p.. . . .113, Quadratic Reciprocity . . . . . .shows . . . . .that
Np =

(
p
D

)
, with D being the discriminant of the

polynomial. By . . . . . . . . . . . . . . . . . . . .top-multiplicativity of Legendre
symbol (see p. . . .113), Nm =

(
m
D

)
for every m. Con-

clusion: the sequence Nm is D-periodic.

144A very observant reader would note that with the formula above, Rest(t) would be very singular at 0. To avoid
this singularity, we cheated and shifted the argument t in the graph by 2π.

https://en.wikipedia.org/wiki/Completely_multiplicative_function
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This immediately implies that F (t) is a sum of δ-functions (with certain coefficients) at points
proportional to 2π/D. Unless D is a square, the integral over a period vanishes, and F (−1)(t) becomes
a periodic step function. The plot above is for the polynomial 4n2 + 2n− 3 with D = 13.145

Conclusion: in the case of degree 2, the pattern of colors is . . . . . . . . .“already . . . . . . . . . .exposed” in our sequence of
colors (see p. .7; the corresponding symmetries are . . .the. . . . . . . . . . . .periodicity. . . . .and . . . . . . .mirror. . . . . . . . . . .symmetry when colors
are restricted to prime numbers; see the section on p. . .14). Taking the Fourier transform converts this
pattern not into symmetries of the graph (as in the case of degree 3), but into the fact that the F (t)
is a sum of δ-functions. Compare this with . . . .our . . . . . . . . . . .discussion. . .of . . . . . . . .motives on p. . .50: every “flavor” of a pure
motive needs a specific approach to expose its pattern of (hidden) symmetries.146 Above, we applied
an approach which works with one type of motive to a motive “of wrong type”—and the result does
not exhibit any symmetry. (And, as we said before, applying such approaches to “a mix” of pure
motives leads to yet messier results. We consider two such examples in . . .the. . . . . .next . . . .but. . . . .one . . . . . . . .section.)

Denominators in Weil Conjectures

In ( .c), ( .d) on p. . .46 and in the preceeding section, we saw 6 different cases for the sequences Npk :

Sequence How to extend Series Or d

−1, 0, 1, −1, 0, 1, . . . 3-periodic 1
1 + u+ u2

1− u
1− u3 3

0, 1, 0, 1, 0, 1, . . . 2-periodic 1
1− u2

1− u
(1− u)(1− u2) 1, 2

2, 3, 4, 5, 6, 7, . . . a linear function 1
(1− u)2

1− u
(1− u)3 1, 1, 1

−1, 1, −1, 1, −1, . . . 2-periodic 1
1 + u

1− u
1− u2 2

1, 1, 1, 1, 1, 1, 1, . . . 1-periodic 1
1− u

1− u
(1− u)2 1, 1

0, 0, 0, 0, 0, 0, 0, . . . 1-periodic 1
1

1− u
1− u 1

What is common between these sequences is that if one adds 1 in front, they are Taylor coefficients
at 0 of very simple rational functions (indicated in the third column). In the fourth column, we
rewrite them with the numerator 1− u (responsible for “purification”),147 and the denominator being
a product of terms 1− ud, one for each irreducible factor of the reduction mod p of the polynomial

145Here to highlight the relevant features of the graph, we needed to use only 1,000 Fourier coefficients, instead of
millions used for other graphs. However, because of this, the “. . . . . .Gibbs. . . . . . . . . . . . . .phenomenon” takes sufficiently wide zones around
the jumps, and is very visible even without magnification. (Compare with Footnote . . .157 on p. . .63.)146There is a very nice (and more detailed) summary of relevant issues in . . .the . . . . . . . . . . . . .discussion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .What is the Langlands Programme? . . .in . . . . . . . . . . . .n-Cat Café.

147This numerator is going to be always eventually cancelled, since all the possible factors of denominators discussed
below are divisible by 1− u.

https://en.wikipedia.org/wiki/Gibbs_phenomenon
https://golem.ph.utexas.edu/category/2010/08/what_is_the_langlands_programm.html#c034451
https://golem.ph.utexas.edu/category/2010/08/what_is_the_langlands_programm.html#c034451
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in question (listed on the right).148 Here d is the degree of the factor. Note that we ignore the
multiplicity: if a certain factor appears many times, we still count it once.

For example, for polynomials of degree 3 having no roots mod p means that the polynomial is
irreducible mod p; hence for the red primes, the denominator is 1− u3, leading to the first sequence.
In the same situation, having only one root mod p (with multiplicity 1) leads to (1−u)(1−u2), giving
the second case; the third case corresponds to having 3 roots mod p (leading to (1− u)3). The fourth
case matches 1− u2 (irreducible quadratic polynomial). The fourth case corresponds to (1− u)2; this
is either polynomial of degree 2 with 2 roots, or a polynomial of degree 3 with a double root mod p (it
automatically has another simple root). The remaining case matches 1 − u, which means a single
multiple root (of multiplicity equal to the degree).

Note that for a sequence, to have a linear recurrent relation (with constant coefficients) is equivalent
to being Taylor coefficients of a rational function. So what we described above is a significant refinement
of Remark . .37 on p. . .49: we represent this rational function as a product of very simple terms.150

(The general case of Weil conjectures characterizes possible factors of the corresponding rational
function in more complicated situations, when the polynomial equations depend on several variables,
and there may be more than 1 equation.)

Remark 48: Returning back to the case of one polynomial of one variable: what is crucial for the
proof of fractality of F (t) is that for non-exceptional primes, the degree of the denominator is equal
to the degree of polynomial. Moreover, the particular factors appearing in the denominator match a
particular symmetry type of the (complex) roots of the polynomial.152

148For an “exceptional” prime p, one may need to “improve” the polynomial; one can make a variable change
and/or multiply the polynomial by a constant in Q. The aim is for the “improved” version to have as many distinct
roots mod p as possible.

For example, P (n) := n(n − p) − p3 has a double root n = 0 mod p. Plugging in n = pm and considering
P/p2 = m(m − 1) “splits” this double root mod p into two m = 0, 1 mod p. Note that this would not work for
n(n− p)− p: one cannot split this double root. (To be honest, the procedure for “improving” may be more involved
than what is suggested above: for example, splitting different multiple roots may require different transformations: try
to do the same for P (n)P (n− 1). I’m not even sure that nowadays it is known how to proceed in the case of general
systems of polynomial equations!149)

149Judging by . . . .the . . . . . . . . . . .answer . . . . . .of . . . . . . . . . . . . .Matthew. . . . . . . . . . . . .Emerton. . . . . . .on . . . . . . . . . . . . . . .2010-07-29. . . . . .in. . . . . . .the. . . . . . . . . . . . . . .discussion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Zeta Functions: Dedekind Versus Hasse-Weil. . . .in . . . . . . . . . . . . .n-Cat Café, with the approach of “point counting” we use in
these notes is not known how to deal with “exceptional” primes in the general case; the only known cases are when the
dimension of the set of solutions of our polynomial equations is 0 or 1 (and then the genus of a curve must be ≤ 1).
(At least in absense of . . . . . . . . .Hironaka. . . . . . . . . . . .resolution in positive characteristic.)

As a substitution for these missing definitions, the current approach needs to go through a certain . . . . . . . . . . . .“arithmetic
. . . . . . .theory . .of. . . . . . . . . . . . . . .cohomology”. See also . . . .the . . . . . . . .answer . .of. . . . . . . . . . . .2010-08-14, and . . .the . . . . . . .article posted by Minhyong Kim.

150To further demystify the denominator above, note that it is a characteristic polynomial of a certain permutation
matrix.151 The powers d appearing above form the . . . . . . . . . . . . . . . . . . . .cycle decomposition of this permutation. Moreover, one can
recognize these cycles as . . . . . .orbits of this permutation.

151. . . which is a matrix with exactly one non-zero entry (equal to 1) in every row and column.
152Note that the non-real complex roots come in complex-conjugate pairs; this gives one (very trivial!) symmetry

of the roots. What Galois discovered is that it makes sense to define other symmetries as well—nowadays we call this
. . . . . . . . . . . . .Galois group. Every such a symmetry permutes roots in a certain way.

The relation to our denominators is that for every non-exceptional prime p, there is a particular Galois per-
mutation of the roots whose permutation matrix is exactly as described in Footnote . . .150. This symmetry is named
. . . . . . . . . . . . . . . . . . . . . . .the Frobenius element for p (well, we cheated a bit: this symmetry is defined just “up to rotating it by other symmetries”;
in other words, it is just a . . . . . . . . . . . . . . . .conjugacy class of a symmetry).153

153The situation is similar (but not exactly the same) for many unknowns (and, maybe, many equations). The
reason for the differences is that in our case two different complex roots “cannot be equal mod p” ( . . . . . . . . .whatever. . . . .this . . . . . . .means)
for p� 0.

https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html#c034132
https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html#c034132
https://en.wikipedia.org/wiki/Resolution_of_singularities
https://en.wikipedia.org/wiki/Weil_cohomology_theory
https://en.wikipedia.org/wiki/Weil_cohomology_theory
https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html#c034304
https://www.ucl.ac.uk/~ucahmki/ihes3.pdf
https://en.wikipedia.org/wiki/Cyclic_permutation
https://en.wikipedia.org/wiki/Group_action_(mathematics)#Orbits_and_stabilizers
https://en.wikipedia.org/wiki/Splitting_field#Definition
https://en.wikipedia.org/wiki/Frobenius_endomorphism#Frobenius_for_global_fields
https://en.wikipedia.org/wiki/Conjugacy_class
https://en.wikipedia.org/wiki/Algebraic_closure#Examples
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Maass fractality laws: decomposable and abelian cases

As . . .we . . . . . . . . . .discussed. . .it on p. . .41, the polynomials “M × tetrahedral numbers+ 1” with a whole number
M ≥ 16 have a positive discriminant, so may be used as “true” examples of the Langlands program
(as opposed to the examples with negative discriminant, for which the fractal properties were already
known before Langlands . . . .due . . .to . . . .the. . . . . .Class. . . . . .Field. . . . . . . . .Theory; see p.. . .66).

It turns out that for M = 16 the . . . . . . . . . . . . .discriminant is 26 × 13, and experiments with the graph show
that the conductor c happens to be very small, 13. This is much smaller than . . . . . . . .c = 148 . . . . . . . . . . . .considered
on p. . .41. To see why we needed to deal with the harder case (one with larger conductor) observe
how the graph of F (−1) behaves in this case; the plot of F (−1)(t) is in red, and the corresponding
imaginary part ImF

(−1)
C (t) is in violet:

2

-2
-1 9

Observe the principal properties of the violet graph:
• The “tips” of the violet graph are cut-off. This is due to the imaginary part having “logarithmic
singularities” at all points 2πR/S. The widest of these go outside the y-limits of our plot.
• The violet graph has a lot of “spikes”; this is due to the same singularities. In fact, if we
could increase the number of sample points for our graph by many orders of magnitude,154

one could see that these spikes actually go up or down to infinity!
• Conclusion: the low resolution of this plot hides another pathology: the function ImF

(−1)
C (t)

is unbounded near these points. Since this points are dense, this means that the function is
unbounded in every small interval—which means that it is impossible to plot it honestly!155

154A singularity y = 1/n log t becomes exponentially more narrow when n→∞. The corresponding jumps on the
red graph are visible for n up to hundreds. One would need astronomical number of sample points to see similar number
of spikes on the violet graph!

155While the “spikes” on the graph of ImF
(−1)
C (t) happen for t in an everywhere dense subset of R, their projections

to the x-axis happen to be a “ . . . . . . .meagre subset . .of. . . . . . . . . .measure . .0”, meaning that for a “random” value of t (such that t/π
does not have “pathogologically good” approximations by rational numbers) ImF

(−1)
C (t) is close to the violet graph.

(To have a plot for every t, one needs to take an extra antiderivative: ImF
(−2)
C (t) has a honest plot.)

https://en.wikipedia.org/wiki/Meagre_set
https://en.wikipedia.org/wiki/Null_set
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For the red graph:
• The red graph has a jump at every point 2πR/S.
• Moreover, on the graph above and its fragments showsn below suggest that all the variation
of the function Φ(t) := F (−1)(t) “happens via jumps”. In other words, Φ(t− 0)− Φ(t0 + 0) is
the sum of jumps of Φ between t and t0 (if t > t0).156

• On the right of every jump (say, for t > t0), the red graph behaves as a . . . . . . . . . .Lipschitz . . . . . . . . .function:
|Φ(t)− Φ(t0 + 0)| ≤ C · (t− t0). (Likewise on the left.)

Recall what we saw . . .for . . . . . . . . .M = 24 (on p. . .41): what was happening near 0 on the red graph was
visually indistinguishable from the toy transform of the same graph. Now, near t = 0 the graph jumps
from about −1.04 to about 1.04, then follows the “toy transform” pattern:

1.6061

0
0 0.7

With a jump at t = 0 = 2π0/1 of J ≈ 2.08, inspection of other jumps shows that the magnitude
of the jump at 2πR/S is J/S; moreover, the direction of the jump depends only on J mod 13; one
can recognize that the jump has the same sign as in S6 ≡13 ±1 (this is the Legendre symbol

(
S
13

)
from p. . . . .113). All this works for 13 - S.

156One should be extremely careful with statements like this, since this sum is only . . . . . . . . . . . . .conditionally. . . . . . . . . . . .converging. There
is a way to overcome this (see Footnote . . . .241 on p. . .88). However, the result is strikingly unexpected: the sum of jumps is
twice the variation Φ(t)− Φ(t0) of the function!

In short: a few paragraphs below, we break jumps into two distinct types, depending on whether 13 divides Q
for 2πP/Q. It turns out that if one runs the sum above over only one type of jumps, this gives a correct answer! (In
particular, this sum does not depend on which of two types we choose. . . ) In other words: if one “forces” the correct
jumps at one type of the points 2πP/Q, the correct jumps at the other type of the points would be “. . . . . . . . . . . . . . .spontaneously
. . . . . . . . . .generated”.

We know no heuristic which would explain this. . . . (This is an example of a situation when having a proof— in the
section on p. . .85—does not lead to more understanding of what happens.)

https://en.wikipedia.org/wiki/Lipschitz_continuity
https://en.wikipedia.org/wiki/Conditional_convergence
https://en.wikipedia.org/wiki/Spontaneous_generation
https://en.wikipedia.org/wiki/Spontaneous_generation
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The jumps at the remaining points 2πR/S with 13|S behave differently: the magnitude of the jump
is
√

13J/S; the sign of the jump coincides with
(
R
13

)
.

For example, zoom in a lot157 near t = 2π/13 ≈ 0.48332:
1.5155

0.663
0.44032 0.52632

The jump is by about 0.577 ≈ 2.08/
√

13, as predicted above.
As in the case c = 148, the shape of “one oscillation” in the pattern of oscillations near the points

of jump matches the shape of the graph of one period (compare with the first graph of this section).
In this way, the shape behaves very similar to the shapes in horizon-self-similar points. However, the
jumps themselves break horizon-similarity completely (we discuss how to fix it in Remark . . .52 on p. . .65).

How to explain the difference between what we see here (for M = 16) and what we saw . . .for . . . . . . . . .M = 24
(on p. . . .41)? The reason is very simple: the polynomial “16× tetrahedral numbers + 1” vanishes at the
point ½. In other words, 8x(x2 − 1) + 3 = (2x− 1)(4x2 + 2x− 3). So the zeros of this polynomial
(including residues modn at which the polynomial is divisible by n) break into two types: the zeros
of 2x− 1 and zeros of 4x2 + 2x− 3. Note that 2x− 1 has zeros modulo any odd number n (at n+ 1/2).
Therefore in the sequence of red/green colors (. .as. . . . . . .those . . . . . . .related. . .to. . . . . . . . . . . . . . . . . . . . . . . . . . . . .“tetrahedral numbers + 2”, on p. . .17)
the color of primes p ≥ 3 is going to be always green. Moreover, the number of solutions mod p (used
in the section on p. . .45) is one more158 than the number of solutions for 4x2 + 2x− 3 = 0.

In the language of the section on p. . .50 “the corresponding motive is not pure”—and the patterns
corresponding to the factors are “overlayed on top of each other”, contaminating these patterns.

157The “overshoots” on the jump(s) are examples of a phenomenon explained in the middle of 19th century: the
“ . . . . . .Gibbs . . . . . . . . . . . . . .phenomenon”: they are due to sharp cut-offs in the low-pass filtering we use. Since we sum up millions of
Fourier terms, these overshoots are very narrow (recall that the height of Gibbs’ oscillations does not depend much on
the number of terms, but the width does!), so the sample points for our plotting program miss the regions of these
overshoots unless we use very high magnification.

158There is no collision between the solutions, since the value of 4x2 + 2x− 3 at x = 1/2 is −1—which has no prime
factors!

https://en.wikipedia.org/wiki/Gibbs_phenomenon
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In short: for a decomposable polynomial the sequence of red/green colors is a “mix” of colors for
the factors of polynomials. Likewise for numbers Nk from the section on p. . . .45: they are determined
by the corresponding numbers Nquadr

k for 4x2 + 2x− 3 = 0.
Remark 49: In fact, it can be shown that the values of F (−1)(t) “change only due to jumps”. (In
other words, F (t) is a sum of δ-functions; or one can say that F (t) is “an . . . . . . . . . . .Eisenstein . . . . . .series”.)159 More
precisely, F (−1)(t− 0)− F (−1)(t0 + 0) equals the sum of jumps of F (−1) between t and t0 (if t > t0).

However (as we said in Footnote . . .156 on p. . .62), while the statement above is true, it is true in a
very non-expected way: the sum should be taken not over all the jumps, but over any one of “two
halves” of the set of jumps. Together with our description of the positions and heights of jumps, this
leads to a very explicit formula160 for F (−1)(t).
Remark 50: While decomposable polynomials are not covered by Langlands’ approach,162 it looks
like the graph above is still an exact fractal. And in fact, the transformation T 7→ −1/13T (here
T := t/2π) exchanges points of the first and the second type; moreover, after multiplication by

√
13

(and taking into account the law for . . . .how . . . . . . . . . . . .δ-functions. . . . . . . .change . . . . . . .under . . . . . . . . . . .coordinate. . . . . . . . . . .transform) one can see
that the formulas for jumps at the points of the first and the second type are also exchanged by this
transformation.163

Together with Remark . .49, this explains the fractality law “on any one particular side” of t = 0.
Moreover, the transformations T 7→ (aT + b)/(13cT + d) with ad− 13bc = 1 send points 2πR

S
to points

of the same type, and again, they are “compatible” (in the same sense as above) with the jumps of
F (−1) (up to the sign

(
a
13

)
). This shows that the corresponding fractal transformations do not change

the graph!
Conclusion: there are two descriptions of F (−1)(t) as a sum over jumps. The transformations

T 7→ (aT + b)/(13cT + d) with ad − 13bc = 1 are compatible with each one of these descriptions. The
transformation T 7→ −1/13T exchanges these two descriptions. Together, this shows that all points are
“one-sided horizon-similar”.
Remark 51: Note that Eisenstein series are direct analogues of Euler’s formulation of Quadratic
Reciprocity. Indeed, essentially Euler’s formulation claims that the corresponding numbers Nquadr

k

form a periodic sequence.164 In terms of F (t), this means that it is a sum of δ-functions, and in terms
of F (−1)(t), this means that it is a locally-constant function. In other words: the variation of F (−1)(t)
is described as a sum of (a finite number of) jumps (at points 2πR/S with certain denominators
S—and, in fact, the magnitude of the jumps is proportional to the Legendre symbol

(
R
c

)
. Compare

with the graph on p. . .58).
For the Eisenstein series for (2x− 1)(4x2 + 2x− 3) above, the only thing which changes is that we

allow jumps with any denominator S with 13|S (instead of S = 13 for 4x2 + 2x− 3).

159As we said, the graphs suggest this. On the other hand, it is probably too naive to rely on visual appearance in
detection of Eisenstein series. Observe that adding a term with a continuous F (−1)(t) would not influence “the general
visual appearence” of the graph: the contribution of this term would be lost in all the “fractal noise” of the jumps in
the graph.

160To do this, one needs to rearrange this sum smartly, since it is obviously . . .not. . . . . . . . . . . .absolutely . . . . . . . . . . . .convergent; we discuss
this in the section on p. . . .85. After this, we can describe F (−1)(t) as a certain infinite summation over jumps which:

• Converges “as a . . . . . . . . . . . .generalized. . . . . . . . .function”.
• Converges absolutely for all t except for “very rare pathological values” of t.161

Mathematically, such objects are described using . . . . . . . . . . . . . . . . . .modular symbols.
162The functions F (t) predicted by the Langlands program are “ . . . .cusp. . . . . .form”—which are, in a certain very precise

sense, “functions ‘opposite’ to Eisenstein series”.
163However, in the transformation, one should take the absolute value of the factor T (or 1/T ) of the fractality law,

same as we did in Remark . . .21 on p. . . .29.
164Compare with the section on p. . .58.

https://en.wikipedia.org/wiki/Eisenstein_series
https://en.wikipedia.org/wiki/Dirac_delta_function#Composition_with_a_function
https://en.wikipedia.org/wiki/Riemann_series_theorem
https://en.wikipedia.org/wiki/Generalized_function
https://en.wikipedia.org/wiki/Modular_symbol
https://en.wikipedia.org/wiki/Cusp_form
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Remark 52: To have an honest exact fractality we need F (−1)(t) to match near 0 what “F (−1)(t) is
near infinity”—but F (−1)(t) has a jump at 0. In other words, F (t) has a δ-function singularity at
t = 0. One can see that to preserve “the spirit and letter of the fractality law”, we must ensure that
F (t) also has “a δ-function singularity at t = ∞”. Since a Fourier series ∑nNn cosnt is a periodic
function, and periodic functions do not behave like this, we need to add another term into our
definition of F (t):

F (t) = N∞δ∞(t) +
∑
n

Nn cosnt

for a certain value of N∞. Unfortunately, δ∞(t) makes no immediate sense in math.
To explain what δ∞ may mean, recall the pictures of the absolute of Lobachevsky geometry from

Remark . .17 on p.. . .25. There the t-axis “bends” around the disk so that t = −∞ comes next to t = +∞.
This way, the t-axis becomes a circle with 1 point removed from it (essentially, an arc of 360◦). On
one side of the removed point is the t = −∞ end of the arc, on the other side is t = +∞.

In other words:

the t-axis with the added point t =∞ becomes a circle (usually named RP1).

Moreover, it makes sense to restrict a (generalized) function on the circle RP1 to a function on
R—but the δ-function with support at the added point vanishes after such a restriction. Hence while
“extending” a (generalized) function from R to the circle above, we may add an arbitrary multiple of
δ∞(t)—as we needed to do above.

With thus modified function F (t), the fractality law we established to work separately “on each of
two sides of every point 2πR/S” now works also “in a certain interval containing every given point
2πR/S”. In particular, this includes the jumps at rational multiples of 2π.165 166

Remark 53: The problem with the plots above is that the Langlands program focuses on the
behaviour of “pure” motives. This is why we needed to “purify” our sequence Nm for its Fourier
transform to have the “expected” fractal properties. For an indecomposable polynomial P , the motive
for P (x) = 0 is a mix of a motive of a point (recall that a point is a solution to x = const; the
corresponding Nm are all 1) with “what remains”; however, if P = P1P2, then this motive is a mixture
of motives for P1,2; if degP1 = 1 and degP2 = 2, then it is a mix of two copies of a motive of a point,
and the “what remains” motive for P2.

Our procedure of “purification” would remove one copy of the point-motive; what remains is “a
point” mixed with “what remains” for P2 —which is exactly the “unpurified motive for P2”! So in
addition to showing what happens for decomposable P , the pictures above also show the result of our
procedure applied to a quadratic polynomial 4x2 + 2x− 3, but without the step of “purification”.

