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ON THE LOCAL GEOMETRY OF A BIHAMILTONIAN
STRUCTURE
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ABSTRACT. We give several examples of bihamiltonian manifolds and show that
under very mild assumptions a bihamiltonian structure in “general position” is lo-
cally of one of these types. This shows, in particular, that a bihamiltonian manifold
in general position is always a moduli space of some kind. In the even-dimensional
case it is a Hilbert scheme of a surface, in the odd-dimensional case it is a sub-
cotangent bundle of a moduli space of rational curves on a surface.
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0. INTRODUCTION

Here we want to discuss a little bit nonstandard (but becoming now more custom-
ary) way to ask questions about an integrable system. The usual way is to consider
solutions of a, say, system

0 , 0

(0.1) w = u" + 6un’ + ud, u=—=—u, U =—u,

ot

and to study the behavior of these solutions as functions of x and ¢. However, it is
possible to consider a manifold M of functions v = u () instead. In this case the
equation (0.1) determines a time evolution of a point u of the manifold, i.e., a vector
field V' on this manifold.

In this consideration we lose the information of z-dependence of a solution: the
notion of manifold includes the freedom to work in any coordinate system, and val-
ues of the function u = u (x) at particular points z; are in this approach just some
coordinate functions on our manifold M. So the differential-geometric freedom of
considering systems up to a diffeomorphism results in a big restriction on the ques-
tions we can ask about the system. However, the usual duality results in the fact that
a restriction on possible questions means the possibility to give more precise answers
on remaining questions.

Here we want to investigate the bihamiltonian geometry of the systems in question.
Let us begin with the above example. It is known that it is possible to introduce
a couple of Poisson structures® (or Poisson brackets) {,},, {,}, on the manifold
M in such a way that the vector field V is Hamiltonian with respect to any linear

et us remind that a Poisson structure is a Lie algebra structure

fr9=1{f,9}

on the set of functions on the manifold satisfying the Leibniz condition:

{f,gh} =g{f,h} +{f g} h.
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combination of the Poisson structures. That means that the linear combination
{bax =AM o} + A2 {, }, of the Poisson brackets

{fa g})\l,)\2 = )‘1 {f7 g}l + )‘2 {f7 9}2

is again a Poisson bracket, and there exist a family of Hamiltonians H}, », such that
for any function f on M and for almost any pair (A;, A2) (in the case of a periodical
function u we can take (Ay, A2) # 0)

(05) Vf =X\ {H)\l,/\2’ f}l + A {H)\l,)\za f}Q :

(The latter formula is a particular case of the notions of the Hamiltonian flow or
Hamiltonian vector field V,, corresponding to a function ¢, which is given by the rule

V(pf:{ﬁpaf}a

hence this two conditions together mean that our vector field is Hamiltonian with
respect to any linear combination of Poisson structures.)

Now it is easy to see that these properties of the dynamical system in question can
be cut in two: we have a condition on the Poisson structures which has no reference
to the vector field V', and an additional condition on V. It is known that the former
condition allows us to find the vector field V' basing on the Poisson structures in
an almost unique way. Hence we have two different geometrical problems: to find
the local forms (up to a diffeomorphism) of pairs of Poisson brackets such that any
linear combination is again Poisson, and to find all the vector fields that satisfy
the condition (0.5). Let us call a pair of Poisson structures such that any linear
combination is again Poisson as compatible Poisson structures or a bihamiltonian
structure. In the same way we can define k-hamiltonian structures.

Although in what follows we do not need the explicit formulae for the Poisson
structures in specific coordinate frames, we give here these formulae in the case of
the system (0.1). The Poisson structures are defined as

{9k = 35{@ (%ajgx)) a,

07) 3
{fi9}, = %{x) (((%) + 4u (x) % + 2u/ (:r)> 81?(gx)> dx.

Here f and g are functionals depending on u = u (), % is a density of the partial
derivative of f with respect to the coordinate u +— u (x¢):

fu+du)— f(u) = /5u (x) 85{3:) dzx.

More precisely, the left-hand side of this formula is a linear functional in du, hence it

can be expressed as an integral of du with some density, which we call by definition

the partial derivative %(J;). In all these formulae we take the integrals over the set
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of definition of the function wu: if we consider periodical functions—along the period,
in the case of rapidly decreasing functions—along the real line.

In what follows we often interpret a Poisson structure as a bivector field, i.e., a
section 7 of A2T'M. Indeed, the Leibniz condition implies that {f, ¢} |, depends only
on df|, and dg|,, hence it can be written as

(N|e, df Ndglz) ,

for some n € T (A°T'M). For example, a% A 2 corresponds to a Poisson structure

Oy
af_ag ag.af

(f,g)H% oy oz By

Now the geometrical formulation of the problem in question is:

Problem 0.1. Find the normal forms for a manifold with two compatible Poisson
structures.

Even in the particular case of the system (0.1) this problem seems to be intractable.
We mean that it seems to be very difficult to determine when the local bihamiltonian
structures in neighborhoods of two given points u, us of the manifold M are diffeo-
morphic. We discussed some partial results and the related analytical complications
in the paper [1].

However, the finite-dimensional variant is much simpler. In this case (as well as in
the infinite-dimensional case, in fact, see [1, 3]) we should separate two cases: the case
of an even-dimensional manifold, and the case of an odd-dimensional manifold. The
reason for this is very simple: a generic skewsymmetric bilinear form on an even-
dimensional space is non-degenerate, and visa versa in the odd-dimensional case.
The generic approach to skew forms in an odd-dimensional vector space is to take
a quotient by the kernel of the form. However, in the case of a pair of forms it is
not generally possible, as shows the classification theorem from the section 3: the
generic case of a pair of forms in an odd-dimensional space is undecomposable, hence
it should be considered separately.

We separate here a simple and robust geometrical classification of bihamiltonian
manifolds, that occupies the sections 1 and 2, and more subtle or more technical
topics, which occupy the appendices in the sections 3-6. In turn, we separate the
discussions of the even-dimensional and the odd-dimensional cases into sections 1
and 2 respectively.

In the even-dimensional case we proceed as following: in the section 1.1 we consider
the trivial case of a 2-dimensional manifold. In the section 1.2 we state a particular
simple case of the unfortunately-not-so-well-known theorem on linear algebra (the
complete formulation of this theorem appears in the section 3). In the section 1.3
we, using the constructions from the previous two sections, decompose a simplest
particular case of bihamiltonian manifold into a direct product of (canonically de-
fined) 2-dimensional manifolds. To do this we introduce a notion of a weak leaf (that
is a symplectic leaf of some linear combination of two hamiltonian structures) and
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associate to a point on 2n-dimensional bihamiltonian manifold the n-tuple of weak
leaves passing through this point. In the particular case we consider in this section
the set of weak leaves breaks into n (2-dimensional) connected parts, and this n-tuple
contains exactly one leaf from any parts, so we identify the manifold with the product
of this n parts. In other words, in this case we can order this (generally speaking)
unordered n-tuple.

In the section 1.4 we state a program of generalization of this construction to
a less restricted case, where we cannot separate the set of weak leaves into n parts.
Therefore instead of a direct product we need to consider a symmetric product, i.e., a
quotient of a power of the set of weak leaves by the action of the symmetric group. In
the section 1.5 we give the definition of a regular point on a bihamiltonian manifold,
that is the main restriction on the the bihamiltonian structures we can classify. Under
this restriction the set of weak leaves is a smooth 2-dimensional manifold with a
canonically defined bihamiltonian structure. In the section 1.6 we introduce the
notion of a Hilbert scheme, that is a particular substitute for a (singular) quotient by
a symmetric group. We also define a bihamiltonian structure on the Hilbert scheme
of a bihamiltonian surface. In fact up to this point we are concerned only with
definitions of the objects we need, not with proving any meaningful theorem.

At last, in the concluding section 1.7 of the part 1 we combine the introduced earlier
definitions and show that the natural mapping from the bihamiltonian manifold to
the symmetrical power of the set of weak leaves can be lifted to the mapping from this
manifold to the Hilbert scheme of the set of weak leaves. We show that this mapping
is compatible with bihamiltonian structures, and is a diffeomorphism under very mild
conditions. We formulate here a general theorem on the necessary conditions and a
particular case when these conditions can be geometrized: the case of a regular point.
In the latter part we use some flatness results, however we postpone the proof of these
results until the section 4.

At this point we drop the discussion of the even-dimensional case and switch to
the odd-dimensional case. This topic occupies the section 2. However, we continue
this discussion in the sections 5 and 6, where we discuss more subtle properties of
even-dimensional bihamiltonian manifolds.

As in the section 1, we begin the discussion of the odd-dimensional case with the
corresponding part of the theorem on the linear algebra from the section 3. This
occupies the section 2.1. In the section 2.2 we study the geometry of the set of
weak leaves. As in the even-dimensional case, this set is 2-dimensional. However,
now through a given point on the bihamiltonian manifold there passes a whole 1-
parametric family of weak leaves. Therefore we can associate with a point of the
bihamiltonian manifold a rational curve on the surface of weak leaves. Moreover, we
show that a whole family of points corresponds to the same curve on this surface.

This motivates the definition of the Veronese web in the section 2.3. It is the
result of gluing together the points on the bihamiltonian manifold that correspond
to the same curve on the space of weak leaves. After taking this quotient we lose the
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information on the bihamiltonian structure, however we preserve the information on
the relative position of weak leaves.?

Later, in the section 2.4, we show that we can reconstruct the initial bihamiltonian
manifold (up to a diffeomorphism) basing on this structure on the corresponding
Veronese web. This reconstruction uses the notion of the subcotangent bundle to
a Veronese web, which is turn is constructed using basic methods in the theory
of G-structures. In the same way as the cotangent bundle carries a natural Pois-
son structure, the subcotangent bundle carries a natural bihamiltonian structure.
However, the construction of this structure is so complicated, that we omit it here.
The reason for these complications is the absence of the corresponding notion of a
symplectic manifold in this case, so anyone who tried once to construct a Poisson
structure on the cotangent bundle without any reference to a symplectic structure
would appreciate these difficulties.

There is yet another part of this theorem that we leave without a proof: the
coincidence of the bihamiltonian structure on the subcotangent bundle to a Veronese
web with the bihamiltonian structure we got this web from. However, this proof uses
so unusual cohomological construction that we do allow ourselves to present it there
with several loose ends. What remained is the definition of the double cohomology in
the section 2.5.

In the following section 2.6 we harvest the fruits of living in the category of analytic
manifolds: we exploit a notion of the twistor transform. To explain this notion let us
consider a family of submanifolds B, C B parameterized by a manifold I' 5 . We
can consider the universal family A = {(b,7) | b € B,} C B x I" and two projections

A

N
B T.

