
Contents

What Gauss missed about primes:
√

, periodicity and symmetry, and ψ
Visual presentation: before and after Gauss 2
What Gauss did know about prime numbers 4
Gauss vs. Gauss: prime counts and normal distributions 6
Gauss vs. Gauss vs. Riemann 8
Plot the differences 9
Gauss missed finer processing 11
Ways to combine small bins 14
A pictorial exposure of the mismatch in Gauss’ prediction 19
Averaging on longer intervals 23
Average distance vs. average density 24
Prime density: averaging with Gaussian weighting 25
The first correction to prime density: averaging with log-Gaussian weighting 27
“Beats” in fluctuations 30
A wider view: wider log-Gaussian weighting 34
The main conjecture (the Riemann Hypothesis) 35
Oscillation in the after-the-main terms of asymptotic 36
The pattern in the terms of the trend 38
On luck: the trend 39
Back to narrow view 40
On the correlations of prime densities at x and at C·x (or C/x) 44
The earlier attempts on further corrections: wider log-Gaussian weighting (without removing
“main oscillations” 48
The earlier attempts (in preparation): newer “primeDens” 50
Additive vs. multiplicative: the tale of two Landau 56
The average value of 1/ζ ′(roots): surprising oscillations on the log-scale 56

March 2020. Typeset: September 6, 2023.

1



What Gauss missed about primes:
√

, periodicity and symmetry, and ψ

In construction! Most subtopics included, but no rhyme and reason. . .

The central communication device in our exposition is using carefully designed plots as stepping
stones to help the reader to keep the balance in the presented progression of ideas. However, historically
this tool is quite recent— its importance was not fully realized in Gauss’ time.

Visual presentation: before and after Gauss
But I want to focus on what seems to me the biggest mathematical step that

was taken at that time: the invention of graphing. [. . . ] In particular, the idea
of tracking some measurable quantity like position, velocity, temperature or

brightness over an interval of time or for all the points of an object and making
a geometric representation of all these numbers—

of this function of time and space—
was brand new. The idea is due to Nicole Oresme.a

Mumford’s coursenotes on Applied Mathematics 18, 2006
a Oresme lived in 1323–1382.

One of the first examples of mathematical visualization was the usage of bar graphs in Oresme’s
work, in 14th century to show dependence of speed on time in uniformly accelerated motion. How-
ever, in this visualization the independent variable (time) is discrete. The path to visualization of
“continuous” phenomena took much longer time.

As a traditional story goes,1 the idea of a coordinate system on a plane took form when sleepless
Rene Descartes observed a fly on a ceiling, and realized that its position can be described by a pair
of numbers.2 As the first—trivial—application, denoting these numbers x and y, one can “find
connection” between the circle or radius R centered at the origin and the equation x2 + y2 = R2.

3

While Descartes paved the way for translation of geometric concepts into
a numeric form, going in the other direction (“visualization”) took a few more
decades. In 1669, Huygens (In a correspondence with his brother Lodewijk)
created the first graph of a continuous distribution function (as on the right).

1 N.B. (???) Ref???
2 Although this approach was not spelled explicitly in his original publication of 1639, and appeared only in the

translation into Latin a few years later. It seems that the particular detail of using two perpendicular axes did not
appear until a century later, in the posthumous edition of Colin McLaurin’s A Treatise on Algebra (1748). Same year
it was recommended by Euler in the textbook Introductio in analysin infinitorum.

Moreover, this fly (if it existed!) may have just helped to crystallize ideas already nascent in Appolonius of Perga’s
work of about 2 thousand years before Descartes.

3 N.B. (???) Apollonius: would attach coordinate-like structure to ¦a particular curve¦. However: no
negative numbers, and

Carl B. Boyer,"Apollonius of Perga" (1991):
There appear to be no cases in ancient geometry in which a coordinate frame of refer-
ence was laid down a priori for purposes of graphical representation of an equation or re-
lationship, whether symbolically or rhetorically expressed. Of Greek geometry we may say
that equations are determined by curves, but not that curves are determined by equa-
tions. https://hsm.stackexchange.com/questions/5514/when-did-mathematician-start-to-draw-figures-
from-equation/5515#5515 specific to conic sections https://hsm.stackexchange.com/a/2382/7216
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https://www.dam.brown.edu/people/mumford/beyond/coursenotes/2006PartIb.pdf
https://hsm.stackexchange.com/questions/2378/when-do-we-see-for-the-first-time-the-use-of-the-cartesian-coordinates
https://hsm.stackexchange.com/questions/2378/when-do-we-see-for-the-first-time-the-use-of-the-cartesian-coordinates
https://skeptics.stackexchange.com/questions/40022/did-ren%C3%A9-descartes-develop-the-cartesian-coordinate-system-by-watching-a-fly-on
https://omeka.lehigh.edu/exhibits/show/data_visualization/vital_statistics/huygen
https://omeka.lehigh.edu/exhibits/show/data_visualization/vital_statistics/huygen
https://en.wikipedia.org/wiki/Cartesian_coordinate_system#History
https://en.wikipedia.org/wiki/Cartesian_coordinate_system#History
https://en.wikipedia.org/wiki/Apollonius_of_Perga
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A few more decades passed, and in 1694 Leibniz (who was a student of
Huygens) proceeded again “in the direction of visualization”, using geometry
to clarify a non-geometric concept. To motivate the notion of a function, he considered a curve on
a plane, and the positions of particular points on the plane, and the slope of the curve at such a
point. Nowadays we would say, for example, that “the y-coordinate and the slope are functions of
x-coordinate”.

50 years later, Euler flipped the direction once more. In 1748, in Fig. 2 of Vol. 2 of Introductio
in analysin infinitorum, he introduces the idea of plotting: given a function, can make a curve: the
graph of this function.

The other major inventions were made already after Gauss’ time.
One inventions was the lowering of the threshold of “working with ‘scales’ of the dependent or

independent variable”. Even before that, it was very probable that a working mathematician would
easily recognize that when f(x) changes in many orders of magnitude, then plotting log f(x) has a
good chance to give much easier to comprehend results than plotting f(x) itself. (Same for the case
when the independent variable x changes a lot, but we pay what happens on the interval [1, 2] of
x a similar attention to what happens on the interval [10,000, 20,000]. Then it makes sense to plot
f(expX).)

The idea of doing plotting on logarithmic paper was absolutely straightforward4: one essentially
plots log f(x), or f(expX), or log f(expX), but makes the grid related to the original variables
f and x (as opposed to log f and X := log x). This way things get much easier to people who
do not necessarily understand well the properties of exponential and logarithmic functions. The
mathematical side of this was discovered in 1844 by Lalanne.5 However, the usage of these methods
of plotting started to proliferate only in the last decade of 19th century—after Lalanne’s textbook
was published.6

The result of this proliferation was that several decades after this, people who needed to tell apart
particular forms of functional dependency (with the simplest case being y = AxB above) would have
a “dictionary” (or a “zoo”) of different plots in front of them. For example, in the second half of
20th century, in Soviet Union everybody with math-heavy needs would have a copy of “Bronshtein–
Semendyayev” book—and at this time,7 8 the back of the book was filled with such a zoo of graphs
and recipes what to pay attention to tell them apart.

Remark 1: For us, data visualization is a tool allowing us to establish another “stepping stone” to
balance on when proceeding along a chain of mutually-dependent ideas. However, one should not
forget other usages of data visualization in the period of time we consider: to make a hard-to-swallow
piece of information easier palatable to the public.

https://daily.jstor.org/florence-nightingale-data-visualization-visionary/ 9

4 N.B. (???) Give an example
5 For him, what was important is that these “log-log” plots of functions y = AxB are straight lines. So one can use

such plots to recognized dependencies of this form—as well as ways to easily find A and B.
Lalanne also investigated other ways to mark coordinate axes non-linearly to make other classes of functions easier

to recognize. d’Ocagne developed Lalanne’s ideas after 1880 under the name of nomography—but this is not directly
related to our story.

6 By the way, he called this textbook Méthodes graphiques pour l’expression des lois empiriques ou mathémathiques
(1880), which may be the first time when these methods of visualization were called by a “graph”-like word.

7 The more recent Russian editions removed this chapter. It is still present in the Spanish translation of 1973. Also
see, for example, 2.16.2.5 (7) of the English edition Bronshtein I., Semendyayev K., Musiol G., Muehlig H. Handbook
of mathematics (5ed., Springer, 2007).

8 N.B. (???) Check! Give examples?
9 N.B. (???) Florence Nightingale

https://www.wikidoc.org/index.php/Function_(mathematics)
https://www.wikidoc.org/index.php/Function_(mathematics)
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What Gauss did know about prime numbers
. . . and I have frequently (since I lack the patience for a continuous count) spent an idle
quarter of an hour to count another chiliada here and there; although I eventually gave it

up without quite getting through a million.
Gauss’ letter to Johann Franz Encke. 1849 (Later he discusses how he reached 3,000,000.)

a The name Gauss uses for a count of primes in an interval of length 100.

The aim of this chapter is to investigae what Gauss could (or must?) have understood about
the distribution of prime numbers in alternative reality when he can gain a short-time access to the
simplest graph plotting approaches of today (and the necessary computational resources). It looks
like he himself did not realize the extra power that visualization of data can give us. On the other
hand, he was very much interested in the question of the distribution of prime numbers!

Gauss (who was born in a poor family) had a major luck: his elementary school teacher assistant
Johann Christian Martin Bartels10 found access11 to the Duke of Brunswick Carl Wilhelm Ferdinand—
who was famous for its wide interests, including science. Bartels was impressed by Gauss, and was
only 7 years older; as E. T. Bell writes, “they established a warm friendship which lasted out Bartels’
life”. Bartels recommended Gauss to the Duke—and the Duke took interest in his education. In
addition to a stipend,12 in 1791, when Gauss was 14 years old, he received a collection of mathematical
books, including a book with a table of natural logarithms of numbers up to 2,200 and a table of
primes up to 10,009.

It may have been the juxtaposition of these tables which lead to the first important breakthrough
by Gauss investigating the distribution of prime numbers: he noticed that13 the “average distance”
between prime numbers14 near n has “a very strong similarity” to the natural logarithm log n of n.
He discovered this already in15 1792 or 1793.

About a year later16 he understood that this means that if one believes this property of average
distance, then the number of primes between m and n should be “similar” to

∫ n
m dx/ log x (which

one can denote lin− lim with lin :=
∫ n

2 dx/ log x). In particular, this estimates the count of primes
below n as lin or17 1 + lin.

This was only the very beginning. As Goldshtein writes, “Evidently Gauss considered the
tabulation of primes as some sort of pastime and amused himself by compiling extensive tables on
how the primes distribute themselves in various intervals of length 1000.” To do this, he was using
larger and larger tables of primes or tables of prime decomposition.18

10 Who later became the scientific advisor of Lobachevsky too!
11 N.B. (???) In the movie “Measuring the Earth” he is (???) tutoring a relative of the Duke.
12 Below, we include paraphrases of the Mazur–Stein book Prime Numbers and the Riemann Hypothesis and

Tschinkel’s paper on Gauss.
13 In fact, already in 1791 he found a much coarser (and less interesting) pattern: the number of primes between 1

and n “is about” n/ logn. This pages from his notebook appear in the volume 10-1 of the Göttingen collection.
14 We investigate this notion (and “a very strong similarity” below) later. As a very coarse example, the primes

near 100 are 89, 97, 101, 103, 107, 109 with the average distance (109 − 89)/5 = 4. Note that log 100 ≈ 4.6—
which is not very close to the average distance 4, but is “similar” in a suitable sense.