Another case in which our naive procedure of purification Np = Ñ res
p − 1 does not result in a

pure motive is the case of an “abelian=cyclic” polynomial P of degree 3. While in this case the
periodicity Np = Nper

p still holds (here Nper
m is a certain periodic sequence), the identities Npk = Nk

p

165Due to the need for this modification, the fractality law for this function is different from what we considered
before. This is why we needed to consider first the example with larger conductor.

Moreover, strictly speaking, the Langlands program does not cover decomposable cases.
166We needed to cheat in this discussion. As stated, the term δ∞(−1/t) would be killed by the factor |t|, and/or

one won’t be able to divide it by |t|.
We are saved by the fact that in 1-dimensional case covariant k-tensors have 1 component for any k—so in this

regard they do not differ from scalars. What does differ is how they change under coordinate transform. With the
transform t 7→ −1/t they are divided by |t|2k. So if we assume that k = 1

2 for F (t), then the factor in our transform is
not needed anymore— it is “absorbed into the geometric nature” of F (t)—which becomes a . . . . . . . . . .½-density. In this context,
the discussion of δ-functions above makes perfect sense.

(Note that the fact that k may be fractional is also a special feature of the 1-dimensional case.)

https://en.wikipedia.org/wiki/Density_on_a_manifold#s-densities_on_a_vector_space
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and Nper
pk = (Nper

p )k do not hold. The corresponding graph looks (again!) like an antiderivative of an
Eisenstein series:

1.7629

-1.7546
-1 9

(Here M = 18 and the . . . . . . . . . . . . .discriminant is D = 92; compare with Footnote . . . .100 and the discussion in the
next section.)

The reason for similarity to the preceding case is that motives for an abelian polynomial split into
“motives of rank 1”; in other words, the number of pure parts is equal to the degree of the polynomial.
In the case above the degree is 3, so we start with 3 pure parts, and “what remains after purification”
is still a mixture of two pure parts.

In a certain sense, this example is much more complicated than the preceding one! Before we
were mixing a motive of a point (zero equations with zero unknowns!) with a motive for a quadratic
equation. They corresponded to two functions Ñ res

p ≡ 1 and F (−1)
p ≡ Nperiodic

p (for prime p). Now we
are mixing two motives which are both periodic.167

Historical approach: cases that only the Langlands program can explain

In these notes we illustrate one application of the Langlands program: based on the list of divisors
of values of a cubic polynomial, we construct a sequence of numbers Nm. The Langlands program
predicts that the Fourier transform of this sequence has fractal symmetries.

However, if we want to investigate this application in historical settings, instead of the Langlands
program we could have used its two precursors. These precursors became known about half a century
before the Langlands program. While they are not as powerful as the actual Langlands program, in
our application all easiest-to-reach fruits may be obtained using just the precursors.

The newer of two precursors was finalized about 90 years ago: the . . . . . .Class . . . . . .Field . . . . . . . .Theory. In general,
it works by “splitting the complexity of a given polynomial P” into two parts: recall that solving

167Compare with our . . . . . . . . . . .discussion of a quartic polynomial with field discriminant 117 on p. . .97. The corresponding
motive is also a mix of two pure motives. That time it is a “periodic” motive mixed with a “modular form” motive.

https://en.wikipedia.org/wiki/Class_field_theory#History
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P = 0 may be “relatively uncomplicated”168 if we already know roots of a certain other, much simpler
polynomial P0 (in other words: P is “cyclic”, or, at least, . . . . . . . . . .“abelian” relative to P0). If degP = 3,
then P0 has

√
D as a root; here D is the . . . . . . . . . . . . .discriminant of P . The Class Field Theory converts many

delicate questions about solutions of P = 0 to (rather involved) questions about P0.
Two most useful (and most completely investigated) cases when the latter questions may be fully

answered are when degP0 = 1 (for degP = 3 this means that D is a complete square), and when
degP0 = 2 and it has no real roots (for degP = 3 this means that D < 0). In the former case one gets
a complete description of numbers Nm very similar to what we saw with Quadratic Reciprocity: there
is a periodic sequence Nper

m such that Np = Nper
p for prime p. (Compare with Remark . .53 on p. . .65.)

The latter case is what we called the “odd” (or “modular form”) case in Remark . .12 on p. . .23. In this
case the description of numbers Nm is less direct, but it is nevertheless sufficient to deduce all the
fractality properties we use in these notes.169

Conclusion: to expose cases which are not covered by the Class Field Theory, our cubic polynomial
should have D > 0 which is not a complete square. This is the “even” (or: “Maass form”) case.

The other precursor is the Hecke’s . . . . . . . . . .functional. . . . . . . . . .equation. . . .for . . . .the . . . . . . . . . .Dedekind. . . . . . . . . . . .ζ-function discovered a
century ago. (While it is usually not stated this way, in our setup) it claims exactly that our fractality
law works at t = 0.

Recall that we already investigated what happens if the fractality law works at t = 0: by chaining
our fractal transformation with periodicity, one obtains a giant “Cantor hyper-family” of other points
at which the fractality law works as well (see Remarks . . .24 and . .25, as well as Remark . . .45). Since
this hyper-family avoids a lot of intervals, and we expect that horizon-self-similar points “appear
everywhere”, it should not be hard to pick up a horizon-self-similar point which cannot be explained
by such chaining.

However, we have been working under a severe constraint: the zooming factor needed to expose
the “fractal pattern” should not be prohibitively large (we do not want to spend weeks computing
these graphs!). It turns out that many of the simplest points with “reasonable” zoom factors are
in the hyper-family! This leads to the situation when most of our graphs can be explained by the
Hecke’s result.

Conclusion: to expose cases which are not covered by the functional equation, our graphs should
show the fractal pattern about a point t = t0 which is not in the “Cantor hyper-family”. However,
of the graphs in these notes, the only graphs not related to the hyper-family are . . . .one on p. . . .37 for
D = −23 < 0, and . . . .one on p. . . .55 for D = 24 × 37 > 0.

Combining two restrictions above, we need to provide a graph for the Maass case (so D > 0
and not a square) at a point which cannot be obtained from 0 by a chain of integer translations
and applying −1/cT . . . . .The . . . . .only. . . . . . .graph which satisfies both restrictions is one on p. . . .55 with c = 37.
(Compare with Remark . . .46 on p. . . .56.)

168How to do this was . . . . . . . . . . .discovered. . . . . . .about . . . .two. . . . . . . . . .centuries. . . . .ago.
169Apparently, the first example (in our terms, M = 6) . . . .was . . . . . . . . . . . . .investigated by van der (den?) Blij in 1952. He

(essentially) identified FC(2πz) with η(z)η(23z) = q
∏∞
m=1(1−qm)(1−q23m); here q = exp 2πiz and we use . . .the. . . . . . . . . . .Dedekind

. . . . . . . . .modular . . . . .form. .η.
However, he did not mention the (known) connections of his approach with polynomials of degree 3 (it looks like he,

essentially, uncovered a very simple particular case of . . .the. . . . . . .result . . .of . . . . . .Hecke. . .of. . . . . .1927). In an example in . . .his . . . . .1975. . . . . . . . .lectures. . .in
. . . . . . . . .Durham, Serre stresses this connection (and says that most of his examples came from Tate’s letters of 1973/74—but
probably not this one. . . ). . . . .Don. . . . . . . . .Zagier’s. . . . . . . . .chapter in the book . . . .The . . . . . .1-2-3 . . .of . . . . . . . . .Modular. . . . . . . .Forms exposes these connections
directly.

(Another educating facet of this paper is that the sequence he works with is a “mix” of our Nm with a Fourier
coefficients of a certain Eisenstein series—compare with Remark . . .51 on p. . . .64. So this gives a very different example of
a need to “purify” to see the patterns.)
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On Lobachevsky geometry and zones of self-similarity

The groups of symmetries

In the preceding chapters we used a relatively new (about 25 years old) approach where we consider
the Fourier transform F (t) as a generalized function, and plot its antiderivative F (−1)(t). Note that
“taking the antiderivative” is a regularization in the sense of Remark . . .15 on p. . .24—however, it is
a very “mild” regularization: it replaces the sequence Nn (this is a sequence of integers, hence not
decaying!) by a sequence Nn/n which decays, but rather slowly.

However, in this chapter we are going to ignore this approach (and F (−1)(t)) until p. . .74. Instead, we
start by introducing geometric methods suggested by the other, older approach. That approach applies
a very strong “regularization” making the Fourier transform much smoother. Such a regularization
was described in Remark . .15 on p. . .24. One of the disadvantages of this approach is that one needs to
use different regularizations in the odd and the even cases (introduced in Remark . .12 on p. . .23)—so
with the older approach the difference between these two cases appears much earlier than necessary.
(The exact form of these regularizations was described in Remark . . .29 on p.. . .44.)

On the other hand, using these particular regularizations has amazing corollaries. Indeed, they
depend on the parameter s (“strength”, which for s ∈ N may be thought of as a “repetion count”).
For example, in the “odd” case the regularization replaces Nn by Nn/ens; now the Fourier transform
of Nn/ens is a function of two variables t and s with s > 0. Writing t+ is =: z converts the Fourier
transform of (Nn) into a function f(z) defined on the upper half-plane H := {Im z > 0}.

It turns out that if one considers the complex Fourier transform (as in FC) then
• The function f(z) is complex-analytic.170 The “boundary trace” of this function is FC(t).171

• Every transformation we saw preserving the function F (t) would preserve f(z) too—when
we write z instead of t in the formula for the transformation.

Moreover, in Remark . .16 on p. . .25 we claimed that (with . . . . . . . . . . . . .Lobachevsky. . . . . . . . . . .geometry!)

these transformations of z become just “rotations” if one equips H with . .a . . . . . . . .certain . . . . . . .curved. . . . . . . . . . .geometry.

Essentially, the conditions on F (t): periodicity and horizon-similarity (the latter makes a match
between the “behavior on horizon” and the “behavior at finite points t”) become to symmetries of
f(z) in Lobachevsky geometry. A geometric description of these symmetries allows us to detach the
properties of these symmetries from the properties of F (t) and f(t, s).

So, in this chapter, we inspect these symmetries as “separate entities”. Then we use the results to
deduce a much more detailed information about regions of self-similarity for F (−1)(t).
Remark 54: In this approach, all the arithmetic information about the polynomial of degree 3 we
started with boils down to one integer c: the conductor. Recall that conductors for cubic polynomials
have a tendency to be very large, leading to hard-to-visualize situations. However, in the context of
symmetries, small conductors c make perfect sense—and lead to much nicer pictures.

So while c in our pictures is too small to be related to any polynomial, these pictures still illustrate
the general trends on manageable examples with very small conductors.
Remark 55: Already in Remark . . .12 on p. . .23 we saw that the behaviour of horizon-self-similarity may
be different in the odd and the even case (even if the conductor is the same172). The even case would

170This should be replaced with real-analyticity in the “even” case.
171Recall that FC(t) has “no values at points”. The “boundary trace” coincides with the boundary value when

values at points are defined—but the trace makes sense for generalized functions as well.
172The smallest conductor for which both even and odd cases are possible is 756 with the corresponding “even”

and “odd” polynomials x3 − 6x− 2, x3 − 6x− 12.
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have more regions with such self-similarity (for example, a region near t = 0); in a certain sense, there
are twice as many of them. Likewise, there are also twice as many symmetries of f(t, s).

To simplify our pictures as much as possible, given c we start with the smallest “reasonable”
collection of symmetries (which “works” for both even and odd cases), and postpone more complicated
cases until . . .the. . . . . . . .section on p.. . .77.

Lobachevsky-symmetries: the case c = 1
The easiest way to deal with a collection of symmetries is to find a picture such that these

symmetries coincide with the symmetries of the picture. A particular case is when the picture consists
of cut line which tessellate (“tile”) the plane into pieces of the same shape and the same size. Moreover,
when the collection consist of symmetries of a function f(z), then if we know its values in one of these
pieces, then we know its values everywhere:

A Lobachevsky-symmetry which sends one piece to the other preserves f(z).

t=
+
∞

t=
−
∞

Of course, the same holds for the boundary trace F (t) of f(z). Conclu-
sion: given such a coloring, one can discuss symmetries of f(z) (and
of F (t)) without mentioning f whatsoever. This is what we are going
to do: after we describe the colorings, we won’t need to mention f(z)
anymore. We would just apply the symmetries of the colorings to
describe the symmetries of F (t).173

However, it turns out that to simplify visualization of these examples,
it is convenient to be creative with the interpretation of t and s.

While the function f from the preceding section takes arguments
(t, s) in the upper half-plane {(t, s) | s > 0}—which can be naturally
identified with “ . . .the. . . . . . . . . . .half-plane. . . . . . . .model” of the Lobachevsky plane, it
is much easier to visualize the Lobachevsky moves using the “other
flat-geometry model” of the Lobachevsky plane: . . . .the . . . . . . .model . . . . . . .inside . .a
. . . .disk. (Geometrically, these two models—half-plane and disk—differ
by . . . . . . . . . .inversion.)174 In this model t and s become curvilinear coordinates
in the disk; we show several coordinate lines on the right (t is in red,
s is in gray).

Start with the simplest tesselation of Lobachevsky geometry (on
the right; on Wikipedia, it is in the article . . . . . . . . . . .Truncated . . . . . . . . . . . . . . .triapeirogonal
. . . . .tiling175 together with a few other examples, some of which are for small
conductors). Every piece of tesselations we consider is made of several
copies of “an elementary tile”. This tile (in yellow on the right)176 is
marked as “index 1” in the Wikipedia article above. How the piece is made of these elementary tiles

173Essentially, the purpose of introducing f(z) was to lead us to the Lobachevsky geometry. The interpretation of
F (t) as a boundary trace of something “as symmetric as” F (t) is sufficient for our purposes: we do not care about finer
details of f(z).

174In our context, the major advantage of the disk model is that our toy/actual transforms have −1/t as the
argument; this means they, essentially, exchange points t = 0 and t = ∞. In the disk model, both t = 0 and t = ∞
make perfect sense as points on the boundary of the model. Compare with the picture in Remark . . .17 on p. . . .25.

In fact, if the point i of the half-plane H matches the center of the disk, then the transformation above becomes just
the rotation of the disk by 180◦. (By the way, this is the main reason why we prefer writing −1/t in the argument—as
opposed to just 1/t—which would lead to a mirror symmetry of the Lobachevsky plane. See also Footnote . . . .130 on p. . .53.)175I do not know anybody using such bizarre names in real life, or in real math.

176Note that in Lobachevsky geometry it makes sense “to pull a vertex of a triangle to infinity”. When we pull, the
angle at this vertex goes to 0°. The yellow piece is such a triangle with angles 90°, 60°, and 0°.

https://en.wikipedia.org/wiki/Hyperbolic_geometry#The_Poincar%C3%A9_half-plane_model
https://en.wikipedia.org/wiki/Hyperbolic_geometry#The_Poincar%C3%A9_disk_model
https://en.wikipedia.org/wiki/Hyperbolic_geometry#The_Poincar%C3%A9_disk_model
https://en.wikipedia.org/wiki/Inversive_geometry#Circle_inversion
https://en.wikipedia.org/wiki/Truncated_triapeirogonal_tiling#Symmetry
https://en.wikipedia.org/wiki/Truncated_triapeirogonal_tiling#Symmetry
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depends on the conductor only.177 The yellow tile “combined” with any one of its neighbor tiles forms
the piece good for178 c = 1.

Remark 56: On the picture, the elementary tiles have different shapes and different sizes. Actually,
in the sense of Lobachevsky geometry, these tiles have the same shape and the same size.179

The observed difference is just a defect of our “visualization” of the Lobachevsky plane. Similarly
to how the surface of Earth cannot be mapped exactly onto a flat surface, the features of Lobachevsky
geometry cannot be rendered without defects on flat images.

Conclusion: What is drawn above is just a hint of what is going on in Lobachevsky geometry. In
fact, it takes a lot of training to be able to interpret these hints fully! Below, the reader may need a
long leap of faith with our recurring claims like “that picture demonstrates this symmetry”.180

Enhance the picture: the gray disks

For what follows, it is convenient to add extra “features” to the
coloring above (made of the “cut lines” of the tesselation). Note that
on the picture above every red line meets one blue line; this marks a
point on every red line. Look at these meeting points for the red lines
which “emerge” from a given point of the boundary of the disk (“the
absolute”)— they all lie on a particular circle tangent to the absolute.
In fact, these circles are the circles from so-called . . . . . . . . . . . . . . . . . .Apollonian gasket
which touch the boundary (on the right, we shade the insides of these
circles gray181).

By construction, any (Lobachevsky) symmetry of the picture
above is also a (Lobachevsky) symmetry of the white/gray coloring
on the right. Moreover, the opposite is also true.182 Conclusion: two
pictures above have the same symmetries; moreover, if one combines
these two pictures, the result still has the same symmetries.183 (In
the combined picture on the right, we keep only the red lines from
the preceding picture of the cut lines.)

This picture fits c = 1. For larger c, the group of symmetries is
going to be a subgroup of the group of symmetries of this picture.
This leads to this picture being a template for the pictures for larger
c. We would need to omit some of the gray disks, and modify the

177Keep in mind that for a large conductor c, one may need about 4c elementary tiles to make the shape needed
above. Since conductors have a tendency to be quite large, most examples would lead to shapes made of monstrously
huge number of tiles.

178Without doubling the yellow tile is a “piece” if we allow mirror symmetries. Compare with Footnote . . . .223 on p. . .78.
179In particular, there is a (unique!) Lobachevsky-symmetry of the picture above sending any “elementary tile” to

any other tile.
180There are videos visualizing geometry and movements of the Lobachevsky plane. . . . . . . .Google . . . . .for

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .movement OR visualizing hyperbolic demo OR projections video.
181We use darker gray for smaller disks to make them easier to see. This tint has no math significance.
182Indeed, one can reconstruct the red lines on the gasket: take two tangent gray disks, and connect the points

where they touch the absolute. Likewise, any blue line is a common Lobachevsky-straight tangent to such a pair of
disks.

183In fact, the disks make it easy to describe these symmetries. One can find a Lobachevsky-rotation sending any
disk to any other disk. Moreover, note that the disks touching a given disk make a “necklace” surrounding the disk.
Now given a disk, there is a unique Lobachevsky-rotation which keeps this disk in place, and sends a particular disk in
this necklace to another such disk. (Finally, there is a unique reflection keeping two touching disks in place.)

(Compare with Footnote . . . .179.)

https://en.wikipedia.org/wiki/Apollonian_gasket
https://www.google.com/search?q=movement+OR+visualizing+hyperbolic+demo+OR+projections+video&ie=utf-8&oe=utf-8&hl=en&num=100&pws=0
https://www.google.com/search?q=movement+OR+visualizing+hyperbolic+demo+OR+projections+video&ie=utf-8&oe=utf-8&hl=en&num=100&pws=0
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colored lines. (Additionally, we would need to rescale the coordinate
t on the disk—and its boundary.)

The case c = 5
For larger conductors c one can draw pictures which are very similar in spirit. Here we consider

the case of c = 5.184 What one needs to do is:
• Remove some of the gray disks and the red lines;
• Change some red lines into green;
• Add suitable gray and blue lines.

(After this, there is still a lot of tangencies between the gray disks!) This gives the picture on the left
(on the right, we remove the gray disks to make the colored lines easier to see):

It is easy to imagine yet another picture with gray disks only, and no lines. All three ways to color
(gray disks only, and two colorings above) have the same collection of symmetries. Moreover:

• The gray and colored185 lines on the right picture match the red lines on the picture on p. . .69.
186

• These lines cut the picture into “triangles”. Every such triangle matches a red-sided triangle
which on the picture on p. . .69 is made out of 6 “yellow elementary tiles”.
• For any two of these triangles, there is a Lobachevsky-rotation or Lobachevsky-translation
sending one to the other (one can even send a given corner to a given corner). In other words,
in Lobachevsky geometry these triangles have the same shape and the same size.187

• Ignore the gray lines. Then the colored lines cut the picture into 6-sided pieces having 2 red
sides, 2 green and 2 blue. Each piece is made of 4 triangles.
• These larger pieces are also the same shape and the same size (in Lobachevsky sense).

184As we discuss it in the section on p. . .77, there are several different analogues. Until then, it is enough to say that
here we consider the “smallest useful” collection of symmetries.

185Here and below “colored lines” means “non-gray” lines.
186For this and other matches below, it is better to Lobachevsky-move the picture on p. . . .69 (“squeeze it to the left”).
187Well, the Lobachevsky geometry is not scaling-invariant: if shapes match, the size should also match!
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• Moreover, these pieces are . . . . . . . . . . . . . . . . . . . . . . .fundamental domains: they have no symmetries,188 and any
symmetry of the whole picture moves a piece to a piece.
• Therefore, these pieces are closely related to the gray disks. For example, every one contains
exactly one tangency point of the gray disks.189

Moreover, the gray disks color every piece with 2 colors: gray and white. One can
Lobachevsky-overlay any two pieces so that they match, moreover, the colors match as well.190

Remark 57: For any gray disk, the unit “necklace rotation” of Footnote . . . .183 repeated c times is a
symmetry of the whole picture. (This shows that 2 of every 5 consecutive “beads” in such a necklace
for c = 1 remain in the picture for c = 5.)191

The gray disks and the “special zones”

Above, we constructed a coloring of the Lobachevsky plane such that its symmetries coincide with
the symmetries192 of the (generalized) function F (t) on the absolute and of the function f(t, s) on the
Lobachevsky plane.193 194 Here we reap the fruits, using the symmetries of the picture of gray disks to
inspect the . . . . . . .fractal. . . . . . . . . . . .transforms195 which preserve F (t).

Since there is a symmetry of the picture moving any gray disk to any other gray disk, and these
symmetries preserve F (t):

The function F (t) “behaves the same” near any two points where a gray disk touches the absolute.

Following Remark . .17 on p. . .25 we identify the leftmost point of the absolute with t =∞ (as on . . . .the
. . . . . . .picture on p. . .69). Recall that the absolute is essentially the t-axis on which a periodic function F (t) is
defined, and the behaviour of a periodic function “near t =∞” is its behaviour “near horizon”—which
is what matters for our fractal transforms. This immediately implies:

The points where a gray disk touches the absolute are horizon-self-similar points of F (t).

(The horizon-self-similar zones are as . .in. . . . .the . . . . . .graph on p. . .41.)

188Indeed, there is a Lobachevsky-reflection of a piece which preserves the coloring of its edges,—but it does not
preserve the gray diagonals drawn in the piece. (This implies that there are no symmetries of the picture which are
Lobachevsky-reflections; compare with Footnote . . . .223 on p. . . .78.) Anyway, in this chapter we ignore reflections!

189Moreover, the corner of a “piece” where two red sides meet is contained inside a gray disk. Likewise, the other 5
corners are contained in the disks which were removed when changing the picture for c = 1 to one for c = 5; hence
these corners do not meet the remaining gray disks. Hence every “piece” meets only two gray disks, and two green
sides of the piece completely avoid the gray disks.

190The same holds if we also take into account the coloring of the edges of the pieces.
191Warning: this match of the disks does not extend to a match of triangular tiles and/or the coordinate t on the

absolute. As c grows, the “triangles” above the horizontal diameter become squeezed closer and closer to this diameter,
and the range of t covering “the right half” of the absolute decreases (approximately as [−3π/c, 3π/c]).

192Here it helps to interpret the functions F , F (−1), and f as tensor-valued, as in Footnote . . .166 on p. . .65. Then
the toy/actual transforms become just coordinate-changes applied to tensor fields, and horizon-self-similarity may be
interpreted as “being symmetrical”.