We can see that the notion of a family of submanifolds is a particular case of a
notion of a double bundle. However, in the latter notation B and I' appear in the
same form, so we can interchange them and instead of a family of submanifolds in
B parameterized by I" we can consider a family of submanifolds in [' parameterized

2t is the place to note that glued together points on the bihamiltonian manifold have the same
action variables, but different angle variables. Here we use the usual in the theory of integrable
systems distinction between two sets of coordinate functions: the former can be obtained in a
simple geometrical way (compare with local Hamiltonians and the Magri—Lenard scheme), the
later demand some additional work. In the case of bihamiltonian manifolds the Lenard scheme
gives a natural way to construct the action variables. We should note that in the odd-dimensional
case the number of angle variables is one less than the number of action variables.

We see here that the Veronese web reflects the geometry of the action variables. The implications
of the classification theorem for the Veronese webs in the theory of integrable systems should be
found elsewhere. In particular, it is possible to show the existence of a global coordinate system for
the open Toda lattice such that two Poisson structures become translation-invariant. That implies,

in particular, the existence of a @—hamiltonian structure on the Toda lattice with n points.
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by B. To a point b € B we associate a submanifold I', C I' consisting of passing
through b members of the former family.

This is still not a definition of a twistor transform, however we call a family ', a
twistor transform of a family B, if the geometry of the former family is somewhat
simpler than the geometry of the latter. This is the case for Veronese webs. By
definition a Veronese web is a family of hypersurfaces, so we can consider the twistor
transform, that is a family of rational curves on a surface. Moreover, we show that
this family is in fact a complete family: it contains any deformation of any curve in
this family. That means that we need not specify the family: it is determined by the
geometry of the surface itself. Therefore to determine a Veronese web it is sufficient
to provide a surface with a rational curve that allows a deformation.

In the section 2.7 we discuss shortly the consequences of the twistor transform in
the theory of bihamiltonian manifolds and Veronese webs, like the amount of non-
diffeomorphic bihamiltonian systems and the fusion operations over Veronese webs.
At last, in the sections 2.8 and 2.9 we consider the simplest non-trivial cases: 2-
dimensional Veronese webs and 3-dimensional bihamiltonian manifolds.

At this point we leave the discussion of basic geometrical questions and delve into
details and technicalities. As we have already mentioned, in the section 3 we state the
general theorem on classification of pairs of linear mappings or bilinear forms. Even
if technical, this theorem concerns the utterly basic notions that by strange reasons
are dropped in the basic mathematical education. Though we state the necessary
particular cases of this theorem in the places we use them, we strongly recommend
the reader to begin with reading this appendix. Furthermore, we want to note that
this theorem is a keystone in our approach to the concerned here problems, and
a generalization of this theorem to the infinite-dimensional case of the forms (0.7)
associated with the KdV equation was the challenge that eventually piloted us to the
questions concerned here.

In the section 4 we provide the missed link in the proof of the existence of the
mapping to the Hilbert scheme.

In the section 5 we consider the global geometry of an even-dimensional bihamilto-
nian manifold. We construct here examples of manifolds such that the topology itself
defines a polyhamiltonian structure on these manifolds. Moreover, as we will see in
the section 6.4, these manifolds give as example of compact manifolds such that the
weak classification theorem is applicable to them in any point.

In the final section 6 we exploit the classification theorem to investigate the local
geometry of a bihamiltonian manifold. We begin the section 6.1 with an example of
the case when the weak classification theorem is applicable, but the strong one is not.
It is an example of a non-regular point on the Hilbert scheme S?A?, and we make the
preparations to find the set of regular point on a generic Hilbert scheme. We give a
description of the tangent space to a Hilbert scheme, but we fail to describe a bivector
that corresponds to a Poisson structure. However, we can give a formula for such a
bivector if we know the bivector that corresponds to some other Poisson structure.
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This information is sufficient to describe the recursion operator of the bihamiltonian
structure. We do it in the section 6.2.

In the section 6.3 we use these results to give the description of the subset of regular
points on a Hilbert scheme. Here we also describe generalized weak leaves, that allows
us to show in the section 6.4 that the weak classification theorem is applicable in any
point of a Hilbert scheme. We also give here an example of a weak leaf with a singular
closure and study a tangent cone to this closure.

In the section 6.5 we introduce a natural identification of a neighborhood of a
regular point on a Hilbert scheme with an open subset in the cotangent bundle
to polynomials of one variable. This determines another Poisson structure on this
bundle, and it has polynomial coefficients. This identification shows also that the
conditions of the Magri Classification theorem for bihamiltonian structures [6] are
satisfied in this case, that shows essentially that the strong classification theorem
and the Magri classification theorem are in fact applicable in absolutely the same
cases (if we modify the Magri theorem a little). However, we want to note that
this equivalence is obtained by providing an isomorphism of models of bihamiltonian
manifolds, not by comparing the conditions of these theorems—they remain still
absolutely unrelated.

While the Magri coordinate system gives a model in which one Poisson structure is
constant and another polynomial, in the section 6.6 we introduce another coordinate
system on the Hilbert scheme. In this coordinate system the first Poisson structure
remains constant, but the second structure becomes linear. That means that the
geometry in a neighborhood of a regular point is connected with a particular (finite-
dimensional) Lie algebra with two cocycles. This algebra is described in the final
section 6.7. Let us note that the knowledge that a bihamiltonian structure can
be written in such a form could allow one to find the corresponding classification
theorems by solving some standard problems of linear algebra, like: find all the
possible structure constants for a Li algebra structure for which two given bilinear
forms are cocycles. We solve the simplest non-trivial particular case of this problem in
the section 6.8. The solution provides us with a rich set of examples of 4-dimensional
bihamiltonian systems. In two of these examples the set of weak leaves M) is
non-smooth! This example shows that we cannot drop one condition on the weak
classification theorem. However, in the same section we show that in this particular
case the theorem remains true if we consider a normalization of the Hilbert scheme
instead of the Hilbert scheme itself. That gives a hope to generalize the theorem on
this direction.

We want to emphasize here the unexpected similarity between the even-dimensional
and odd-dimensional cases: in both cases we can reconstruct the initial bihamiltonian
manifold basing on the surface of weak leaves. And in both cases the reconstruction
involves taking the moduli spaces of submanifolds on this surface, though the dimen-
sions of these submanifold are different.
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We are indebted to a lot of people for fruitful discussions and inestimable help,
among them A. Givental, A. Goncharov, M. Kontsevich, F. Magri, A. Radul, N. Wal-
lach and A. Weinstein. We should express special thanks to Henry McKean who pro-
vided us with his variant of the Magri Classification theorem [7], which inspired the
discussions of the even-dimensional case here, and to Vera Serganova, whose patient
remarks allowed this paper to acquire its current form. The idea to use the twistor
transform for the local classification of the Veronese webs is due to A. Goncharov [4].

Anywhere in this paper (if not stated otherwise) we consider analytic manifolds.
However, a lot of results can be easily translated to the C'*°-case.

1. THE EVEN-DIMENSIONAL CASE
1.1. A 2-dimensional example.

Example 1.1. Let us try to classify 2-dimensional bihamiltonian systems in general
position. In dimension two any bivector field corresponds to a Poisson structure, so
we should simply classify pairs of bivector fields. We can suppose that at the given
point the bivector corresponding to the first Poisson structure is non-degenerate.
That means that in a neighborhood of this point this Poisson structure is “an inverse”
of a symplectic structure. We can chose a local coordinate system (x1, z3) such that
this symplectic structure can be written as dx; A dz,, hence the Poisson structure
can be written as 3%1 A %.

Now we can consider a ratio of our bivector fields, which is a function on M. If
the given point is not a critical point of this function, then we can chose it as the
first coordinate x; and can still find another function z5 such that the first Poisson
structure is 6%1 A 6%2. Hence the second Poisson structure is :Ela%l A %.

We see that in 2-dimensional case there is essentially one bihamiltonian mani-
fold, and any manifold in general position is locally isomorphic to some part of this
manifold (that is a small difference with d’Harboux theorem, where any symplectic
manifold is isomorphic to any part of the fixed manifold).

In the case of not general position the classification is reduced to (well-known)

problem of local classification of a function on a symplectic manifold.

This example seems to be trivial, however it implies a powerful construction in a
multidimensional case: if M; and M, are two bihamiltonian manifolds, then M; X
M, is also a bihamiltonian manifold. In this way using the example above we can
construct a bihamiltonian manifold of any even dimension. Now we can ask if the
universality property of 2-dimensional example is still true in this case. The answer
is the following particular case of the Turiel theorem [8]:

Theorem 1.2. Consider a point m on an 2n-dimensional bihamiltonian manifold
M. If a couple of bivectors mi|m,ne|m € A?T,,M is in general position, then in a
neighborhood of m it is possible to choose a coordinate system in such a way that
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the bivector fields are

= Z fr (Tor—1, T2r)

k=1

0 0

A
33521;—1 533%

0 0
A

2k—1 6$2k

n
y Tl = ng (Tok—1, T2k) e
k=1
Therefore our bihamiltonian system is represented as a product of 2-dimensional ones.
It is easy to see that if not only the values, but also the derivatives of the bivector
fields ny, no at the point m are in general position, we can set

n n
0 0 0 0
= N s = Lo A ;
n ;5$2k1 0 op, " ; 2 185621971 0o,

if we allow the point m to correspond to an arbitrary point (x;) and not necessary
to the origin (z;) = 0.

Hence any generic bihamiltonian manifold is locally isomorphic to a product of
2-dimensional manifolds from the example.

In fact the Turiel theorem is much more powerful (it handles also some cases of not
general position), however, in the following discussion we need only this particular
case. It is also quite easy to prove this case (as well as the Turiel theorem in whole)
using the general arguments of linear algebra.

1.2. A theorem from linear algebra. Indeed, the linear algebra says that a pair
of skewsymmetric bilinear forms (a, §) in general position in an even-dimensional
vector space V' can be canonically decomposed in a direct sum of pairs of forms in
2-dimensional spaces:

V:@V;a a:@aia ﬁ:@ﬁm

where (v, 3;) is a pair of skewsymmetric bilinear forms in V; (see, for example, [1]).
It also says that the forms in these subspaces are proportional with some coefficients
Ai (we call them eigenvalues). The exact formulation of this theorem can be found
below, in the appendix 3.

1.3. A map to the set of weak leaves. Let us apply this argument to the space
V =T} M and to the pair of forms 71|, 72| in this space. We see that the cotangent
space is canonically decomposed into a direct sum of 2-dimensional subspaces. That
means that the tangent space is also decomposed into a direct sum of 2-dimensional
subspaces. The same is evidently true at nearby points. Hence there are n canonically
defined distributions of 2-dimensional subspaces in the tangent bundle of M and n
functions A\; on M.

The next step is to prove that these distributions are integrable, i.e., are the tangent
bundles to some foliations. To do this we should do the following: given a point and
a fixed i-th family of subspaces we should find a 2-dimensional submanifold satisfying
the following properties:
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(1) it passes through the given point in the direction of the 2-dimensional subspace
of the family of subspaces;
(2) the tangent space at any point of this submanifold is a subspace from the
famimly.
Again, to do this it is sufficient to find a submanifold of codimension 2 such that the
tangent space at any point of it is a sum of n — 1 marked subspaces. Now fix a point
m € M and 1 < i < n. The bivector 9|, — A (1) 12|m considered as a bilinear form
in the cotangent space T,;, M has a 2-dimensional kernel by the definition of A\;. Now
we need (the first time) some information of the geometric structure of a Poisson
manifold.