15 This is discussed in his letter to Johann Franz Encke of 1849 (in a book form). In this letter Gauss discusses
the Legendre’s formula 1/(logn−A) with A ≈ 1.15. Already in 1794 Gauss knew a much better approach involving∫ n

2 dx/ log x.
16 N.B. (???) Ref?
17 As the difference between 4 and ≈ 4.6 in Footnote 14 shows, the expected error of approximation makes the

difference between these two formulas negligible.
18 Usually these tables were compiled by other people. However, since he could find some errors in these tables,

apparently he have been duplicating at least some calculations himself.

https://gauss.adw-goe.de/handle/gauss/199
https://www.math.fsu.edu/~quine/ANT/2010%20Goldstein.pdf
https://en.wikipedia.org/wiki/Nikolai_Lobachevsky
https://www.ams.org/journals/bull/2006-43-01/S0273-0979-05-01096-7/S0273-0979-05-01096-7.pdf
https://gdz.sub.uni-goettingen.de/id/PPN235957348
https://gauss.adw-goe.de/handle/gauss/199
https://books.google.com/books?id=TNUKAwAAQBAJ&pg=PA445&lpg=PA445&dq=gauss+%22dass+legendre+sich+auch+mit+diesem%22&source=bl&ots=K0GuwpIi6L&sig=ACfU3U0fwbGuuY6jqyNPvK0SlzQ8GkwJ0g&hl=en&sa=X&ved=2ahUKEwj5-JbnkL_9AhXwlmoFHUJNBIMQ6AF6BAgjEAM#v=onepage&q=gauss%20%22dass%20legendre%20sich%20auch%20mit%20diesem%22&f=true
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These included (see the letter in Foot-
note 15) Vega’s Tables (available to Gauss
in 1796, and listing primes up to 400,031),
then in 1811 a friend made Gauss a
present of Chernau’s cribrum (an exerpt
is on the right19) reaching 1,020,000. Fi-
nally, the Burckhardt’s factorization ta-
bles (published in 3 parts in 1814–17 and
organized similarily to the cribrum) al-
lowed Gauss to investigate primes up to the limit of these tables: to 3,000,000.

Gauss converted all these sources to the two different
formats: up to 1,000,000, he lists 1,000 counts of primes,
dividing this million into subintervals of length 1,000 (as on
the right20). For intervals of length 100 above 1 million, he
instead collects them into a group of 100 (covering primes in
an interval of length 10,000), and lists (see the table below
right) how many such “hundreds”21 have a particular count
of primes (usually from 0 to 16). Each such group makes one of 10 columns in a small table which
covers a range of length 100,000. For every such table (there are 20), Gauss also shows the “expected
count of primes” obtained by integration of dx/ log x over this range.

For example, there are 4 tables on p. 439 of Gauss’s
Nachlass; the third table (on the right) covers the range
1,600,000–1,700,000. The column marked as22 163 covers
the interval 1,620,000–1,630,000; it shows 710 primes,
with, for example, 5 “hundreds” (of 100 “hundreds” in
this interval) having exactly 10 primes.23

In this range of length 100,000 Gauss found24 7,012
primes—with the logarithmic integral having the value
≈ 6,985.13714. Hence his prediction gives the error of
less than 0.4% for this interval.

However, the counts in these tables vary a lot. For
example, in the range 1,600,000–1,700,000 there are 10
columns each matching a range of length 10,000—and
in these ten ranges the counts of “hundreds” containing
exactly 10 primes are correspondingly 7, 2, 5, 8, 4, 6, 11,
7, 4, 9.

19 Every page listed in a particular thousand (omitting numbers divisible by 2, 3 or 5). For example, the excerpt
above shows 126,421 as prime and shows 126,419 = 167·757.

20 This shows, for example, that between 153,000 and 154,000 there are 88 primes.
21 Gauss calls them “chiliads”. Compare with the epigraph of this section on p. 4.
22 N.B. (???) Gauss’ way to numerate columns changes on this page. On the preceding page, he

keeps only one digit—and the column marked 2 in the table for 1,300,000–1,400,000 stands for the
interval 1,320,000–1,330,000. So there is an extra shift by 1.

23 The counts of primes in the “hundreds” of this range go from 2 to 12. The numbers of “hundreds” with such
counts are 1, 3, 9, 8, 15, 14, 25, 18, 5, 1, 1.

24 The correct value is 7,014. Compare with the table on p. 9.
Gauss’ errors go up to an undercount of 30—but only in one range of length 100,000. The next smaller errors are

the undercounts of 6 and 7. (These 3 largest errors are among the first 4 ranges of length 100,000 in Gauss’ notes! Did
he improve later?) There are also 3 undercounts of 4. (The only overcount is of 2 primes.)

https://eudml.org/doc/203724
https://nap.nationalacademies.org/read/18678/chapter/3#25
https://mathshistory.st-andrews.ac.uk/Biographies/Burckhardt/
https://nap.nationalacademies.org/read/18678/chapter/3#25
https://nap.nationalacademies.org/read/18678/chapter/3#25
https://books.google.com/books?id=BTun-k0U128C&pg=PA436#v=onepage&q&f=false
https://books.google.com/books?id=BTun-k0U128C&pg=PA436#v=onepage&q&f=false
https://www.semanticscholar.org/paper/A-reconstruction-of-Chernacfactorization of numbers
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Remark 2: Gauss’ estimates were never published when he was alive.
Legendre published his n/(B log n - A) in 1798, and his n/(log n - A) in 1808 (with A≈1.08366).
https://www.mathpages.com/home/kmath032.htm
In 1850, Tschebycheff proved that Legendre’s conjecture cannot be true unless 1.08366... is replaced

by 1. (That A=1 follows easily from modifying
∫

2
n dx/log x via substitution x=n e-t into log2(n)/n ·∫

2
n dx·(1/log x - 1/log n) and getting

∫
0
L te-tdt·log(n)/(log n - t) with a large L. The weight of

te-t is 1, and the average is 1; hence one should take the value of log(n)/(log n - t) at t=1, which is
asymptotically 1.

In his letter to Encke mentioned above, Gauss shows that the numerical evidence does not support
the value 1.08366. (From the Gauss logarithmic integral conjecture it wouild immediately follow that
this asymptotic must hold with the constant being 1.)

Gauss vs. Gauss: prime counts and normal distributions

Is this needed at all?

As we explained above, the numbers in the body of Gauss’ tables answer the questions25:

How many of 100 “hundreds” in an interval of length 10,000 have a given count of primes?

Most probably, these questions were not important to Gauss by themselves.—Then they were just
ways to organize calculations of the count of primes in longer intervals, of length 100,000, so that
they are easy to double-check.

However, here we want to inspect how Gauss could have dealed with these numbers if he had a
real interest. In his paid job he dealed with very similar questions a lot, and in the process developed
the basics of mathematical statisticss

The answer to the framed question above is usually small (rarely above 20) and varies a lot when
we look at different intervals of length 10,000. This is due to the pool of primes in a range of length
10,000 being quite small (about 700), so one cannot expect them to be distributed into 100 bins (each
of length 100) “very uniformly”.

However, if one looks into intervals much longer than 10,000, then the counts become more
organized. For example, for the range 1,000,000–3,000,000, these counts become

Count of primes in a “hundred” 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
How many “hundreds” 2 41 169 594 1,443 2,664 3,621 4,022 3,143 2,216 1,249 539 211 67 13 4 1 1

(At least these numbers grow—up to count 7—then start to decrease to 0. In other words, plotting
this would give a “bell-like curve”. See below!)

Most probably, Gauss would not hesitate a moment given such a table26 —it was him who
understood the importance of “bell-like distributions” and used them in his paid job—to achieve
unheard-of results!27 It would be immediate to realize that when counts of certain “events” are
distributed “as above”, and there is a simple reason for this, there is a good chance for this reason to
be one of:

• If these “events” are random and independent, one gets a Poisson distribution.28
• The counts may be the results of rounding a continuous normal random variable (a variable
with normal distribution—discovered by Gauss).

25 One question per a possible count of primes. They go from 0 to 17.
26 I cannot find any trace of him actually investigating this, though.
27 N.B. (???) Story about Stevenson?
28 While Poisson published his description in 1847, this distribution was known from 1711 due to de Moivre’s work.
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• . Since the counts are non-negative, they may be the result of rounding an exponent of a
normal random variable. (This is called a a log-normal variable.)

So a question appears:

Are the counts in the table above distributed as in one of these 3 cases?

For the Poisson distribution, the check is very simple: the average value of the count of primes
is M ≈ 6.915900, and the average29 distance to this “middle count” is σ ≈ 2.037873. For the
Poisson distribution, the second number should be close to the square root of the first one—
which is ≈ 2.6298. But in fact, it is ≈ 23% smaller. Conclusion: the counts in the table above are
close to “the middle count” 6.915900 significantly more often than if “the event of being prime behaved
similarly to random independent events!

For each of the other two cases, we can calculate the average (expected) value for every entry in
the table above. This becomes

Primes 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Actual 2 41 169 594 1,443 2,664 3,621 4,022 3,143 2,216 1,249 539 211 67 13 4 1 1
Normal 13.68 62.27 223.72 634.56 1421.22 2513.65 3511.02 3873.12 3374.37 2321.80 1261.64 541.37 183.43 49.07 10.36 1.73 0.23 0.02

log-Normal 0.00 0.08 34.22 527.84 1940.07 3366.90 3824.39 3371.25 2536.25 1722.64 1093.94 664.38 391.76 226.64 129.56 73.57 41.65 23.58

Since it seems that Gauss did not use visualizations, he probably could easily analize such data in a
tabular form. However, for us (spoiled by civilization) this becomes way easier with plots:

This way, one can immediately see that the plot with blue stars does not match well the bar-plot,
while the plot with green crosses matches the bar-plot at least “pretty well”.

Conclusion: the counts of primes in “hundreds” follow pretty well the normal distribution with the
average30 M ≈ 6.915900, and the variation σ ≈ 2.037873. (One may say “close-to-normally-distributed
as 6.915900± 2.037873.) However, when one looks more carefully, one can notice certain “systematic
differences” with the normal distribution!

29 . . . in fact, “average quadratic”.
30 N.B. (???) Relation to the average distance between primes. Mixing distributions with parameters

differing by ∆ gives a result which is in many respects ∆2-away from “mixing the parameters” instead.
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Indeed, the numbers in our table table change too much in the order of magnitude for the
differences to be easily seen. Switching to the log-scale graphs gives:

This time the green crosses are on a parabola31 —and one can immediately see that while this
parabola gives a really good match near the middle of the graph,32 it systematically undershoots
the bar-plot on the right, and systematically undershoots it on the left! So: Conclusion: between
1,000,000 and 3,000,000, comparing to “a normal distribution of ‘the count of primes in hundreds’”:

• The number of subintervals of length 100 which have 3 primes or less is smaller “than
expected”.
• The number of subintervals of length 100 which have 12 primes or more is larger “than
expected”.

I presume that Gauss did not possess approaches to “explain” the graph above—neither for why
the counts in his tables follow a normal distribution so closely, nor why there are mismatches for
number of “hundreds” with very few primes or with too many primes. Only recently,33 Rubinstein and
Sarnak found that (at least) very similar questions may be answered assuming a couple of conjectures
which the majority of mathematicians would consider very plausible!

If we cannot spell out connection to Rubinstein–Sarnak better, why keep this?