193Recall that the key reason why F and f have the same symmetries is that our constructions of “continuation
into the plane” and of “taking the boundary value” were . . . . . . . . . . . . .intertwining: Lobachevsky-moving one of them would
Lobachevky-move the other in exactly the same way. See Remark . .17 on p. . .25.194The function f(t, s) can also be considered as a coloring of the Lobachevsky plane: its value at (t, s), which is a
real number, may be considered as a color assigned to this point. So the idea of gray disks is that we can replace this
infinity of colors with only 2 colors!

(Well, to take into account that f is a tensor field, one can consider |f | as a color. Otherwise f colors not the
Lobachevsky plane, but its . . . . . . . .tangent . . . . . . . .bundle.)

195See p. . .21.

https://en.wikipedia.org/wiki/Fundamental_domain
https://en.wikipedia.org/wiki/Representation_theory#Equivariant_maps_and_isomorphisms
https://en.wikipedia.org/wiki/Tangent_bundle
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As we explained above,196 Euclidean-rotations of our pictures of the Lobachevsky plane are also
Lobachevsky-rotations, but there are many more Lobachevsky moves. They lead to more complicated
“skewed rotations” of the absolute (“ . . . . . . . . . . . . . . . .fractional-linear. . . . . . . . . . . .transforms”, see p. . .53). The non-linearity of these
transforms may shrink some parts of the absolute and expand the others. Hence if a graph of a function
has a visible pattern, such a “non-linear” coordinate transform may distort this pattern—although it
would remain visible in a smaller region, where the non-linearity is not “too strong”.

Therefore, if this transform is not “too non-linear” near one tangency point, then
It sends the zone of “visual horizon-self-similarity” near this point to another such zone.

Doing a similar thing with the leftmost point t =∞ of the absolute gives:

The zones of “visual horizon-self-similarity” are transforms of a certain region near t =∞.

Conclusion: If we can identify this region, then the zones above are images of this region under
Lobachevsky-symmetries of the picture with the disks!

Loosely speaking (and there is no other way to discuss this, since “the zones of visual horizon-self-
similarity” depend on our visual shape-recognition197), use as “the unit of measure” “the projection of
the gray disk near t =∞ to the absolute”.198 This leads to a reformulation:

The zones above are certain central parts of the projections of gray disks to the absolute.

(. . . except for the zone near t =∞ itself: then the transform is not a fractal-transform, but identity!)
The answer: The region in question is the central 4/c of the projection of the leftmost gray disk (recall
that c = 5 in the example above). Call the corresponding zones inside the projections of other gray
disks the 4/c-central zones.199

To understand why this recipe works, we need to
• visually inspect the zone of “visual horizon-self-similarity” for a toy transform of a sample
periodic function,
• identify the matching range near t =∞;
• Find which part of the absolute on the pictures above matches this range of t ≈ ∞.

We will address the last item in the next remark, and the first two in the remark which follows it.
Remark 58: Following Remark . . .17 on p. . . .25, on the pictures above the leftmost point is “the infinity”
of the absolute, and the rightmost point is t = 0. Moreover, any Lobachevsky-rotation which exchanges
these two points is t 7→ −1/γt on the absolute, for a certain γ > 0 (the “toy transform”!).

Now observe the “pieces” next to the leftmost point t = ∞; as we described it above, one can
Lobachevsky-rotate one of them to overlay it on top of its counter-clockwise neighbor. Moreover, by
Footnote . . . .190 the edge colors must match. Observing the red edges near t =∞ shows that this move
ρ sends every red line starting at the leftmost point to its counter-clockwise neighbor.

196See Footnote . . .174 on p. . .69.197Indeed, “mathematically” the fractal transform is defined everywhere. However, it is not everywhere “visually
recognizable”: the non-linearities hide the similarities.

198Making this rigorous requires choosing the center of projection. However, there is no “best” way to do this.
Different choices would result in “slightly different” regions—but for us just the approximate size of regions is important.

199In fact, we could have replaced every gray disk by a c/4 times smaller disk (“the 4/c-disk”), and then all the
properties of our coloring discussed above would be still preserved, and the projections of the 4/c-disks would match
exactly the sizes of the regions of visual horizon-self-similarity. However, then (even with our small conductor c = 5)
the disks would be yet harder to see clearly. Moreover, the facts that the original disks are tangent to each other, and
that they match the case c = 1 (so that on our pictures just the quantity of the disks depends on c, not their sizes and
placement) are sufficiently interesting for us to prefer the picture with larger disks.

Later (in the section on p. . .80), when we work with harder-to-understand pictures, we are going to have both the
“original” and the 4/c-disk marked on the picture.
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Recall that the whole idea of . . .the. . . . . . . . .coloring. . . . . . .above, on p. . .71, is that its symmetries are also symmetries
of f(z) (hence, automatically, of its “boundary trace” F (t)). This immediately identifies the action of
ρ on the absolute with the translation of t by the period 2π of F (t). Conclusion: the ends of the red
lines starting at t =∞ are at t = 2πk with integer k.200

For general c the picture would still contain a “necklace” accumulating at the rightmost point t = 0.
The k steps of the corresponding “necklace rotation” of Footnote . . .183 from p. . . .70 can be recognized as
the strongly-congruence transform T ′ = T/kcT + 1. Hence the disks of this necklace touch the absolute
at points T = 1/kc, or t = 2π/kc.

So two disks in this necklace next to the leftmost one are at t = ±2π/c, and the edges of the
projection of the leftmost disk are twice this, at t = ±4π/c. This shows that the regions between t =∞
and points t = ±π (from the next remark) take 4/c of this projection— leading to the answer above.

1.856

-2.728
-1 6

Remark 59: To quantify the effects of non-linearity of
−1/T , on the right we consider a typical example of a func-
tion201 Φ(T ) with period 1, and graph Φ(T ) and 1/4TΦ(1/T )
for T in [−1, 6]. One can immediately see that for |T | > 2
the red plot “does not look as” following its pattern clearly
visible for |T | < 1 (although “mathematically”, it is “the
same” pattern).202 In other words, the visible pattern “ex-
ists” in [−2, 2] (the “narrow flavor”), or maybe even up to
[−4, 4] in the “wider flavor” which stresses our imagination.

To make our description work equally well with trans-
formations T = 1/cT ′ with different c s, one can rewrite the estimate we obtained for c = 1 in terms of
T ′. This is |T ′| > 1/2 for the “narrow flavor” (or |T ′| > 1/4 for the “wider flavor”). One can restate
this as

The pattern on the graph of TΦ(1/cT) is visible when T = 1/cT ′ with T ′ > 1/2.

Note that T ′ > 1/2 means that we remove one period of Φ
around 0.

Conclusion: “the pattern is visually recognizable” on the image of all the periods of Φ(T ) except
one203 period around 0.

200Doing similar arguments at the rightmost point t = 0 shows that ends of all lines starting at t = 0 are at t = 2π/k
with integer k. (Moreover, for the piece immediately above the horizontal diameter and bounded by the colored lines,
one can find that its corners are at t being 0, π, 6π/5, 4π/3, 2π, ∞. For the piece to the right of it, the values are 0, 2π/5,
π/2, 2π/3, 4π/5, π.)

201We use the “same“ letter T for the variable as before, when we had t = 2πT and 2π-periodic functions of t.
202The situation does not improve for |T | > 6, where TΦ(1/T ) quickly converges to a certain limit.
203This gives just an estimate “of the order of magnitude” of the zone to delete. Moreover, this estimate is sensitive

to the shape of the graph of Φ(t).204

However, in practice, we need not the toy transform, but the . . . . . . . .“honest. . . . .law . . .for. . . . . . . . . . . . . . . .antiderivative”, see p. . . .36. It turns
out that the extra term in this law already messes up (a little) what happens near the edges of “the narrow flavor”
of this zone, and its contribution breaks up the visual pattern in the “wider flavor”. (We already mentioned this in
Remark . .28 on p. . .43.) So to get a recognizable pattern, the narrow flavor (or maybe even it is a bit more narrow) could
be a better fit.

Compare with what happens near the rightmost point t = 0 on . . .the. . . . . . . . .pictures. . . . . . .above (on p.. . .71). There is a “necklace”
of gray disks converging to t = 0; their projections fill the whole neighborhood of this point. Taking 4/c-central zones
gives zones “converging to 0” with gaps of relative width about c− 4 : 4 (or maybe c− 8 : 8). Now observe . . .the . . . . .plot
on p. . .40 (for M = 6, c = 23): this is exactly what happens there! (Likewise for plots near t = 0 for other values of
M .—Unfortunately, these zones become invisibly narrow if the conductor is in the hundreds!)

204. . . as we have seen in . . . .the . . . . . . . .section on p. . . .41, with Φ(T ) having “extra” symmetries.
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Covering properties of the zones of horizon-self-similarity

Up to now, we were somewhat vague about visual patterns in F (−1)(t), avoiding the question:

Given t0, can we zoom into the graph of F (−1)(t) and see t = t0 in a region of horizon-similarity?

Recall what the preceding section started with a picture with gray
disks and established:

• The periodicity205 of F (−1)(t) “observed near ‘the horizon point’
t =∞ on the absolute” makes “the hourglass” pattern (as on the
right);
• We can consider this pattern as “a template” in a certain zone near the tangency point t =∞
of the corresponding gray disk.
• Lobachevsky-symmetries of the picture “distribute” this template near every other gray disk.
• On the other disks (not at infinity) “the hourglass” patterns become the toy transform
patterns.

Hence every gray disk leads to:
• A special point on the absolute (the tangency point).
• A special (although “approximately defined”) region about this special point (the 4/c-central
zone).

Conclusion: The special point shows where we should zoom in, and the zone shows how much to
scale to see the zones of horizon-self -similarity.206

Now the question above can be reformulated as:
Question: which part of the absolute is covered by the 4/c-central zones?

It turns out that while the claim

Every small piece of the graph of F (−1)(t) looks like a fractal transform of the whole graph.

does not “work 100%”, one needs207 to allow just a tiny amount of exceptions.208

In terms of the gray disks, this means that the projections of these disks to the absolute should
cover “almost” the whole absolute. (Moreover, they would overlap strongly enough so that the
4/c-central zones would also cover it “almost completely”.) Contrary to this, on the picture above
with the gray disks for c = 5, one can clearly see big regions near the absolute where there is no gray
disks—even if one tries to zoom into the picture (this is possible in the electronic copy).

Indeed, on . . .the. . . . . . . .picture. . . . . . .above, on p. . .71, note the “worst offenders”: the points of the absolute where
the green lines join together. (Below, we focus on one of them, a bit left of the top point, matching
t = 4π/5.) Near such points there are no gray disks drawn!

205. . . together with F (−1)(t) being actually a tensor field! (See Footnote . . . .192 on p. . . .72.)
(The difference between t =∞ and t 6=∞ is due to extreme non-linearity of the coordinate t near t =∞.)
206Furthermore, note that to simplify our pictures, so far they were related to the “smallest possible” flavor of

various groups of symmetries we may consider (compare with the section on p. . .77). This means that we do not yet
list all the possible zones. We complete this list later, in . . . .the . . . . . . . .section on p. . .80. In the same section we also discuss
horizon-similar but non-self -similar zones.

207To see that there are exceptions, take a gray disk which is in the picture for c = 1, but is removed in the picture
for c = 5. It touches the absolute at a rational multiple of π (for example, t = 0 is such; for c = 5 another example is
t = 4π/5), and (for example, on . . .the . . . . . . . .picture. . . . .with. . . . . .gray . . . . . .disks on p.. . .79) it is not hard to see that every nearby disk has
much smaller diameter than its distance to this point t.

(When we add more symmetries later, in . . .the. . . . . . . .section on p.. . .79, we will see that the point t = 4π/5 is also a point of
horizon-self-similarity. However, t = 2π/3 is not, and a similar argument works there too.)

208The uncovered set is a “ . . . . . . .meagre” subset . .of. . . . . . . . . .measure . .0.

https://en.wikipedia.org/wiki/Meagre_set
https://en.wikipedia.org/wiki/Null_set


76 On Lobachevsky geometry and zones of self-similarity

However, it is just an artifact of computer plotting. It is not possible to create a PDF graph into
which one can zoom forever; but if it were possible, and one was patient enough to zoom deep enough,
one would see that the framed statement above holds. However, one would need to zoom scaling up
hundreds or thousands times—even with the tiny conductor c = 5 we discuss here!

To substantiate the framed claim above, it helps if we can zoom near the “worst offender” point:
where green lines join (on the left of the topmost point). Unfortunately, the more we zoom into our
Euclidean picture so that this point is visible, the smaller is going to be the relative size of the disks
in our field of view!209

Fortunately for us, some Lobachevsky-moves look like zooming in pictures drawn in “our” geometry.
For example, a Lobachevsky-translation along a Lobachevsky line looks like zooming in at the “tail”
end of this line, and zooming out near the “head” end of this line. So a Lobachevsky-translation to
the left along a horizontal diameter of our disk would zoom in at the rightmost point. Therefore,
this way we can zoom near our point of interest while keeping the whole picture visible, and without
breaking the “spirit of the picture”.210

Before we can zoom this way near our “worst offender” point on . . .the. . . . . . . . .picture on p. . . .71 (where the
green lines join), we must apply a Lobachevsky-rotation “about” the leftmost point of the absolute
to make “the worst-offender” point into the rightmost point; the result is below on the left. (This
already has a side effect of zooming in near the point of “green convergence”. Note also that the point
which was rightmost ends on the left of the bottom of the picture):

Finally we can make the horizontal Lobachevsky-translation to the left which we discussed above.
This results in the right picture (and now we zoomed a lot into the rightmost point and have a much
more clear picture of the green lines).

To see how the gray disks behave near what is now the rightmost point, note that the green lines
cut the disk into “slices”. Moreover, there is a Lobachevsky-symmetry of our picture which keeps the
righmost point intact and sends a slice into the next slice clockwise. (This is similar to what we did in

209As in Footnote . . .207.
210This happens because Lobachevsky-symmetries are . . . . . . . . . . .conformal . . . . . .maps when considered in our, Euclid geometry.

Near every point, such a map always looks like zooming and/or rotating. So unless it is linear, a conformal map would
zoom into some points, and zoom out of some others.

https://en.wikipedia.org/wiki/Conformal_map
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Remark . .58 on p. . .73.) Conclusion: all slices have the same shape and the same size (in Lobachevsky
sense) and are “colored in the same way”.

In particular,
The gray disks in every slice are positioned the same way.

Moreover, the green lines also cut the absolute into chunks. Observing the largest slice shows that
In any chunk of the absolute, the projections of two largest gray disks to the boundary cover about 1/3 of it.

Conclusion: although we cannot see tiny disks near the rightmost point, nevertheless even if we
count just the two largest disks in every slice, together their projections cover about 1/3 of the space
near this point. (Indeed, this claim holds in every chunk of the absolute near this point, so it must
also hold if we join the chunks together.)

In the original picture with the gray disks “before zooming”, it is easy to see that the point we
considered is the “worst” point with respect to having gray disks nearby. Conclusion: near every
point, at least 1/3 of the absolute is covered by the projections of gray disks—provided we include
the tiny “invisible” disks as well.

Furthermore, it is easy to improve this estimate 1/3 above. Indeed, to obtain the estimate 1/3
we considered only the projections of two largest disks in a slice—but now we know that at least
1/3 of the rest is also covered by projections of tiny disks. This means that at least 1/3 + 2/3× 1/3 =
5/9 > 1/2 is covered by the projections. Repeating this argument again improves the estimate first to
1/2 + 1/2× 1/2 = 3/4, then to 3/4 + 1/4× 3/4 = 15/16 etc. Continuing like this, we can get as close to 1 as
we want to—however, it is clear that to get close to 1, we need to consider incredibly small disks!

(Of course, a similar argument works if we consider just the 4/c-central zones of each projec-
tion—only one would need more steps.)

More symmetries

In fact, out of several possible flavors of fractal symmetries the example above deals with the
smallest one: in terms of Footnote . . .132 on p. . .54 these symmetries are both the “strongly-congruence”
type, and the “keeping sign” type (these types of “congruence” transforms coincide211 for c = 5).
Because these symmetries keep sign of F (t),212 in the zones considered above every oscillation of the
graph of F (−1)(t) matches the shape of the period of the graph of F (−1)(t) without flipping its sign.213

One can also show214 that in the “odd” case these zones exhaust all the “keeping sign” regions of
horizon-self-similarity. (In the even case one needs to take into account Remark . .61 on p. . .78 too. We
do it in the following section.)

However, if we do not mind the extra “minus” signs, we need to consider a larger group of
symmetries. The spirit of the pictures above was that our symmetries send one gray disk to another;
so if we want to switch to a larger collection of symmetries, we should increase the number of the
gray disks likewise.

Conclusion: for c = 5, there is a similar picture with twice as many disks—and with this new
picture the arguments above work as well. (Below, in . . .the. . . . . . . .section on p. . .79, we illustrate this by . . . . . . . .adding
. . .the. . . .red. . . . . .disks. . .to. . . .the. . . . .gray. . . . .ones.) Hence there are twice as many 4/c-central zones too, and in the “newly
added” zones every oscillation of the graph of F (−1)(t) matches the shape the period of this function
with the opposite sign.215

211Compare with Footnote . . . .218 on p. . . .78.
212In pedantic mode: . . . would “keep” the sign— if F with such a tiny conductor existed.
213In terms of formula of Footnote . . .65 on p. . . .29, this means ε > 0.
214N.B. (???) Check!!!
215Compare with Footnote . . .137 on p. . .56; a similar thing happens for c = 5 near t = 4π/5—this time for horizon-

self -similarity (as opposed to “similarity to what happens at t = 0”, or to “horizon-similarity to ImF
(−1)
C (t)”).



78 On Lobachevsky geometry and zones of self-similarity

Moreover, the “sign-flipping” symmetries can be described geometrically, as symmetries of . . . .the
. . . . .right. . . . . . . .picture on p. . .71 which exchange red and green lines. So the newly added disks are tangent to
the absolute at the points where the green lines meet216, and the newly added 4/c-central zones are
the central regions inside projections of these disks.217

Example: the point t = 4π/5, where the green lines meet, is not covered by the projections of “the
old” gray disks; however, there is a “sign-flipping symmetry” which sends t = 4π/5 to t =∞ (where
the red lines meet). This shows that the function is also horizon-self-similar at t = 4π/5—but with
the sign-inversion.

Remark 60: Theoretically, for large conductors one could investigate yet another picture (but we
are not going to do it here!): the sign-keeping flavor of symmetries has a very natural strictly smaller
sub-collection of “strongly congruence” transforms.218 This leads to three different arrangements
of disks: one for “only strong symmetries”, one for all sign-keeping symmetries, and one for all
“congruence” symmetries.219

Remark 61: To add insult to injury, on our graphs we saw still other zones of fractality, for example
the zone near t = 0.220 As we already mentioned, the corresponding transformation t′ = 1/γt is directly
related to Hecke’s functional equation (see . . . .the . . . . . . . .section on p. . .66 for details).

Before, we connected the horizon-self-similarity in the zones we saw with existence of “good”
moves of the Lobachevsky plane which send a neighborhood of t =∞ to such a zone (here a “good”
move preserves f and F ). Likewise, this zone near t = 0 is also an image of a neighborhood of t =∞,
however this time the effect of this move T ′ = −1/cT on f and F depends on the “parity”: in the
“odd” case it would multiply FC by the imaginary unit i, in the “even” case it preserves F .

Obviously, the images of this zone under “good” moves would have exactly the same fractality
pattern as the pattern in this zone. Hence these images are also horizon-similar!

Adding the T ′ = −1/cT to any flavor of “congruence” symmetries doubles this class (one can
consider the “old symmetries”, as well as their “combinations with T ′ = −1/cT”).221 So this provides 3
more classes (“as above, but possibly combined with T ′ = −1/cT”) to consider.222

We investigate the largest of these augmented types in . . .the. . . . . . . .section on p. . .80.
223

216. . . (but not the points where the green and the blue lines meet! The size of the disks is determined by them
“filling the void” between the gray disks

217For this larger arrangement of disks, four out of any five consequent disks in a necklace would be included—as
opposed to two-out-of-five of Footnote . . .199 of p.. . .73. Compare with the . . . . . . .picture on p. . .79—where we color the added
disks red.

218This does not happen for c = 5 since in this case {±1 mod c} includes all non-0 (or invertible) squares mod c.
(Compare with Footnote . . . .137 on p. . .56. Such c s are divisors of 23 × 3× 5 = 120.)

219The symmetries of the first and third arrangements . . . . .have . . . . . . .names: Γ1(c) and Γ0(c).
220While we saw that the behaviour of F (−1)(t) in such zones is different in “even” and “odd” cases (see Remark

. .12 on p. . .23), the geometry of the zones themselves are the same. So here we treat these cases uniformly.
221The transform T ′ = −1/cT is not a congruence transform (unless c = 1)! A possibility of “adding it” like we did

above is due to its being a . . . . . . . . . . . . . .“normalizer” of the “old” group of symmetries.
222This is related to the fact that the suitable symmetries live in PGL2Q and not in PSL2Z.
223Since F (t) is even, it has another symmetry t′ = −t. This leads to a mirror symmetry of the Lobachevsky

plane—however, it does not add extra info about fractality properties.
To avoid proliferating our symmetries yet more, in this chapter we focus only on non-mirror (orientation-preserving)

symmetries.
(On the pictures above for the case c = 1, allowing mirror symmetries leads to a very nice and useful kaleido-

scope—“the yellow piece” fills the whole plane using only reflections in its sides.—However, I do not see any similar
simplification for cases of higher c. So it looks like avoiding mirror symmetries has only positive effects. Compare this
to our choice to consider only solutions to αδ − βγ = 1 > 0 in Footnote . . .132 on p. . .54—the reflections correspond to
αδ − βγ < 0.)

Warning: if one consider FC(t), this mirror symmetry changes its values by complex conjugation.

https://en.wikipedia.org/wiki/Congruence_subgroup#Examples
https://en.wikipedia.org/wiki/Centralizer_and_normalizer
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Conclusion: we already illustrated the “sign-keeping” symmetries above. Below, we first add
“sign-flipping” symmetries; then we double the class of symmetries once more by adding T ′ = −1/cT .

Adding “sign-flipping” zones

Considering larger groups of symmetries would lead to yet more disks in our pictures. If we
continue as above, the pictures would become very crowded. Before we proceed, we need to modify
our infrastructure.

First, we want to visualize 4/c times smaller gray disks (this follows Footnote . . . .199 on p. . . .73) to take
advantage of their projections to the absolute matching in size the horizon-similar zones. However,
we do not want to abandon the convenient features of larger disks (see the same Footnote). So we are
going to draw them both: a smaller disk inside a larger circle.

With this modification, the recipes we used before become:
• Take the “outside” circles in the Apollonian gasket (those touching the boundary).
• Introduce an appropriate coordinate on the boundary=absolute.
• Remove all the circles except those matching the “sign-preserving” horizon-self-similar zones.
• In the remaining circles, shade sub-disks of c/4 times smaller radius.

The projections of the shaded sub-disks to the absolute are approximations to the “visually” horizon-
self-similar zones.

Second, we want to use a different model of the Lobachevsky plane. While the model in the
disk used above simplifies visualization of Lobachevsky moves, the required book-keeping is too
complicated.224 The half-plane model of the Lobachevsky plane allows us to state a more explicit
description of the pictures.

In this model the “outside” circles of the Apollonian gasket turn into the . . .the. . . . . .Ford. . . . . . .circles: the
circles tangent to the boundary at points with rational coordinates x = R/D with the diameter 1/D2:

-1 0 1 2 3 4 5 6 → x

(The Apollonian circle tangent to the absolute at t =∞ is an exception; it becomes the horizontal
line at height 1.)