Definition 1.3. (1) A submanifold L of a symplectic manifold M is called a
Poisson submanifold if the restriction of {f, g} on L is uniquely determined
by the restrictions of the functions f and g on L. In this case this restriction
determines a Poisson structure on L.

(2) A symplectic leaf in a Poisson manifold M is an imbedded Poisson submani-
fold L of M such that the corresponding Poisson structure on L is nondegen-
erate, i.e., corresponds to some symplectic form w on L.?

Well-known theorem on the local structure of a symplectic manifold [9] claims in
particular that:

Theorem 1.4. There exists a unique symplectic leaf passing through any given point
m of a Poisson manifold M. The normal space to this leaf at m coincides with the
kernel of the bivector |, € A*T,, M considered as a bilinear form in the space T;;, M.

Let us apply this theorem to the Poisson structure 7, — A\¢ne on M, where \y =
Ai (m). The symplectic leaf L,,; passing through m has a desired tangent space at
m, moreover, the normal space to it at any point m' of this leaf is the kernel of
M — Aone- That means that A;|z,,; = Ao = A; (m). Now we can construct the desired

2-dimensional submanifold L,,; as an intersection of n — 1 submanifolds L,, ; for
j # i. We can also use the constructed foliation of codimension 2 to define a local
projection m; of M to a local base M; of this foliation.

Definition 1.5. Let us call any symplectic leaf (of non-vanishing codimension) of
any linear combination 7, — Ay a weak leaf of the bihamiltonian structure.

It is easy to see that in our case the set of parameters of weak leaves M is 2-
dimensional and is (locally on M) a disjoint union of n submanifolds M; corresponding
to (different) eigenvalues of the pair (71, 7,) at the point m.

Remark 1.6. In this case we can define M as the union of local bases for foliations
{L;}. However, since this space plays a crucial role in what follows we want to
emphasize the fact that in general case this (topological) space isn’t even Hausdorff.

3In fact, since an open subset of a symplectic leaf is again a symplectic leaf, in what follows we
restrict this definition and call as a symplectic leaf only the maximal submanifolds with the specified
properties.
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If we move a point m on a manifold the pair of forms in 777 M changes and a pair of
eigenvalues can collide. If they do it in a “civilized manner”, this results in a Jordan
block of the corresponding matrix (see appendix) and the dimension of the kernel
does not change (this is exactly the case we are interested in below). However, a
collision of eigenvalues can also result in an eigenspace of greater dimension, i.e., in
a weak leaf of different dimension.

However, in the cases we study below the space of weak leaves M? is a smooth
manifold, so we have no such complications.

Combining the above n projections we get a local identification of M and a product
of n 2-dimensional manifolds M;. What is remaining to prove is that the bivector
fields are products of some bivector fields on the factors. It is sufficient to consider
one bivector field, say, n = n;. Moreover, we can suppose that the Poisson structure
7 is non-degenerate, since we can consider two non-degenerate linear combinations of
1M, 1o instead of considering 7y, 7.

What follows from the choice of the projections is that for any fixed point (say, m)
on M we can represent values of the bivector fields (i.e., a pair of bivectors) as two
products of bivectors on the factors:

EDm o i (m) € My M, T = D) Ty ) M.
If we denote the Coordlnates on M; by xz;, y;, we can express this fact by the formula
0
(15) n(xl,yla"'axmyn an X y ay

What we should prove is that the 7; (x,y) depends only on z;, v;, i.e., that for any
two point m', m" on Ly,; = m; ' (m; (m)) the i-components of 7 are the same. That
means that for any two functions ¢y, 3 on M that depend only on z;, y; the Poisson
bracket also depends only on z;, ;.
Remark 1.7. Let us note that this property is specific to the symplectic geometry.
In, say, the Riemannian case the coordinate foliations (z; = const) can be orthogonal
with respect to a Riemannian form that cannot be represented as a direct product.
To prove this property we will use the second theorem on the geometry of a Poisson
manifold.

Theorem 1.8. (1) The Hamiltonian vector field V; corresponding to a function
f on a Poisson manifold M preserves the Poisson structure.
(2) The fundamental relation links the operations of commutation of vector fields
and the Poisson bracket on functions:

V{f,g} = [Vf7 VG] .

Now to prove this fact it is sufficient to construct sufficiently many vector fields
on M that preserve the Poisson structure and are tangent to fibers of the projection
m;. These fibers are spanned by the Hamiltonian flows corresponding to functions
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that depend only on z;,y;, j # ¢ (by the property (1.5)). However, we can find a
function f (z;,y;), j # 4, such that the Hamiltonian flows corresponding to the this
function moves the given point in an arbitrary direction tangent to a fiber of ;.
This finishes the proof of the fact that either bivector field is a product of fields on
specified 2-dimensional manifolds.

Remark 1.9. We can write down the last arguments of the proof with formulae

{zj,{p (i, vi) s ¥ (@i, yi) }} =
e, o (@i ) b (@i vi)} + {o (@i vi) g, ¢ (@i, 93) 1} = 0,

if i # j, and the same with a change of z; to y; (application of (1.5)). This means that
{¢ (@i, yi) .9 (z;,y;)} is preserved by Hamiltonian flows corresponding to z;, y;, and,
therefore, is constant along the fibers of the projection ;. Here the non-degeneracy
of 1 guaranties that these Hamiltonian flows span a whole fiber.
Remark 1.10. Now it is easy to see that any local automorphism of a bihamiltonian
manifold in general position is coming from n diffeomorphisms of 2-dimensional fac-
tors M;. In particular, any vector field that is Hamiltonian with respect to both
Poisson structures is a product of such fields on the factors. So it is again sufficient
to consider the 2-dimensional case, where such a field should preserve the ratio of the
Poisson structures. Hence the Hamiltonians of this vector field are constant on the
level lines of the ratio. From the other side, it is easy to see that the Hamiltonian flow
of such a function is Hamiltonian with respect to any non-degenerate combination of
the Poisson structures in question.

Therefore a vector field that is hamiltonian with respect to both Poisson structures
1s Hamiltonian with respect to any nondegenerate linear combination of them and the
Hamiltonian H of this field (with respect to any of the Poisson structures) is a sum

of functions H; such that either H; depends (maybe, multivalued) on the eigenvalue
Ai, or \; is constant and then H; is constant on the i-th family of weak leaves.
Remark 1.11. In fact we have constructed a mapping

M — My x My x - x My = M® x M® x-.. x M,
and to do this we have fixed an order of eigenvalues {\;}. If we do not fix this order,
we can still construct a mapping to a factor by the action of the symmetrical group
M—MPx MO x...x M? /&,

v
n times

In fact the above considerations show that on M there is a natural bihamiltonian
structure, and if we consider a cross-product bihamiltonian structure on M) x M%) x

- x M® then the former mapping is a local isomorphism of Poisson manifolds.
From the other hand, the taking of the quotient by &,, behaves well with respect
to the Poisson structure on M® x M® x ... x M® and the image of the latter
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mapping consists of smooth points on M(Q) x M® x ... x M(21/6n, therefore the

v
n times

latter mapping is also a local isomorphism of Poisson manifolds.

We can conclude now that any (local) even-dimensional bihamiltonian manifold
in general position is (locally) isomorphic to some domain in a fixed bihamiltonian
manifold. Hence to specify a local diffeomorphism type of a bihamiltonian manifold
in a neighborhood of a given point it is sufficient to specify a point on that manifold,
i.e. a finite number of parameters.

1.4. A case with non-trivial monodromy. Let us consider now a local bihamil-
tonian manifold such that the condition of the theorem 1.2 is not satisfied. If the
manifold is in sufficiently “general position” we can expect that the points where
this condition is satisfied form a dense open subset. Let us call a point good if the
condition of the theorem 1.2 is satisfied at this point. Let us call the subset of such
points U (evidently, this subset is open).

In this case we cannot be sure that the set U of weak leaves in U is a disjoint union
of n components and that though any point of U passes a leaf from any component of
U®. 1t is possible to say which weak leaf passing through a point z’ (from a vicinity
of a given point z € U) corresponds to a given weak leaf passing through z, but the
monodromy along a closed loop in U can interchange weak leaves passing through z.
However, the map

USUPD xU@x...xU0% /6,
n ‘c;:nes
is still well-defined and is a local isomorphism of Poisson manifolds.

Magri in his article [6] has shown that sometimes it is possible to classify bihamil-
tonian systems even in a neighborhood of a non-good point. In the case of general
position which he has studied the manifold is again locally isomorphic to a piece of
one particular bihamiltonian manifold given by explicit formulae. Here we want to
give a geometrical reason for such a phenomenon, and this reason is that under mild
conditions the mapping « can be extended to a mapping
(1.11) M35 MO x M x...x M® /6,

~
n times

and (if we modify slightly the definition of taking the quotient by &, to obtain
a smooth quotient) this map is a local isomorphism. Since in the case of general

O A8 .0 A D
,5/\3—11,33%/\3—1,);

the manifold in the right-hand side of the formula (1.11) is a piece of one particular
bihamiltonian manifold.

Here we show that conditions under which the map (1.11) exists can be made much
more mild than the Magri conditions, hence we obtain here a (minor) generalization
of the Magri result. These milder conditions are, however, not very constructive, so
we give also stronger conditions of geometrical nature. These geometrical conditions

position M) is a piece of one particular bihamiltonian plane <A2
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are of very different origin from the Magri conditions, and the resulting description
is of a bihamiltonian structures is absolutely different. We will close this gap in
the concluding the paper appendix, where we show that our geometrical conditions
(practically) coincide with the Magri conditions!*

So the main goal of the discussion of the even-dimensional bihamiltonian systems
is not to give a generalization of the Magri construction, but to find a geometri-
cal framework allowing to construct a canonical identification of the bihamiltonian
manifold with a basic example of such a manifold.

Now we want to list the conditions under which the mapping is well-defined and
well-behaved.® First of all we want to list the obstruction for this mapping to exist.

We want to repeat it again that the variety M in the general case can be non-
smooth and even have “components” of different dimensions. If we live in a vicinity
of a good point then the mapping

M5 MY x M® x...x M? /g,

v
n times

sends a point of M to a point of the quotient that corresponds to an n-tuple of
different points of M. In such points the smooth structure on the quotient is well-
defined. However, if we move to the boundary of the good set U the eigenvalues
collide and to a point of M can correspond an n-tuple of points of M® where
some points can appear with some multiplicity. It is known (see the example below)
that the variety M @D MPD x...x M (21 /S, is singular at such points. Therefore

n times
we need some desingularization S™M?) of this variety, and this desingularization
should be sufficiently small® to extend the Poisson structure from smooth points of
M @« M x .o x M (21 /S,. If this desingularization is sufficiently small we can

v
n times

expect that the map a can be raised to a map M — S"M® and we need this map
to be a local diffeomorphism. Now the result of Magri shows that in proper cases
this program can be fulfilled! Here we just list the “algebraic nonsense” that allows
to fulfill it under very mild conditions.