Gauss vs. Gauss vs. Riemann
In the preceding section we inspected what Gauss could have done with certain intermediated

steps of his calculations (which fill the bulk of his tables, but most probably were not important to
him). However, the principal aim of these calculations was to check his conjecture about the average
distance between primes. He splits the interval 1,000,000–3,000,000 into 20 subintervals of length
100,000, counts primes in every subinterval [A,B], and compares the result with

∫ B
A dn/ log n. This

31 . . . but only approximately.—This is due to our rounding of a normal random variable to an integer.
32 Although this is much easier to inspect on the preceding plot!
33 N.B. (???) In 1995?
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gives the following table (of the counts in the Gauss tables—with errors in red, the actual counts,
the “expected” counts34, and the differences):

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

7210 7194 7081 7098 7028 6971 7012 6931 6955 6902 6874 6857 6849 6787 6766 6804 6762 6714 6744 6705
7216 7224 7083 7105 7029 6972 7014 6931 6957 6904 6872 6857 6849 6791 6770 6808 6765 6717 6747 6707

7212.99 7165.94 7123.34 7084.48 7048.78 7015.79 6985.14 6956.54 6929.74 6904.54 6880.78 6858.30 6836.98 6816.71 6797.39 6778.96 6761.32 6744.43 6728.22 6712.64
3.01 58.06 -40.34 20.52 -19.78 -43.79 28.86 -25.54 27.26 -0.54 -8.78 -1.30 12.02 -25.71 -27.39 29.04 3.68 -27.43 18.78 -5.64

One can see how the “expected” counts steadily decrease (due to the “average distance” log n—
in the denominator— increasing), changing by ≈ 500. The actual counts do not have such a steady
decrease—but since they stay within the distance 60 of the “expected” count, they “decrease on
average”.

We know no comment of Gauss on the behaviour of the numbers in the last row. These tables
also do not show whether Gauss compared these numbers with what happens with primes in the first
million of numbers.

My conjecture is:

Gauss did not inspect the full range.—And this is how he missed the Riemann Hypothesis!

In the rest of this chapter, we investigate what one can do with numerical data Gauss had—
and very similar data requiring more bookkeeping/visualization (and fewer errors!) than what was
feasible for Gauss—

Plot the differences
Recall that the last row of the last table shows “the mismatch of prediction”. This is the difference

between the actual count of primes in intervals of length 100,000, and the count predicted based on
the rule “the average distance between primes near n is log n”.

Here (in addition to fixing Gauss’ errors—what we already have done in the preceding section)
we extend this row to the left,35 and plot the results.

What Gauss doubtlessly could extract from these data is that

On average, the prediction of the average distance being log n works very well.

34 These are very easy to check for consistency—and Gauss’ errors do not exceed a few hundredth. We give the
correct (rounded) values.

35 Clarify just in case: the logarithmic integral for the leftmost bar is taken over [1.5, 100,000]. This choice of 1.5
does not affect the graph significantly.
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However, with what we know now two other features may be noticed (although they are almost
suppressed by the “noise”):

• In the right half, the bars are on average about 1.5 times shorter than in the left half.36
• With one exception (of the interval 1,100,000–1,200,000) undercounts37 overwhelm overcounts.

As we said, these features are “almost invisible” on this plot. However, if Gauss would notice them
and suspected that they may be real (and not due to “unfortunate coincidence of fluctuations”) he
could have relatively easily recheck this by subdividing into subintervals of smaller (or larger) length
than 100,000.

For example, here we combine the plots for lengths of subintervals in 10,000, 30,000, 50,000 and
100,000.—And since Gauss knew the stats on all subintervals of length 10,000, he could rework his
tables to find these data very quickly:

The first effect becomes more convincing here—at least on the plots with longer subintervals (although
on the plots with shorter subintervals it is not easily recognizable38).

The second effect is clearly visible on the left. On the right it is hidden39 40 by “the fluctuations” of
the plot. Although these effects are confirmed “only by tendencies”, if Gauss paid attention, he must
have recognized that these tendencies need a lot of coincidences to be explained by fluctuations only.

Conclusion: Gauss could have started a more detailed examination of the question:

What are the tendencies in “the average distance between primes” correcting the main term log n?

While Gauss was an absolute ace in statistical analysis (which is needed to handle “the fluctuations”
on the plots above), it is not clear if the data in his table is enough to confirm the two effect above.
But if he could do this:

• The first effect would lead him to the Riemann Hypothesis.
• The second effect would (could?!) lead to realization that the von Mangoldt function ψ(n)
leads to much easier to describe results that “just counting primes”.

36 N.B. (???) In fact, this is a random coincidence. On the plots below (where???) where we
investiage “what happens between” the shown datapoints, one can see that on average, these “added”
values in the right half are much higher.

37 The negative values in the plot above.
38 N.B. (???) Why?
39 Nowadays we know that this effect is smaller on the right.
40 N.B. (???) But the noise should also be smaller on the right?!

https://en.wikipedia.org/wiki/Von_Mangoldt_function
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This would teleport Gauss into the level of understanding at the beginning of 20th century—
without any need for complex analysis.

Gauss missed finer processing
This shows a more detailed picture of what happens in 100,000-long bins, as well as prime numbers

multiplied by41 18,830:

To slightly clarify the red crosses, the yellow line on this plot is the cyan line “very strongly
averaged and suitably rescaled”42;

With this line it is much easier to see the tendency for the graph to be higher where the red crosses
are denser, and be lower where the crosses are more rare. (For example, observe the peaks on the
extreme left, and the “hills” on the yellow line near the crosses corresponding to twin primes: 11 and
13, 17 and 19, 29 and 31, 41 and 43, 59 and 61, 71 and 73 etc.)

41 N.B. (???) Explain!
42 The only purpose of rescaling is to make the oscillation easier to track.
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Using a much more delicate processing of the Gauss’ mismatches allows one to expose the trend in
these mismatches hidden by the fluctuations in the data above. To do this, one should do a repeated
averaging of the 200 “coarse” mismatches in the Gauss notebooks.43 44

Doing such averaging gives this:

The fitted “sqrt-hyperbola” on this graph was found using the log-log-version of the plot above (with
the y-axis inverted):

The thick lines are using Gauss’ bins of length 10,000, the thin ones are for the bins of length
1,000. For the green plots, one can see a very good match between the thin and the thick plots on the
extreme right of the thin plot (near 400,000). On the other hand, on the extreme left of the thick plot
(for the bins centered at 5,000, 15,000 and 25,000) the thick green curve is way below the think one.
Since smaller bins allow much more control over cancellation of fluctuations, this shows that when

43 Below, we correct Gauss’ errors, as well as extend Gauss calculations of mismatches to (one hundred of) the
10,000-long bins in the the first million (thick lines on the plots below). We also show what happens when one calculates
mismatches with Gauss’ predictions in 1,000-long bins Gauss used in the first million.

44 N.B. (???) Discuss “effective widths”, 0.3, 0.6, repeated averaging, de Moivre etc.
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the bin is so wide comparing to the value of x, our method of averaging undershoots the correct value.
This also suggests that one should not trust the spike on the extreme left of the thin graphs.45

Here we rescale the plots above with “stronger averaging” (those with the relative width 0.6) with
a factor46 √x:

The thick line uses Gauss’ bins of length 1,000, the thin one—of length 10,000. The red crosses are
as above—and now it is crystally clear that:47 48

If the density of primes near x is “above (or below) the average”, so is the density at ∼ 17,000x.

Additionaly, we mark numbers of the form 3.5·106/p and 34.2·106/p with p a small prime (in dark
blue, and in light blue). Again, the density of numbers of such a form near x correlates very well with
the average prime density near x. This demonstrates that for C ≈ 3.5·106/p and C ≈ 34.2·106:

If the density of primes near x is “above (or below) the average”, so is the density at ∼ C/x.

45 And on the rest of the graphs, the red hyperbola gives a good approximation to the non-oscillating part of “the
trend”

46 Here again, this factor makes the features of the graph easier to see.—However, the numbers on the vertical axis
are not easy to interpret.

47 N.B. (???) What happened to 18,830? We suppressed high-frequency fluctuations a lot, so the
match happens when shifting by log 17,000. When not suppressing them so much, so one needs to be
close to a multiple of several periods —so the conditions are different.

For example, cos(14.135·t) + cos(21.02·t)/15 + cos(25.01·t)/50 has maximum at ∼17,800, but
cos(14.135·t) + cos(21.02·t)/5 + cos(25.01·t)/7 has maximum at ∼18.1. However, with 18,830 instead of
17,000, the match with the plot above is still “reasonably good”—but it works much better when we
do not suppress the fluctuations so strong.

48 N.B. (???) Of course, the periodicity of the oscillations on this graph makes the number 17,000
not very special: the same effect would appear when 17,000 is multiplied by a power of 1.553—
which corresponds to the period above.

Since 10 periods of oscillation take us from ∼22,000 to ∼1,800,000, one can see that 22 periods of
oscillation correspond to multiplication by ∼16,100. This is close enough to 17,000 (for the purpose of
this explanation).49

49 N.B. (???) Can we make these numbers more realistic?50
50 N.B. (???) What the match between red crosses and the peaks of the plot shows is that although

on the graph we may observe only the oscillations in the range about 10,000. . . 2,000,000, in fact, these
same oscillations continue into the range 2. . . 150 as well.
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Ways to combine small bins
As above51, this shows the mismatches in bins of widths 10,000, 30,000, 50,000 and 100,000 (with

midpoints in steps of 10,000).

This is likewise, but with widths 100,000, 200,000 and 300,000:

The first picture has very little “visual structure”: the fluctuations when we switch from a bin to a
nearby bin are very large for so narrow bins—and these fluctuations obscure the trend of these plots
too much. However, on the second picture one can actually trace “certain features” which appear
with wider bins. Question: can one massage these plots to get yet more visible structure?

One approach is immediate: observe the plots in the latter picture on the far left. They all are
mostly below y = 0, and the plots for wider bins are below the plots for narrower bins. And indeed,
every bin of width 300,000 is made of 3 sub-bins of width 100,000—so if the mismatch in every
sub-bin is negative, the mismatch in the combined bin is going to be larger in magnitude.

51 N.B. (???) Ref and ref!
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Conclusion: to visualize slowly-changing trends, we need to renormalize the Gauss’ mismatches.
So we divide the mismatch by the (relative) width of the bin (taking width 100,000 as “the base”):

(If we would try to combine this with the similarly renormalized plots for bin widths <100,000, these
added plots are going to be mcuh higher, with the graph for width 10,000 going up to a few hundreds.—
When we “preserved the trend” and widened the bins, we “dumped the fluctuations”!)

However, one can dump the fluctuations much better than what we did above. To explain this,
note that the rescaling above means that the datapoints on yellow graph are midpoints for consecutive
pairs of datapoints on the violet graph; likewise for consecutive triples on the violet graph vs. the red
graph. (And if we add the plot for the bin width 10,000 to the same picture, the red plot averages 30
consecutive datapoints on the added plot.)

With this approach, the explanation for why the graph for wider bins is “smoother” is that it
averages out the fluctuations in the graph for narrower bins. This leads to the following ideas for
stronger dumping:

• What if we average together several graphs for several bin widths?
• What if we average together several datapoints on the red graph?

So: how would the result compare with “just using yet wider bins”?
W=9 weak

W≈10½ also weak

W≈7.07 stronger

W≈82/3 very strong

W≈8.7 ultra strong

Answer: it turns out that these two ideas are closely
interrelated—and the relation goes through the notion of
the weighted average. When we have several datapoints,
and take an average of (say) 9 consecutive datapoints, we
sum them up with the weights 1⁄9 (as in the top row on
the right52). When we additionally take average of (say)
5 consecutive datapoints, and the same for 15 consecutive
datapoints—and then take the average of these three
averages, this matches taking a weighted average with
weights 1⁄45, 1⁄45, 1⁄45, 8⁄135, 8⁄135, 17⁄135, 17⁄135, 17⁄135, 17⁄135, 17⁄135, 8⁄135, 8⁄135, 1⁄45, 1⁄45, 1⁄45 (as in the middle
row on the right). (What is important for what follows is that these weights change by “jumps”—
like on the top diagram.)