For our purposes, the suitable coordinate on the absolute is t = 2πx/c. From this moment
on, we mark the horizontal axis with this rescaled coordinate. With a prime c (below c = 5
again), it turns out that to get the correct picture of the gray disks, we must omit the disks with the
numerator R of t = 2πR/D divisible by c:

0 π 2π → t

This still leaves twice as many disks—but it turns out that the “extra” disks (marked in red) are
exactly what we wanted to add:

The red disks “match” the “sign-flipping” Lobachevsky-symmetries of f(t, s).

224For example, we could not state explicitly which of the Apollonian circles are omitted on our pictures for c = 5.

https://en.wikipedia.org/wiki/Ford_circle
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In particular, the “sign-keeping” symmetries send gray and red disks to the disks of the same color,
while the “sign-flipping” symmetries exchange the colors. The projections of the gray disks are
the horizon-self-similar zones “keeping the signs”, and the projections of the red ones are for the
“sign-flipping” zones. (The color depends on

(
R
c

)
.)225

The new process may be summarized as:

Remove some Ford circles, and “inscribe” smaller disks in the remaining circles.

(The scaling factor for the smaller disks is 4/c.)
As c grows, the coordinate t rescales, so the height of the strip goes down as 2π/c, likewise for the

step/pitch between the largest green circles. Moreover, the shaded disks would shrink (relative to the
green circles); as a result, the horizon-self-similar zones become (relatively) more and more narrow.
(This matches the behaviour we saw on our plots of F (−1)(t).)

All horizon-similar zones

Above, we already doubled the collection of disks we consider by adding red disks to the gray
ones. However, in Remark . .61 on p. . .78 we introduced yet another way to double: via adding the
transformation T 7→ −1/cT (of Hecke’s functional equation; here T = t/2π.) This transformation would
multiply226 fC and FC by a (complex) constant (which may be 1). In coordinate x this transformation
becomes x 7→ −c/x. Conclusion: to account for these additional zones, we need to add to the picture
of Ford circles above its transform under x 7→ −c/x.

However, one can immediately see that z 7→ −1/z preserves the Ford–Apollonian gasket. (Here we
extend the coordinate x on the horizontal axis to a coordinate z := x+ iy on the upper half-plane
with Im z ≥ 0.) Hence a transform of the Ford–Apollonian gasket by z 7→ −c/z is the same gasket
upscaled c times. What remains is to shade the corresponding disks (purple and yellow, depending on
whether the preimage of the Ford circle contains a gray or a red disk):

0 π 2π 3π

225Note that in the disk model, we had a gray disk tangent to the absolute at t = ∞. In half-plane model it
becomes a half-plane Im x > const. We do not shade it, since it does not contribute to the zones in question anyway!

226Here again we need to consider F and f as tensor fields. (See Footnote . . . .192 on p. . . .72.)
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This time we must omit circles with tangency points t = 2πR/D with c|D (we mark a few of them
with green arrows), and the color depends on

(
D
c

)
(violet is for

(
D
c

)
= 1). Conclusion:

The orange circles and the green circles are tangent to the absolute in two complementary subsets of 2πQ.

In other words: the tangency points of green circles on the picture with gray and red disks on p. . . .79
coincide with positions of “omitted” Ford circles in the pattern of orange circles.

Overlaying the last two pictures on top of each other gives:

0 π 2π 3π

Even if we ignore the disks, the orange and green circles look like a mess. But we can fix this!
Indeed, now, as in the Ford arrangement, every rational multiple of 2π on the boundary is the

tangency point of exactly one orange or green circle—but while the diameters of orange circles are
given by Ford’s rule (1/D2 on p. . . .79), the diameters of the green ones are c times too large. The fix is to
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replace every green circle by a blue one with the same tangency point and c times smaller diameter:

0 π 2π 3π

This way, the orange and (tiny) blue circles form a perfect Ford pattern. Moreover, the remaining
visual mess of the disks can be clarified by a simple recipe for their diameters:

“Inscribe” smaller disks into the orange Ford circles. For every blue circle, “outscribe” a larger disk.

(The scaling factors are 4/c and 4 for orange and blue circles correspondingly. The color is choosen
depending on c|D in t = 2πR/D.) Summarize the relation of this picture with the fractal properties of
F (−1)(t):

• Projections of gray and red disks are zones of visual horizon-self-similarity.
• Projections of violet and yellow disks are zones of visual horizon-similarity (self- for “even”
case, to-ImF

(−1)
C (t) otherwise).

• In projections of yellow and red disks the horizon-similarity “flips” sign (but not for violet
and gray disks).

When c grows (but remains prime), blue circles become more scarse (they match denominators
D divisible by c) and smaller. So although the size of gray and red disks relative to blue circles is
c-independent, their possible sizes go down with c,—and the rate of going down is similar to one for
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violet and yellow disks. For example, below we illustrate c = 11:

0 π 2π 3πϕπ 2πϕ2πψ

Here ϕ := (1 +
√

5)/2 ≈ 1.6180 and ψ := 1/(2 + 1/(1 + ϕ)) ≈ 0.4198.
As above, orange and blue circles form the Ford pattern, violet and yellow disks are incribed in

orange circles, gray and red are outscribed “in” (tiny!) blue circles. Four different colors of disks
correspond to the types of symmetry described in the bullet list above.

Complement to zones

One can restate our construction of the disks above for a prime c this way: to find a disk whose
projection contains a given number t = 2πα, we need to solve |α − R/D| < 2/c · 1/D2, or to solve
|α− R/D| < 2 · 1/D2 with c|D (which is equivalent to solving |c ·α− R/D| < 2/c · 1/D2 with c - R). Hence
any number which is . . . .“not. . . . . . .badly . . . . . . . . . . . . . . . .approximable” (can be approximated by rationals with more than
quadratic precision) is in such a projection. (It is well-known that badly approximable numbers are
“very rare”: they form227 a “ . . . . . . .meagre subset . .of. . . . . . . . . .measure . .0”.)

To give an example of such an exceptional number, we need α such that both α and c · α are
“sufficiently” badly approximable. However, for c = 11, while ϕ is the usual suspect for an example
of badly approximable numbers,228 the number 11ϕ = 17 + 1/(1 + 1/(3 + 1/(11ϕ + 6))) has infinitely many
continued fraction coefficients being 17 + 6 = 23—hence it has many approximations good for c < 46.
Because of this, 2πϕ is in the projection of a gray disk for c = 11.229 230

227It is still the same formulation as we had in Footnote . . . .208 on p. . .75. However, now we can relate our set of
exceptions to a classical problem in number theory. In particular, any upper bound on . . . .the . . . . . . . . . . .Hausdorff . . . . . . . . . . .dimension of the
set of solutions to |α− R/D| ≥ 2/c · 1/D2 ∀R,D works as an estimate for our exceptional set as well.

228It cannot be approximated by rationals with the required precision for c > 2
√

5 ≈ 4.472136.
229This is almost visible on the picture above—but one may need to zoom in a lot.
230Moreover, it is way easier to see that ϕπ is in a projection. This is not surprising since it is much easier to

approximate ϕ/2 (and also 11ϕ/2) by rationals.

https://en.wikipedia.org/wiki/Diophantine_approximation#Badly_approximable_numbers
https://en.wikipedia.org/wiki/Meagre_set
https://en.wikipedia.org/wiki/Null_set
https://en.wikipedia.org/wiki/Hausdorff_dimension
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On the other hand, both ψ and 11ψ = ϕ+ 3 are extremely badly approximable by rationals—and
2πψ on the picture above behaves correspondingly.231

Remark 62: Here we want to get a very rough heuristical estimate of which part of the absolute
is covered by the projections of the disks. First, focus on the projections of disks with the given
denominator D; they cover the fraction ≈ εDϕ(D)/D2 of the absolute; here εD = 4 if c|D, and εD = 4/c
otherwise. The averaged value ε of εD is about 8/c. Heuristically, it looks reasonable to assume (as
the 0th approximation!) that for different D, the intersections of zones behave as if the zones were
“independent”. This leads to the estimate ∏d

D=1 (1− εDϕ(D)/D2) for the relative size of what is not
covered by projections of disks with D ≤ d.

This product decreases as const · d−6/π2ε. We can estimate that to decrease the uncovered part by
half, we need to increase d about 10c/16 times; here we use 48/π2 log2 10 ≈ 16.16.

So for c = 23, to see half of the graph of F (−1) covered by the horizon-similar zones, we need to
zoom so that we can see zones of width 1/27 of the period. On the other hand, for c = 971, one would
need to zoom about 1060 times.

Numerical experiments (easily done up to c = 59) show that this estimate gives quite a good
match. For example, for c = 23 it turns out that to cover about half of absolute, one needs d = 23
(instead of 27 above).232

231Similar examples of badly approximable numbers Ψ and c · Ψ (those with the tail of continued fraction
coefficients being 1,1,1,. . . ) exist for a prime c = p when p has a quadratic residue mod 5. (For c < 50, this gives
c = 5, 11, 19, 29, 31, 41.) We sketch a very rough scheme of the proof below.

First, one can immediately see that both Ψ and c ·Ψ should have the form (αϕ+ β)/(γϕ+ δ) with integer coefficients
and αδ − βγ = 1. From this it is easy to deduce that the condition above is necessary.

Moreover, if γ, δ > 0 and Ψ = (αϕ+ β)/(γϕ+ δ) > 0, then the continuous fraction for Ψ has the required form. Try
to solve c ·Ψ− ϕ ∈ Z; this equation can be reduced to γδ − γ2 + δ2 = c having integer solutions. Indeed, given such a
solution, one can find α, β with αδ − βγ = 1 and put Ψ := (αϕ+ β)/(γϕ+ δ); then δ|cβ − γ and c ·Ψ = ϕ+ (cβ − γ)/δ as
required.

Furthermore, any solution to γδ − γ2 + δ2 = c leads to another solution γ′ = 2γ + δ, δ′ = γ + δ; moreover, if δ > 0,
then δ′ > 0 and γ′ > γ. Iterating this, one can immediately see that if a solution exists, there must be solutions with
γ, δ > 0.

(The rest requires more esoteric math. Existence of a solution to γδ − γ2 + δ2 = c can be investigated via . . . . . . . .Hasse’s
. . . . . . . . . . . .local-global . . . . . . . . . .principle; in the case of indefinite binary form γδ − γ2 + δ2 it says that it is enough to find solutions
mod pk for all k ≥ 1 and all prime divisors p of 2c|D|; here D is the discriminant, so |D| = 5. Moreover, . . . .the . . . . . . . . .Product
. . . . . . . . .Formula . . .for. . . . . . . . .Hilbert . . . . . . . .symbol shows that one can replace “all p” above by “all but one”. Skipping p = c leaves just
p = 2, 5—which implies that the answer depends only on c mod 2a5b with a, b� 0. A simple check improves this to
a = 0, b = 1, and the criterion above.)

232In fact, this change from 27 to 23 is “as expected” with a bit more precise analysis of the product above. Indeed,
note that the change of the product when d goes from kc− 1 to kc is approximately as large as the change between kc
and (k+ 1)c− 1. Because of these, the answer for “when projections cover ½ of the absolute” tend to “be attracted” to
multiples of c.

With such a correction, our estimate is reasonably good already for c = 7, and the total length of projections with
d given by this formula tends to have only a tiny systematic error: it is close to 1/2 + 1/c instead of ½.

https://en.wikipedia.org/wiki/Hasse_principle
https://en.wikipedia.org/wiki/Hasse_principle
https://en.wikipedia.org/wiki/Hilbert_symbol#Hilbert%27s_reciprocity_law
https://en.wikipedia.org/wiki/Hilbert_symbol#Hilbert%27s_reciprocity_law
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In construction!

This part of the notes has very little to do with our principal aims. However, the situation
uncovered in Remark . .49 on p. . .64 is so mind-boggling that I could not leave it alone, and was forced
to write explanations which are somewhat more detailed (and way more complicated) that what is
done in the rest of these notes.

Note that this part is in extremely preliminary stage, and was not optimized for reading in any
way. So unless one is really interested in why sums of δ-functions behave in the way we claim in
Remark . .49 on p. . .64, this “appendix to appendix” should better be skipped in the first few readings.

However, we want to stress that as calculations in . . . . . . . . .Analytic. . . . . . . . . .Number . . . . . . . .Theory go, what we do below
is completely pedestrian, and is very close to 0 on the “0 to 10” difficulty scale. What is very surprising
is the result, and not the calculations themselves.

(This appendix is in a very early stage. It was not massaged yet in any way to simplify reading!)

Examples of dealing with Eisenstein series

Example of Eisenstein calculation:
The case M = 16 of M ×Tetrahedral number+ 1 is proportional to the polynomial (2n− 1)(4n2 +

2n − 3), which can be rewritten with k := 2n − 1 as k(k2 + 3k − 1). Applying our recipes above
for the numbers Nm (see . . . .the . . . . . . . .section on p. . .59) literally to this decomposable polynomial, one gets
numbers Npk , k ≥ 1, which are 2,3,4,5,. . . when

(
p
13

)
= 1, or 0,1,0,1,. . . when

(
p
13

)
= −1, or 1,1,1,1,. . .

when p = 13 (here we use Legendre symbol from p. . . .113). (The latter case may requires the rule
from the section on . .59.) One can immediately see that Nm = ∑

d|m

(
d
13

)
when m = pk; since both

sides are . . . . . . . . . . . . . . . .“multiplicative” the same identity holds for arbitrary m. Consider a more general sequence
σm := σm(s) := ∑

d|m

(
d
13

)
ds; here s is a real (or complex) parameter. With s = 0, one gets Nm; we

are going to consider negative s, then take lims→−0.
Our aim is233 to calculate the Fourier transform of the sequence σm. One can rewrite the condition

d|m as ∑r mod d e(m · r/d) = d; otherwise the sum is 0. Here e(t) := exp 2πit. Hence one can rewrite

σm =
∑
d>0

(
d

13

)
ds−1 ∑

r mod d
e(m · r/d)

(note that the combined summation is absolutely convergent iff s < −1).
Grouping together terms with ±r mod d, the Fourier transform is

½
∑
d>0

(
d

13

)
ds−1 ∑

r mod d

∑
m>0

(eim(t+2πr/d) + eim(t−2πr/d)).

In this form, the complex conjugation replaces summation over m > 0 by m < 0; hence taking the
real part gives (on [0, 2π])

¼
∑
d>0

(
d

13

)
ds−1 ∑

r mod d

(∑
m

(eim(t+2πr/d) + eim(t−2πr/d))− 2
)

=
∑
d>0

(
d

13

)
ds−1 ∑

0≤r<d
(πδ(t− 2πr/d)−½) .

233In fact, we came to this calculation “going backwards”: we took the conjectured formula for jumps in the
function F (−1)(t) from p. . .62, then calculated the Fourier transform of the derivative of a periodic function with such
jumps, then (after we saw a match with Nm) inverted this process.

85

https://en.wikipedia.org/wiki/Analytic_number_theory
https://en.wikipedia.org/wiki/Multiplicative_function
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or, putting `s := ∑
u

(
u
13

)
us (absolutely convergent for s < −1)

π
∑
d>0

(
d

13

)
ds−1 ∑

0≤r<d
δ(t− 2πr/d)−½`s.

Writing d = Du, r = Ru with u = (d, r), this becomes

π`s−1
∑
D>0

(
D

13

)
Ds−1 ∑

0≤R<D, (R,D)=1
δ(t− 2πR/D)−½`s.

Periodic extention from [0, 2π] gives

π`s−1
∑

D>0, R, (R,D)=1

(
D

13

)
Ds−1δ(t− 2πR/D)−½`s.

For s < −1, everything was absolutely convergent, hence our calculations make perfect sense:
the latter sum is the real part of the Fourier transform of the sequence σn.234 Moreover, later we
are going to show that `s and

∑
D>0, R, (R,D)=1

(
D
13

)
Ds−1δ(t− 2πR/D) extend as analytic functions to

Re s < 1, and that this implies that our formula for Fourier transform is valid for such values of s (if
one reorders the summation above as described below). Moreover, since `0 = 0, for s = 0 the last
term disappears.

Conclusion: the real part of the Fourier transform of σm (in other words, the sum of the Fourier
series) is the sum of δ-functions with non-0 coefficients concentrated in all rational numbers multiples
of π with denominators prime to 13. From this, it is very natural to expect that the antiderivative has
jumps at these numbers, and the height of the jump is equal to the coefficient at the corresponding
δ-function. (Note that this predicts the correct jump π`−1 ≈ 2.08 at 0.) In particular, the jump at
2π/13 would be 0.

However, on . . . .the . . . . . .graph on p. . .63 we saw that at 2π/13 there is a jump!
Note that for s < −1 our series converge absolutely, hence manipulations make perfect sense.

One might have assumed that since σm and the coefficients at δ-functions in the final answer depend
analytically on s, they should match for any s. However, this is not how analysis works; fine print235

in theorems on analytic dependence on paramaters breaks the match.
Indeed, if one believes the calculation above gives a correct answer for s = 0, then the coefficient

at δ-function at t = 2π/13 should be 0; however, the . . . . . .graph . . .of . . . . . . . . . . . . . . .antiderivative on p. . . .63 has a non-trivial
jump there.

. . . . . .There . .is. .a. . . .lot . . .to . . . .say about s ≥ −1.
To show that the heuristic argument above must break, consider a different approach to the same

Fourier transform. The explicit description of Npk for this polynomial implies that Npk = 0 if p 6= 13
and

(
pk

13

)
=
(
p
13

)k
is not 1. Therefore Nm =

(
m′

13

)
Nm; here we write m = m′13k with (m′, 13) = 1.

This leads to a different sequence σ̃m := σ̃m(s) :=
(
m′

13

)∑
d|m

(
d
13

)
ds with the same limit236 Nm when

s→ −0.
To calculate Fourier transform, rewrite the factor

(
m′

13

)
. Let ρl(m) := ∑

v mod 13l
(
v
13

)
e(m · v/13l) for

l ≥ 1. We claim that
(
m′

13

)
=
√

13
13l ρl(m) when l = k + 1, and that the RHS is 0 otherwise.

234(In fact, one can consider our summation of δ-functions even in the space of measures, and not generalized
functions.—Recall that summation—or taking limits— in generalized functions is much “more forgiving” than in
measures. (For example, consider limn(δ(t− 1/n)− δ(t)).)

235Which one???!!!
236Another way to see this is to note that

∑
d|m
(
d
13
)

=
∑
d|m′

(
d
13
)

=
∑
d|m′

(m′/d
13
)

=
(
m′

13
)∑

d|m
(
d
13
)
.

Compare this with
∑
dd′=m′

(
d
13
)
db = m′b

(
m′

13
)∑

dd′=m′

(
d′

13
)
d′−b. Hence σm(s) = m′sσ̃m(−s).

https://en.wikipedia.org/wiki/Eisenstein_series
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Indeed, write residues mod 13l with l ≥ 1 as v = v′ + 13v′′; here v′ runs through a particular
collection of 13 lifts of 13 residues mod 13, and v′′ runs through residues mod 13l−1. Then ρl may be
rewritten as ∑v′ mod 13

(
v′

13

)
e(m · v′/13l)∑v′′ mod 13l−1 e(m · v′′/13l−1). Note that the latter sum vanishes if

l−1 > k, and the former is ∑v′ mod 13

(
v′

13

)
e(m′13k−lv′), hence vanishes if l ≤ k. Otherwise, if l = k+ 1,

this leads to
13l−1 ∑

v′ mod 13

(
v′

13

)
e(m′v′/13) = 13l−1

(
m′

13

) ∑
v′ mod 13

(
m′v′

13

)
e(m′v′/13),

and m′v′ runs through all residue mod 13. Therefore the latter sum does not depend on m′ (for
13 - m′). By properties of . . . . . . . . . .quadratic. . . . . . .Gauss. . . . . .sums, it is

√
13, proving the claim above. This leads to

δl k+1σ̃m =
√

13
13l

∑
v mod 13l

(
v

13

)
e(m · v/13l)

∑
d|m

(
d

13

)
ds;

moreover, one may assume that d|m′. As above, we may rewrite the condition d|m′, getting

δl k+1σ̃m =
√

13
13l

∑
v mod 13l

(
v

13

)
e(m · v/13l)

∑
d

(
d

13

)
ds−1 ∑

r mod d
e(m′ · r/d);

additionally, e(m′ · r/d) = e(m · r/13kd). Hence one can rewrite this as

δl k+1σ̃m =
√

13
13l

∑
13-d

ds−1 ∑
v mod 13l

(
vd

13

)
e(m · vd/13ld)

∑
r mod d

e(m · 13r/13k+1d).

Additionally, the residues of 13kr mod d are all distinct, so one can replace 13r by 13k+1r. Hence,

δl k+1σ̃m =
√

13
13l

∑
13-d

ds−1 ∑
v mod 13l

(
vd

13

) ∑
r mod d

e(m · (vd+ 13lr)/13ld).

Obviously, using R = vd+ 13lr the last two sums may be replaced by ∑R modD

(
R
13

)
e(m · R/D); here

D := 13ld; denote D13 := 13l. Hence, summing over l ≥ 1:

σ̃m =
√

13
∑
13|D

D−s13 D
s−1 ∑

R modD

(
R

13

)
e(m · R/D).

Calculating the real part of Fourier transform as above, we get (on [0, 2π])
√

13
∑
13|D

D−s13 D
s−1 ∑

0≤R<D

(
R

13

)
(πδ(t− 2πR/D)−½) = π

√
13
∑
13|D

D−s13 D
s−1 ∑

0≤R<D

(
R

13

)
δ(t− 2πR/D).

Extending to t ∈ R, and collecting the terms with the same R/D (as above), this becomes

π`s−1
√

13
∑

13|D, D>0
D−s13 D

s−1 ∑
R, (R,D)=1

(
R

13

)
δ(t− 2πR/D).

here we used the equality `s−1 = ∑
u

(
u
13

)
u−s13 u

s−1.
One concludes that the real part of the Fourier transform of σ̃m is the sum of δ-functions (with

non-0 coefficients) concentrated in rational numbers with denominators divisible by 13. (At least for
s < −1, when our series converge absolutely, hence manipulations make perfect sense.)

Note that this set of points where δ-functions are concentrated is exactly complementary to what
we got in the previous calculation (for σm). Moreover, for s = 0 this answer predicts coefficient 0 at
t = 0—but the graph of antiderivative on p. . . .62 has a non-trivial jump there.

Summation of homogeneous functions on a lattice:

https://en.wikipedia.org/wiki/Quadratic_Gauss_sum#Properties
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Consider homogeneous functions Ψ(τ) of degree d on Rn; in other words, Ψ(aτ) = adΨ(τ) for
a > 0. Restriction identifies these functions with functions ψ on the sphere |τ | = 1. Assume that
ψ, its derivatives and second derivatives237 are bounded by M . Then the second derivatives of Ψ
are bounded as CM |τ |d−2 with a certain constant C. Therefore 2Ψ(τ) − Ψ(τ − τ0) − Ψ(τ + τ0) is
bounded as CM |τ |d−2|τ0|2. Hence the same estimate holds for Ψ(τ) −

∫
l Ψ(τ + τ ′)dτ ′/|l|; here l

is a paralellipiped centered at 0 with the largest diagonal |τ0|, and |l| is its volume; we require
2|τ | > (1 + ε)|τ0| with ε > 0.

Conclusion: given a lattice L in Rn and a bounded function α on L , the sum ∑◦
τ∈L α(τ)(Ψ(τ)−∫

l Ψ(τ + τ ′)dτ ′/|l|) converges absolutely for d− 2 < −n; here ∑◦ means skipping238 τ with |τ | ≤ |τ0|.
Since in this context it is much easier to estimate integrals than sums, this observation is the principal
tool in summation of values of homogeneous functions—however, we need a slightly different approach.