Let us list here the assumptions we need to make the Magri result “functorial”:

“Frankly speaking, we cannot give a direct proof of this fact, we just show that his canonical
form satisfies our conditions, and our canonical form (almost always) satisfies his conditions. That
means that we use power of both classification theorems to show that the conditions coincide!

5In fact there is a big confidence that a suitable algebraization of the following discussion can
help in weakening the conditions we specify, however, we want here to use a synthetic language and
work with smooth manifolds wherever it is possible.

6Tf we consider a non-degenerate bivector field on a manifold M and a blow-up M of this manifold
in some submanifold N, then the corresponding bivector field on M has a pole on the preimage of
N. Therefore we cannot make any additional blow-ups on the manifold we want to construct.
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(1) We need the weak leaves to have a good parameter space M on the whole
M;
(2) We need a good desingularization S" M®) of M(Q) x M® x ... x M(Ql/Gn;

-~

n times
(3) We need a map M — S"M?);
(4) We need a bihamiltonian structure on S™M®.

1.5. A case of a regular point. If we consider a bihamiltonian manifold in general
position, then the points where the above analysis is applicable form a dense open
subset. In fact the theorem on linear algebra from the appendix defines the eigenval-
ues even outside of this subset. However, we can define the eigenvalues much more
simple. Indeed, a bivector field n determines a mapping 7, : T, M — T,,M for any
point m € M, and eigenvalues in question are just eigenvalues’ of the recursion map

ﬁ;}n%,m: T:M — T M

that is defined anywhere where 7, is non-degenerate. Hence the complement to this
dense subset consists of points where the eigenvalues collide.

Let us consider the first question first. A passing through m € M weak leaf
corresponds to a kernel of a bilinear form 7, — An, on the space T, M (since, say, the
theorem on a local structure of a Poisson manifold [9] applied to 7, — Ans shows that
there is a weak leaf with this kernel as a normal space). So to have a good parameter
space of weak leaves we need at least the leaves to have the same dimension, i.e.,
any linear combination 7; — Any to have at any point m € M at most 2-dimensional
kernel (that guaranties that any weak leaf is of codimension 2).®

The theorem on the structure of a pair of skewsymmetric bilinear forms [1] (or see
in the appendix on linear algebra) shows that in this case the corresponding pair of
linear mappings has only one Jordan block for any eigenvalue. It is clear that the set
of pairs satisfying this condition is open and that the stabilizer of any such pair has
the same dimension as the stabilizer of a pair in general position. Therefore it is a
closest generalization of the notion of a pair in general position.

Definition 1.12. Let us call a pair of skew-symmetric bilinear forms in a vector
space V' a regular pair, if the stabilizer of this pair in GL (V') has minimal possible
dimension.

Let us call a point m of bihamiltonian manifold M a regular point, if the corre-
sponding pair of bilinear forms in 7;} M is a regular pair.

So a regular pair in an even-dimensional space corresponds to a pair of mappings
that has exactly one Jordan block for any eigenvalue and no Kroneker blocks at all.

"The theorem on linear algebra shows that to any eigenvalue of a pair of forms 7 , 75 in the above
sense corresponds a double eigenvalue of the recursion operator.

8However, below we give a definnition of a generalized weak leaf that allows to drop this
restriction.
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It is clear that the set of regular points is open, hence any weak leaf passing through
a vicinity of a regular point is of codimension 2. If any leaf intersects with the set
of good points, then space of weak leaves is smooth in the corresponding point.’
Since the eigenvalue A is constant on a leaf, to satisfy this condition it is sufficient to
demand that the set of not-good points with a given eigenvalue is of codimension at
least 3.
Remark 1.13. Consider the two defined above Poisson brackets on an open subset
of the set of weak leaves. If any weak leaf intersects the set of good points, then
these Poisson brackets can obviously be extended to the whole space of weak leaves.
It would be very interesting to understand if this fact is true in the general case
(including the generalization on the case of generalized weak leaves). Compare the
theorem 1.23.

1.6. A good symmetrical power. So the first condition is explained. What is the
meaning of the second condition? The problem with a definition of S"M® is that
the quotient by an action of a group can be singular.

Example 1.14. Let us consider the action of Z, on a plane (z,y) by reflection
(z,y) — (—z, —y). The basic invariant functions are

a=x2,b:xy,c=y2,

they satisfy the constraint
ac = b?

that determines a cone in the space (a, b, c). Therefore the quotient of the plane by
the action of Z, is a cone.

Example 1.15. The previous example is an (antisymmetrical) component of the
action of Zy = G5 on the product of the plane by itself by interchanging the factors,
S0 it suits the situation with the symmetrical power well.

Let M be a two-dimensional Poisson manifold. Suppose first that in a vicinity
of a given point the Poisson structure is nondegenerate. Then we can choose local
coordinates X, Y such that the structure is % A %. On M x M we can consider the
coordinates X, Y;, X, Y5, or & = % (X1 +X9),n= % Y1+ Y5), 2= \% (X7 — Xo),
Yy = % (Y1 — Y5). The cross-product Poisson structure can be written as

9 0. 0 0
06 0On Ox Oy
The functions on M x M /&, are generated by &, 7, and a, b, ¢ (as above), hence the

quotient is a product of a plane and a cone. Let us consider a blow-up of this manifold
in the singular stratum, i.e., in the product of the plane and the vertex of the cone.

9n this case the parameter space of weak leaves does not change if we consider only the space of
good points, and the parameter space is smooth in the latter case.
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Since all the structures (including the Poisson) are cross-product structures, it is
sufficient to consider the blow-up of a cone in its vertex.

Example 1.16. Let us consider in the situation of the example 1.14 the Poisson

structure -2 A a% on the plane (z,y). Since the Poisson bracket of two Zo-invariant

functions ?sm again Z,-invariant, we can consider the corresponding bivector field on
the smooth part of the quotient-cone K. Let K be a blow-up of this cone in its
vertex. Then on the open part of K a bivector field is defined. We claim that this
bivector field extends to the whole K without singularity, and that the corresponding
Poisson structure on K is non-degenerate. _

Indeed, in a local coordinate frame (o, 3) on K, where o = y/x, f = 22, the
corresponding 2-form dx A dy can be written as —%da A df3, therefore

o 0 0 0

oz A dy O A 0B

Remark 1.17. Therefore in the situation of the example 1.15 on the (smooth) blow-
up of M x M/&, in the vertex a non-degenerate Poisson structure is defined. If the
original Poisson structure on M was degenerate, we can represent it as a difference
of two non-degenerate bivector fields. Both these fields can be raised to M x M/G,
without singularity. Since the correspondence between bivector fields on M and on
M x M/, is linear, the raising of the original Poisson structures is a difference of
two non-singular bivector fields, and therefore is also non-singular.

Definition 1.18. Let M be 2-dimensional manifold. Let us call the blow-up of
M x M/G, in the singular stratum a symmetric square S?M of M. The above
considerations show that if M is equipped with a Poisson or symplectic structure,
then S?M is also equipped with a Poisson or symplectic structure.

It is known that to define a “good” notion of a symmetrical power (anywhere
beyond the notion of the symmetrical square) is difficult. However, in the case of
symmetrical power of 2-dimensional manifold the notion of the Hilbert scheme is
sufficient in many cases.

Let us remind that a desingularization of a given variety X is a manifold X' with a
mapping 7: X' — X such that 7 is an isomorphism over the open subset U of smooth
points of X. One of the ways to describe a desingularization is to demonstrate an
inclusion of U into some variety in such a way that the closure X’ = U of the image of
U is smooth. In this case we should yet show the existence of the mapping X' — X
but usually it is not difficult. We want to describe the Hilbert scheme of a manifold
M as a desingularization of the manifold M X M x --- x M /&,,.

n t;;nes
Theorem 1.19. Let us associate to an n-tuple of different points on a smooth two-
dimensional manifold M a vector space I of functions that vanish at this points. Let
V' be the image of this map in the Grassmannian Gr of subspaces of codimension n
in the ring A of functions on M. Then
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(1) The closure V of V is a smooth subvariety of Gr;

(2) Points of the manifold V are exactly ideals of codimension n;

(3) The only component of codimension 1 of V. \.'V C V consists of ideals with
support in n — 1 points, i.e., to collision of only two points on M;

(4) The tangent space toV at an ideal I € V is Homy (I, A/I) C Home (I, A/I).

(5) If n = 2, then V is a blow-up of M x M/, in the singular stratum.

This manifold is called a Hilbert scheme of M (on the level n). Now, if M is
equipped with a Poisson structure, then on the open subset V' of the Hilbert scheme
a cross-product bivector field is defined. As we have seen, this bivector field has no
singularity on V \. V in the case n = 2, hence it has no singularity on the component
of codimension 1 also in the case of arbitrary n. However, the Hartogs theorem claims
that if a function has no singularity outside of a subset of codimension > 1, then it
has an extension without singularity. Therefore the Poisson structure on V' has an
extension to the whole V.

If the Poisson structure on M is non-degenerate, then the same discussion applied
to the corresponding symplectic form shows that the symplectic form can be extended
to the whole V without singularity. Therefore the Poisson structure on V is non-
degenerate.

Remark 1.20. The above definition of the Hilbert scheme is applicable only in the
case when the manifold M is affine, so the ring of functions on M is sufficiently reach.
In the other case we should just consider subsheaves Z of the sheaf O instead of ideals
in O (M), and dimT" (O/7Z) instead of dim A/I. However, we will abuse the notations
and will work with the Hilbert scheme as if it consists of ideals even in the case of
projective M.

Corollary 1.21. It is possible to define a notion of a symmetric power S"M of a
2-dimensional Poisson manifold M, that is also a Poisson manifold. To do this it
is sufficient to consider the Hilbert scheme of M. If the Poisson structure on M is
non-degenerate, the corresponding Poisson structure on S™M is non-degenerate too.
Since the correspondence between these Poisson structures is linear, the symmetrical
power of a bihamiltonian manifold is a bihamiltonian manifold.

1.7. A mapping to the symmetrical power. Now basing on a local 2n-dimensional
bihamiltonian manifold M in a vicinity of a regular point we have constructed a bi-
hamiltonian manifold S” M and a mapping from the subset of good points on M
into this bihamiltonian manifold. This mapping preserves pairs of Poisson structures.
What we want to do now is to show that we can extend this mapping to the whole
M.

In fact such an extension should associate an ideal of codimension n on M® to
any point m € M. Let us construct this mapping on the set of good points of M. If
we do all constructions algebraically, then we will be able to apply them in the case
of an arbitrary point of M.
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Lemma 1.22. Let m is a good point on M. Let C C M x M® be the incidence set
consisting of pairs (m, L) such that m € L. Consider two projections m, and 7y from
C to M and to M®. Let S be a set of weak leaves that pass through m,

S =mym ' ({m}).