Furthermore, if we average 5 consecutive averages, each for 5 consecutive datapoints, this
corresponds to weighted averaging using 9 weights which depend piecewise-linearly and continuously53

52 We discuss the comments on the left and on the right these pictures below.
53 Here we cheat a bit. To make this statement meaningful, one should also consider what happens when we replace

5 by a number going to ∞. This is shown by the purple line on the plot.

https://en.wikipedia.org/wiki/Weighted_arithmetic_mean
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on the position: they decay linearly from 1⁄5 in the middle to 1⁄25 at the ends. (As on the third row above
right.) Moreover, if we average the results again (repeating this recipe “average 5 consecutive values”
once more), the final result corresponds to weights which depend piecewise-quadratically on position—
and this function has a continuous derivative! (As on the fourth row above right.) But this function
has jumps in the second derivative. . .

Finally, the last row on the picture above corresponds to the recipe “take the average of 2
consecutive datapoints”—and we repeat this 19 times. This number 19 is chosen to make these
weights practically indistinguishable from the preceding row—but we will see that the result gives a
much better “suppression of fluctuations”.54 For all practical purposes, these weights “have no jumps
in derivatives”.

Given a particular way of taking weighted averages (which may “be scaled to different widths”, as
above), there are two important questions:

• How strongly it “blurs” slowly changed inputs? (In other words: how far can it “change
trends”?)
• How well it supresses fluctuations in datapoints?

It turns out that the first question is may be answered by providing one number: the deviation. To
avoid the trouble, we can use instead56 “the equivalent width W of a rectangle”: for the top weights
above right it is 9, for the next row it is ≈10.5, then 5

√
2 ≈ 7.07, then 5

√
3 ≈ 82/3, and for the last

one it is 2
√

19 ≈ 8.7.
To get a taste of how the answer to the second question may look like, inspect what the filters57

above do with datapoints with the quickiest possible oscillations . . . ,−1, 1,−1, 1,−1, 1,−1, . . ., as well
as with . . . , 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, . . . (which oscillate twice slower). The top filter suppresses
them 9 times; the second one ≈8 times; the third (“the triangular one”) 25 times, the fourth 125
times, while the last filter kills the first input completely (already on the first step!) and suppresses
the second input about

√
219 ≈ 700 times.

The general principle explaining this is58:

The smoother is “the law governing the weights” (the purple lines above), the better is the suppression of fluctuations.

So to separate “trend” from “fluctuations”, we should better to filter using weighted averages with:
• The “equivalent width” W as small as possible. (To keep as much information about the
trend as possible.)
• Use weights which are “as smooth as possible”. (To supresses the fluctuations stronger.)

As we demonstrated above (and as Gauss should have known60), one gets a very good balance between
“mutating the trend” and “suppression of oscillation” when one uses “Gaussian weights” (as on the

54 Here we cheat again—twice. First, the width covered by the non-0 weights is much larger than what is drawn.
However, the weights decrease so quick that we just cut off super-small weights from the picture. (And still, two
smallest drawn orange rectangles are visible only with ultra-strong zooming.)

Second, with an odd number 19 of repetitions, one would have not one maximum, but two equal maxima in the
middle. On the other hand, since 19� 1, these weights are indistinguishable from the corresponding Gaussian weights.
What is drawn is the Gaussian weights55 shifted by ½ to “move the maximum to a datapoint”. In other words, this
shows “what happens when 19 is replaced by an even number”—but we rescale the width to 2

√
19 (to match the

weights on the previous row).
55 N.B. (???) Explain!
56 It is 2

√
3 times larger than the (standard) deviation.

57 N.B. (???) Explain!
58 To explain this, one needs to inspect the Fourier transform59 of the weights. (Compare with this discussion.)
59 N.B. (???) Ref!
60 N.B. (???) Did he?!

https://en.wikipedia.org/wiki/Standard_deviation
https://math.stackexchange.com/questions/206362/smoothness-and-decay-property-of-fourier-transformation/208128#208128
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last illustration above). They may be calculated by (repeated application of) taking averages of pairs
of datapoints next to each other. 61

This shows the Gauss’ mismatches filtered as above with effective widths corresponding to taking
3, or 5, or 10, or 15 Gauss’ bins of width 10,000:

With these plots, the fluctuations are suppressed a lot—but still there is no clear evidence of
simple corrections62 to Gauss’ law on the density of prime numbers. However, the situation changes
dramatically with yet stronger filtering (with widths of 15, 20, 30 or 50 Gauss’ bins):

61 N.B. (???) TBC
62 Except for undershooting up to n ∼ 700,000—but one could see it before too!
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especially if one plots it in the log-scale of the x-axis:

Here one can see a remarkable effect: there are clearly visible oscillation in the middle of the plot,
and:

The oscillation in the middle have the same period as the oscillations on the right on the yellow graph.

Conclusion: using the effective width of 200 Gauss’ bins dumpens fluctuations well enough on the
right of the plot—but in the middle it dumps them too strong and makes these (interesting!) effects
invisible.

This suggest using different “strengths of dumping oscillations” on different parts of the graph:

This combines the suitable parts of the graphs already shown above—but on the log-scale. For every
value of x, we choose the graph with the smallest effective width on which this kind of oscillation is
clearly visible. The widths are (these numbers are in units of Gauss’ bins, 10,000):

Effective width 1 3 5 10 15 20 30 50
In the range of 0. . . 10 8. . . 10 7. . . 25 15. . . 35 25. . . 90 35. . . 105 45. . . 125 90. . . 300

Conclusion: To see this oscillation, the effective width of averaging should be ∼1⁄3 of the current
position.
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A pictorial exposure of the mismatch in Gauss’ prediction
However, below we abandon the question:

Could all this be found just by analysing the Gauss’ tables?

and switch to an alternative point of view. We assume that Gauss would investigate exactly the same
questions of him as we discussed above—but that he had better tools of keeping the results that just
a notebook. Moreover, we assume that he had “reasonable-for-today” computational resources and
visualization tools.

In fact, one does not need to handle a lot63 of prime numbers to get a nice confirmation of the
law log n for the average distance between primes near n. For example, below we take a certain
sequence of consecutive primes p0, p1, . . . , pM and say that “near x := (p0 + pM)/2 the M -averaged
distance between primes is y := (pM − p0)/M . We plot these distances (for different values of M (in
the top-left corner) in the plot below. For this plot, one does not need to know primes above 25,000:

This and the following plots are made from the table av-dist-primes generated by the script
av-dist-primes.gp. This table is visualized by

set title "Average distance between primes" offset 0,-3.8 font "bold,20" tc "blue"; set key left top
plot [*:1e10] "av-dist-primes" using 1:($2/10) w l lc "violet" title "11 primes", "" using 3:($4/30) w l title "31 primes", "" using 5:($6/100) w l lc "red" title "101 primes", "" using 7:($8/300) w l lc "blue" title "301 primes", "" using 9:($10/1000) w l title "1001 primes" lc "orange", log(x) lc "black"
set title "Average distance between primes (relative to the trend log({/:Italic x}))" offset 0,-3.8 font "bold,20" tc "blue"; set key left top
corr(x,n) = log(x) # expected average gap between n+1 primes around x with the law gap=log(t)
plot [*:1e10] "av-dist-primes" using 1:($2/10/corr($1,10)) w l lc "violet" title "11 primes", "" using 3:($4/30/corr($3,30)) w l title "31 primes", "" using 5:($6/100/corr($5,100)) w l lc "red" title "101 primes", "" using 7:($8/300/corr($7,300)) w l lc "blue" title "301 primes", "" using 9:($10/1000/corr($9,1000)) w l title "1001 primes" lc "orange", 1 lc "black" lw 2 dt ". "|

For each M , the plot starts at the minimal possible value (corresponding to p0 = 2). One can
see that near its start, this curve has “a systematic dip”: is a bit below the line y = log x (which is
a straight line due to the logarithmic scale of the x-axis)—but soon it gets really close to this line.
Since smaller values of M correspond to averaging together a smaller number of distances between
primes, it is not surprising that for these graphs the larger is M , the smaller are the fluctuations.
(Since usually ”averaging suppresses fluctuations”.)

However, the graphs with a very large M not start yet at a particular value of x—or it may start,
but be in the range of that “systematic dip”. So if one wants to answer the question:

For a given value of x, which values of M would give the value of y with the “smallest error”?

63 On the other hand, making the plots below require storing the detailed info about particular prime numbers—
in contrast to the approach of storing the “information about large groups of primes” which Gauss used.
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one needs to balance the scale of fluctuations (larger for smaller M) with the scale of the “systematic
dip”. Ispecting these plots, the preliminary approach would be:

Choose M such that pM/p0 is not too large.

On this plot, the same graphs go for the whole range up to 10 billions:

av-dist-primes
One can see that for smaller values of M , the initial dip is replaced by an “initial bump”.

This plot is as above, but we graph Y := y/ log x:

av-dist-primes-rel
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(version of the preceding picture with the vertical axis in log-scale).

On the other hand, the mismatches between the graphs on this plot and the line Y = 1 are
not necessarily related to the errors in our conjectural law log n—there is an easier explanation!
Indeed,64 with this law the expected value of pM − p9 is not M log((pM + p9)/2), but the sum of
the expected values of p1 − p0, p2 − p1, etc.—which may be written as log((p9 + p1)/2) + log((p1 +
p2)/2) + . . .+ log((pM−1 + pM )/2). And if pM/p0 � 1, then the latter may be noticably different from
M log((p0 + pM)/2).

Conclusion: if the actual average distance between primes is c(x) log x (with c changing very
slowly), then to find c(x), we should plot not (pM − p9)/(M log((pM + p9)/2)) (as we did above), but
M/

∫ pM
p0 dx/ log x. (Indeed, then the expected value for M with this law is

∫ pM
p0 dx/(c(x) log x).)

To see the effects of this change, observe the relative position of two graphs (with M = 300 and
M = 1000) before the change

64 N.B. (???) Compare with the code above.
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and after the change:

Before the change, there was a good match between the graphs—except for the beginning of the
yellow graph. After the change the yellow graph passes “practically in ‘the middle’ of the fluctuations”
of the blue graph.

In other words: the graphs with a larger M behaves very similar to “the graphs for a smaller M
with dumped down fluctuations”. This means that if we want to write the average distance between
primes as the trend · log x + fluctuations, then to approximate the value of this “trend”65 for a
particular value of x we are free to use the largest M which makes sense for this x.

In yet other words: for the purpose of finding the trend, choosing a larger M averages the
trend over a longer interval (what makes the information about how “the trend” behaves less
precise), while choosing a smaller M decreases the “degree of dumping down of fluctuations”—
which “leaks” the fluctuations into the information about trend. These opposite tendencies of
corruptions of information should be carefully matched against each other.

Here is how all the plots with different values of M look with the new approach:

One can clearly see that for smaller primes, the average distance between primes is significantly higher
than what Gauss predicted.

65 possibly averaged over a certain interval
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Conclusion: Write the “actual expected value” of the average distance between primes as c(x) log x;
then looking only at the leftmost pieces of the graphs in the picture above (the pieces “before the
next graph starts”: first the violet piece, then the green, then the red, the blue, the yellow) exposes a
result of a certain averaging of the function c(x). This result is also partially contaminated by the
“leaked fluctuations”.

Remark 3: In the rest of this chapter we inspect how “better calculation facilities” could help Gauss
to “catch up with the progress in 19th century”.—And we restrict our attention to the analogues of
what Gauss already did—without introducing any new ideas (like Riemann using complex analysis in
his approach)!