Assume that α is even L ′-periodic (here L ′ is a sublattice of L ) with average 0. Take a centrally-
symmetric collection U of representatives of all translations τ + L ′ of L ′ inside L ; assume that U is
finite and contains 0. Then ∑τ0∈U α(τ + τ0)Ψ(τ + τ0) can be also bounded as above, CM |τ |d−2|τ0|2,
with τ0 the “diameter” of U . Hence the external sum in ∑′τ∈L ′

∑
τ0∈U α(τ + τ0)Ψ(τ + τ0) is absolutely

convergent for d − 2 < −n; here prime means that we omit τ = 0. (Note that the internal sum
is finite.) If d < −n, then this sum coincides with ∑τ∈LrU α(τ)Ψ(τ) (which converges absolutely).
Conclusion: the former summation method (with added ∑′τ∈U α(τ)Ψ(τ)) gives a generalization of
summing ∑′τ∈L α(τ)Ψ(τ): it gives correct answers for d < −n, and makes sense on a larger set
d− 2 < −n of degrees d.239 240

Remark 63: An important related question is the possibility of analytic continuation when the
sum is restricted to points τ ∈ L ∩ C; here C is a cone with the vertex at 0.241 When one restricts
summation to shifts τ + U of U with τ ∈ L ′ which are completely contained inside C, the same
arguments as above show that the corresponding sum over τ absolutely converges for d < 2− n, and
for a fixed d < 2− n the obtained function of C is uniformly O(α); here α is the “solid angle” of the
cone.

The points of C not involved in the summation above are in a narrow strip near ∂C; one can
immediately see that for cones with boundary of dimension n− 1 this summation absolutely converges

237In fact, the arguments below work also when the first derivative is Lipschitz with the constant M , and the
function is bounded by M .

238We need to skip such values since Ψ is not defined at the origin (at least when d is negative). In what follows,
skipping 0 ∈ L leads to a lot of clumsiness in the formulas below.

One could avoid this clumsiness completely if we would require that Ψ is homogeneous only for |τ | > 1, and is
sufficiently smooth near 0.

239One can also consider complex d. Then the conditions are Re d < −n and Re d− 2 < −n.
240Likewise, if α is odd, a similar argument (with the first derivatives instead of the second ones) shows convergence

for d − 1 < −n. In fact, in both cases more cancellations are possible, and it turns out that one can analytically
continue to any d.

241The property of analytic continuation in s is important since it, in a certain sense, cancels “being only
. . . . . . . . . . . . .conditionally. . . . . . . . . . . .convergent”. Note that the latter condition shows than one needs some additional information to define
the sum of numbers in a set (one needs to specify the “order” of summation: the method to rearrange the given infinite
sum into a sum of sums of sums etc.). On the other hand, the depence on this “method” disappeares if we require that
the “method” satisfies these additional conditions:

• Every “intermediate” infinite sums of the method is absolutely convergent when s is in a certain set Σ;
• The set Σ is connected and contains the given value s0;
• On an open part of Σ the series converges absolutely;
• We are intersted in the sum when s = s0;

provided that the sum (well defined for values of s where it converges absolutely) has an analytic extension.242
242Indeed, absolutely convergent sums preserve analyticity.
Because of this if Σ is open, then the analyticity condition above follows from other conditions: two methods with

the same open connected set Σ must give the same results for every s ∈ Σ if they coincide on an open part of Σ.

https://en.wikipedia.org/wiki/Conditional_convergence
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for d < 1− n. Moreover, if the function ψ vanishes on ∂C, it absolutely converges for d < 2− n. This
restricts the question of the behaviour of analytic continuation to calculations on ∂C.

The situation becomes particularly simple for n = 2, when C is an angle (so ∂C is automatically
of dimension 1), and C is controlled by two numbers: the angles b′, b of bounding rays. The
“completely contained” part of the sum gives a function ϕ(b′, b) which such that |ϕ(b′, b2)−ϕ(b′, b1)| ≤
O(b2 − b1) +O(Dd−1), here D is the minimal denominator of rational numbers between b1 and b2.243

However, consideration of the ”remaining” terms is more delicate.
Remark 64: Here we examine only the case when the cone C is polyhedral. One can immediately
see that the summation over parts near “edges” of this cone absolutely converges for d < 2− n; hence
the question of analytic continuation is reduced to what happens near highest-dimensional faces of
∂C. Essentially, we need to investigate what happens near a (part of a) hyperplane.

Consider values of τ ∈ L ′ such that the region τ + U considered above is bisected by the given
hyperplane Π. Assume that these values “form a staircase”: for a certain projection to Π there is at
most one such τ with the given projection.244 Assume that the kernel of Π is spanned by a vector l0
in the lattice L ′. Then the image L ◦ of L ′ under this projection may be lifted back to L ′, consider
a linear functional β which vanishes on this lifting, and takes value 1 on l0.

It is not hard to see that the way τ +U is bisected by Π depends only on β(Π(τ)) modZ, and that
this value does not depend on the choice of β (for fixed l0). Denote by Uτ the part of such “bisected”
τ + U which is “above Π”. Hence if we want to sum values of a certain function over points in all
sets Uτ , the essential component is the behaviour of the fractional part of a linear function β on the
lattice L ◦.

In particular, if we sum αΨ where Ψ is changing slowly for |τ | � 0, then one can rewrite
α(τ + τ0)Ψ(τ + τ0) = α(τ + τ0)Ψ(τ) + α(τ + τ0)(Ψ(τ + τ0)−Ψ(τ)). Under our assumptions on Ψ, the
difference Ψ(τ + τ0)−Ψ(τ) is O(|τ |d−1) for large τ . This immediately implies that these difference
terms contribute an absolutely convergent part into summation over Uτ . On the other hand, the first
term contributes Ψ(τ)∑τ0∈Uτ α(τ0), and the sum depends only on β(Π(τ)). In fact, the sum may be
written as ξ(β(Π(τ))) with a 1-periodic locally constant function ξ.

We conclude that the question of analytic continuation of a sum over C ⊂ Rn is reduced to
investigating ∑τ∈L ◦ ξ(β(τ))Ψ(τ) (or similar sums over polyhedral cones in L ◦ ⊂ Rn−1); here β is a
linear function on L ◦, and ξ is a 1-periodic piecewise-constant function. Under our assumptions ξ is
odd. Note that for questions above, we are interested in cases when the degree d of homogeneity of Ψ
and the dimension n′ = n− 1 of L ◦ satisfy d < 1− n′.

Note that when ξ ◦ β is periodic (and automatically odd) on L ◦, the argument in Footnote . . . .240
implies the required analytic dependence. This happens when the hyperplane has a normal in the
dual lattice to L . (For n = 2 this happens when the slopes of ∂C are rational.)

Apply this to the functions Ψ(R,D) = Ψ0(R,D)|D|s−1; here n = 2, τ = (R,D), and Ψ0 is of
homogeneity degree 0. Let L be the integer lattice. Suppose that Ψ0 is smooth away from 0, and
Ψ0(R,D)|D|s−1 has bounded second derivatives on |τ | = 1 for a certain range of s s with Re s < 1.
(For example, this happens when Ψ0 has a zero of sufficiently large order on D = 0.) Under the
above assumptions on α, one concludes that using the summation method above, one can extend the
function ∑′τ∈L α(τ)Ψ(τ) of s from the region Re s < −1 to Re s < 1 as an analytic function of s.

Moreover, one can see that the conditions on Ψ0 hold if the function Ψ0(R, 1) and its first two deriva-
tives vanish suffiently quickly when R→∞. This immediately implies that ∑′(R,D) α(R,D)Ds−1δ(t−

243If one of b1,2 is rational with denominator D′, then 1/D is bounded by D′|b2 − b1|. So in this case the second
term is also similar to the Lipschitz estimate if d ≤ 0. In the case we are most interested in, when d = −1, the
Lipschitz estimate holds for . . . . .“not . . . . . .badly. . . . . . . . . . . . . . . .approximable” numbers (which can be approximated by rationals with more
than quadratic precision.)

244In general, one can assume that the number of such preimages is bounded. The method below work with this
general case as well, so the assumption above is needed only to simplify notations.

https://en.wikipedia.org/wiki/Diophantine_approximation#Badly_approximable_numbers


90 Appendix2: Eisenstein series

R/D) (which is a well-defined generalized function if s < −1) extends as an analytic function of s
(with values in generalized functions!) to the region s < 1.

In particular, every Fourier coefficient of the latter generalized function depends analytically on s
when s < 1. In particular, if we know Fourier coefficients for s < −1, we can extend them analytically
to s < 1, and the extended value is the Fourier coefficient of the extended generalized function.

Moreover, one can go in different direction: start with a sequence depending on parameter s;
suppose that for s < −1 the corresponding Fourier series converges to ∑′(R,D) α(R,D)Ds−1δ(t− R/D),
with α satisfying the conditions above. Then we know that for s < 1 the Fourier series converges (in
the sense of generalized functions) to

∑′

(R,D)∈U
α(R,D)Ds−1δ(t− R/D) +

∑′

(R′,D′)∈L ′

∑
(R,D)∈U

α(R′ +R,D′ +D)(D′ +D)s−1δ

(
t− R′ +R

D′ +D

)
.

Moreover, the estimates above (with the second derivatives) show that the second antiderivative
of this generalized function is a function on R of class L1. In particular, the third antiderivative is a
well-defined . . . . . . . . . . .absolutely . . . . . . . . . . . .continuous function.

Remark 65: For n = 2 the situation of the preceding remark is reduced to analytic continuation of
the sum ∑

m Ξ(mγ)/ms; here Ξ is an odd 1-periodic piecewise-constant function. Instead of such Ξ, it
is enough to consider the case when Ξ = ξβ, here ξ = ξβ is 1-periodic and is 1− β on [0, β] and −β on
[β, 1] (so that the average value245 of ξ is 0). One way to estimate such sums is . . .the . . . . . . .Abel’s. . . . . . . . . . . . .summation
. . . . . . . .formula: if we can show that ∑m ξ(mγ) grows sufficiently slow, then ∑m ξ(mγ)/ms converges. For
example, if

∣∣∣∑m≤M ξ(mγ)
∣∣∣ grows not quickier thanM/ log2 M , then∑m ξ(mγ)/ms converges for s ≥ 1.

In fact, for the aim of analytic continuation, it is enough if the “M -summation” ∑M
1/M2

∑
m≤M ξ(mγ)

converges absolutely, and that 1/M
∑
m≤M ξ(mγ) → 0. Since the second property is much easier to

show, and does not need any new method, we cover only the first one.
To estimate such sums, assume247 |γ − A/B| < 1/B2, take any B consecutive numbers mγ and

consider the set of their fractional parts. One can see that the elements of this set differ no more
than by 1/B from numbers k/B with k = 0, . . . , B − 1 (when considered modZ, so we glue 0 and 1
together). In particular, the count of these fractional parts which are in [0, β] may be estimated,
and one can see that |∑m ξ(mγ)| over this range of m is bounded by 3. Hence one can estimate248∣∣∣∑m≤M ξ(mγ)

∣∣∣ ≤ 3KM if M may be represented as a sum of KM denominators of continued fractions
for γ. (Indeed, each of these denominators works as the number B above.)

For example, if M is between such denominators Ql and Ql+1, then KM ≤
∑
k≤l+1 ak; here ak are

coefficients of the continued fraction of γ. This may be improved to KM ≤
∑
k≤l ak +M/Ql.

Typically, the sequence Ql grows much quickier than al. Let Al = ∑
k≤l ak; note that Ql+1 =

al+1Ql +Ql−1. Running the M -summation above for numbers between Ql and Ql+1 gives an estimate∑
Ql≤M<Ql+1

(Al +M/Ql)/M2. The term Al contributes at most Al/Ql = ∑
k≤l ak/Ql; summing such terms

over l, the number ak comes with a coefficient ∑l≥k 1/Ql; since Qk+2 > 2Qk, this coefficient is bounded

245For irrational γ the value of Ξ or ξ at a point of jump does not matter for analytic continuation. For rational γ
one approach is to follow the standard convention: average values below/above the jump. This gives the average of two
sums: for a closed cone and for an open cone.246

These two sums correspond to taking value either above or below the jump (depending on whether the cone is
closed or open, and on whether the hyperplane is “top” or “bottom” boundary). These sums may have a pole in analitic
continuation; to avoid a pole, we need an additional condition: the average value of α on the hyperplane should be 0.

246N.B. Is it???
247As in . . . . . . . . . .Dirichlet’s. . . . . . . . . . . . . . . .approximation. . . . . . . . . .theorem.
248For rational γ the estimate may be replaced by the “last” Ak (defined below), which in turn is bounded by the

denominator of γ.

https://en.wikipedia.org/wiki/Absolutely_continuous
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as 4/Qk. Now summing over k gives 4∑k
ak/Qk; however, al/Ql ∼ 1/Ql−1, hence this part of summation

converges absolutely.
The remaining term M/Ql contributes at most

∫ al+1+1
1 1/Q2

l κQldκ = log(al+1 + 1)/Ql. Conclusion:
if ∑l

log al+1/Ql converges, then M -summation converges absolutely, hence the analytic continuation
works for s ≤ 0, and coincides with the sum of the series for s = 0. Since one can replace log al+1
by logQl+1 without changing convergence, this condition is the . . . . . . .Bruno . . . . . . . . . .condition; in a certain precise
sense, only “extremely pathological” numbers fail this condition.

This shows that if an angle C has non-pathological directions of the bounding rays, the sum over
τ ∈ L ∩ C “makes sense” for s = 0. Moreover, one can find it by

• For every τ ′ ∈ L ′ add together the terms corresponding to points of L ∩ C inside the
translation τ ′ + U of U ;
• Sum up (in any order) the obtained totals for translations τ ′ + U fully contained inside C;
• Add the sum of the totals for the remaining translations τ ′ + U (in the order of the distance
from the origin).

Additionally, it shows that this method of summation is compatible with subdivision of an angle into
several smaller angles: when it is compatible249 for s < −d, the analytic continuation must also be
compatible.

On the other hand, we already saw that for directions of ∂C with rational slope p/q we can do
much more: the M -summation converges quickly enough (the remainder is bounded by q/M1−d

0 with
M0 being the cut-off) iff the average of α on the boundary ray is 0. In fact, for “typical” numbers,
coefficients of the continued fraction satisfy ak < λ(k) for all but a finite number of k provided∑
k

1/λ(k) converges ( . . . . . . . . . . .Khinchin’s . . . . . . . . .estimate. . .in. . . . . . . . . .“Th. 30”). Hence ak = o(k log2 k) and Ak = o(k2 log2 k).
Compare this with Qk, which grow at least as a geometric progression. This shows that for such
numbers KM = O(log3 M). Essentially, this adds “only logarithmic terms” to our estimate of the
remainder of M -summation valid for rational slopes. (Moreover, analytic continuation works up to
s < 1.)

The last considerations become important when we consider how the sum changes when one
replaces the cone C with another one C ′ which differs by a small rotation of one of the boundary
rays. By compatibility with subdivision, we can consider the case of an open and very sharp angle C
instead (of magnitude |C|). First250 restrict attention to the rational slopes of the boundary rays. To
avoid poles of analytic continuation (see Footnote . . .245), assume that the average value of α on any
hyperplane in L is 0.251

One can break the sum into 4 parts (below U τ is the translation τ +U of U with τ ∈ L ′) running
over:

• The U τ s fully contained inside C.
• The U τ s which are bisected by the second ray, but not the first one.252

• The U τ r C s with U τ bisected by the second ray. (Sum taken with opposite sign.)
• The U τ ∩ C s with U τ bisected by the first ray.

Above, we estimated the first sum as O(|C|+Nd−1
C ) with NC the smallest magnitude of a point of a

lattice strictly inside C (note that |C| = O(1/NC)). Note that in the remaining parts we can omit
U τ if it has no points with magnitude < NC . Then (similarly to the first one) the second term is
bounded as O(Nd−1

C ). For rational slopes one gets an estimate O(q ·Nd−1
C ) for the other two terms;

here q is the maximum of denominators of slopes of boundary rays.
249Of course, the ray separating the angles should be included in one of the angles only.
250N.B. Check???
251Note that this is not very restrictive. For example, if L ′ is of a prime index in L , this adds the condition

α(0) = 0.
252Here we sum over the “whole” Uτ —as opposed to Uτ ∩ C.

https://en.wikipedia.org/wiki/Brjuno_number
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However, the latter estimate does not ensure continuty, since (in the case of rational slopes)
NC and q are of the same order of magnitude. So to examine discontinuities for d = −1, we need
to investigate the behaviour of maxM

∣∣∣∑m≤M Ξ(mγ)
∣∣∣ /Q, here Q is the length of the period (the

denominator of γ)253. To simplify bookkeeping, assume that |Ξ| and jumps of Ξ are bounded by 1.
Proceed as above: assume that |γ − r/q| < 1/Nq; then the sum sn := ∑

m Ξ(mγ) over n ≤ N
consecutive values of m differs from the corresponding sum ∑

m Ξ(mγ0 + δ) (with γ0 := r/q, and an
approriate δ) by no more than the total variation v of Ξ. Note that the latter sum vanishes for n = q

and δ = 0; when it vanishes for every δ we get an estimate v + 2 maxM
∣∣∣∑m≤M Ξ(m · r/q)

∣∣∣ for sN, and
the estimate (1/N + 1/Q) ·

(
v + 2 maxM

∣∣∣∑m≤M Ξ(m · r/q)
∣∣∣) for maxM

∣∣∣∑m≤M Ξ(mγ)
∣∣∣ /Q. (Indeed, we

need about Q/N + 1 such runs to cover the whole period.)
Moreover, when γ 6= γ0, one has 1/N + 1/Q < 2q∆ with ∆ := |γ − r/q|. Hence when there is no

dependence on δ, and one ray of the angle (with rational slopes!) is fixed, the sum is bounded by a
multiple of ∆.

Conclusion: consider our regularized sum ∑
τ α(τ)Ψ(τ) (with Ψ of homogeneity degree −1) taken

over τ ∈ L in an open angle C. Fix α and Ψ; then the sum can be bounded (in magnitude) by
const ·q2

1|C| (with q1 being the denominator of the slope γ1 of one of the boundary rays of C in a
particular basis of L ) provided:

• the boundary rays of C go in “rational” directions w.r.t. C;
• the function Ψ is smooth away from 0;
• the function α is double-periodic with average 0;
• the function α has average 0 on both boundary rays;
• the function α has average 0 on any line in L going in the direction γ1.

Together with additivity, this gives a partial description of the behaviour of the sum in an open angle
C when one varies one of the rays R of the angle. Call an L -rational direction admissible if the
average of α on the line of this direction through 0 vanishes; call it strongly admissible if the same
holds for all translations of this line. Restrict attention to angles with admissible direction of R;
then near a strongly admissible direction, there is a jump of ∑τ∈R α(τ)Ψ(τ), and there are one-sided
Lipschitz estimates on any side of the jump.

For α(p, q) =
(
q
13

)
on Z2 any rational directions is admissible; it is strongly admissible iff the slope

γ1 = p1/q1 has denominator prime to 13. Likewise, for α(p, q) =
(
p
13

)
on the sublattice L ⊂ Z2 given

by 13|q, strongly admissible directions have 13|q1.
As we already saw, these two cases lead to the same sums over angles; since any rational direction

is strongly admissible for one of these cases, this explains the observed properties of .the graph on p. . .61.
(Note that this explanation works for rational directions only; to include— typical?— irrational values
would require additional arguments.)

What we proved above is that any one of two sums above has the “expected” jumps at the points
where the terms we sum have jumps, however, it also has “spurious” jumps; they happen where the
other sum has “expected jumps“, and are of the same height as these jumps. However, having a proof
does not make an explanation. How come these spurious jumps appear?

0.34886

0
0 0.04

As a partial explanation, observe what hap-
pens when we “deform” the sum, changing s from
0 to negative values. The plot on the right shows
what happens near t = 0 when s = −1/3, together
with the graph of y = C · t1/3. This plot has only

253Note that the position of jumps of Ξ depends on γ. Moreover, at some values of γ the jumps may “collide”.
However, this dependence turns out to contribute only negligible terms into the estimates we need, so we are going to
ignore it.
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the “expected” jumps at points p/q with 13 - p, of
magnitude √13/qs13q

1+s
(
p
13

)
. In general, the curve

to fit when t → +0 is254 Cs · t−s. When s → 0,
the coefficient Cs goes to ½, and y goes to ½ for
positive t. Since the function is odd, with s = 0
we get a jump of 1 at t = 0.

Conclusion: the spurious jumps appear only
when s = 0. For other values of s, one gets “less
confusing” power-law singularities at the positions of spurious jumps.

2.5

-2.5
-0.1 7

Remark 66: For the case of negative discrimi-
nant, the corresponding Eisenstein series do not
behave as nice, so the surprise factor of “spu-
rious” jumps coming from clear blue sky disap-
pears. Indeed, in this case the toy transform
mixes together the real and the imaginary parts.
As . . . .the . . . . . . . .graphs on p. . .61 show, when the real part
has jumps, the imaginary part must have a log-
singularity; hence if one expects jumps, then the
real part has both jumps and log-singularities.
This breaks the symmetry between “expected”
and “spurious” features.

Indeed, this is what happens in reality. On
the right is the example plot for a decomposable polynomial x3 + x with discriminant −4. The
only special prime is 2, and one could use LST = [[2,[1,0,3]]] for PN_nINIT() (see Footnote . . . .324
on p. . . .122). Moreover, it looks like there is no jump at π—so the situation is not as clear-cut as in
the case of positive discriminant.

A final (and probably most important) remark: the presence of log-singularities on a dense subset
shows that both “real” graphs255 are going to fill the plane. This suggests that the approach we
used would probably make little sense for odd functions α (compare with even/odd cases of . . . . . .Euler
. . . . . . . . . . . .formulation on p. . .14).

In other words: in this context, the Maass case is much more interesting than the “case of modular
forms”.

254Heuristically, this may be explained by the last identity of Footnote . . .236. If we could replace m′s by ms in this
identity, then the Fourier transforms of σ(s) would be “the fractional derivative of order s” of the Fourier transform
of σ̃(−s). Since “taking a derivative” is “a convolution with the function δ′”, and “taking derivative of order s” . .is . .a
. . . . . . . . . . . .convolution with t−1−s/Γ(−s), under “the heuristic assumption above” if one expects δ(t− t0) to appear in the Fourier
transform of σ̃(−s), one should also expect a singularity of type (t− t0)−1−s/Γ(−s) to appear in the Fourier transform
of σ(s) (and the same with σ and σ̃ exchanged).

Taking antiderivative of this produces a singularity of type (t− t0)−s/Γ(1− s). This is almost exactly what we saw
above. However, this heuristic does not work ideally: we needed an extra factor 0.815 to make a match in the plot
above. (Naive approach taking into account only the jump of σ at 0 would lead to the coefficient 12/(13− 13s) ≈ 0.9543.)

255As opposed to simulations made by interpolating from a small collection of values of t.

https://en.wikipedia.org/wiki/Fractional_calculus#Heuristics
https://en.wikipedia.org/wiki/Fractional_calculus#Heuristics
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In construction!

We start with a section we could not find place elsewhere.

More details on the M-family

On p. . .16, we introduced the M -family of polynomials “M · tetrahedral numbers+N” (considering
rational coefficients allows us to fix N = 1) and announced that it contains a very large pool of
“interesting” cases. Here we explain why the “simpler” a cubic polynomial is, the better is the chance
that it produces the same function F (t) as some polynomial from the M -family.256

First, note that changing variable by substituting x = an+ b with suitable a, b into a polynomial
P (x) would change the list of prime divisors of the values of the polynomial in only a finite number of
positions. Since we may ignore “exceptional” primes anyway, we can use this substitution to consider
only the polynomial x3 +N ′x+N ′′ with two suitable parameters N ′, N ′′ ∈ Z. (The discriminant of
this polynomial is D = −4N ′3 − 27N ′′2.)