Let I,,, be an ideal of functions on M vanishing at m. Then the ideal 7y, 7} (I,,,) in
the algebra, of functions on M consists of vanishing on S C M® functions.

Proof. Though this fact is absolutely standard in algebraic geometry, we give here a
proof.

We want to associate to a good point m of M an ideal on M® with zeros in the
weak leaves passing through m. We can “pass objects on M through correspondence
C”: we can consider the inverse image with respect to the first projection m; (this
gives us an object on C) and after that a direct image with respect to the second
projection my.

Now mjI,, is the ideal generated by lifts of functions from the ideal I,,, i.e., by
lifts the equations of the point m. So if the point m has equations z; = 0, were 2z
are coordinates on M, then this ideal is generated by the functions z; considered as
functions on C'. If the point m is good, then the projection 7 is locally a nonramified
covering, hence the ideal consists of functions that vanish on all n points in 77" (m).

The direct image of the ideal consists of functions such that their inverse image is
in the ideal. In our case if m is a good point, then the corresponding functions on
M@ should vanish at the points mom; " (m). O

Therefore the described algorithm m +— w5 (I,,) is indeed what we need, at least
at good points. Consider it at an arbitrary point now. In fact we have constructed a
mapping that to any point of M associates an ideal on M?). What we need to prove
is the fact that to any point of M we associate an ideal of codimension n indeed.
That signifies that the number of weak leaves passing through a given point of M
(and taken with proper multiplicities) does not depend on the point of M we choose.
On the algebraic language this is denoted by the words the map is flat. So the only
thing we need to do now is to prove that the projection m: C' — M is flat.

Theorem 1.23. If the mapping m,: C — M is flat over a neighborhood of m € M,
then for m' in this neighborhood codim mo, 7} (I,,y) = n, and the mapping

M — S"MP: m' v w1t ()

is compatible with bihamiltonian structures. Both the Poisson structures can be
extended from an open subset of M® to the whole space M® if M® is smooth.
Moreover, if one of the Poisson structures on M is nondegenerate at m, and the space
M® is smooth, then this mapping is a local isomorphism of bihamiltonian manifolds.
Here we consider a bihamiltonian structure on S"M® defined in the previous section.
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Proof. The mapping M — S™"M?) preserves the Poisson structures on an open dense
subset of good points of M. Therefore it preserves the Poisson brackets everywhere.

Suppose that M is smooth and a Poisson structure there has a singularity on
a curve L. Then the corresponding 2-form has a zero on this curve. However,
it can have a singularity on some other curve L', so consider a point on L ~\ L'
The discussion above shows that the corresponding 2-form on an open subset of
SkM(?) is non-singular and degenerate on a hypersurface. Consider a generic point
on the intersection of the image of M and the corresponding hypersurface in S"M®).
A neighborhood of this point is a direct product of S¥M® and S"*M® for an
appropriate k, and the 2-form is a direct product of a non-singular form on S*M®
and some (possibly singular) form on S"*M® . Consider two functions on S*M®
and corresponding functions on S™M (). The Poisson bracket of these functions has
a pole on a hypersurface, but no zero nearby. Therefore the Poisson bracket of the
corresponding functions on M is singular, what is impossible.

Now to prove that this mapping is a local isomorphism we should only note that
if one of the Poisson structures on the bihamiltonian manifold M is nondegenerate,
then by construction the corresponding Poisson structure on the set of weak leaves
M) is also nondegenerate, therefore the corresponding Poisson structure on S™M(?)
is nondegenerate. Since the map M — S" M) preserves the Poisson structures, the
Jacobian of this map is non-vanishing, therefore this map is a local isomorphism. [

Remark 1.24. The previous theorem is adapted for a classification of bihamiltonian
structures in a neighborhood of a regular point, as in a corollary below. However, it
can be generalized a lot after introduction of a new definition.

Let us call a closure of a weak leaf of codimension 2 a generalized weak leaf, and
let us extend this definition by taking a limit: call a submanifold a generalized weak
leaf if it can be approximated by closures of weak leaves:

Definition 1.25. A submanifold L, of a bihamiltonian manifold M is called a gen-

eralized weak leaf if there exists a locally close submanifold £ C M such that in a

neighborhood of any point there exists a function 1: £ — C such that ¢~ (¢) dof L,

is a closure of a weak leaf of codimension 2 if ¢ # 0 and is Ly if ¢ = 0.
Amplification 1.26 (The weak classification theorem). Let M®)" be a set of gener-
alized weak leaves and C' be the corresponding incidence set:

C"={(m,L) | m € L, L is a generalized weak leaf} C M x M®".
Suppose that m: C' — M is flat. Then the conclusions of the theorem 1.23 remain
true, if we change M to M)’

Corollary 1.27 (The strong classification theorem). Let m be a regular point on
a bihamiltonian manifold M of dimension 2n. Suppose that any weak leaf on M
intersects the set of good points. Consider a (partial) mapping

M — S"M®
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defined on the set of good points. Then this mapping extends onto a whole neigh-
borhood of m and is a local isomorphism of bihamiltonian manifolds.

Therefore to any such manifold we associate a canonically defined 2-dimensional
bihamiltonian manifold M®, and we canonically identify the initial manifold with
the Hilbert scheme of this 2-dimensional manifold.

The proof is already completed modulo the flatness result. As usual, the proofs of
flatness of particular maps are absolutely straightforward and a little bit dull. We
postpone it until the appendix in the section 4.

Let us consider the conditions of the weak classification theorem. It is possible to
construct an example of a bihamiltonian manifold with non-smooth set of weak leaves
(see the section 6.8). This shows that we cannot drop the restriction of smoothness in
the theorem. Moreover, this example shows in fact that we cannot drop this condition
even in the case of the strong classification theorem. However, in the particular case
of this example the theorem remains true if we consider a normalization of the Hilbert
scheme instead of the Hilbert scheme itself. This shows that there exist some potential
for generalization of the theorem.

We cannot drop the condition of non-degeneracy either. Indeed, consider a 2-
dimensional bihamiltonian manifold such that the two bivector fields have common
zeros of second order. Then in some points on the corresponding Hilbert scheme the
bivector fields also have zeros of the second order, therefore we can pull these bivector
fields up to a blow-up of this point. Now, if we consider this blow-up, we can see
that the mapping to the Hilbert scheme of the set of weak leaves coincides with the
mapping of this blow-up, therefore not an isomorphism.

2. THE ODD-DIMENSIONAL CASE

We have seen that in the case of even dimension the set of weak leaves is 2-
dimensional and the original manifold can be canonically reconstructed basing on this
set. Let us try to proceed with this program as far as we can in the odd-dimensional
case.

2.1. Facts from the linear algebra. First we want to give a more vivid picture of
a pair of bilinear forms in general position in an odd-dimensional case. The theorem
from the appendix gives us a good picture in the case of pairs of mappings. In the
section 1.2 we have already warned the reader that while the reading of the appendix
in the section 3 was not nessecary, it was highly recommended. This warning is
still effective here, where we interpret what this theorem says in a coordinate form.
We strongly recommend to read the appendix on linear algebra now, at least those
concerning the Kroneker pairs and the odd-dimensional case.

Let us introduce a basis ; = 7{7¥~" in the space S*R (here R is spanned by two

vectors 71, r3) and a basis i = rir¥~1~" in the space S*~'R. Then the two mappings
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Q, 5 of the Kroneker pair K ,j can be written as

a B
Y= ZTiy1, Y 2.

However, for the Kroneker pair K,  we want to use a different description. Let us
consider a pair of dual mappings to the mappings K,'. It is clear that this pair is
undecomposable, therefore isomorphic to the pair K, (see the theorem). In the dual
basis it can be written as

* a* * * ﬂ* *
=Y, T Y
Here we set y*; = y; = 0.

That means that basing on the theorem 3.1 we can describe a pair of skew-
symmetric forms «, § (in general position) in an (2k + 1)-dimensional vector space
V as following: there is a basis (:ro, e TR YSs yz_l) in this space and the only
non-vanishing basic pairings are

a(zi,y)=1, i=0,...,k—1

and

B(zi,yl)=1, i=0,...,k—1,
(so if £ = 0 both pairings (in 1-dimensional!) space with the basis zo vanish). The
kernel of the combination o— \f3 is spanned by the vector zo+Az; +\2zs+- - -+ \exy.
In accordance with what the theorem says, these kernels evidently span the space

W, generated by (z;), i =0, ..., k, and form in the projectivization of this space an
image of the Veronese inclusion: P* — PF: (1:X) = (1:A: X2:oo 0 AF).

2.2. The space of weak leaves. Let us consider now a (local) (2k 4+ 1)-dimensional
bihamiltonian manifold M and the space M) of weak leaves in it.!° Suppose again
that the values of bivector fields ni|m, 72|m at the given point m € M are in general
position (then they are in general position also in some neighborhood of m). First of
all we want to show that we don’t misuse the notation here:

Lemma 2.1. The space M? is 2-dimensional.

Proof. Indeed, consider again the incidence set C C M x M® of pairs (z,L), z € L.
The dimension of this set is

dim C' = dim M® + dim L = dim M + 6,

where ¢ is the dimension of the set of weak leaves containing a given point m € M.
However, in the odd-dimensional case any linear combination of the bilinear forms
has a kernel, and this kernel is 1-dimensional (in the case of general position). Hence
dimL = dim M — 1, § is the dimension of the Veronese curve, i.e., 6 = 1. Hence
dim M® = 2. O

1076t us remind that a weak leaf is a symplectic leaf of some linear combination of two Poisson
structures.
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So we see a big contrast with the even-dimensional case. A whole 1-parametric
family of weak leaves is passing through a given point. That means that to a given
point corresponds a (rational) curve on the surface M®).

However, the greatest difference with the even-dimensional case is that the kernels
do not span the whole cotangent space at the given point, but a subspace of codimen-
sion k. (Here again we consider a bivector as a bilinear form in the cotangent space.)
From the other side, the kernel is a normal space to the corresponding symplectic leaf,
therefore the intersection of all the weak leaves passing through a given point is not
that point, but a submanifold of dimension k£ passing through this point. Indeed, the
sum of normal spaces to a family of subspaces is the normal space to the intersection
of this family. This means that the intersection of the tangent spaces to weak leaves
passing through m is k-dimensional. Now we need to prove that this is true not only
on the level of tangent spaces, but in a neighborhood of m.

To do this we can note that it is sufficient to consider a sum of k£ kernels corre-
sponding to k + 1 different values (Ag,...,Ax) of A, since this sum coincides with
the whole subspace W, spanned by all the kernels. Therefore the tangent space to
the (evidently transversal) intersection Ly, ..., of k£ + 1 corresponding weak leaves
passing through m coincides with the tangent space to the intersection of all the
weak leaves passing through m. Now integration gives us that any weak leaf passing
through m contains L,, 5, ..,. Submanifolds L, ..., for different points m' form
a foliation of dimension £ on M. We can conclude that any weak leaf that intersects
some leaf of this foliation should contain it. It is clear that this foliation does not
depend on the particular values of (Ag,...,At). Let us call this foliation £, and call

a leaf of this foliation L., = Ly, xo,... A, -

Corollary 2.2. To any point m € M corresponds a rational curve on the space of

weak leaves M. Points on the same leaf of £ correspond to the same rational curve
on M® | points on different leaves correspond to different curves.