Well, there is one possible exception: below we presume that it is clear that using weighted
averages helps with dumping down fluctuations—and the smoother the kernel is, the better is the
suppression of quickly changing fluctuations. (Note how this is similar to what we want the reader to
understand66 about the Fourier transform.) I do not know whether such arguments could have been
automatic for Gauss. (He did have a lot of experience in processing of fluctuating time-dependent
data.)

Averaging on longer intervals
On the plots above, we limited our averaging to 1,000 consecutive intervals between primes. The

plot above shows that to keep fluctuations small in the right part of the plot, one should average
much more intervals.

The plots above show that what one expects to get from using more consecutive intervals is:

• Increasing the total width of the combined intervals should dump down the fluctuations more,
so allows to estimate the correcting function c(x) above with higher precision.
• However, the plot would only give us the information about a certain weighted average of
c(x) on the combined interval. And for very wide intervals, the value of c(x) on the left end
is going to be significantly higher than at the middle x of the interval. Hence the average
distance between primes gives information about averaged c, which (due to the concavity
down of “the trend” of the plots above) is going to be higher than c(x).

So we should expect that as fluctuations go down, a systematic error of “overshoot of c” would appear.—
However, doing plots as above with much more combined intervals between primes may require a lot
of computational resources.

On the other hand, it is not hard to inspect what happens at one particular point x of the plots
above when we change this count of consecutive intervals in wide extents. If we limit ourselves to
the same bound p < 3,000,000 as Gauss, then for the midpoint x ≈ 1,500,000 we can go up to the
combined interval [2, 2,999,999] of primes. This plot shows the relative mismatch between the actual
average density67 of primes on an interval and the Gauss’ prediction (in dependence on the ½-width

66 N.B. (???) Ref!
67 N.B. (???) Explain switch from “the average distance”, and how we deal with non-centered at

1.500,000 intervals.
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of the interval):

(The left end corresponds to the violet plot on the preceding graph, with 10 combined intervals.)
Indeed, as we increase the width, the fluctuations go down, and a “systematic drift” in the

predicted direction appears. It is clear that the best balance between these two types of errors happens
when the combined ½-width is 100,000–200,000.

On the third hand, zooming into non-logarithmic version of the graph shows this:

Conclusion: if we average the plot above in the range near 30,000-60,000, then the floctuations of
the graph have a good chance to cancel each other—and the systematic error is quite small in this
interval! In other words: using several different “combined widths”, then averaging the result may
give us much higher precision of estimating c(x).

Average distance vs. average density
It may be easier to think about average distance betwen primes, but when we start to discuss the

approaches as at the end of the preceding section, it turns out that it is much easier to work with the
inverse68 value: “the average density of primes” in our interval.

68 More precisely, the harmonic mean of a value is inverse to the arithmetic mean of its inverse. Above, we used
a “combined length” of the intervals between several primes— which corresponds to the arithmetic mean. Hence if
we want to express its inverse, the density, in “local terms”, we can describe as the harmonic mean of inverse distances
between consecutive primes.69

https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Harmonic_mean
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The average distance between primes in an interval [A,B] is similar to (B − A)/N ; here if both
ends are primes, then N is the count of primes in the interval—when one counts primes at ends with
the coefficient ½. So the inverse value is DAB := N/(B − A), and every prime number inside [A,B]
contributes 1/(B − A) into DAB (with the primes at ends contributing 1/(2(B − A))).

The convenience of the “average density” is that when one takes an average of several values DAB

with different A and B, this corresponds to considering every prime p with the coefficient µ(p); here
µ is a certain function70 (with compact support). (In fact, µ is the average of the corresponding
functions µA,B we described above.)

For example, if we take a continuous family of intervals [x0 − t, x0 + t] centered at x0, with t
“distributed uniformly” on the interval [0, T ], then µ(x) = (T − |x− x0|)/T 2 inside [x0 − T, x0 + T ]
and is 0 outside.

When instead of one function µ(x) we use several such functions in the form µx0(x) = µ0(x− x0)
with different values of x0, then what we consider above becomes a function of x0 which is a
convolution71 with µ9. In other words, we consider the sequence of prime numbers as “an input
signal”, and run “a low-pass filter”72 on this signal. The aim is to separate this “signal” into the
(slowly-changing) “trend” c(x) and into (high-frequencies) “fluctuations” (which are going to be
suppressed by the filtering). As it is well-known,73 one of the best filters is one based on the Gauss’
invention: the Gaussian function.

Generally speaking, the more smooth is the function µ, the better is the suppression of high
frequencies in the corresponding filter. The important property of Gaussian filters is that they are in
a certain sense “optimal” in this regard. So below we are going to use µ which is a Gaussian.

Prime density: averaging with Gaussian weighting
The “lin” flavors of plots below are generated by the script prime-density-peacemeal001-extra.gp.

It counts the total weight of primes in a certain window [(1 − ∆)x, (1 + ∆)x] with the Gaussian
weight74 centered at x with ½-width w·x (and ∆ = W·w with W = 13). Here the numbers x go in
a geometric progression up to75 about 2.66·109.

Remark 4: In fact, for every x, three “extra” numbers are emitted. These are not “weighted sums”,
but “weighted signed sums”77 with the sign at p depending on the p mod 12 (using 3 non-trivial
characters mod 12).

70 For one interval [A,B], the function µ takes value 1/(B −A) inside the interval, 0 outside, and ½ at its ends.
71 N.B. (???) Explain!
72 N.B. (???) Explain!
73 Although I do know whether Gauss understood this.. . .
74 N.B. (???) Did Gauss know about the usefulness of weighting with Gaussian kernel to supress

fluctuations?
75 It is chosen to cover the the pair 71, 73 of primes after multiplication by the important constant76 34.2·106.
76 N.B. (???) Explain!
77 Such sums may be used in discussion of simpler topics: “prime races”. In these contexts, the “tricky” terms we

discuss here (dealing with a slowly changing density 1/log x and the resulting integral li) cancel out completely, and the
terms we start to introduce in this section are “immediately visible”.

These topics are related not to the “literal” Riemann Hypothesis, but to the Generalized Riemann Hypothesis.
The latter one is a bit harder to formulate, but it is much easier to illustrate.78

M For example, when we discussed prime races on our Math Circles, a couple of first-graders were able to invent
the Generalized Riemann Hypothesis basing on a small amount of data we show them. M/// (However, we do not discuss
“prime races” here!

78 N.B. (???) Move parts of this to the body of the remark!

https://en.wikipedia.org/wiki/Gaussian_filter
https://mathworld.wolfram.com/ChebyshevBias.html
https://en.wikipedia.org/wiki/Riemann_hypothesis
https://en.wikipedia.org/wiki/Generalized_Riemann_Hypothesis#Generalized_Riemann_hypothesis_(GRH)


26 What Gauss missed about primes:
√

, periodicity and symmetry, and ψ

This plot shows the relative error of the actual Gaussian-averaged density of primes near x
comparing to the Gauss’ prediction79 1/log x. Here the Gaussian has ½-width w = 0.1 (i.e., “the
effective width” of our weighted average is80 1/5x:

Already with this graph one can conjecture that this discrepancy decays at the approximately
power law. This conjecture becomes much more convincing in the log-log-plot. For this, we plot the
difference and the flipped-sign difference, and switch the y-axis to the log-scale:

Here we also plot y = 1/
√
x to demonstrate that the match with the law y = C/

√
x is reasonably

good.
Conclusion: this method of averaging shows many effects:
• On average, there is a steady improvement of the precision of Gauss’ prediction 1/log x.
• On average, the Gauss’ prediction significantly overestimates81 the density of primes for small
x.
• This over-estimation corresponds to an extra factor 1− C/

√
x with C . 1.

79 To avoid systematic error, the Gauss’ prediction should be also Gaussian-averaged. On the right of the plot, this
decreases the Gauss prediction by 1/4,000—which would be very visible on the plots starting from x about 6·106.

80 This is somewhat similar to averaging using primes in the interval [0.9x, 1.1x], but with a much stronger dumping
down of fluctuations due to gradual decay of the Gaussian weight.

81 This corresponds to an underestimation of the actual average distance between primes we have seen on the plot
on p. 22.
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• When the fluctuations “on top of” that trend are dumped down by our method of averaging,
the suppressed remains are very similar (on the right of the picture!) to periodic oscillations
on the log-scale with ∼ 5 periods when x grows 10 times.
• The left part of the picture shows that on top of these “log-periodic remains” there are “extra
correcting” terms.—But these terms decay fast, so in the right half their contributions are
hardly visible relative to the oscillations.

To find the value of C more precisely, and to inspect the last part of the conclusion, we need to
suppress the fluctuations yet more. For this, we need to increase the ½-width w of averaging (which
is 0.1 for the plot above). However, there are some difficulties for such an increase—some of them
mathematical, some technical:

• “Mathematically”, the Gaussian weight µ has an infinite width (“support”). Practically,
it decays so quick (“its tails are so narrow”), that usually the result of averaging does not
change noticably if one “cuts off the tails”. For example, cutting at W·w with W = 6
changes the total weight only by 2 billionth. With W = 13 (used above) the error is only
about one unit in the 38th decimal place.82 (With W = 10, it is the 23rd decimal place; with
W = 4 it is the 4th.)
• Using W such that W·w > 1 includes negative values (and small positive values) into the
range of averaging. In particular, we need to answer a tricky question: is −17 a prime?!
From many points of view, it is useful to consider them as primes—so, theoretically, we
should better check how the plots look like with both possible answers to this question.

Using W = 10 with w = 0.1 allows one to completely ignore this question (in particular,
the difference is not going to be visible on the plots above). However, with w = 0.25 this
may completely change how our plots behave.
• In addition to averaging the density of primes, to make plots as above, we need to average
the Gauss’ prediction (as in Footnote 79 on p. 26). However, this prediction is not good near
x = 1—so we better avoid this region.—And this is not possible with w & 0.25.
• Increasing w requires a complete recalculation of tables used for our plotting. The required
time is proportional to w. Already with w = 0.1 the time of calculation is very significant.

The first correction to prime density: averaging with log-Gaussian weighting
There is an obvious solution to the problems listed above: “place” the prime number p not into

the point x = p, but into X = log p. In other words, given a “weight function µ”, when we process a
coordinate x0 on the plot, count p not with the weight µ(p−x0), but with the weight µ(log p− log x0).

Among other benefits, this reduces the dependence on x0 of the ½-width we use: on the plot
above, it is 0.1x0.—And since 0.1 is “small enough”, the corresponding Gaussian weight corresponds
closely to the log-flavor83 (as above) with the width 0.1—which does not depend84 on x0.

82 We use this value, since it is the precision of our calculations anyway!
83 The “tails” of these distributions decay at very different rates.—However, this difference does not start to matter

due to the tails being both very small where the differ a lot.
84 One very convenient corrolary of this that given a (dense enough) table of averaging with constant w = 0.1, it is

very easy to recalculate it into a table for larger w s. (Compare with Footnote 99 on p. 35.)
The only—unfortunate—consequence is that the recalculation can be performed only on a more narrow interval.

Practically, this results in the plots below “ending sooner” for larger values of w.
(Moreover, the precision of these plots decreases when going closer to the “right end” of these plots. This decrease

is super-exponential in log x—but close to exponential. Where this is important, we may mark the zone where—
the expected—precision decreases 5 times using dots.)
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This illustrates the insignificance of passing to the log-flavor for small w:

The visible differences between these graphs are mainly due to the corresponding tables being
calculated on slightly different grids. (As well as us not using “smoothed plotting”—the plots show
the linear interpolation.)

The “exp” flavors of plots below are generated likewise (by something like prime-density-peacemeal001-exp.gp),
but instead of Gaussian kernels we use log-Gaussian kernels. In other words, by a script like
prime-density-peacemeal001-exp.gp (followed by “coarsification” step). It counts the total weight
of logarithms of primes in a certain window [(1−∆) log x, (1 + ∆) log x] with the Gaussian weight
centered at log x with ½-width w (and ∆ = W·w with W = 13). Here the numbers x again go in a
geometric progression up to the same value as above.