In fact, a more involved analysis shows that the same happens not only for linear substitutions,
but for quadratic “ . . . . . . . . . . . . . .Tschirnhausen . . . . . . . . . . .transforms”257 as well. Essentially, this means that the function
F (t) depends not on the polynomial, but on . . .the. . . . . . .cubic . . . . . . . . . .extension. . .of . . .Q . . . . . . . .defined . . .by. . . . .this . . . . . . . . . . . .polynomial.

Our family corresponds to N ′ = −1, N ′′ = N/M ∈ Q, and D = 4− 27N ′′2. To find N ′′ matching
the given square-free part d of D, one needs to solve x2 − 3y2 = d. Proceeding as in Footnote . . . .231
on p. . .84 leads to the conditions

• d 6≡8 2, 3, 7—automatically satisfied for cubic discriminants, and
• d ≡9 0, 1, 4, 6, 7, and
• 3 must be a quadratic residue mod prime divisors p of d—equivalent to p ≡12 ±1.

Essentially, if d has K prime divisors larger than 3, the fraction of such numbers d such that the
equation above has solutions is about 2/3 · 2K. Since K is usually very small unless d is very large, this
explains why a lot of cases of small discriminants can be represented by our family. Conclusion:

While most cubic polynomials do not give F (t) from an M -family, many “simple” ones do.

(In fact, the M -family contains 30% of the possible field discriminants below 1,500 in magnitude, and
25% for the cut-off at 25,000.)
Remark 67: Above, we ignored existence of different cubic extensions whose discriminants coincide.
One can check that for small |D|, such coincidences happen rarely: the smallest positive/negative
cases are 34 × 72 = 3,969 (cyclic), 22 × 35 × 23 = 22,356 (non-cyclic) and 4× 3× 2351 = 28,212 (a
fundamental discriminant), and −1,228.

To analyse this, note that cyclicity is determined by d = 1, hence there may be no coincidence of
discriminants between cyclic and non-cyclic cases. In cyclic cases such coincidences happen when D
is a products of more than one number from the list 92, 72, 132, 192 etc.258

256Here one can use the magnitude of the coefficients as a measure of simplicity. (However, the more precise
measure is the magnitude of . . . . .“the . . . . .field. . . . . . . . . . . . . . .discriminant”; we use a similar measure below.

257Given a quadratic polynomial Π(x), this transform is another cubic polynomial PΠ(x) such that PΠ(Π(x0)) = 0
for every root x0 of P (x). ( . . . .The . . . . . . .paper . .of. . . . . . . .Buhler. . . . .and . . . . . . . . . . .Reichstein is a very good introduction.)

258Indeed, by . . . . .Class. . . . . .Field. . . . . . . .Theory one should start with subgroups of index 3 in (Z/m)×; exclude subgroups induced
by surjections (Z/m′)× → Z/3 with m′|m and m′ < m. The remaining subgroups match cyclic cubic extensions . .of
. . . . . . . . . . . . .discriminant. . . .m2 (by . . .the. . . . . . . . . . . . . . . . . . . . . . . . . . .“Conductor-Discriminant. . . . . . . . . . .Formula”). Obviously, the number of such subgroups is the number
of points in Pk−1(Z/3) which are not in the coordinate cross, here k is the number of divisors of m which are either 9,
or prime p with 3|p− 1. So what is needed to allow several choices is k > 1—leading to the answer above.

94

https://en.wikipedia.org/wiki/Tschirnhaus_transformation
https://en.wikipedia.org/wiki/Cubic_field
https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field
http://www.maths.ed.ac.uk/cheltsov/ed/pdf/BUHLER97.pdf
https://en.wikipedia.org/wiki/Class_field_theory#History
https://math.stackexchange.com/a/1104946/595145
https://math.stackexchange.com/a/1104946/595145
https://en.wikipedia.org/wiki/Conductor-discriminant_formula
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The simplest coincidences of non-cyclic extensions are related,259 by . . . . .Class. . . . . .Field. . . . . . . . .Theory, to having
more than one subgroup of index 3 in the . . . . . .Class . . . . . . .Group Cl(Q[

√
d]). (This is the same as having more

than 2 elements of order 3 in this group.) So the rarity of this situation is related to . . .the. . . . . .class . . . . . . . . .number
being typically not very large. (Unfortunately, there is . . . . .very . . . . .little. . . . . . . .proven about the related statistical
properties of these groups. . . )
Remark 68: One can check that although the examples above produce the same discriminant (hence
conductor), still they result in different functions F (t). Moreover, this is a general situation: if two
polynomials result in the same function F (t), then they are related by a Tschirnhausen transforms.260

On gamma-factors

For these notes, we used the simplest possible examples in which “both sides” of Langlands
correspondence allow “an elementary exposition”. In fact, it may be that these are the only such
cases, and any further progress into understanding of Langlands program may require studying much
more esoteric topics.

Why the cases we consider here are so special? The corresponding Langlands symmetries were
directly applicable to the Fourier transform F (t) of the sequence Nn. Recall that this sequence was,
more or less, a slightly “massaged” point-counting function Ñ res

n (or better, ÑGal
n which needs very

little massaging; . . .see p. . .46). However, the reason why this Fourier transform was so special turns out
to be very delicate.

Since I do not qualify to discuss gory details of Langlands program, let us focus on something
much simpler: the symmetry which we considered before as “almost trivial”, one due to a . . . . . . . . . .precursor . . .of
. . . . . . . . . . .Langlands . . . . . . . . .program: Hecke’s functional equation (see p. . .66). This symmetry sends G(T ) to G(−1/cT/T .
We saw that when t = 2πT , these symmetries multiply FC by a constant. Question: how come this
transformation is a symmetry of FC?

What the functional equation claims about the counting functions ÑGal
n of a polynomial equation

in 1 variable is
• There is a function κd,r1(s) defined for s > 0 and depending only on the degree d and the
number of real roots r1 of the equation;
• There are numbers c ∈ N and C such that the sum K(s) := ∑

n Ñ
Gal
n k(ns) is symmetric:

K(−1/cs) = C ·K(s).
What Langlands program predicts is that a similar thing works for any system of polynomial

equations—at least after a suitable purification (which may be much less trivial than what we did
above).

259Unfortunately, this relation does not lead to a complete answer. As the example above with a non-fundamental
discriminant D = 22,356 shows, it is not possible to avoid consideration of (more complicated) “ . . . . . . . . . . . . . . . .ray class groups”. (One
can recognize (Z/m)× from the preceding footnote as the simplest example of a ray class group.)

260Indeed, coincidence of functions F (t) is analysed in Exercise 6.4 of . . . .the . . . . . . . . . .collection. . . . . . .edited. . . .by . . . . . . . .Cassels . . . .and. . . . . . . . . .Fröhlich.
It may happen non-trivially only in the non-abelian case, and the corresponding field extensions should have the same
discriminant (=conductor). The exercise concludes that the corresponding Galois subgroups of the compositum field
must be “conjugation numerically-equivalent”: any conjugacy class should intersect these two subgroups in the same
number of elements. Conclusion: this situation is not possible for cubic extensions: the subgroups are going to be
conjugate (hence the fields are isomorphic)!

(Indeed, since discriminants coincide, we get two abelian cubic extensions of the same quadratic extension. Hence
the combined compositum of these cubic fields and the quadratic field is Galois. Moreover, the Galois group must be
the external product of Z/2 acting on Z/3× Z/3 as multiplication by −1. We need to show that any two conjugation
numerically-equivalent subgroups of index 3 are conjugate.

However, this group is isomorphic to the group of translations and central reflections on the plane over the field
Z/3. Hence any subgroups of index 3 must consist of reflections in points on a line, and translations along this line.
Looking at conjugacy classes of translations shows that two lines corresponding to two subgroups must be parallel. But
then they are conjugated by a reflection in any point not on these lines.)

https://en.wikipedia.org/wiki/Class_field_theory#History
https://en.wikipedia.org/wiki/Ideal_class_group
https://en.wikipedia.org/wiki/Ideal_class_group#Properties
https://arxiv.org/pdf/math/0411484
https://en.wikipedia.org/wiki/Ray_class_field
https://www.google.com/search?q=book+Cassels+Froehlich&ie=utf-8&oe=utf-8&hl=en&pws=0
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Examples: degree 4

The algorithms used for plots in this section are not fully tested yet!

As we explain in the following section, while in degree 4 it is not a problem to produce the sequence
Nn, there is no reason to expect that the same patterns of fractality will still work for its Fourier
transform F (t). Here we provide the plots which show that

• Indeed, the graphs do not look like a toy transform of a periodic function.
• However, the graphs show some of characteristic features of the toy transform (the “hourglass”
shapes ).

I have no idea how to explain the appearence of these features. Below, the plots are provided without
any explanation! (Our magnified views are not at points in the Cantor hyper-family—since the
behaviour near such points is known to be governed by the “actual” fractality law.)

Since discriminants of indecomposable polynomials of degree 4 cannot be very low, it is not
computationally feasible to show what would be a region of horizon-self-similarity in the case of degree
3 (with the same field discriminant). Instead, we proceed . . .as . . .on p.. . .55 and show what would be a
non-trivial261 region of just horizon-similarity (in fact, it would be a horizon-similarity to ImF

(−1)
C (t);

see Footnote . . . .136 on p. . .55).
Since we do not expose fractality here, we do not mention “conductors”. Instead, we use

. . . . . . . . . . . . . . . . . . .field discriminants: for non-abelian case of degree 3, the conductor was equal to the field dis-
criminant.262

When inspeciting the graphs below, it makes sense to pay attention to:

• The apperence of the “hourglass” shapes .
• The hourglasses near rational multiples of π do not look like toy transforms of periodic
functions: the “shape” of oscillations changes when we get closer to the waist.
• Hence the function is not horizon-similar (and definitely not self-similar). However, the shape
being “a hourglass” shows that it is a toy transform of a function oscillating between two
values.
• Absense of jumps and/or log-spikes (we saw them on our . . . . . . . . . .Eisenstein. . . . . .plots on p.. . .60) indicates
that what we have may be related to something cuspidal (see Footnote . . . .162 on p. . . .64).

We start with the polynomial x4 − x3 − x2 + x + 1 with the smallest magnitude of the field
discriminant: D = 9× 13 = 117. It has no real roots and is not abelian, and the Galois symmetries
form the . . . . . . . .dihedral. . . . . . .group D4. This implies that the corresponding motive (of rank 3) is not pure (it
breaks into two, of ranks 1 + 2; compare with Footnote . . .276 on p. . . .109), so it is not surprising that the
corresponding graphs of F (−1)(t) “change via jumps”! About one period of the real and imaginary

261“Trivial” points of self-similarity are those in Cantor hyper-family. If function has extra symmetries (as in . . . .the
. . . . . . .section on p. . .41), the images of trivial points under these symmetries are also “trivial”.

262Moreover, this number governs fractal transforms in the “trivial” points in the same way as for degree 3. Indeed,
the Hecke’s functional equation works for any degree; it implies horizon-similarity (“self” or to ImF

(−1)
C (t)) in “trivial

points” (see p. . .67).

https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field
https://en.wikipedia.org/wiki/Dihedral_group
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parts:

4.5701

-3.6833
-0.1 7

The real part has log-spikes, while the imaginary parts has jumps (this is similar to what we already
saw in other examples of non-pure motives). Note that this is a much more complicated example
than the non-pure motives we saw before: it mixes a motive with ”periodic” Np (for prime p) with a
“modular form” motive.
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Here is how it looks263 near 0:
0.21085

-0.11283
-0.001 0.07

Here is the magnified view near t = π:
0.14605

-0.17642
3.1396 3.1716

263A more careful examination shows that the top/bottom asymptotic near 0 are not linear, and follow the
C|t log(t/K)|-law we discuss below for field discriminant D = 229.
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While the behaviour on the sides of the jump does not look like toy transform of a periodic function,
the “hourglass” shape shows that it is a toy transform of a bounded oscillating function! (Another
interesting feature is the presence of noticable “spikes” even that close to t = π.)

Our next example is the polynomial x4−x+1 with the smallest magnitude of the field discriminant
for the case of a pure motive: D = 229 (which is a prime number). It again has no real roots, and
the Galois symmetries form the . . . . . . . . . . .symmetric . . . . . . .group S4. Observing about one period of the real and
imaginary parts:

1.4904

-1.8211
-0.1 7

https://en.wikipedia.org/wiki/Symmetric_group
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shows neither jumps/spikes, nor other types of discontinuity. When we looks near 0:

0.067297

-0.04091
-0.001 0.03

we again can see a “hourglass”: the behaviour resembling two (straight?) top- and bottom-asymptotes
as t→ π + 0. Moreover, zooming in 10 times shows that these “asymptotes” become steeper when we
get closer to the “waist”:

0.014581

-0.013577
-0.0001 0.003
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(So we can start to suspect that the “hourglass” is actually non-linear!) Zoom in 10 times more:

0.0029783

-0.0032454
-1e-005 0.0003

Here the “hourglass asymptotes” look almost linear now.264

In fact, the non-linearity of the “asymptotes” of the “hourglass” suggests that C · t log t may be a
better approximation for the asymptotic behaviour. This looks very plausible: on this plot we divide
by t log t (the log t horizontal coordinate allows better view of what happens on different scales; the
precision in the part on the left is abysmal):

-4

-3

-2

-1

 0

 1

 2

 3

0.00010 0.00100 0.01000

(Sum of 4M Fourier coefficients)/x log(7x)
(Sum of 8M Fourier coefficients)/x log(7x)

264However, a flattened zone becomes very visible. See Footnote . .85 on p.. . .38.
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One can check that near t = π very similar effects appear (we do not show the pictures with higher
zooms—but they behave as above):

0.059711

-0.05695
3.1356 3.1616

The minimal magnitude of a negative field discriminant with a pure motive is D = −283 (which
is a prime number). The polynomial is x4 − x− 1 with two real roots and the Galois group S4. The
plots as above still show no visible discontinuities:

1.6622

-1.6638
-0.1 7
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Here is how it looks near 0:

0.11102

-0.062907
-0.001 0.025

Near t = π one can see yet another “irregular hourglass”:

0.046893

-0.034772
3.1386 3.1516
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Next, consider x4 − 4x2 − x+ 1; it has 4 real roots, and the smallest field discriminant for such a
case of a pure motive265: D = 19× 103 = 1,957. Its Galois group is S4. Here is one period of the real
and imaginary parts:

1.8934

-1.8925
-0.1 7

265Moreover, another measure of complexity, the narrow class number (hence class number) turns out to be trivial:
1. So this example is “the simplest one” in all the possible senses.
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Near t = 0 it still shows no horizon-similarity:

0.01801

-0.017974
-0.0001 0.003

The behaviour near t = π should not be surprising now:

0.012023

-0.01299
3.1413 3.1426
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Finally, consider x4 − 2x3 + 2x2 + 2, with the smallest field discriminant which is a square, and
leads to a pure motive: D = 562 = 3,136. It again has no real roots,266 and (since the discriminant is
a square) the Galois symmetries form the . . . . . . . . . . . .alternating . . . . . . .group A4. The graph of about one period of
the real and imaginary parts shows that the plot has “extra symmetries” (as in . . .the. . . . . . . .section on p. . .41):
it is π-antiperiodic:

1.1945

-1.1913
-0.1 7

266The smallest square field discriminant D = 1632 = 26,569 for the case with real roots (x4 − x3 − 7x2 + 2x+ 9) is
too large to hope to see patterns in the graphs.

https://en.wikipedia.org/wiki/Alternating_group
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Here is how it looks near 0:

0.017138

-0.01183
-0.0001 0.002

The graph near t = π is the sign-flipped graph near t = 0. Instead, we plot the behaviour near
t = 2π/3, with a familiar “irregular hourglass”:

0.9538

0.94061
2.0942 2.0947
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Verification and further examples

While we exhausted the examples we may easily plot with our tools, it makes sense to mention what
else has a chance to be handled in a similar way. First, we must explain why the observed fractality
should take place. The key ingredient is . . .our. . . . . . . . . . . . .description. . .of . . . . . .Weil . . . . . . . . . . . . . . .denominators as characteristic
polynomials of matrices for Frobenius permutations (see Footnote . . . .152 on p. . . .60). From another point
of view, Frobenius elements permute 3 roots, and their 3×3 permutation matrices can be thought
of as permuting real weights assigned to the roots. However, since these permutations preserve the
total weight, the eigenvalues of these matrices split into two parts: the eigenvalue 1 “for the total
weight”, while the rest matches the action of the permutation on the distributions of weights with
total 0. (The latter vector space is 2-dimensional, hence this action is given by 2×2 matrices.)

On the other hand, having the numerator 1− u essentially cancels the eigenvalue 1; so all that
remains is the second action. Summarizing:

• For every permutation of 3 roots, we inspect how it acts on “real weights assigned to roots”
with total 0.
• The characteristic polynomial of this 2×2 matrix has degree 2.
• To every non-exceptional prime number p we assign a particular Frobenious permutation.267

• Consider the characteristic polynomial of the 2×2 matrix of the action of Frobenius permuta-
tion.
• The coefficients of this characteristic polynomial can be considered as coefficients of the
recurrence relation.268

• Our numbers269 Npk =: ak are defined by this recurrence relation. (We start with a0 = 1, and
ak=0 for k < 0.)

People who have heard of . . . . . .Artin . . . . . . . . . . .L-function can immediately recognize270 that our numbers Nm are
exactly the coefficents of this function (for our assignment of 2×2 matrices).271

Finally, recall that in the simplest cases this part of Langlands program is already known:

F (t) has required fractal properties when Nm are coefficients of an “uncomplicated” Artin L-function.

According to Langlands–Tunnell results (of ≈ 1980)272 a case is “uncomplicated” if the matrices
are 2×2, and it is not the “icosahedral” case: products of these 2 × 2 matrices do not match the
composition laws of the symmetries of an icosahedron.273

One can try to proceed as above for polynomials of degree d > 3. Basically, there are two strategies:
start as above, with weights with total 0, which leads to (d− 1)×(d− 1)-matrices; or proceed with
appropriately chosen 2×2-matrices.274

267Well, only a conjugacy class—but all permutations in a class have the same characteristic polynomial.
268For example, a polynomial 1− 3u+ 2u2 gives a recursion relation ak − 3ak−1 + 2ak−2 = 0.
269. . . from . . . .the . . . . . . . .section on p. . . .45.
270In addition to what we did in . . .the. . . . . . . .section on p. . .59, one needs to check that the standard definition of

. . . . . . . . . . . . . . . . . . . . . . . . . . .the Frobenius permutation gives a 3-cycle if there are no roots mod p (the “red” primes), a transposition in the
case of 1 root, and the trivial permutation in the case of 3 roots.

271Since our language is not good enough for a general description of what happens in exceptional primes, this does
verify the match if m is divisible by an exceptional prime. Still, in our particular case one can check this match as well.

272In . . . . . . . . .Knapp’s. . . . . .notes in the Edinburgh Proceedings Representation Theory and Automorphic Forms, 1997, this is
Theorem 8.9 (together with the paragraph after Theorem 8.7).

273The icosahedral case is also known, but only in the “even” case (meaning: 1 real root) since 2009. See
Khare–Wintenberger paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Serre’s modularity conjecture. I .

274These two cases should be eventually connected by Langlands . . . . . . . . . . . . .functoriality (for an introduction, see . . . . . . . . . . . .Friedberg’s
. . . . .AMS. . . . . . .Notes).

Note that for functoriality to be immediately applicable, in a particular direction, one needs an extra property: if
one strategy assigns to two Galois symmetries g and g′ the matrices Mg and Mg′ which have the same eigenvalues with
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In the first case, one still gets Np := Ñp − 1 for non-special p. However, start with recalling
that in the cubic case, cyclic polynomials would lead to 2×2-matrices which can be simultaneously
diagonalized—and that this made the fractality patterns more complicated (see Remark . . .53 on p. . .65).
So, first of all, one may need to exclude a similar situation: when the (d− 1)×(d− 1)-matrices above
can be simultaneously block-diagonalized.275 276

Moreover, in the 2×2 case Gelbart explicitly states277 how to translate Artin’s L-function to a
particular “automorphic form” (which is F , in our language), and the properties of this form. While
in the case of general n×n matrices Cogdell apparently says that this would work too:278 “Surprisingly,
the technique is exactly the same as Hecke’s, i.e., inverting the integral representation”, I could not
find any exposition which would result in anything “explicit”, such as our generalized functions F .

In the second case, where we assign 2×2-matrices, the Langlands program has sufficiently explicit
formulations279 to ensure the same fractality properties for F (t) as what we saw in our exam-
ples.—However, in this case the numbers Np need to be given by more complicated formulas280

than Np := Ñp − 1 even for non-special p. Moreover, only a few “flavors” of polynomials allow . . . . .such
. . . . . . . . . .inclusions into 2× 2-matrices.281

For example, in degree 4 the Galois group is a subgroup of S4, which is a group of rotations of
a cube, hence may be included into282 SO3R ' PSU2 ⊂ PSL2C ⊂ PGL2C. The same283 happens in
degree 5 when the discriminant is a complete square: the Galois group is a subgroup of A5 which is a
group of rotations of icosahedron. (Compare with . . . .the . . . . . . . .section . . .on . . . . . . . . . . . . . . . . .tetrahedral/etc. . . . . . .cases in WikiPedia.)

With the first scenario, we are dealing with a sequence of numbers Nn obtained by the essentially
the same rules as the rules for cubic polynomials in the beginning of this section. Moreover, the fractal
transform at 0, given by F (1/γt)/t, still multiplies F (t) by a constant (due to the “Hecke’s functional
equation”); therefore . . . .the . . . . . .same . . . . . . . . .happens at t in the Cantor hyper-family (see p. . . .67). However, I could
not find what the Langlands program could predict about the fractality near other rational multiples
of 2π. This leads to a question about coefficients Nn of the Artin’s L-function of the (d− 1)×(d− 1)

the same multiplicies, then the other strategy must do likewise. (For non-cyclic cubic polynomials this works with our
first strategy and an arbitrary strategy in place of the second strategy.)

275For 2×2-matrices, block-diagonalization and diagonalization are equivalent.
276For example, this happens for abelean polynomials in degree ≥ 3 (as we already saw in Remark . . .53 on p. . . .65),

and, in degree ≥ 4, for polynomials with the Galois group being the . . . . . . . . .dihedral . . . . . .group Dk.
277In Section 4.2 (and Remark 2.5.5) of his chapter in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Modular Forms and Fermat’s Last Theorem. I could not

find similarly explicit and general statements elsewhere!
278In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Analytic Theory of L-Functions for GLn.
On the other hand, Bump writes “The form of the Gamma factors in the functional equation show that a

complex Galois representation can be associated with an automorphic form in this way only if the automorphic
form is a modular form of weight one or a Maass form of weight zero with a Laplacian eigenvalue of ¼” (in
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Automorphic forms and representations,. . . . . .CUP. . . . . .1998).

279Compare with Footnote . . . .273.
280Moreover, arguments of these formulas may include the counts Ñ extra

p for some ancillary polynomials! (This
is somewhat similar to what we did in Remark . . .34 on p.. . .48.) Still, the resulting numbers remain remote cousins of
. . .our. . . . . . . . .original. . . . . . . . .coloring of numbers into red/green on p. . .17: the possible coefficients Np assigned to red and green prime
numbers p are different.

These “ancillary” polynomials may be “symmetric powers” of the initial polynomial P : if P has roots xk, the
second symmetric power would have roots x1 + x2, x1 + x3, etc.