2.3. Veronese webs. We see that in contrast with the even-dimensional case the
natural correspondence between M and M® glues together points on a leaf of the
foliation £. Therefore we cannot directly reconstruct M basing on M® but only
the local base of the foliation L. Let us call this (k + 1)-dimensional base X,,;. Here
we want to describe some geometrical structure on this manifold. We will be able to
construct M® basing on this structure alone. Moreover, this base and this structure
on it can be canonically reconstructed basing on M. After that the correspondence

(Ma 7717772) = M(Q)

can be passed via X;:

(Ma771;772) = XM = M(Q)a
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and the natural correspondence between X, and M does not glue any two points
on )(]\4.11

Since any weak leaf (of codimension 1) either contains a leaf of £, or does not
intersect it, it corresponds to a submanifold of codimension 1 of X,,. For a fixed A
the symplectic leaves of @ — Af (of codimension 1) form a foliation on M, that can
be pushed down to a foliation on X,;. Hence we have a parameterized by \ € P!
family of foliations on Xj;. For a given point x € X, to any A € P! we can associate
the normal subspace to the passing through z leaf of the foliation with parameter
A. We can consider this subspace as a point in the projectivization PT, X, of the
cotangent subspace at z. The results above show that this mapping P* — PT X,

A — a normal space to the projection of the symplectic leaf for « — A3

is (in an appropriate coordinate system) isomorphic to the Veronese inclusion \ —
(1 A )\k). Such an object has so beautiful geometry that it is worthy a name.

Definition 2.3. A Veronese curve is an inclusion of P! into a projective space iso-
morphic to a Veronese inclusion P' — P*.

Definition 2.4. A Veronese web is a (k + 1)-dimensional manifold X with a param-
eterized by A € P! family of foliations {F)} of codimension 1 on X such that given a
point x € X the normal lines N, F,, C T} X to the leaves F, , of foliations passing
through z form a parameterized by \ € P' Veronese curve

A= N:c}—/\,;c
in PT*X.

2.4. Reconstruction of the bihamiltonian manifold basing on a Veronese
web. Now we can (canonically) associate a Veronese web X, to any odd-dimensional
bihamiltonian system M in general position. We say that this bihamiltonian manifold
is a bthamiltonian structure over Xj,s. A remarkable fact is that this correspondence
1s invertible up to a diffeomorphism:

Theorem 2.5 ([2]). Let X be a (local) Veronese web. Basing on X we can construct
a bihamiltonian manifold My with a natural projection to X. The Veronese web
X, constructed basing on Mx is naturally isomorphic to X.

If we consider analytic manifolds and if the Veronese web X corresponds in the
described above way to a bihamiltonian manifold M, i.e., X = X}, then the bihamil-
tonian manifold Mx = Myx,, is locally isomorphic to M and the map M — X corre-
sponds under this isomorphism to the map Mx,, — X, (however, this isomorphism
is not canonical).

UIn fact it is possible to reconstruct (M, ny,7:) itself basing on Xas (at least locally), however
not canonically but only up to a (local) diffeomorphism (see [2]). We show how to reconstruct M
(without Poisson structures) in the section 2.4.
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Here we do not want to discuss a proof of this theorem, however, we want to explain
briefly the construction of the bihamiltonian manifold My as a plain manifold (i.e.,
we cannot explain here the construction of two Poisson structures on My ). Consider
the cotangent bundle 7% X. We have a Veronese inclusion of the same projective line
P! in the projectivization of any vector space of this bundle. Let us consider the
Veronese inclusion P! — P¥. Tt is easy to see that for any projective transformation
of P! we can find a (unique) projective transformation of P¥ that in the restriction
to the image of P! gives the given transformation of P'. Hence the same is true
for any Veronese curve, in particular for any point z € X. Let us denote by S the
2-dimensional coordinate vector space (so PS = P!).!2

Hence with any volume-preserving linear transformation of S (i.e., an element of
SLy, = SL (S)) we can associate a volume-preserving transformation of 7 X (i.e., an
element of SL (77 X)). Therefore we have an SLy-structure on the cotangent bundle of
X. Now we are going to do the following (usual in the theory of vector bundles) trick:
to any vector bundle with an action of a group we can associate a principal bundle for
this group over X, and to any representation of this group we can associate another
vector bundle over X. It is easy to see that the cotangent bundle on X considered
as an SLo-bundle corresponds in this consideration to the representation of SL (S) in
the k-th symmetrical power SES of S.

Now we can define My as a total space of the vector bundle corresponding to the
previous symmetrical power S¥71S. Since this argument is a little bit misleading, we
want to give a more direct definition. Let us consider the vector bundle 7*X ® S
over X. The action of the group SL(S) on the fibers of this bundle decomposes
canonically into a direct sum of two representations: one (k + 2)-dimensional, another
k-dimensional. Now My is a total space of the vector bundle over X corresponding
to the second component with respect to the action of SLs.

Definition 2.6. We call Mx a subcotangent bundle for X and denote it by T*(-1 X,

In the same way as one can define a Poisson structure on the cotangent bundle to
a manifold, it is possible to define a family of Poisson structures on the subcotangent
bundle parameterized by the vector space S, i.e., a bihamiltonian structure. However,
this definition in the present form [2] is rather ugly. The situation is very similar to a
try to define a Poisson structure on the cotangent bundle without a reference to the
symplectic structure'?® on this manifold: it is possible, but we do not know a “direct”
way to do it.

2.5. The double complex. Another remaining question is why if we start with a
bihamiltonian manifold M, construct a Veronese web X, basing on it and construct

121f the Veronese web is associated with a bihamiltonian manifold, we can identify S with the
space of linear combinations of two Poisson structures.
131 e., without the use of the operation of inversion of a matrix.
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the bihamiltonian structure 7*(=Y X, basing on this web, we get two locally isomor-
phic bihamiltonian structures M and T*-1X,,. Here we also do not know a direct
proof, in fact, in the C'"*°-case we even do not know if this is true.

However, the algebraic formalism involved in the proof is so exotic that we want to
provide some details of this proof here (risking to annoy the reader with an absence
of precise definitions).

The proof is based on the consideration of an analogue of the de Rham complex
on X. This complex is associated with the vector bundle 7*(-) X — X instead of
T*X — X, i.e., it is the complex of sections of A*T*=DX. In the same way as it
is possible to define a differential of degree 1 on Q°* =T (A*T*X), we can define two
differentials d;, ds on

Q=T (AT VX)),
any linear combination of which is again a differential. The last condition means
d? = dj = didy + dod; = 0.

(The only difference of this situation and of the definition of a bicomplex is that we
have only Z-grading, but not Z2-grading.) N
It is possible to show that any section ¢ of T*("DX = Q! satisfying

dldggﬁ =0€ 63

gives rise to some bihamiltonian manifold Mx , over X. Any bihamiltonian manifold
over X can be obtained in this way.
However, if ¢; and ¢4 satisfy the above differential equation and

©1 — 2 = dith1 + dothy € Qla P12 € Q=T (O (X)),

we can construct an isomorphism M, ,, — Mx ,, over X and visa versa. Therefore
the local isomorphism classes of bihamiltonian structures over X correspond to double
cohomology classes

Ker dldgl 51 — 53

= (Imdlz Q0 — §1> + (Imdgz Q0 — §1>

At least in_the local holomorphic case we can prove that any space of double coho-
mology H'Q®, i > 1, vanishes, and H’Q® = C. That finishes our sketch of the proof
of the theorem.

2.6. The Kodaira theorem and Veronese webs. We have “shown” the relation
between odd-dimensional bihamiltonian manifolds in general position and Veronese
webs. However, we began this discussion in connection with the question: can we
reconstruct the bihamiltonian structure basing on the set of weak leaves M? i.e., in
the same spirit as when dealing with even-dimensional structures. It is clear that we
cannot hope to reconstruct more information than one contained in the corresponding
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Veronese web, since the mapping M +— M® goes via the Veronese web (since any
weak leaf on M corresponds to a leaf of some foliation on M®).

So let us call any leaf of any marked foliation on the Veronese web X a weak leaf
on X. Call the set of weak leaves X (The legality of this notation is guaranteed by
the isomorphism M® ~ X2 if X is associated with a bihamiltonian manifold M)
There is a natural mapping 7: X® — P! that send any leaf of the foliation Fy to
A. To any point z € X there corresponds a section I'; of this bundle: to any A we
can associate the leaf of the foliation F, passing through z.

However, in the holomorphic case we can indeed reconstruct the Veronese web X
basing on the set X(?. In fact in contrast with the even-dimensional case where we
needed the bihamiltonian structure on M(?) we do not need any additional informa-
tion here:

Theorem 2.7. In the case of analytic manifolds if X is a (local) Veronese web, then
any section of the projection X?) — P! corresponds to a point on X.

Proof. Let us note that in the case when X is a germ in neighborhood of x € X the 2-
dimensional manifold X is a germ in a neighborhood of the curve I'; ¢ X . Since
we are working with germs of manifolds, it is sufficient to show that the dimension of
the set of section of the projection X2 — P! that are deformations of the curve I’y
is equal to the dimension of X. The Kodaira theorem [5] says that it is sufficient to
show that the degree of the normal bundle to the (rational) curve I', equals dim X —1.
Fix a point (x,A) on I';. The normal space N I, coincides with the normal space
to the leaf F) , of the foliation Fy at x. Therefore the normal bundle for I'; coincides
with the tautological bundle for the Veronese inclusion

A= ij: PR
and the degree of this bundle can be computed without any difficulty. U

We came to the following

Construction . Consider a germ of an (analytic) surface X' in a neighborhood
of a rational curve I' C X. Suppose that the degree of the normal bundle to I' is
k > 0. Then by the Kodaira theorem the curve I' can be included in the maximal
((k + 1)-parametric) family of rational curves on X parameterized by some (k + 1)-
dimensional complex manifold X. (Since X is a germ only, X is a germ in neighbor-
hood of I' € X.)

Fix a mapping m: X — P!. Let us define the foliations Fy, A € PL. A leaf of the
foliation F on X consists of those curves on X' (i.e., points of X) that pass through
a fixed point on 77! ()\) C X.

Theorem 2.8. Any mapping n: X — P! that is an isomorphism on I" corresponds
in the specified above way to a canonical structure of a Veronese web on X.