“Coarsification” is85 86

85 N.B. (???) TBC
86 N.B. (???) The coarsified tables contain extra columns: these give the Gaussian-averaged function

1/x (with an appropriate cut-off, and multiplied by tn), with centers at the points tn := log x+ w2/n for
n = 1, 2, 3, 5, 6, 7. During plotting, we calculate T Avw(ect/t)|T as T/T + cw2·ecw2/2((T + cw2)Avw(1/t)|T+cw2).

Although a particular nature of cut-off does not matter for most of our plots (unless w is very
large, it affects only the extreme lefts of our plots—which we ignore anyway) se use the Ramanujan’s
cutoff (of 2.1.4 of “Twelve lectures”—with a misprint correction; this is (the Soldner constant; when
calculating li, this cutoff is equivalent to a cut-off at 0 if one uses the principal-value regularization).

In the plots, we also clump the argument T to the Ramanujan’s cutoff if T is smaller than it.

https://mathworld.wolfram.com/SoldnersConstant.html
https://en.wikipedia.org/wiki/Cauchy_principal_value
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The plot below uses log-Gaussian averaging with widths w = 0.1, 0.2, 0.3 and 0.4 to estimate the
value C mentioned above:

(Recall that increasing w dumps down the high-frequencies in fluctuations stronger, and moving to
the right decreases the role of the terms decaying much quickier than 1/

√
x.)

Conclusion:

• All the effects discussed after the plots of the previous section are confirmed.
• The magnitude of the “periodic oscillation” of this discussion decays at very similar rate to
the “correcting term” −C/√x.
• The constant C seem to be very close to ½.
• Using such a constant C = ½ still leads to an overestimation of the density for small values
of x. (This corresponds to the “‘extra correcting’ terms” of the discussion of the preceding
section.)
• Inspecting the very far right of the yellow plot (for w = 0.2) shows very strong similitude to
a (shifted) sinusoid. Such high w dumps down high (log-scale) frequencies very strongly—
but still, this suggests that “the fluctuations” have only “a discrete log-scale spectrum”—
at least for the range of “small frequencies”.

This gives a very strong suggestion of the presence of “spectral gaps” in the frequency
spectrum87 of fluctuations in the prime density (on the log-scale)! (Since this conclusion
is related to the far right of the plot, this means that we ignore the more-rapidly “extra
correcting terms”—so we consider only the “main terms” of the fluctuations.)

This suggests to write the prime density in the new form:

The average prime density near x is (1− 1/2
√
x + Extra-terms + Fluctuations )/log x.

—and “extra terms” are small comparing to 1/
√
x (and—hopefully—decay quickier than this), while

the fluctuations decay similarly to 1/
√
x. (The plot above suggests that the “extra terms” give a

negative contribution for small x.)

87 . . . i.e., in the Fourier transform in the log-scale.—And this is the same as Mellin transform.

https://en.wikipedia.org/wiki/Mellin_transform
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“Beats” in fluctuations
It is not very hard to fit a (cyan) sinusoid to the (violet) graph for w = 0.2 above88:

Inspecting the difference between this graph and the fitted sinusoid (in red), one can see that “the
remaining part” of the (suppressed) fluctuations is:

• Indeed much smaller than the sinusoid.
• Its main part on the right seems to be a (quickly decaying) oscillation with twice the period
of the cyan sinusoid.

Moreover, using the log-scale on the vertical axis shows the asymptotic behaviour of the red graph
above (with inverted sign):

So “the remaining part” behaves as Ĉ3(log x)/x1/6 with C3 oscillating about ∼ −1/3.

88 Here ocomp(x,M, f, ϕ,w) gives the co-sinusoid with magnitude M , frequency f and phase ϕ suppressed by
Gaussian averaging with ½-width w, at log x.
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Rescaling the preceding plot correspondingly, we get:89

One can also subtract the fitted sinusoid (one we found above, just with a different coefficient due
to the difference in w) from the density averaged with w = 0.1:

Here we see the major difference with the case of w = 0.2: the remainder does not decay. It seems
to have a “very strong beat” with a higher frequency that the term we subtracted;90 the ratio of
frequencies seems to be close to 3 : 2 (but with a hint of it being a tiny bit less: the mismatch in the
phase on the right half of the picture suggests a correction of ∼ 0.7%, giving a frequency of ≈ 21.06).
Conclusion: the “fluctuations” term contains strong signals with log-scale frequencies f1 ≈ 14.14 and
f2 ≈ 21.06, and with another spectral gap (of unknown width) after f2.

To analyse the latter spectral gap, one may want to repeat what we did above: find a sinusoid
which fits the “beat” of the red graph above; subtract it from the function we plot; and try to check
whether the difference “has a strong beat” on a higher frequency. However, this is not what happens

89 N.B. (???) Why av_exp2t does not work here?!
90 Hence with the w = 0.2 averaging, these oscillating terms are going to be suppressed significantly stronger. With

(the frequency 3/2·14.14, the suppression is going to be ∼ 150 times stronger than for the frequency 14.14.) This is
why they practically do not contribute into the plots with w = 0.2 above.
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on the graph with91 w = 0.1:92

The difference (in black) does not seems to have a component at a certain frequency “which dominates
it”.

Fix: Tuning the phases of these two sinusoids, the (black) remainder acquires a strong visible
beat frequency. On the plot below, we show a sinusoid fitting this (new) black plot, and the result of
subtracting this sinusoid (in blue):93

With these 3 main oscillating terms, the amplitude of “the remaining fluctuations of averaging with
w = 0.1” decreases from about 0.8 to about 0.03 (in the right part of the graph).

91 N.B. (???) Do we need to plot with w = 0.1 instead? But it seems one needs slightly different
amplitude and phase: ocomp($1,2.01,14.14,3.16,0.15)?

92 N.B. (???) Here the amplitude and phase are corrected as above; this improves the “ beat”—
but it is on a smaller frequency?! Or maybe between 100,000 and 1,000,000 it is at ratio 6:5?

93 Here we use the magnitudes M = 2, and phases listed in TEX comments above.
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Adding a fourth term likewise (the purple sinusoid) reduces the amplitude of the remainder (in
red) to about 0.011 (on the extreme right):

Again, zooming in on the right one can see that “the beat” of the red remainder seems to be slightly
higher than the bit of the purple sinusoid.

However, even on the extreme right, it seems that “the remainder” after we remove 4 sinusoidal
waves (drawn in red above) is mostly contributed by the fluctuations which decay quickly as we move
to the right on the plot:

This shows94 the variation of the red graph of the preceding picture from −½ in the log-log-scale,
together with a similar power law.

Conclusion: with our limit for the maximal primes we consider one cannot expect to get further
with this method, and recognize more sinusoidal terms in the fluctuations we observe on these graphs.
They are hidden by the decaying terms (with slower “beats”, so that the “next term” is suppressed by
the Gaussian filtering much more than “moving to the right on our plots” decreases the decaying
terms).

94 N.B. (???) Explain changing log($1+2) by log(M($1)).



34 What Gauss missed about primes:
√

, periodicity and symmetry, and ψ

A wider view: wider log-Gaussian weighting
The plot above shows “the part of the error of Gauss’ approximation to the prime density near x

which decays quickier than 1/
√
x”—but with it, one cannot uncover the main features of this part:

they are hidden by the quickly-varying parts of fluctuations. To expose these features, we need to
suppress the high-frequency fluctuations further. So we need to use a larger w.

With w = 0.2 the plot above becomes: 95

Conclusion: this part of the error is in many ways similar to the “part of the error decaying similar
to 1/

√
x”:

• It has a well-pronounced trend of the form C2//x
2/3, with C3 ∼ 1/3.

• On top of this trend, the (averaged) fluctuations decay at approximately a power law.
• These averaged fluctuations have a very strong beat at a frequency on the log-scale about
“2.5 periods per ‘an order of magnitude’”.

To get a better estimate of C3, we rescale the plot so that the vertical axis has the meaning of C3:

95 N.B. (???) Here we needed to switch to using av_exp2t to correctly average 1/2
√
x.
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and also plot the (averaged) main oscillating term of the density of primes (appropriately rescaled
and with opposite sign) “slowed down 2 times” on the log-scale.96 —And it shows an (incredibly)
good match to the oscillations of the “red remainder” shown above.

The main conjecture (the Riemann Hypothesis)
One can come to the following conjecture about the error term of Gauss’ approximation

Prime density ≈ 1/log x:

Prime density · log x− 1 can be approximated very well
by a linear combination of terms 1/xαn and cos(fnm log x+ ϕnm)/xαn .

For the large values of x, the terms with the minimal possible αn would dominate. In the previous
section we have seen that these terms seem to have α1 = ½ and f11, . . . , f14 close to 14.14, 21.06,
25.06, 30.4.

So far, the “trend” of Prime density · log x we have seen is 1 − 1/2
√
x − C3/x2/3 + . . ., and the

“discovered” fluctuations97 on top of this trend are

2 cos(f11 log x+ ϕ11) + 2 cos(f12 log x+ ϕ12) + 2 cos(f13 log x+ ϕ13) + 2 cos(f14 log x+ ϕ14) + . . .√
x

− cos(½f11 log x+ ½ϕ11) + . . .

xq

with q ∼ ¾.

After the work of Riemann (made rigorous later by von Mangoldt101), we know that the
green-framed conjecture above actually holds. However, all the values of αn we observed by analysing
our data are ½ or more—and this is what neither Riemann nor von Mangoldt could prove (although
αn > 0 has been proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin
in 1896. In fact, up to now nobody could make a significant progress in improving the inequality
αn > 0 to αn ≥ ½—and the latter estimate is confirmed so far by all numerical experiments.

This is the famous Riemann Hypothesis—which is a part of 6 MIllenium Prize Problems. There
are many formulations of this Hypothesis which are known to be equivalent between themselves.—

96 Recall that the first time we have been looking at “the frequency of the beat” in our plots, it was “about 5
periods per order of magnitude”. What the plot above shows is that these beats are 2x rescalings of each other.

97 Note that in the graphs above, we compare the averaged density of primes with these fluctuations similarly
averaged.98 So instead of 2 cos above, we get a cosine with magnitude exponentially smaller: 2e−(wfnm)2/2.

(Although since this sine wave enters our formulas actually multiplied by a power of x—so exponent of log x—
one should add to fnm above a small imaginary part. This leads to tiny corrections in magnitude and phase of the
correctly averaged oscillations.)

98 In our tables, we count99 (logarithms of) primes with a Gaussian weight on the log-scale. Since the density of
integers on the log-scale near log x is x (and the “density of primes” is “relative to the density of integers”!), when
matching our tables, one actually needs to average the oscillating terms below with an extra factor x.

99 More precisely, we Gaussian-blur
∑
k δ(z − log pk): we convolve this function with the Gaussian measure of

the given ½-width w. (This is why we can easily recalculate from smaller w to a larger w′ by convolving100 with
a Gaussian measure of ½-width wa :=

√
w′2 − w2.) (Since Gaussian measure has unbounded support, this leads to

certain complications. Compare with Footnote 84 on p. 27
100 There is a complication that between two convolution we discretize the result into a table with a certain

step ∆ (on the log-scale). However, using the Fourier transform shows that the resulting errors decay essentially as
e−(wwa/w

′∆)2/2. So if ∆ is reasonably small comparing to w, and w′/w − 1 6� 1, the error can be made below the
precision of calculations.