281One needs to consider inclusions since the kernel would lead to us, essentially, studying a polynomial of a smaller
degree.

282Note that this mapping does not lift to a mapping to GL2C. While there is another mapping into GL2C, it
passes through S4 → S3, hence has a kernel.—Therefore the corresponding sequence Nn corresponds to a related
polynomial (the “ . . . . . . . . . . . . . . .cubic resolvent”) of degree 3 (from .

283. . . only in this case there is no non-trivial homomorphism into GL2C whatsoever.
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matrices defined above:

Would the Fourier transform of Nn be an exact fractal?

This question is kind of remote from Langlands program: when we assign (d− 1)×(d− 1) matrices,
this gives a mapping from the . . . . . .Galois. . . . . . .group of an irreducible polynomial into GLd−1C. By Langlands
program, this is related to objects whose symmetries contain the “. . . . . . . . . . .Langlands. . . . .dual” group, which is
also GLd−1 —but (in principle!) we need to consider the “ . . . . .adelic. . . . . . .flavor” of this group.284

Fortunately, the Galois group we started with was finite, so this is the so called “Artin case”,285

and—to make the long story short—we can ignore the “adelic” part and substitute something much
simpler. In the Artin case, the “complicated part of adelic GLd−1” should act trivially! After we take
this into account, what we need is a geometric object T̂ with the action of the group GLd−1R and a
tensor field F̂ (t̂), t̂ ∈ T̂ , which is preserved by a certain congruence-subgroup of GLd−1Z. (The choice
of the congruence-subgroup is the place where the conductor enters the picture!)

With d − 1 = 2 the geometric object is the t-line (completed by t = ∞), and the tensor field
is our function F (t) (considered as a tensor-field on this line). The fact that it is preserved by a
congruence-subgroup led to fractal symmetries of F (t) and F (−1)(t). However, for d > 3 the group
GLd−1R does not act on the projective line! This is why the fractality of F (t) requires a separate
consideration. Anyway, a question remains:

Is there a recipe for F̂ (t̂) in terms of d and the sequence Nn?

At the very end, the “arithmetic” part of the Langlands program happens to have two facets:
. . . . . . . . . . .reciprocity and . . . . . . . . . . . .functoriality; above, we used reciprocity only. Question:

Is it possible to extract any additional info about functions F (t) from Langlands functoriality?

The bird’s eye view and the Grothendieck group of manifolds

In these notes, we chipped off a tiny chunk from the Langlands program; this chunk shows that
. . .the. . . . . . . .“point . . . . . . . . .counting. . . . . . . . . . .function” Ñm (see p. . .46) for polynomials of degree up to 3 is in no way “random”,
but has a very strong “pattern” (when restricted to prime m; otherwise, one needs to consider ÑGal

m ).
Essentially, the Langlands program “at large” goes in the direction of stating “something similar”286

for general systems of polynomial equations.
Suppose that the last (fuzzy) statement is literally true. What would be the corollaries for

arithmetic? Consider the vector space spanned by all possible sequences Ñp (indexed by prime p).
Then:287

• This vector space has an increasing filtration indexed by a certain “complexity degree”.288

• So far, we encountered three levels of complexity: if we have no equations and d unknowns,
then Ñp = pd, so we have a polynomial sequence. For a quadratic equation with 1 unknown,
we get a periodic sequence. (Likewise for other abelian polynomials.) For a non-abelian cubic

284The adeles in question are rational adeles, provided our polynomial had rational coefficients (so the Galois group
is defined over rationals). (This is why we eventually arrive at the real flavor of GLd−1.)

285Essentially, this means that we consider “motives of dimension 0”— indeed, our polynomial is 1 equation with 1
unknown.

286Unfortunate, my almost complete illiteracy in these topics does not let me say anything more precise.
287I suspect that this approach should be well-known to specialists in the Langlands program—but I never saw it

mentioned explicitly.
288This measure of complexity is “orthogonal” to dimension, degree, discriminant and height.
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equation with 1 unknown, we get Ñp = 1 +Np where Np are coefficients of a modular or a
Maass form (and 1 is a polynomial— so it sits in “a simpler” level of filtration!).289

• The existence of our . . . . . . . . . . . . .“purification. . . . . . . . . .process” suggests that the filtration above can be refined
to a grading.
• The Langlands program suggests that the index set of the grading is related to complex
reductive groups.290

Moreover, “joining systems of equations together” shows that the vector space above is actually
closed under pointwise multiplication of sequences. It is not very hard to check that when we multiply
coefficients of a modular form by a periodic function, the result is again a sequence of coefficients of a
modular form.291 This suggests292:

The filtration above is closely related to pointwise multiplication.
(The first non-trivial examples of such multiplicativity . . . . .were . . . . . . . . . . .discovered. . .by. . . . . . . . .Rankin . . . .and. . . . . . . . .Selberg about
1940.)

Finally, the vector space above is a very close relative of the K-group (actually, it has a structure
of a commutative ring) of algebraic manifolds:293 given a submanifold Z ⊂ X, we can introduce a
relation [X] = [Z] + [X r Z] in the abelian group generated by classes [X] of isomorphism of such
manifolds. The K-group is the quotient by these relations. Direct product of manifolds gives a
structure of a ring on this group. The vector space above is a quotient of this ring by a certain ideal.294

The filtration conjectured above can be lifted to the K-group—but the ideal remains unfiltered.
This leads to a question:

Can the lifted filtration be “meaningfully refined” so that the result subdivides the ideal?

289In fact, for elliptic curves the answer is quite similar to the last one (only . . . . . . . . . . .the weight of the form is different, and
1 is replaced by 1 + p).

290Moreover, for every group there is an additional filtration by conductor (ordered by divisibility). For example,
inside the vector space of periodic sequences (here the group is GL1C) one considers subspaces of c-periodic sequences.

291Although I did not see it written this way! The resulting conductor is typically much harder; it is a divisor of
cK2; here c is conductor of a modular form, and K is the length of the period.

292I cannot follow it close enough, but I suspect that Cogdell’s paper (see Footnote . . . .278 on p. . . . .109) investigates what
happens in this directions.

293Warning: this should not be confused with the (completely unrelated) K-group of an individual manifold!
294Very little is known about the K-group. However, it is known that the affine line (“zero equations with one

unknown”) is a divisor of zero, hence this ideal is non-trivial!
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Appendix: Quadratic reciprocity: Euler vs. Legendre
In context of these notes, the principal aim of this appendix is to try to reorient people who are

already fluent with the Legendre’s formulation of Quadratic Reciprocity, but who are bewildered by
our use of (more important!) Euler’s formulation. However, this appendix is self-contained, so may be
also used by anybody who wants to find more about Quadratic Reciprocity than the basics of Euler
formulation . . . . . . . . . .discussed . . .so . . .far (see p. . .14). In the rest of these notes, we do not rely on the results of
this appendix.

Note that here we do not discuss proofs of Quadratic Reciprocity— just what is common and
what is different for its two important formulations.

Essentially, what we want to highlight here are the features which have a sporting chance to survive
generalizations to the case of polynomials of higher degree. In this respect, the Euler’s approach is
much better than the Lagrange’s one.

Euler formulation was future-proof

After Legendre discovered much more structure in . . .the. . . . . . . . . .patterns . . . . . . . . . . .considered. . .at. . . . .the . . . . . . . . . . .beginning . . .of
. . . .this . . . . . . .paper, the Euler’s formulation have been mostly shadowed by the Legendre’s one. It took more
than a century for mathematicians to realize that in the context of direct generalizations of Quadratic
Reciprocity the . . . . . .Euler . . . . . . . . . . . . .formulation (see p. . .14) is way more natural (compare with Footnote . .22).

To a large extent, the aim of the simplest generalization (“the . . . . . .Class . . . . . .Field . . . . . . . .Theory”) can be stated
the same way as above: find “possible prime divisors of P (n)”; this theory describes the answer under
the condition that P “leads to . . .an . . . . . . . .abelian. . . . .field. . . . . . . . . . .extension”.295 It turns out that Euler’s formulation
extends almost literally to this case!

So nowadays in the context of number theory “at large” the Euler’s formulation would be considered
at least on equal footing with the (more elaborate) Legendre’s one.

Recall that Euler’s formulation describes the symmetries of the answers to the question of “possible
prime divisors of a quadratic sequence”: one can color Z red and green so that the coloring is periodic,
(anti)symmetric, and a prime p appears as a divisor if and only if p is colored green.296

In particular, the collection of possible (anti)symmetries (the “group of symmetries”) is . .an. . . . . . . . .infinite
. . . . . . . . .dihedral . . . . . .group. Moreover, the Euler formulation says how large this group is comparing to the whole
group of symmetries of Z (which is also an infinite dihedral group): . .its. . . . . . .index is (a divisor of) |4D|,
where D is the discriminant of the quadratic sequence.298 299

In fact, the (anti-)palindromicity is a particular case of top-multiplicativity (considered . .in. . . . .the
. . . . . . . . .following. . . . . . . .section).

295Any indecomposable quadratic P satisfies this condition. An indecomposable cubic P satisfies it if and only if
its . . . . . . . . . . . . .discriminant is a perfect square.

296This is a 2-colors variant of Euler’s formulation. . . . . . .Above, on p. . . .14, we discussed a coloring into 3 colors, when the
residues not mutually prime with |4N | were colored gray.297 On the other hand, given such a residue r, two columns
±r modN contain at most one prime number (even in the exceptional case N = 2r, when these two columns degenerate
into one). Because of this, it is easy to convert gray to red or green as required above.

297In fact, we described “gray” differently: as “this residue has only a finite number of prime number representatives”.
However, a residue mod c not mutually prime with c cannot contain more than 1 prime number. Moreover, by . . . . . . . . .Dirichlet
. . . . . . . . .theorem on arithmetic progressions, the other residues are represented by infinitely many prime numbers.

298It turns out that such a focus on symmetry survives even the widest possible generalization of our naive questions
about prime divisors, given by the . . . . . . . . . .Langlands. . . . . . . . . .program. In fact, the usual formulations of the Langlands program are
written completely in terms of describing particular flavors of symmetries.

299For pizza numbers, D = − 7
4 , which leads to the length 7 of the period. For polynomial with integer coefficients,

one can replace |4D| by |D|.
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Similar to the Euler’s formulation, the answers given by the . . . . . .Class . . . . . .Field . . . . . . . .Theory are encoded by a
periodic coloring of Z into several colors. This coloring also has a suitable palindromicity property, as
well as top-multiplicativity (discussed in the next section). The only difference is that colors match
not the numbers {±1}, but complex roots of 1 of a suitable degree d.300

In contrast, the generalizations of Lagrange’s formulation turn out to be much more esoteric.
On the other hand, almost simultaneously with the discovery of Class Field Theory in the beginning

of 20th century, another development took place: Quadratic Reciprocity entered the realm of “popular
mathematics”. And, as expected, what was popularized was offset by decades w.r.t. the frontier of
math; it was the Legendre’s formulation which entered the math pop-culture!

So, in the last century, a curious situation arised: the major textbooks on number theory as well
as “capsule expositions” of Quadratic Reciprocity by the leading number theorists would highlight the
Euler’s approach.—And, at the same time, what most mathematicans know is the Legendre’s one,
since they “learned Quadratic Reciprocity too early”, when they were more focused on the pop-math!

Legendre’s notation and top-multiplicativity

Half a century after Euler, Legendre found a different way to write down the patterns of colors we
observed above. He would use 1, −1 and 0 instead of . . . .our . .•,. . .• . . . .and. .• (see p. . .14; this is compatible
with our rules −• = • and −• = •). At least, this convention allows a concise way to write down
the property which was known long before Legendre: consider three sequences: “squares + N”,
“squares + M”, and “squares −MN”; every prime number p acquires 3 colors each depending on
whether it is a divisor of numbers in the first, and/or the second, and/or the third sequence. Then

The third color is “the product” of two other colors.

(Here the “product” is calculated according to the assignments of numbers 0,±1 to the colors).
Using the Legendre’s notation ( . . . . . . . . .Legendre. . . . . . . . .symbol)

(
−N
p

)
for “the color” of prime p (taking values

in {0,±1}, with 0 meaning “p divides N”) for “squares +N”, this may be written as(
−N
p

)
·
(
−M
p

)
=
(
NM

p

)
(and this is a much simpler fact that it looks: it is an almost immediate corollary of non-0 residues
mod p being invertible).

For example, from . . . .the . . .list on p. .8 we can see that 23 cannot be a divisor of “squares + 3”, and . . . .the
. . .list on shows that 23 is not a possible divisor of “squares + 1”. Using the rule above with N = 3
and M = 1, we can conclude that 23 must be a divisor of the sequence “squares− 3”. And indeed,
72 − 3 = 23× 2.

This may be called multiplicativity in the top argument: when the top argument NM = (−N)(−M)
is a product, one can replace the symbol by a product of symbols.301

Euler’s formulation implies the case of small |N |

Essentially, top-multiplicativity reduces calculation of
(
n
p

)
to the cases when n = −1, or n is prime.

Obviously, since a square + n can be even for any n, the number 2 is going to be always green. Hence
one can focus on odd primes p only.

Note that if |n| = |N | is fixed and small, the first statement (the periodicity) in Euler’s formulation
reduces finding

(
n
p

)
for all odd primes p to a check of a finitely many values of (odd) primes p. For

300In other words, the roots e2πin/d of zd − 1 = 0. The corresponding prime number p can be a divisor if and only
if z = 1; the other possible values of z may be thought of “as different reasons for p not to be a divisor”.

301This property explains why using −N in the definition of Legendre’s symbol simplifies working with this notation.
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example, for n = −1 it is enough to check p = 3, 5; likewise, for n = 2 it is enough to check302

p = 3, 5, 7, 17: these prime numbers cover all the odd residues mod |4n|—and the even residues are
going to be gray anyway.
Remark 69: For what follows, the values n = −1, 2 are of particular importance. Sometimes it is
convenient to describe

(
−1
p

)
and

(
2
p

)
by a compact formula; the customary way is to condense the

red/green colors given above into
(
−1
p

)
= (−1)(p−1)/2 and

(
2
p

)
= (−1)(p2−1)/8. For odd residues p

(mod 4 or mod 8 correspondingly) these formulas match the colors found above.
However, the particular way the right-hand sides of these formulas are written down carries

absolutely no significance. (There is a lot of other expressions which would give the same results!)303

Legendre’s p↔ q-reciprocity

Top-multiplicativity and two cases of Remark . . .69 reduce the calculation of Legendre symbols
(
n
p

)
to the case

(
q
p

)
where both p and q are different (positive) odd primes. By definition,

(
n
p

)
=
(
n′

p

)
if

n ≡p n′ (“top-periodicity”); hence one can further reduce the calculation to the case q < p.
The final nail to get a recipe for a quick calculation is the Legendre’s p↔ q-law (“reciprocity”):

The sign in
(
q

p

)
= ±

(
p

q

)
is “−” if p ≡4 q ≡4 −1, otherwise it is “+”.

This assumes that p and q are distinct odd positive primes.
Remark 70: This helps in calculations since if q < p, the right-hand side has a smaller number at the
bottom, so p↔ q-law may be used in recursive algorithms. For example, to deal with the right-hand
side, one can reduce p mod q (by top-periodicity), factor the resulting residue p′ < q as p′ = p1 . . . pr
and use top-multiplicativity— so now one needs just to calculate

(
p1
q

)
, . . . ,

(
pr
q

)
(and now p1, . . . , pr

are much smaller than p). To these symbols, one can apply the p↔ q-reciprocity again; etc.
It turns out that this gives .a. . . . . .very . . . . . .quick. . . . . . . . . . .algorithm for calculation of

(
n
p

)
. This algorithm is the

principal reason for interest in p↔ q-reciprocity.

Euler’s formulation implies p↔ q-reciprocity

We already saw that two special cases of n = −1, 2 for
(
n
p

)
are immediate corollaries of the Euler’

formulation. What may be yet more surprising is that the p ↔ q-reciprocity is also an immediate
corollary!

Apparently, this fact was not discovered until 20th century: A. Scholz published this argument
in his Einführung in die Zahlentheorie in 1939 as a part of his proof of Quadratic Reciprocity.
(Baumgart–Lemmermeyer enumerate this as “Proof No. 175” in their list of 314 proofs.304)

If p ≡4 q, this argument does not even need palindromicity, just periodicity! Indeed, write
q = p+ 4n; then(

q

p

)
◦=
(
q − p
p

)
=
(

4n
p

)
∗=
(
n

p

)
=
◦

(
n

p+ 4n

)
=
(
n

q

)
∗=
(

4n
q

)
◦=
(

4n− q
q

)
=
(
−p
q

)
∗=
(
−1
q

)(
p

q

)
.

302In fact, this was already checked in . . .the. . . . . . . .section on p. . .10. Moreover, using Euler’s palindromicity, the latter check
can be reduced to p = 3, 7; in other words, this follows from m2 − 2 being divisible by 7 for m = 3, and from m2 − 2
being only ±1 mod 3 (enough to check m = 0 and m = ±1) which shows that m2 − 2 cannot be divisible by 3.

303Well, having p2 in the formula for
(2
p

)
has an advantage: it makes palindromicity explicit.

304In fact, this is one of only two proofs in their list which they mark as first proving the Euler’s formulation, then
deducing the rest from this formulation. The second such proof is Proof No. 243 by D. M. Goldschmidt of 1981.

https://en.wikipedia.org/wiki/Legendre_symbol#Computational_example
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(observe also that
(
−1
q

)
=
◦

(
−1
p

)
). Here we mark =-signs which use periodicity in top/bottom arguments

with ◦ above/below, and mark them with ∗ if they use top-multiplicativity. (Only the step marked
with =

◦
is non-obvious!)

Likewise, if p ≡4 −q, write p+ q = 4n (with n > 0). Then(
q

p

)
=
(

4n− p
p

)
◦=
(

4n
p

)
∗=
(
n

p

)
!=
(
n

q

)
,

likewise
(
p
q

)
=
(
n
q

)
, hence

(
q
p

)
=
(
p
q

)
. The equality marked with “!” uses the palindromicity—and this

is the only non-trivial step.

Legendre’s formulation implies bottom-periodicity

The “Legendre’s formulation” consists of 3 statements: the answers for
(
n
p

)
with n = −1, 2 found

in Remark . .69, and the p↔ q-reciprocity.
To deduce periodicity of

(
n
p

)
in p from Legendre’s formulation, we need to find (for a given n) a

|4n|-periodic function f(m) such that for prime m = p it coincides with
(
n
p

)
. By top-multiplicativity,

it is enough to consider the cases when n = −1, n = 2, or n = q is an odd prime. In the first two
cases the Legendre’s formulation explicitly implies bottom-periodicity with a period of length |4n|.

However, in the last case
(
q
p

)
= g(p)

(
p
q

)
for a certain 4-periodic function g. Now

(
m
q

)
is explicitly

q-periodic in m, which immediately implies that the right-hand side is 4q-periodic.

Legendre’s formulation implies palindromicity

To deduce the palindromicity from Legendre’s formulation is trickier. When showing periodicity,
we found a periodic function f(m) such that for prime m = p it coincides with

(
n
p

)
; this function

takes values 0, ±1, and it was constructed as a product over factors of n. Since palindromicity means
f(−m) = f(m) (provided n > 0), it is enough to show palindromicity for the case n = p with a
positive prime p. Since

(
2
p

)
is an even function of p mod 8 (we already checked this— see . . .the . . . . . . . .wheels

. . . . . .above on p. . .14!), we may assume that q is odd.
So what we need to show is

(
q
p

)
=
(
q
p′

)
for distinct odd primes q, p and p′ such that 4q|p + p′.

If q ≡4 1, then q ↔ p-reciprocity reduces this to
(
p
q

)
=
(
p′

q

)
, which follows from top-periodicity,

top-multiplicativity, and from
(
−1
q

)
= 1. If q ≡4 3, then q ↔ p-reciprocity may be rewritten as(

q
p

)
=
(
−1
p

)(
p
q

)
. Therefore palindromicity is reduced to

(
−1
p

)(
−1
p′

)(
−1
q

)
= 1, or

(
−1
p

)(
−1
p′

)
= −1, which

follows from 4|p+ p′.

Remark 71: If we want to prove anti-palindromicity for n = −N < 0, then by multiplicativity, it is
enough to consider the case n = −1. What we need to show is that

(
−1
p

)
coincides with a 4N -periodic

odd function for any N > 0. However, we already know this for N = 1—and this implies the general
case.

Legendre’s formulation and bottom-multiplicativity

There is another very important aspect of Quadratic Reciprocity which becomes much more
conceptual in the Euler’s formulation. A certain crucial feature, bottom-multiplicativity, is “hidden
inside a definition” when one uses a Legendre’s formulation.
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Recall that the bottom-periodicity allows considering the argument p of
(
n
p

)
as a residue mod |4n|.

Now the bottom-multiplicativity can be stated parallelly to top-multiplicativity:(
n

a

)(
n

b

)
=
(
n

ab

)
with a, b residues mod |4n|.

However, the meaning of this is very different from the top-multiplicativity, since we defined
(
n
p

)
just

for prime values of p: what this equality says is that if three (positive) prime numbers p, p′, p′′ satisfy
p′p′′ ≡|4n| p, then

(
n
p′

)(
n
p′′

)
=
(
n
p

)
.

This was the Euler-styled approach to the bottom-multiplicativity. In Legendre’s approach, it
is kind of hidden behind a trick: so far, . . .we. . . . . . . .defined. . . . .

(
n
p

)
just in the case of prime p (see p. . . .113). In

fact, Jacobi defined305 his generalization of Legendre symbol for any odd m > 0 by multiplicativity:(
n

p1...pr

) def=
(
n
p1

)
. . .
(
n
pr

)
with prime p1, . . . , pr.306 Note that what was surprising in Euler’s formulation

becomes a definition in the Legendre’s (Jacobi’s) approach.
However, when Legendre’s symbol

(
n
m

)
is defined for any307 odd m > 0, the bottom-periodicity

can be stated in a much more straightforward way:
(
n
m

)
=
(

n
m+4n

)
if m > 0, m + 4n > 0 are odd.

This is completely parallel to the top-periodicity (which preserves its form with a composite m as
well):

(
n
m

)
=
(
n+m
m

)
.

Conclusion: Before the observation above, to color a residue m mod |4n| on the conductor wheel
we needed to find a prime number p ≡|4n| m, and use

(
n
p

)
as the color. Now one can factorm = p1 . . . pr

instead, and use
(
n
p1

)
. . .
(
n
pr

)
. (This is using the bottom-periodicity vs. the bottom-multiplicativity.)

Remark 72: Likewise, now the palindromicity may be rewritten as
(
n
m

)
=
(

n
4n−m

)
if n > 0, 0 < m <

4n, similarly for anti-palindromicity (for n < 0). In fact, the found above formulas for n = −1 and
n = 2 preserve their form for a composite m as well; same for the top-multiplicativity. In particular,(
−n
m

)
=
(
−1
m

)(
n
m

)
.

Using these rules, one can change n to make |n| ≤ ½m, or change m to make m ≤ 2|n|, or factor
m. Doing these steps in this order, one can reduce calculation of

(
n
m

)
to the case of prime m < |2n|;

then one can repeat this round again (etc). The process stops if m = 1 (when
(
n
m

)
= 1), or if n = 0

(when
(
n
m

)
= 0 if m 6= 0).

This gives an algorithm for recursive calculation of
(
n
m

)
which does not use p↔ q-reciprocity. In

fact, it terminates very quickly even without using any “fancy” factorization methods.308

Compare Euler’s and Legendre’s formulations

One can conclude:
• It is as easy to deduce the Legendre’s formulation from the Euler’s one as in the other
direction.