Proof. The manifold X with a family of foliations F) is already defined in the theo-
rem. What we need to do is to show that at any given point x € X the normal lines
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to the fibers of the foliations form a Veronese curve. However, any curve that is a
deformation of a Veronese curve is again a Veronese curve, since any smooth curve
of degree k in P* that spans the whole space P* is a Veronese curve. Therefore it
is sufficient to show that in one fixed point z of X this curve (corresponding to the
inclusion i: P! — PT*X) is a Veronese curve, i.e., it spans the whole space PT;X
and has degree k. Of course, we choose the point I' € X as x.

However, a generic curve on X that is a small deformation of I' intersects I' in &
points, therefore a generic tangent to X vector at x lies in a tangent space to a leaf
of F, for k different values of \. Hence a generic hyperplane intersects the image of
inclusion ¢ : P* < PT*X in k points.

If this image is contained in a hyperplane, then tangent spaces to leaves of F)
contain a common vector v. However, this vector corresponds to an infinitesimal
deformation of I' that intersects I' in any point of I', therefore to a 0 section of a
normal bundle to I'. By the Kodaira theorem the tangent space to X at z is identified
with the space of sections of this normal bundle, therefore v = 0. O

2.7. Assembling the pieces of the puzzle. Now the correspondence
M S M@

(between odd-dimensional bihamiltonian manifolds and 2-dimensional manifolds with
a projection onto P' and a section of this projection) can be broken into a chain

M Xy 83 (X)) = M@,

where the object in the middle is a Veronese web. The previous theorem says that
in the local case the last arrow can be canonically inverted (i.e., inverted up to a
canonically defined isomorphism), so it is an equivalence of corresponding categories.
However, even in the local case the first arrow can be canonically inverted only from
the right, i.e., although the mapping

XA vy

satisfies the relation Sy (M) ~ M, o161 (X) ~ X, only the latter isomorphism can
be chosen canonically, i.e., compatibly with isomorphisms.

We can explain it in a more concrete way: a bihamiltonian manifold has much
more automorphisms than the corresponding Veronese web. In fact, the set of auto-
morphisms of a bihamiltonian manifold that commute with the mapping'* M — X,
is similar to the described above (trivial) classification of bihamiltonian manifolds
over a Veronese web: it coincides with the vector space

(Imd1: Q0 — Ql) N (ImdQ: Q- ﬁl) = Kerd; ® ds: Qb - 02 @QQ.

147 e., automorphisms of the bihamiltonian manifold that induce the trivial automorphism of a
Veronese web.



30 ISRAEL M. GELFAND AND ILYA ZAKHAREVICH

It is possible to show that the number of such automorphisms coincides with a £ — 1
times the number of functions of two variables. We consider a particular case k = 2
in the section 2.9.

Remark 2.9. Now we can see that to give a local classification of bihamiltonian
manifolds it is sufficient to describe 1-dimensional nonlinear bundles X® over P'
of a given degree. Here a degree deg X® of a bundle denotes the degree of its
linearization: to have a degree a bundle should have a section I', and the vertical
tangent bundle to this bundle at this section should be of the given degree. Moreover,
we should consider only local objects of this sort, i.e., only germs of 2-dimensional
manifolds in a neighborhood of the section I'. A simple calculation shows that the
set of isomorphism classes of such objects is parameterized (essentially—compare the
remark 2.12 below) by deg X (2 germs (at 0) of holomorphic functions of two variables.
Therefore to describe a Veronese web of dimension k£ up to an isomorphism we need
to provide k£ — 1 functions of two variables.

Remark 2.10. What we get in the previous remark is in fact a remarkable fact: the di-
mension of the parameter space for isomorphism classes of odd-dimensional bihamil-
tonian manifolds (almost) does not depend on the dimension of these manifolds! The
total amount of 5-dimensional bihamiltonian manifolds is equal to the total amount
of pairs of 3-dimensional manifolds and so on! Indeed, in the 5-dimensional case the
space of parameters is a pair of functions of two variables, that is twice as much as
in the 3-dimensional case.

Moreover, it is possible to show that in the holomorphic case there is an opera-
tion that associates a (local) k-dimensional Veronese web to a given (local) (k — 1)-
dimensional Veronese web and a (local) 2-dimensional Veronese web. Any k-dimensional
Veronese web can be uniquely obtained in this way. So eventually we can obtain any
given Veronese web using this operation and starting from 2-dimensional Veronese
webs. (Unfortunately, we do not have a place here for a discussion of this beautiful
construction.) Note that this is compatible with the calculation of the size of of
the moduli space for Veronese webs: to get k-dimensional Veronese web we should
fuse k — 1 Veronese webs of dimension 2, and to describe these webs we need £ — 1
functions of two variable.

2.8. 2-dimensional webs. Another remarkable fact is the possibility to simplify a
lot the definition of 2-dimensional Veronese webs.

Lemma 2.11. A 2-dimensional Veronese web is uniquely determined by any three
different foliations from the P'-parameterized family. Moreover, any three foliations
on a surface such that the three tangent lines at any point are different correspond
to some Veronese web.

The proof is trivial, since a Veronese inclusion P! — P! is just an isomorphism,
that is uniquely determined by the image of any three different points. Therefore any
three families of curves on a surface in general position determine a Veronese web.
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This is a reason why we use the name web here, since a web on a plane is exactly
three families of curves in general position. So to any web on a plane we can associate
some 3-dimensional bihamiltonian manifold. However, the given above description of
this manifold can be simplified a lot in this particular case.

2.9. 3-dimensional bihamiltonian structures. Let us consider a 3-dimensional
bihamiltonian manifold M with a mapping M = X,,. In this case the Veronese web
X is 2-dimensional, therefore we can consider instead of P!'-parameterized family
of foliations only three foliations corresponding to values A, Ao, \3 € P!. These
foliations can be defined as level lines of three functions

fi1 =const, fy = const, f3 = const.

We can suppose that A\; = (1:0), Ay = (0:1), A3 = (1:1). Then the functions
fi o are the Casimir functions® on M respective to the Poisson structures {, },,
{,}s and {, }; + {, }, correspondingly.

Locally we can represent M as a product of X, and a line. Choose a coordinate z
along this line. We can choose functions x = f; and y = f5 as two coordinates on Xj,
and write f3 = F' (x,y). Since the function z is a Casimir function with respect to
the bracket {, },, the bivector field that corresponds to that bracket can be written as
1 (z,y, 2) a% A %, ©1 # 0. In the same way the second bivector field can be written

as 2 (2,,2) 2 N2, @3 # 0. Now the condition that the function f3 = F (z,y) is a
Casimir function with respect to the bracket {, }, + {, },, gives us

0 0
(QOI (ZC, Y, Z) a_y + Y2 (CU, Y, Z) %) F (.T, y) = Oa

or
o _ b

QOQ Fy .
We have yet an arbitrariness in a choice of a function z. It is easy to understand (this
is a variant of the d’Harboux theorem) that by a change of the function z we can
change ¢; in an arbitrary way. In particular, we can choose ¢; = —F}, so ¢y = F,.
So to a web
x = const, y = const, F' (z,y) = const

we associate a bihamiltonian manifold with coordinates (z,y,z) and two Poisson

brackets
{f(%,9,2),9(x,y,2)}, = —Fufyg. + Fuf.9y,

1 (2,y,2),9(x,y,2)}y = Fyfeg: — Fyf20a

Remark 2.12. It is easy to see that in the example above we associated to a 2-
dimensional Veronese web a function F'(z,y). Let us find the arbitrariness in the
definition of this function.

151 e., say, {f1,9}; = 0 for any function g on M.
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It is easy to see that the function F'is defined up to a change of the form Fy = ¢ (F),
x1 = (x), y1 = x (y). Therefore this function is in fact a mapping from a product of
two 1-dimensional manifolds to a third 1-dimensional manifold. Let us denote them
by Ly, Lo, L3. If we work in the local situation we have a marked point, therefore
the coordinate changes ¢, 1, and x send 0 to 0. The correspondences

Ly — L3: x— F (z,0), Ly — L3: y— F(0,y)

determine identifications of L; and L, with Ls. So let L1 = Ly = L3 = L. Consider
a coordinate system on L. Now basing on a Veronese web we have constructed a

function F (z,y) up to a change of the form F, (z,y) = ¢ (f (67t (z), o7t (y))) with
restrictions F (z,0) = F (0,) = z.

Consider a function G () = F (x,z). It is defined up to a change G; (z) =
o) (é (¢! (:L'))), and 4|, = 2. We can find ¢ such that G (z) = 2z. Now the

only changes of ¢ that preserve this restriction are linear changes. This gives us a
canonically defined function F with conditions F (z,0) = F (0,2) = z, F (z,7) = 2z
up to a change F; (z,9) = o™ 'F (ax, ay). Therefore we can write

where the function F is arbitrary and defined up to a change
F(a,y) = Fi (2,y) = ’F (az,ay), a #0.

Therefore we have proved the following

Theorem 2.13. (1) The set of germs of 2-dimensional Veronese webs (or 3-
dimensional bihamiltonian manifolds) up to isomorphism can be identified
with the set of germs of functions of two variables up to a change

Fy (2,y) = o®F (az,ay), a#0.

(2) The corresponding to I web can be written in an appropriate coordinate
system as three foliations given by equations

x =const, y=const, z+y+zy(x—1y) F (x,y) = const

correspondingly. This coordinate system is determined uniquely up to a ho-
motety if F' = 0 and uniquely otherwise.

(3) The brackets of the corresponding to F bihamiltonian manifold can be written
in an appropriate coordinate system as

{f(:c,y,z), (x Y,z )}1 (l—i-acy (m—y)Fo’w—i—y(Qx—y)}%) (_fygz+fzgy)a
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This coordinate system is determined uniquely up to a transformation
Tn=xz, yi=y, 2z =2z2+p0(z7y)
if F # 0 and up to a transformation
ri=ar, y=ay, z=a z+pB(z,v)

otherwise.

3. APPENDIX ON LINEAR ALGEBRA

Consider a pair of skewsymmetric bilinear forms «, § in a (finite-dimensional)
vector space V. Call a pair of forms decomposable if there exist two supplementary
non-zero subspaces Vi, V5 such that both forms « and [ are direct sums of their
restrictions on V; and V5, i.e., the subspaces Vi and V, are skeworthogonal'® with
respect to both forms. Any pair of forms in a vector space V' can be decomposed in
a direct sum of undecomposable pairs in subspaces V;. We want to describe pairs of
forms in a vector space up to an isomorphism (i.e., a coordinate change in the space
V). It is sufficient to describe undecomposable pairs.

As it turns out, it is useful to describe such pairs basing on other objects of linear
algebra: pairs of linear mappings from one vector space to another. It is clear what
is a direct sum of two such pairs. Let us call a pair undecomposable if it cannot be
represented as a direct sum.