101 N.B. (???) Refs!

https://en.wikipedia.org/wiki/Millenium_problems
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And the simplest of these formulations is a much simplified form of our conjecture above on p. 35:

The averaged error term Prime density at x − 1/log x of Gauss’s law “decays as” 1/
√
x.

For example, here is one way to make this precise: one can average this error term on intervals102 of
the form [εx, x] with any fixed 0 < ε < 1, and one can understand103 “decays as” as it being below
1/xα for sufficiently large x, provided α < ½.

105 106

Remark 5: Although the Riemann Hypothesis has its roots in the distribution of prime numbers,
most frequently it is stated in a much more obscure form involving a sum ζ(s) of series of functions
with a complex argument. Note that the form we wrote above seems to be much more elementary.
(And with minimal knowledge of complex integration, it can be shown to be equivalent to the “standard
formulation”.)

Oscillation in the after-the-main terms of asymptotic
Do other sinusoids we discovered above appear in the remainder we discuss above?
On the next plot, the oscillating term above is in gray, and the result of subtracting this term

from “the effective C3” is in violet. We also show the result of subtracting all 4 known oscillating
terms (each “slowed down 2 times”) instead of one (in green):

102 In other words, one considers the excess over
∫ x
εx

dx/ log x of the count of prime numbers in such an interval,
divided by (1− ε)x.

103 There is a lot of leeway in possible formulations. For example, the stated weak form implies that this averaged
error is actually much smaller: O( log x/

√
x). (This was proven by von Koch in 1901—with no improvements to this

proven since then!)
On the other hand, there are reasons to believe that in fact the error term has the following exact speed of

decay: log log log x)2/2π
√
x (in the sense that lim sup and lim inf of the corresponding ratio are ±1). This is Montgomery

conjecture.104 (H.L. Montgomery, The zeta function and prime numbers, Proceedings of the Queen’s Number Theory
Conference, 1979, Queen’s Univ., Kingston, Ont., 1980, 1-31.)

104 N.B. (???) Mention Rubinstein–Sarnak “enhancements”? Mention that local maxima of a sum of
oscillating terms with independent frequencies appear where the phases of many such terms match.—
But when we look for a match of phases of terms, the more terms, the rarer this is going to happen. So
of coefficients are not in `1, large magnitudes of the sum s(x) are possible, but appear very rarely. This
can gives a growth of max[0,X] s(x) with such strange law as log log log x.

105 N.B. (???) Should we discuss the difficulties with double-summation in n and m?
106 N.B. (???) Should we discuss simplifications related to prime races?

https://en.wikipedia.org/wiki/Riemann_hypothesis
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One can see that at least subtracting more terms decreases the remainder; while this does not show
that these terms actually appear in the fluctuations, it is a significant confirmation.

Doing likewise with w = 0.4, we plot the difference between −1/3 and the analogue of the green
graph above:107

in the log-log-plot. This suggests a power-law convergence, so one can expect that C3 is −1/3 with a
strong enough precision.

However, when we want to find the next term after −C3/x2/3 (with C3 = 1/3), our approach fails.
Indeed, this term may be described as giving C3 dependence on x. For example, an extra term of
the form −1/4x¾ would be equivalent to replacing C3 by Ĉ3(x) := 1/3 + 1/4x1/12. Since the plot above
effective shows Ĉ3(x) − 1/3, to find the next term in the post-Gauss law108 we need to find which
particular power law decay appears in the preceding plot.

Multiplying the plot above by x1/5 shows that it is not clear what particular kind of power decay
happens on the plot above:109

—but it seems to be somewhere between −¼x−¼ and −1/5x−
1/5 (so the power 1/12 is not confirmed).

Taking into account the factor x−2/3 at C3 (which is the meaning of the y-axis of the plots before the
107 N.B. (???) Here we needed to switch to using av_exp3t to correctly average 1/3x2/3. Otherwise on

our graphs for C4 the value is overestimated by 0.15—but only on the extreme right.
108 N.B. (???) Discuss the name earlier!
109 N.B. (???) after switching to M(), it seems the sloped line should be redone?
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last), these would contribute “between −¼x11/12 and −1/5x
13/15” into the post-Gauss corrections to the

prime density. (In particular, this does not follow110 the form of the other terms we found in this
trend: 1− 1/2

√
x− 1/3x2/3 + . . ..)

This exposes a beat which is 3 times slower than the old beat: 12⁄3 periods per an order of
magnitude.111

In fact, the situation improves a lot with passing to w = 0.75 or more (up to 1½):

Here we decreased the factor x1/5 to x1/8, and the straight line corresponds to a term −0.18/x4/5 added
to the trend of prime density. (Unfortunately, for w & 2, the inherent uncertainty of averaging 1/log x
affects the part of the graphs we can calculate too much!112)

The pattern in the terms of the trend

The plots above suggest that the trend for Prime density × log x behaves as

1− 1/2
√
x− 1/3x2/3 − Ĉ5(x)/x4/5

with Ĉ5(x) ≈ 0.183 when x is in the range of a few millions. The last term is too similar to 1/5x4/5

following the pattern of the other terms to avoid the question of the observed pattern:

Can the real trend be 1− 1/2
√
x− 1/3x2/3 − 1/5x4/5 − Ĉ?(x)/xα

with α > 4/5 and Ĉ? not growing too quick? We know that Ĉ?(x)/xα−4/5 is about −0.02 when x is in the
range of millions.

In fact, 2, 3, 5 has a natural continuation as “prime numbers”. So to put a more precise meaning
into the question above, it makes sense to inspect what are Ĉ??(x) and β in

The trend of Prime density × log x is 1− 1/2
√
x− 1/3x2/3 − 1/5x4/5 − 1/7x6/7 − Ĉ??(x)/xβ

(to normalize β, suppose that Ĉ??(x) has a non-zero limit—or some such).

110 N.B. (???) Moreover, the appearence of the “old” beat “2.5 periods per order of magnitude”
suggests that we should fine-tune the phase of the 4th sinusoid.

111 N.B. (???) Explain!
112 N.B. (???) We discussed this before!
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This shows that the averaged −Ĉ??(x)/xβ behaves quite similar to 1/6x1−1/6.55 (the green line):

when x is in the range of a few millions.
This is too similar to 1/6x5/6 to avoid the following conjecture:

The trend of Prime density × log x is 1− 1/2
√
x− 1/3x2/3 − 1/5x4/5 + 1/6x5/6 − 1/7x6/7 − Ĉ???(x)/xγ

(to normalize γ, suppose that Ĉ???(x) has a non-zero limit—or some such).113

On luck: the trend
Above we found the Conclusion: there is a very good fit with the trend

1− 1/2
√
x− 1/3x2/3 − 1/5x4/5 + 1/6x5/6 − 1/7x6/7

correcting the Gauss’ density law.114
However, one should keep in mind that the last 3 terms are obtained by leaps of faith: there is a

lot of cancellation between them, and one can replace them with other similar partially-cancelling-
each-other terms which would give practically as good match as the expression above. One can prefer
this particular choice of the last 3 terms only due to their similarity to the pattern of the terms before
them.
Remark 6: There is very little chance to find the further terms by this method. The reason is that
many following terms come in 4-tuples with signs of the form +−−+ (for 10,11,13,14, then 15,17,19,21)
with equal gaps in the first and the second pair—and these signs lead to a very strong cancellation
inside such a 4-tuple of terms. After these two 4-tuples, two pair +− follow (22, 23 then 26,29)—
but they are significantly compensated by the following −−++ (at 30, 31, 33, 34). Conclusion: the
contribution of these terms is going to be very small— so it would not be possible to confirm it using
our tables of the distribution of prime numbers. (These terms are going to be masked by fluctuations.)

While our guess for −1/5x4/5 had a kind-of-weak, but still-convincing supportive evidence, it is not
clear how one could find any kind of evidence for the terms following −1/7x6/7.
Remark 7: On the other hand, it is the fact that the “following terms are mostly negligible” which
led to a possibility of guessing the terms up to −1/7x6/7.

113 N.B. (???) TBC
Gauss used the function µ (in §81 of D.A.) but there is no indication he knew the Möbius inversion

formula.
114 N.B. (???) At least with suitable correcting terms at the start, when x ≤ 64. See the “compensated”

plots below.
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Back to narrow view
Going back to the case w = 0.4, here are the corrections on top of “the trend above with added

first 4 frequencies of oscillation (both for 1/
√
x and 1/x¾)”:

(Here we multiply by a suitable power of x to make fluctuations of similar magnitude for different x.)
It probably is not so surprising now that “the beat” on the plot above is going 3 times slower than

the first beat we observed (with “5 periods per order of magnitude”). This shows this beat, and the
result of subtracting this beat (with amplitude 1/3x5/6 and the phase inverted):

This time, “killing this beat” does not change the magnitude of fluctuations a lot—but the graph
simplifies, and it is now easier to see yet slower beats on this graph.
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This shows how “the remainders” w.r.t. the trend above behave when we cancel the first 4
oscillations in every “order of decay” of our asymptotic expansion115 for Prime density × log x:

This shows that (in the range we investigated) this formula predicts the the weighted count of prime
numbers (with the effective width 0.8·x) around x with an error at most x1/15. For example, the peak
for x ∼ 107 this is the error of about 1⁄5 “extra primes”.

For averaging with the effective width 0.4·x, using 4 oscillating terms is not enough, and (with
the scaling used above) the error grows much quickier than x1/15:

115 N.B. (???) Explain how the oscillations are matched to terms in the trend.
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For example, near x ∼ 107 the errors is about 3⁄5 “extra primes”. Rescaling the best-approximation
plot less agressively gives:

—which suggests the mismatch growing similarly to ½x1/5 (in the range in question 116)

For averaging with the effective width 1.5 on the log-scale, compensating these oscillating terms is
mostly excessive (the Gaussian dumping down has much stronger effect, so the difference between
these graphs is negligible):

Still, near x ∼ 107 the errors is about 1⁄10 “extra primes”.

116 Given the decrease in magnitude about 106–108, this may suggest a sum of two terms, one growing slower
than x1/5 —visible in the left half, the other growing quickier than ½x1/5 —visible on the far right.
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For averaging with the effective width 3 on the log-scale, compensating these oscillating terms is
completely unneeded:

(the difference between these graphs is almost invisible). The following plot shows the same data but
scaled vertically so that it shows the corresponding log-Gaussian weighted count of primes:117

The maximal error for x > 180 is about 0.03 “extra primes” (in the range we investigate). (This is out
of the total log-Gaussian-weighted count of primes “near 107” being above118 6 millions with w = 1.5.)

Unfortunately, with w & 0.75 there is practically no visible difference when we subtract “the term
as above”: with such a width of averaging, the oscillations we subtract are more or less completely
dumped down anyway!

117 Blue graph corresponds to using “our best” estimate of oscilating terms (with 4 frequencies per each of 6 rates
of decay), red to using no oscillating terms at all.

118 One should keep in mind that due to the nature of log-Gaussian weighting with half-width w, the count for a
particular value of x involves “many” primes above x—“and mainly primes about X ∼ ew2

x”. For example, this X is
close to the solution to the following the problem: find X such that the primes in the interval [(1−∆)X, (1 + ∆)X]
(with a fixed ∆� 1) give the largest contribution into the weighted sum. (Compare with Footnote 98 on p. 35 and
Footnote 86 on p. 28. This is somewhat similar to e−wx, ewx] being centered not at x, but at x coshw.)

In particular, while the right end of the x-axis above is ∼ 107, the right part of the graph “counts primes mostly of
the order of magnitude of ∼ 108 (and “a few times larger or smaller”). So the weighted count may be roughly estimated
as
√

2πwxew2/2/ log(xew2).
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On the correlations of prime densities at x and at C·x (or C/x)
On the plot on p. 13 we already saw that with a quite strong filtering of fluctuations119 (and

appropriate scaling), the density of primes at x correlates very good with the density at 17,000·x
(at least when x is in [2, 160]). (This plot shows the excess E (x) in the density of primes over “its
expected value”.)