305About half a century after Legendre.
306We want to emphasize it:

(
n
m

)
for a non-prime m is not defined as the “color” of m for the sequence squares− n.

Instead, it “combines” the colors of the prime factors of m.
This distinctness is highlighted in Remark . . .74.
307There are several convenient ways to extend this to m ≤ 0, but different contexts benefit from different extensions.

So it is reasonable to restrict attention to m > 0.
308Indeed, the only case when the first two steps do not decrease |n|+m a lot is when m = 2n− a and a � n;

then they reduce n, m to become n′ = n− a, m′ = 2n′ − a = m− 2a. Choosing a small odd prime p - a, a few such
steps would ensure p|m′, and one will be able to decrease m′ a lot by factoring out p.
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• The Legendre’s p ↔ q-symmetry shows interrelation of prime divisors of two different
quadratic sequences.
• The Euler’s formulation shows an infinite-dihedral symmetry of prime divisors of any particular
quadratic sequence.
• Both approaches lead to quick algorithms for calculation of

(
n
p

)
.

In short: the Euler’s formulation is “much more fundamental”—and contemporary (“. . . . . .adelic”)— in
its approach: it chooses a particular equation x2 = n, and examines existence of its solution mod p for
different prime numbers p.

Therefore, while our “colorings of conductor wheels” do not look “very mathematical” if one is
fluent with just the Legendre’s approach, in fact they bring us much closer to the high-voltage wire in
the guts of Quadratic Reciprocity.309

309I paraphrase Jordan Ellenberg’s “You feel you’ve reached into the universe’s guts and put your hand on the
wire” on the nature of mathematical understanding, from How Not to Be Wrong.

https://en.wikipedia.org/wiki/Adele_ring


Appendix: A few more words on Quadratic Reciprocity

The case p = 2 of
(
n
p

)
and the shortest period

. . . . . . .Above, on p. . . .113, we argued why the case p = 2 is simpler than other primes: for any n, the
sequence “squares− n” contains an even number, hence the number 2 is going to be always green
(which Legendre encodes as 1). However, this does not still address the question about the color of
the residue of 2 mod c on the conductor wheel! First, the color of 2 may be an exception comparing
to other prime numbers p ≡c 2 (as . . .we . . . .saw for n = −3 on the 3-wheel on p. . . .14); second, this residue
may be colored gray (as . . .we . . . .saw for the same n = −3 on the 6-wheel on p. . . .14)!

In particular, the answer depends on our choice of c, the size of the conductor wheel.310 While the
Euler’s formulation implies that c = |4n| will work, it does not claim that shorter periods are not
possible.

So we need to know what is the shortest period in Euler’s formulation “with exceptions”, and
what are the possible exceptions. It turns out311 that the answer is313 C = 2mn0, depending only on
the square-free part314 n0 of n, here m depends only on n0 mod 4: if n0 ≡4 1, then m = 0; otherwise
m = 2. Moreover:315

On the C-wheel, there is no exception unless n0 ≡8 5, when 2 is the only exception.

(We already . . .saw. . . . . .such . . .an. . . . . . . . . . .exception . . . . . . . . . . . .happening for n = −3 on p. . .11.) Hence 2 modC is going to be
colored gray unless n0 ≡4 1, when it is colored as

(
2
n0

)
(which coincides with the RHS of n0+1

2 ≡4 ±1).
Obviously,316 an odd prime p is gray if and only if it divides n0.

Conclusion: put C ′ := C unless n0 ≡8 5, when C ′ = 2C; then C ′-wheel is the smallest conductor-
wheel with no exceptional primes.

310For example, if 2|c, then the color of 2 mod c must be gray, which would lead to
(
n
2
)

= 0.
311Indeed, . . . . . .when . . .we. . . . . . . . .deduced. . . .the. . . . . . . . . . . . . . . . . . . . .bottom-periodicity . . . . .from. . . . . . . . . .Legendre. . . . . . . . . . . . .formulation (see p. . . . .115), we already saw that the

color
(
n
p

)
of p may be rewritten as

(
p
q1

)
. . .
(
p
qk

)
(here ql are odd prime divisors of n which enter the prime decomposition

of n with odd exponents), possibly multiplied by
(−1
p

)
and/or

(2
p

)
(which we know to be 4-periodic in p, and 8-periodic

in p). (This assumes that p is odd and mutually prime with n.)
For a fixed odd prime q, note that

(
p
q

)
takes both values ±1 for infinitely many primes p. Moreover, the collection of

numbers
(
p
q1

)
, . . . ,

(
p
qk

)
is a combinations of ±1, and any such a combination appears for infinitely many odd primes p

(and here one can also require p ≡8 k for any odd k).312 Since
(
p
q1

)
is q1-periodic, this implies that the shortest period

which works with finitely many exceptional primes p has length C := 2mq1 . . . qk with m = 0, 2, 3 depending on whether(−1
p

)
and/or

(2
p

)
appears above. (Moreover, odd p mutually prime with n cannot be exceptions.) Therefore, even if one

allows exceptions, the shortest period has length C.

A more detailed examination of the argument above shows that C depends just on the square-free part n0 of n,
and m depends just on n0 mod 4: if n0 is even, then m = 3; if n0 ≡4 3, then m = 2; otherwise m = 0. Hence 2 modC
is going to be colored gray unless n0 ≡4 1.

In the latter case, C is odd, and one can also find out when p = 2 is going to be an exception. Indeed, the argument
above shows that all odd p with p ≡C 2 have the same color

(2
C

)
.

312All these statements follow from the . . . . . . . . .Chinese . . . . . . . . . . .remainder. . . . . . . . .theorem, and from . . . . . . . . .Dirichlet . . . . . . . . .theorem on arithmetic
progressions.

313One can recognize this as . . .the . . . . . . . . . . . . . .discriminant of the field Q[
√
n ].

314Here we write n = n0K
2 with the maximal possible K.

315Indeed, all prime divisors of C appear as different different residues modC and do not share their residues with
other primes. Hence their color is determined by their residues modC. Conclusion: the only exception may be p = 2,
and just if m = 0.

316See Footnote . . .297.
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Remark 73: It took almost a century after Legendre (and 50 years after Jacobi) to realize the
importance of treating p = 2 like this! . . . . . . . . . .Kronecker. . . . . . . . .noticed that defining

(
n
p

)
for p = 2 using the

C-wheel above allows extension to
(
n
m

)
(with any m) by bottom-multiplicativity. What is crucial

is that this extension is simultaneously bottom-periodic, bottom-multiplicative, is defined for every
m > 0, and has close relation to our problem of divisors of numbers in a quadratic sequence.317

Remark 74: For example, observe . . . .two. . . . . . . .colored. . . . . .rows we matched on p. .7. Now one can recognize the
bottom row as colored according to

(
−7
m

)
in the sense of Kronecker.318 (The match between these rows

is due to the discriminant for our sequence being D = −7 6≡8 5, hence p = 2 is not an exception.)

Divisors of P (n) with quadratic P

The considerations above describe more or less completely the prime divisors of numbers in any
polynomial sequence P (n) of degree 2 (compare with Remark .5). Indeed, if P is decomposable, then
. .as. . . .we . . . .saw on p. .4, already the divisors of one linear factor “would cover” all prime numbers (with just
a finite number of exceptions).

If P is indecomposable, then
• Prime divisors p of the numbers in the sequence coincide with p such that P (x) = 0 has
solutions mod p. (Here p = 2 may be an exception since it is possible that P takes integer
values, and coefficients of P have 2 as a denominator: triangular numbers!)
• The “quadratic formula” −b±

√
D

2a , D := b2 − 4ac, shows that existence of solutions mod p is
equivalent to existence of solutions of x2 −D ≡p 0, provided p - 2a (again, this is a finite
number of exceptional primes p s).

Conclusion: with a finite number of exceptions, prime divisors of numbers P (x) are the same as
prime divisors of numbers x2 −D.

317In fact, there are . . . . . . .several. . . . . . . .flavors of the definition of Kronecker symbol. Our flavor is compatible with them where
they all agree.

The reason for discrepancies is that our n and C are in a certain way interchangeable (since
(
n
m

)
=
(
C
m

)
for any m),

so it is not clear “whether we are calculating a function of n, or a function of C”. However, not every number is a
possible value of C, since C is a . . . . . . . . . . . . . . . . . . . . . . . . . . .fundamental discriminant. Hence if we consider

(
n
m

)
=
(
C
m

)
as a function of C, then it

is defined not on every number C, but just on the fundamental discriminants.
318This is not exactly true since we were using slightly different notations on p. .7. We have not introduced “the

gray color” yet, so m with 7|m was colored green, not gray. (Recall that
(
n
p

)
= 0 if p|n.)

https://en.wikipedia.org/wiki/Kronecker_symbol
http://mathworld.wolfram.com/KroneckerSymbol.html
https://en.wikipedia.org/wiki/Fundamental_discriminant


Used resources
Most of the references we used in these notes are accompanied by a PDF crosslink to the

corresponding resource. The notable exceptions are . . .the. . . . . . . . . . .collection. . . . . . .edited. . . .by . . . . . . . .Cassels. . . . .and. . . . . . . . . .Fröhlich
(from which I found out that what is important about quadratic reciprocity is not the p ↔ q-law,
but the periodicity—or, as we call it here, the Euler’s formulation), . . . . . . .Lang’s . . . . . .book . . . . . . . . . . . . . . . . . . .Elliptic functions
(which teached me the relation of the tower of congruence-groups with the adelic approach), the first
half319 of . . . . . .Jared. . . . . . . . . . . . .Weinstein’s . . . . . . .review. . .of. . . . . . . . . . . .reciprocity. . . . .laws, Example 4.7.5 of which led me to . . . . . . . . . .Gelbart’s
. . . . . .paper with quite a detailed exposition,320

. . . . . . . . . . . . . . . .Lemmermeyer’s. . . . . .book. . . .on . . . . . . .higher . . . . . . . . . . . .reciprocity . . . . .laws (however,
we mentioned . . . . . . . . . . . . . . . . . . . . . . . . . . . .Baumgart–Lemmermeyer’s. . . . . . . . . . . . . .compendium. . .of. . . . . . .proofs. . .of . . . . . . . . . . .quadratic . . . . . . . . . . . .reciprocity).

Another text which the readers may find useful is . . . . . .Keith . . . . . . . . .Conrad’ . . . . . .notes. . .on. . . . . . . .history. . .of. . . . . .Class. . . . . . .Field
. . . . . . . .Theory, as well as . . . . . . . . . . .Roquette’s . . . . . .book on the related subject.

For the simplest example of how modularity may be related to cubic equations of negative
discriminant see Part 6 of . . . . .Jerry. . . . . . . . . . . .Shurman’s. . . . . . .notes . . . . . . . . . .“Toward . . . . . . . . . . . . .Modularity: . . . . .the . . . . . . . . .Simplest. . . . . . . . . . . . . . .Non-Abelian
. . . . . . . . . .Example”.

For me, the . . . . . . . . . . .Apanasov, . . . . . . . . . .Krushkal. . . . .and. . . . . . . . . . . .Gusevski’s. . . . . .book Kleinian Groups and Uniformization in
Examples and Problems was very inspiring as a compendium of tricks (and treats!) about groups
of symmetries in non-Euclidean geometries. (In fact, . . . . . . . . .Harvey’s . . . . . . .review. . .of. . . . .this . . . . . .book highlights many
objectives and difficulties equally applicable to the design of our notes!)

The plot on p. . .21 is from series of papers by J. Bernstein, F. Chamizo, S. Miller, A. Reznikov,
Wil. Schmidt of 90s and 00s. (My interest in these topics stemmed a bit later from answering some
questions of Don Zagier using a similar approach.)

For guidance in these labyrinths, I’m indebtful to hints from T. Barnet-Lamb, N. Gurevich and
A. Reznikov. (This lists only what happened in the last decade; to clear my earlier misunderstandings
in these topics, it probably took whole divisions of people—and it is really sad that now I cannot list
them all!)

To continue further, probably the best starting points are the . . . . . . . . . . .discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Langlands program for beginners
. . .on . . . . . . . . . . . . . . . . .StackExchange and . . . . .slides. . .by. . . . . .Sury. One can continue by following . . .the. . . . . . . . . . .discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Zeta Functions: Dedekind Versus Hasse-Weil
. .in. . . . . . . . . . . . .n-Cat Café (as well as following the links mentioned in these discussions).

Another very convenient resource is the . . . . . .online. . . . . . .tables. . .of . . . . . . . . .number . . . . . .fields. For example, . .a. . . . . . .query. . . . . .with
Degree=3, r1=3*, |D|=1..1000, sort1=Gal, sort2=|D|, sort3=h

would result in a list of 27 real cubic fields of small discriminant (first cyclic, then non-cyclic ones).321

How to compute

As we said, the recent updates to GP/PARI math-calculator made a lot of tedious calculations
much simpler to perform. Here we want to collect tidbits about these calculations. First, below we
assume that our polynomial P takes integer values, and is in the variable X; then one can get the array
of “exceptional primes” for P as
my(Den = denominator(content(P))); factor(abs(poldisc(PP=P*Den))*Den*polcoeff(PP,poldegree(PP)))[,1].

One can check that P is irreducible by 1==factor(P)[,2].
319The second half of this review is dedicated to Scholtzefication, which looks unrelated to what we discuss here.
320See Footnote . . .277 on p. . . .109.
321One can check that all these cyclic fields, and the non-cyclic ones with 2 smallest values D = 22 · 27, 229 of

discriminant (as well as 4 more of 20 remaining non-cyclic fields) appear in our family M · “Tetrahedral numbers” +N
for relatively small values of M and N .

Likewise, from 10 complex cubic fields with discriminant up to −110, the family includes all but three, with
D = −31,−22 · 19,−3 · 29. In particular, it includes one with the smallest magnitude 23 of discriminant, which we
investigated in . . . . . . . .Section on p. . . .38.
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For a non-exceptional prime p and an irreducible P one can find Ñ res
p as

# select(x -> x == 1, factormod(P,p,1)[,1]).

The alternative way is poldegree(gcd(P+Mod(0,p),X^p-X)), but since GP/PARI has no “sparse
polynomials”, the “calculation” of X^p for a large p may take too much stack space (and/or time).
Both methods may be generalized to finding ÑGal

pk : for the first one, one should replace p by
[ffinit(p,k,varlower("PP")),p] in the first expression, or replace X^p-X by X^{p^k}-X in the
second.

For the following discussion, assume we initialized a few pieces of data with
NN = lfunan(lf = lfuninit(lfuncreate(nf = nfinit(P)),[0]),1000);.

Here one can replace 1000 by a larger number, and get a longer array NN. Note that NN[p] = Np + 1
for a prime p, likewise Npk = NN[p^k]− NN[p^(k-1)]— including the exceptional values of p.

Since for Artin’s L-function of a field the conductor is the discriminant of the field, one can find
the conductor as nf.disc. Moreover, if one wants to calculate Npk “by hand”, to choose the correct
sequence of 5 listed in Items (.c) and ( .d) on p. . .46 it is enough to know the pair [Np, Np2 ].

To see the prime decomposition of p in the field nf, inspect322

Mat(apply(x -> ["base-prime",x[1][1],"ramification",x[1][3],"ff-degree",x[1][4],"multiplicity",x[2]], Col(idealfactor(nf,p))))

The first three cases (those which may appear for “non-exceptional” primes) correspond to 0, 1, or 3
factors with "ff-degree" being 1 (while no factors have "ramification" larger than 1). The last
two cases correspond to presence of factors with "ramification" being 2 and 3 correspondingly.

For these 5 cases, the p-local factor of the denominator of L-function is 1 − p3 (no points over
Fp means that there is one point over Fp3), or (1− p)(1− p2) (one point over Fp, unramified, means
that there is one other point over Fp2), or (1 − p)3 (three points over Fp), or (1 − p)2 (two points
over Fp, one ramified), or 1− p (one triple-ramified point over Fp). Since disjoint union of manifolds
(corresponds to product of their equations and) to a product of L-functions, and the L-function of
a point (which is a solution to X = 0) has local factor of the denominator being 1− p (so it is the
Riemann ζ-function), the process of “cleaning” (which proceeds “as if it removes” a point) would
divide these local factors by 1− p.

Conclusion: in these 5 cases, after cleaning one gets 1 + p+ p2, or 1− p2, or (1− p)2, or 1− p, or
1. Replacing p by a formal variable p and inverting, one gets 5 series in p, and the coefficients at pk,
k > 0, are exactly as described (above???).

So Np is #idealfactorBase(nf,p)-1 (here idealfactorBase() is like idealfactor(), but
returns only the vector of factors defined over the base field Fp; see the definition below), and to
distinguish the second and fifth cases (when Np = 0) one can check idealfactor(nf,p)[1][1][3]>1
(which detects ramification). This means that the function
Ntype(p,nf)=my(f=idealfactorBase(nf,p));if(#f!=1,return([#f-1,0]);[0,f[1][1][3]>1];

allows to determine the type of the sequence for every prime (“exceptional” or not):
coeff3Npow(k,t)=if(t[1]==2,k+1,t[1]==1,1,t[1]==-1,(k+2)%3-1,t[2],0,!(k%2));

here we use the case-like extended if() introduced in recent GP/PARI.323

NtypeNonSpec(p,P)=my(F);[# select(x -> x == 1, (F=factormod(P,p,1)[,1])) - 1,0,poldegree(P),#F];
idealfactorBase2(nf,p)=my(F);[select(x -> x[1][4] == 1, F=Col(idealfactor(nf,p))),F];
Ntype(p,nf)=if(type(nf)=="t_POL",nf=nfinit(nf));my(d=poldegree(nf.pol));my([f,F]=idealfactorBase2(nf,p));\

return([#f-1,sum(k=1,#F,F[k][1][3]-1),d,#F]); \\ 2: "extra" ramification; 4: total number of factors
coeffNpow(k,t)=if(t[3]==3,coeff3Npow(k,t),t[3]==4,coeff4Npow(k,t),coeff2Npow(k,t));
coeff3Npow(k,t)=if(t[1]==2,k+1,t[1]==1,1,t[1]==-1,(k+2)%3-1,t[2],0,!(k%2));
coeff2Npow(k,t)=t[1]^k;
ppFactor(x)=["base-prime",x[1][1],"ramification",x[1][3],"ff-degree",x[1][4],"multiplicity",x[2]];

322Take into account "multiplicity" as well???
323One can cut-and-paste the code below (including the intervening text) into gp.
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specPrimes(P)=my(Den = denominator(content(P))); factor(abs(poldisc(P=P*Den))*Den*polcoeff(P,poldegree(P)))[,1];
reportSpecFactors(P,nf=nfinit(P))=my(ps=specPrimes(P));\

for(n=1,#ps,printp(Mat(apply(x -> ppFactor(x), Col(idealfactor(nf,ps[n]))))));
\\ The following operate on a global array N_n. We do not overwrite known elements of N_n[]!
N_n_preINIT(LIM)= N_n=vector(LIM,i,"");0;
N_n_fill_p(p,t)= my(Lim=floor(log(#N_n)/log(p))); for(POW=1,Lim,if(N_n[p^POW]=="",N_n[p^POW]=coeffNpow(POW,t)));
N_n_INIT_LST(LST)= for(n=1,#LST,N_n_fill_p(LST[n][1],LST[n][2]));
N_n_INIT_SPEC_ps(P,LST=0)= if(LST,N_n_INIT_LST(LST);return); \

my(ps=specPrimes(P),nf=nfinit(P));for(n=1,#ps,N_n_fill_p(ps[n],Ntype(ps[n],nf)));
\\ Check avoids calling NtypeNonSpec() in presence of denominators
N_n_INITpsNONSPEC(P)= forprime(p=2,#N_n,if(N_n[p]=="",N_n_fill_p(p,NtypeNonSpec(p,P))));
N_n_fill_N(n)=if(""!=N_n[n],return); my(d=factor(n),D=1); for(i=1,#d[,2],D*=N_n[d[i,1]^d[i,2]]);N_n[n]=D;
\\ The last 2 statements compactify (arrays with edited entries are not memory-efficient)
N_n_INIT(LIM,P,LST=0)= N_n_preINIT(LIM);N_n_INIT_SPEC_ps(P,LST);N_n_INITpsNONSPEC(P);for(n=1,#N_n,N_n_fill_N(n));N_n=N_n;0;

/*
Now doing N_n_INIT(1000,X*(X^2-1)+12) initializes the array N_n with 1000 first numbers Nk.*/

\\ Intermediate data to calc the Fourier transform: in global array of poly PN_n
PN_nINIT(LIM,P,LST=0) = N_n_INIT(LIM,P,LST); PN_n=apply(f -> Polrev(vector(#N_n\f,n,1.*N_n[n]/n)), [1,2]);0;
N_n_cFt(X,f=1)=my(v=exp(I*X));v*subst(PN_n[f],x,v);
N_n_Ft(X,f=1)=imag(N_n_cFt(X,f));

/*
After PN_nINIT(LIM,P),324 one can plot with ploth(X=-0.1,7,[N_n_Ft(X,2),N_n_Ft(X)]).

This would draw the Fourier transform of half the array N_n, and the whole array—so that one can
see whether one needs to calculate more elements of N_n. (To get pictures of this report, we needed
LIM of order of magnitude of million(s).)

(Plotting with my(c);ploth(X=-0.1,7,[N_n_Ft(X,2),imag(c=N_n_cFt(X)),real(c)]) would
show the real and the imaginary part.)

If one wants to cover the case of degree 4, one should add this code (only cursorily tested):*/
coeff4_2Npow(k,t)=if(t[2],1,1+k\2);
coeff4_1Npow(k,t)=if(t[2]>1,0,t[2],!(k%2),!(k%3));
coeff4_0Npow(k,t)=if(t[2],1-2*(k%2),t[4]>1,(1+k\2)*(1-2*(k%2)),[1,-1,0,0][1+k%4]);
coeff4Npow(k,t)=if(t[1]==3,(k+1)*(k+2)/2,t[1]==2,k+1,t[1]==1,coeff4_2Npow(k,t),t[1]==-1,coeff4_0Npow(k,t),coeff4_1Npow(k,t));

/*
To compare our manually-computed array N_n with |PARI| s lfunan(), use:*/

ckPrN(p,n)=my(a,b,c);if((a=N_n[p^n])==(b=NN[p^n])-(c=NN[p^(n-1)]),,print(p"^"n":\t"a"\t"b" - "c));
ckPr(p,L)=for(n=1,floor(log(L)/log(p)),ckPrN(p,n));
ck(L=#LL)=forprime(p=2,L,ckPr(p,L));
ckP(P,LIM=1000000)=N_n_INIT(LIM,P);NN = lfunan(lf = lfuninit(lfuncreate(nf = nfinit(P)),[0]),LIM);ck();
repP(p)=[[N_n[p^k]|k<-[0..floor(log(#NN)/log(p))]],[NN[p^k]|k<-[0..floor(log(#NN)/log(p))]]];

A few more tidbits: one can find
(
a
b

)
by kronecker(a,b). One can find `s (. . . . . . . .defined on p.. . .86)

as lfun(13,-s). In the case of modular forms, if one knows Np for a few values of p, one can
use mfeigensearch([[1..LIMc],1], [[p1,Np1],...,[pk,Npk]]) to list all cases for sequences Nm

with these particular values, up to c = LIMc.

324This usage assumes that P is indecomposable. Otherwise one needs to specify the parameter LST explicitly. For
example, for . . .the. . . . .case. . . . . . . . .M = 16 considered on . .60,

LST = [[2,[0,0,3]],[3,[2,0,3]],[13,[1,0,3]]]

One can find the primes to include by specPrimes(P). To find the suitable arrays, follow the explanations above and
. . .the. . . . . . . .section on p. . .59.
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