This shows the correlations between these two densities at different values of C; this plot is for a
much more narrow width of averaging120 (effective ½-width w = 0.01x):

The green graphs shows the correlation for x ↔ C·x, and the purple one for x ↔ C/x. (The
possibility of the latter correlation to be strong is shown by blue marks on the plot we discussed
above on p. 13.

Conclusion: the almost-perfect match between these two graphs (for C & 100) shows that the
correlation x ↔ C·x would remain as good as it is if we formally extend the excess E (x) in the
density of primes by putting E (1/x) := E (x) for x ≥ 1.

(In fact, the matches between these graphs are observable already for C ≥ 32:

119 Recall that the width of Gauss filtering was ∼ 0.3x.
120 Before we used “averaging on top of Gauss’ bins of width 10,000”. This plot shows averaging without binning

(or: “with bins of width � 1”).
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Observe that for C . 100 the peaks on the purple graph happen at products of two primes.121)
Here one can see that instead of strong (visual) correlation when C ≈ 17,000 (and with very strong

filtering of oscillations) we saw above122 we get an exceptionally high123 correlation for C ≈ 18,830 when
we use very weak filtering. The other maxima visible on this plot are at C ≈ 3.5·106, C ≈ 34.3·106

and C ≈ 506·106.
These plots are similar, but exclude the region of very small primes (with the weight gradually

linearly??? decaying in the interval [2,7]):

(The intent was that “the yet unaccounted terms” in prime density give a very strong contribution
when | log x| is very small. So we attempted to exclude this. However, there is no visible improvement
here, so this “trick” is not needed!)

The purple graph shows E (x), the orange one is its reflection E (1/x), while the blue graph is a suitable
translation of the right third of the purple to the left. Unfortunately, this plot does not visualize well

121 On this plot, these products are blurred with the effective ½-width of 1.4%. Near 100, such products are (on
average) separated by comparable distances log x/log log x ≈ 3, so the individual products do not contribute much into
the graph.

122 N.B. (???) Ref!
123 Although not very impressive in geometric terms: typically, “the angle” between function E (x) and E (C·x) is

close to 90°, and very few C correspond to the angle below 80°. For C ≈ 18,830, the angle is about arccos 0.31 ≈ 72°.

https://arxiv.org/abs/1908.09503
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the similarity of 3 graphs in the left part of the picture. However, zooming into the left part shows
that the (rare and narrow!) peaks on the purple and the orange graphs are match almost perfectly by
the (narrow!) peaks on the purple graph:

Although (due to the difference in frequency of the peaks) many peaks in the purple graph remain
unmatched, it turns out that (contrary to expectations—given a good match in narrow zones only)
the similarity of graphs only increases when one averages with a larger width (such as w = 0.035x on
this plot):

The “matched peaks” regain their heights, while “unmatched peaks” are dumped down!
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With yet wider averaging (such as w = 0.1x on this plot) all the peaks and trous match (except in
the very center):

If we use other maxima on the plot of correlations124 above, with the peak near 3,500,000 the
match is nearly not as perfect (here we use C = 3,610,000):

with a decent match, and—again—an extra double-hill near 0.

124 N.B. (???) Ref
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For the other maximum C ≈ 506·106, using C = 529·106 givens the graph

but the “extra hills” near x = 1 are still very similar to what happens above.125

The earlier attempts on further corrections: wider log-Gaussian weighting (without
removing “main oscillations”

primeDens-av0_1_–0_2–0_4–0_4–abs–pow2_3

125 N.B. (???) To explain this behaviour in the “very center”, the function E (x) may in fact be written
as Eper(log x)− Ehill(log x), with Eper almost periodic (as the good matches when shifting the graphs—
as above—suggest) and even, and Ehill having a double peak near 0 and exponentially decaying for
large arguments (and even!).

Hence for a suitable C the function E (Cx) is close to E (x) + Ehill(log x), so E has “an extra double
hill” for x ∼ C.
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primeDens-av0_3–0_4–0_6–1–1_5–pow5_6

primeDens-av1–1_5–2–2_5–pow0_788
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primeDens-av1–1_5–2–2_5–pow0_782

The earlier attempts (in preparation): newer “primeDens”
primeDens-av1–1_5–2–2_5–pow1-nocomp

The “compensated” versions below try to modify the Ramanujan’s normalization of li by adding

comp(x,w)=(-0.3*comp0(x,w,2)+0.7*comp0(x,w,5)+1.1*comp0(x,w,16)+0.7*comp0(x,w,32)+0.6*comp0(x,w,64))*exp(-x)

with comp0(x,w,x0)=1/sqrt(2*pi)/w*exp(-(x-log(x0))**2/2/w**2).
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primeDens-av1–1_5–2–2_5–pow1-comp

primeDens-5th-av1–1_5–2–2_5–pow6_7-comp
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primeDens-5th-av1–1_5–2–2_5–pow6_7-nocomp

primeDens-5_7th-av1–1_5–2–2_5–pow6_7-comp
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primeDens-5_7th-av1–1_5–2–2_5–pow6_7-nocomp

primeDens-7th-av1–1_5–2–2_5–pow6_7-comp
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primeDens-7th-av1–1_5–2–2_5–pow6_7-nocomp

primeDens-7th-av1–1_5–2–2_5–pow10_11-nocomp
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primeDens-7th-av1–1_5–2–2_5–pow10_11-comp

primeDens-7th-av1–1_5–2–2_5–pow1-comp
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last-plot-of-summer

Additive vs. multiplicative: the tale of two Landau
“Multiplicative” number theory essentially studies correlations at x and at x+ ∆x with ∆x ∼ x.

“Additive” number theory does it126 on smaller scales— such as O(1). ζ-function. Fourier vs. Mellin.
Edmund Landau made Goldbach conjecture famous by including it into the list of “Landau’s

problems” (on the 12th Congress of Mathematicians). However, not everybody was very enamored
with it. For example, the epigraph127 is made by his namesake, the outstanding physicist128 Lev
Landau.

N. Vavilov writes:
Например, Лев Давидович Ландау следующим образом комментировал гипо-
тезу Гольдбаха: «Простые числа не нужно складывать, простые числа нужно
умножать». Это бонмо неоднократно с одобрением цитировал Владимир Иго-
ревич Арнольд.

Another recall is in Senderov–Spivak:
«Зачем складывать простые числа? – недоумевал великий физик Ландау. –
. Простые числа созданы для того, чтобы их умножать, а не складывать!».

The average value of 1/ζ ′(roots): surprising oscillations on the log-scale
This section seems to be unrelated to the rest of this chapter: the pictures below show the stats of

1/ζ ′ at the roots of ζ-function on the critical strip. The knowledge of these stats may be useful to
working with the Mertens function M(n). (The script below uses the file zprime-raw-full contains
these derivatives obtained via zeta'(1/2+I*Z[i]).)

Running gp -q -f <zprime-av001.gp etc. produces the tables used for plotting (like zprime-av0_3--WW6,
for which w = 0.3 and W = 6 in the notations below). The logic of these tables goes like this:

126 N.B. (???) Is not it reverted?!
127 N.B. (???) ?
128 His Nobel prize is for superconductivity—but his contributions into contemporary physics are extremely

multifaceted.

https://en.wikipedia.org/wiki/Landau%27s_problems
https://en.wikipedia.org/wiki/Landau%27s_problems
https://cyberleninka.ru/article/n/kompyuter-kak-novaya-realnost-matematiki-ii-problema-varinga
http://kvant.mccme.ru/pdf/1999/03/kv0399senderov.pdf
https://en.wikipedia.org/wiki/Mertens_function
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For a zero zn = ½ + itn of ζ, we put at log tn the measure 1/|ζ ′(zn)|, then “average”129 the
total measure with Gaussian weights of the ½-width w (with the cut-off at w·W ). If the largest
tn in our tables is T , then we can calculate the weighted average up to tmax := T/ exp(w·W ).
These calculations are performed for the values of t from 10 (which is a bit less than the first t1 —
so nothing interesting can happen below this value) to tmax divided into up to 5,000 datapoints
positioned uniformly in the log-scale.

The (final) implementation:
do_av(pts=5000, w=0.01, WW=13, Min=10) = { \\ 13

my(Max=Z[#Z]*exp(-WW*w),st=(Max/Min)^(1/(pts-1)),pos,logpos, minK=1, minZ, maxK=1, maxZ, tot);
for(pt=0,pts-1,

pos=Min*st^pt; logpos=log(pos);
minZ=pos*exp(-WW*w); maxZ=pos*exp(WW*w);
while(minK<=#Z && minZ>Z[minK], minK++);
while(maxK<#Z && maxZ>Z[maxK], maxK++);

\\ print([minK,maxK]);
tot = sum(k=minK, maxK, exp(-(logpos-logZ[k])^2/2/w^2)*[1,1/abs(Zprime[k])]);

\\ print(tot);
filewrite(fileno, [pos, tot[2]/tot[1], tot[1]]);
print1("; "pt);

);
}
do_av();
with a consequent fixing by perl -wlpe "s/[\[\]]//g; s/\sE/e/g" ! >!-sp. (Ploting

plot "K:\\get\\primes-calcs\\zprime-av0_01--WW13-sp" using 1:($2*$1**0.075) w l

shows the behaviour of the averaged 1/|ζ ′(zzero)| in the right half of log-plot (for t ∈ [10,000, 1,000,000])
similar to130 4/(9·t0.075):

(This plot shows what 4/9 should be replaced with to match our data.)
However, such very small powers of t are not easily distinguishable from log t ≡ d/dλtλ. Doing such

a replacement leads to a much more precise asymptotic: (1.35 + 2.1/
√
t)/ log22/27(t) (with fluctuations

129 In other words, we take a weighted average of numbers 1/|ζ ′(zn)| with a Gaussian weight (at log tn) centered at
a particular value of log t. We inspect how this average depends on t.

130 Instead of 4/9 one gets ≈ 0.43635 with w = 0.3 (and W = 6).
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about 2.1):

(The vertical axis of this plot again shows what 2.1 should be replaced with to match our data. We
also plot what happens with wider Gaussians, of widths 0.1, 0.2 and 0.3 instead of 0.01.)

Already inspecting the plot above for width 0.01 one can see suspicious oscillation-like phenomena
in the right half. Doing averaging with a 30 times wider log-Gaussian gives obvious oscillations on the
log-scale—which seems to be totally unexpected!131 This zoomed-in plot (with width 0.01 omitted)
shows that there are certain oscillatory terms added to 2.1 in the preceding formula:

131 N.B. (???) This is with a quite narrow cut-off of W = 6. It should better be redone! However,
plotting (($3/$1/(-1.7479+log($1)))) shows no trace of oscillation “in the third column”—even on the
scale of 10−7.
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This overlays “the beat” over the plots with averaging width 0.2 and 0.3:

In other words, this shows that:

The averaged value of 1/|ζ′(zzero)| near ½ + it and ½ + 3.7it correlate.132

(At least in the interval [500, 400,000].)

Obsoleted (before averaging powers of log x): This is what happens with a bit narrower
log-Gaussian averaging: zprime-av0_1_–0_2–w5

132 N.B. (???) This corresponds to a relation (of unknown nature!) between distribution of primes
near x and near x° := x3.7.

(Compare with a similar correlation for x° := 3.42·107·x we investigated above. See Footnote 75
on p. 25.)
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One more (very old) picture with lost provenance.

Based on the table zprime-av15_n1over15__9 (obtained by an earlier version133 of the process
above—but the code to produce this table may have been lost. . . ):

133 N.B. (???) Double-check!
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