Theorem 3.1 ([1]). (1) The list of undecomposable components (up to an iso-
morphism) of a pair of skewsymmetric bilinear forms is uniquely defined, the
same is true for a pair of linear mappings;

(2) If a pair of skewsymmetric bilinear forms «,  in a (finite-dimensional) vector
space V' is undecomposable, then the vector space V can be represented as a
direct sum of two subspaces W and W5, where

(a) Both Wy and W, are isotropic with respect to both forms o and f3;

(b) The pairings « and  determine two mappings a, 3: Wi — W, and this
pair of mappings from one vector space to another is undecomposable in
the above sense; _

(3) On the other side, any undecomposable pair of mappings &, 8 : W1 — Wy
determines an undecomposable pair of skewsymmetric bilinear forms «, 3 in
the vector space W, & Wy by the rule

o (w1, wa) , (w}, wh)) = (@ (wr) , wh) — (@ (w})  w),
B ((wr,ws) s (wh, wh)) = (B (w) ) = (B (wh) )

(4) Any undecomposable pair of mappings from a vector space X; to a vector
space Xy is isomorphic to exactly one pair from the list:

167 ., orthogonal with respect to a skew form.



34 ISRAEL M. GELFAND AND ILYA ZAKHAREVICH

(a) The Jordan case Jj, k > 1 with eigenvalue \: here X; = Xo, dim X; =k,
a =idy,, B is a mapping from X; to X; with exactly one Jordan block
(of size k) with eigenvalue ;

(b) The Jordan case J°, k > 1 with eigenvalue co: here X; = X5, dim X; =
k, & is a mapping from X; to X; with exactly one Jordan block (of size
k) with eigenvalue 0, f = idy,;

(c) The Kroneker case K, k > 1: here X; = S*"'R, X, = S*R (i.e., the
symmetrical powers), R is a 2-dimensional vector space with a basis 71,
re, @ = M,,, B = M,,, where M, is the mapping of multiplication by r
from S*7'R to S*R;

(d) The Kroneker case K, , k > 1: here X; = S*R, Xo = S¥*'R (i.e., the
symmetrical powers), R is a 2-dimensional vector space with a basis 71,
T2, a= DTU ﬁ = D?"z; where

0 0
Y p.o= 2 . gk k-1 p.
o P = o SR — S*R;

(e) The trivial Kroneker case K : dimX; =0,dimX, =1, a= 3= 0;

(f) The trivial Kroneker case K; : dimX; =1,dim X, =0, a =3 =0;

(5) If a pair of skewsymmetric bilinear forms is in general position, then

(a) if the space V is even-dimensional all the undecomposable components
are 2-dimensional, canonically defined and correspond to the pairs of
mappings J}, A € CU {c0};

(b) if the space V is odd-dimensional, dimV = 2k — 1, then there is only
one undecomposable component (so the pair is undecomposable), corre-
sponding to the Kroneker case K, (or K}, since K;" and K, lead to
isomorphic pairs of skew-symmetric bilinear form);

(6) If an undecomposable pair of skewsymmetric bilinear forms in an odd-dimensional
vector space V corresponds (as above) to the Kroneker pair of mappings
K, : Wy — Wy, then the subspace W, C V is canonically defined. It is
spanned by 1-dimensional kernels (i.e., by the vectors which are orthogonal
to the whole space) of linear combinations o — A\ of forms o and 3. These
kernels considered as points in the projectivization PW7 of the space W1 form
a Veronese curve, i.e., a curve of minimal possible degree (equal to dim PW)
spanning the whole space PW,.

D, =

We see that there is a close relation between pairs of linear mappings and pairs
of skewsymmetric bilinear forms. If we consider a pair of bilinear forms in a vector
space V as a pair of mappings V' — V*, then this pair of mappings becomes a sum
of two (dual) pairs of mappings, and the original pair of forms can be reconstructed
(up to an isomorphism) basing on any one of these dual pairs.'” If the pair of forms

17Tt is the place to note that the analogue of this theorem for symmetric bilinear forms is wrong,
as shows an example of a pair of forms on 1-dimensional vector space. In fact in the symmetric
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is undecomposable, the corresponding pairs of mappings is undecomposable too, and
visa versa. We can call eigenvalues and sizes of Jordan blocks in the corresponding
pair of mappings eigenvalues and sizes of blocks for a pair of skewsymmetric forms.

4. APPENDIX ON FLATS AND MAPS

We want to prove here that if we consider two projections w1, mo from the incidence
set C C M x M® on the factors in the case of an even-dimensional M, then for any
regular point m € M the ideal my, 7 [, on M@ is of codimension n = % dim M. Here
I, is the corresponding to m € M ideal in O (M), M(? is the set of weak leaves in
M. We have already shown that this is true on an open dense subset of good points.

First of all we want to prove that the mapping 7; is flat on the set of regular
points. That means (in this case) that the codimension of 771, does not depend on
the point m, hence is indeed n. We will use the following properties of flat maps:

(1) An isomorphism is flat;

(2) If amap Y — X is flat locally on X, then it is flat;

(3) If the space of functions on Y is a finitely generated free module over the ring
of functions on X, then the mapping Y — X is flat;

(4) A composition of flat mappings is flat;

(5) If a mapping «: Y — X is flat and there is a mapping ¢ from X’ to X, then
the inverse image of «

X' xyV E% x'
is also flat.

Let us consider instead of m; some closely related mapping p; : C' — M. To define
it we begin with a definition of C’. Denote by Gry T, M the space of 2-dimensional
subspaces in the T, M, let GroTM = J,,cp GraTnM. Let C' C GryTM be the
subset consisting of tangent spaces to weak leaves and p; be a natural projection.

There is a natural map from the space C' to C' that sends a pair (m, L), m € L,
to the subspace T,,L C T,,M. It is easy to see that this mapping is an isomorphism,
so it is sufficient to show that p; is flat. However, the structure of the map p; is
much simpler, since this mapping is an inverse image from the space of pairs of
skewsymmetric bilinear forms.

Indeed, consider a local coordinate system on M. It identifies M with a piece
of a vector space, call it V*. Now all the cotangent spaces at different points of
M are identified with V. Then to any point m € M corresponds a regular pair of
skewsymmetric forms in the vector space V. Let U C A?V* x A>V* be a subset of
regular pairs. Consider a subset C of U x Grs V' consisting of triples (a, 3,.5) such
that S is a kernel of some non-zero linear combination Ao+ pf. It is easy to see now

case there is one additional series of undecomposable pairs that includes this example. All other
undecomposable pairs can be constructed basing on pairs of linear mappings.
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that the mapping C' — M is an inverse image of the mapping C — U with respect
to the map M — U.

So what remains to prove is the flatness of the mapping C — U. Now we want
to consider yet another mapping D — U. Here D is a subset U x C consisting of
triples (a, 8, A) such that ) is an eigenvalue of the pair «a, §, i.e., such that the form
a— A\ is degenerate. Since the pair («, ) is regular, the kernel of the form o — Af is
2-dimensional, therefore there is a natural isomorphism D — C. Now it is sufficient
to prove that D — U is flat.

The basic example of a flat mapping is the mapping A, — B,, where B, is a
set of all polynomials P of degree n with the leading coefficient 1, and A, is a
set of solutions, A, = {(z,P) € C x B, | P(x) = 0}. The flatness of this mapping
is equivalent to a fact that any polynomial of degree n has exactly n solutions, if
counted with multiplicity. Using the above facts, we can prove the flatness of this
map by the note that any function f on A, can be uniquely represented in the form

f(ﬂ?,P) :fO(P)+xfl (P)++xn71fn—l (P)7
therefore the space of functions on A,, is indeed a free module over the ring of functions
on B,.

Now we can apply this example to the proof of flatness of the mapping D — U. Let
us consider the characteristic polynomial P, 3 = det (o — A\f) of the pair (a, §). The
theorem on linear algebra shows that this polynomial can be represented as a square
of a polynomial Q, 5. We can normalize () to get a polynomial with the leading
coefficient 1. In this way we have defined a map U — B,,. It is clear that the map
D — U is an inverse image of the map A,, — B, so it is flat. Therefore, the map
C — M is indeed flat.

We proved that the codimension of 771, is n. What remains to prove is that the
codimension of w71, is equal to the codimension of 7{I,,. Speaking nonformally,
this a consequence of the fact that the ideal 7} I,,, “lives on the submanifold mx M® c
M x M®?” and this submanifold projects isomorphically on M(?). To give a formal
proof let us consider the inclusion C < M x M® and the ideal I consisting of
vanishing on C functions. Let us consider this picture locally. The ring O (C) is the
quotient of O (M x M®) by Ic. Let P, and P, be two projections from M x M
to the factors. Then 7il,, C O(C) is just Pfl,,/ (Ic N Pfl,,), hence O (C) /nt1,
coincides with O (M x M®) / (Ic + P;1,y,).

However, the last ring can be written as

(0 (M x MP) /P;1,) / (Io + P{I,) /P 1L,) = O (m x M®) /(I + Py 1,,).

A function on M® is in the ideal mo, 7} I, if its inverse image on M x M is in the
ideal 7} I, i.e., the image of this function in the ring O (m x M®) / (Ic + P}1,,) is
0. Since the ring O (m x M®) is isomorphic to the ring O (M®), the ideal mo, 71,

corresponds under this isomorphism to the ideal (I¢ + P;l,,) /P;l,,, therefore has
the same codimension. This completes the proof.
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5. APPENDIX ON GLOBAL BIHAMILTONIAN GEOMETRY

We have seen in the section on the Kodaira theorem that to construct a local odd-
dimensional bihamiltonian structure we should just have a nonlinear bundle of rank 1
over a projective line. However, to do the same in the even-dimensional case we need
several 2-dimensional bihamiltonian systems. Therefore in the odd-dimensional case
we should have only the information of “topological” origin (i.e., a complex structure
on a given topological object), and not of the differential-geometrical origin, as in the
even-dimensional case.

However, in the global case the picture can be very similar to that “topological
paradise” even in even-dimensional case, as shows the following

Lemma 5.1. Let M be a manifold such that
dim I (A*TM) =k < oo, dimI' (A*TM) = 0.
Then on M there is a canonical (up to a linear change) k-hamiltonian structure.

Proof. Let us remind that a Poisson structure is a bracket on the set of functions that
satisfies the Leibniz and Jacobi condition. As we have seen, any bracket satisfying
the Leibniz condition can be written as

{f,9} o = (nla; (df A dg) |)

for an appropriate bivector field n on M (i.e., a section of AT M). Let us consider
the Jacobi condition for this bracket. It is easy to see that the number

H(f,9,0) == {{f, 9}, 0} +{{g: 2}, F} + {1, 9 |=

depends only on the differentials of functions f, g, h in the point x, and is skewsym-
metric with respect to these differentials, so it can be written as

for some 3-vector field H on M (i.e., a section of A®M). Therefore the condition of the
lemma implies that any global bivector field on M gives rise to a Poisson structure.

That means that we have k-dimensional vector space of Poisson brackets on M,
i.e., a k-hamiltonian structure. O

Remark 5.2. In fact this k-hamiltonian structure is defined canonically up to a linear
change of the k£ basic Poisson structures, but this is the object people usually work
with.

Example 5.3. Let us consider a 2-dimensional case. Then dimT" (A3M) is 0 for sure,
so we should bother only with T' (A2M). Let us consider the behavior of the bivector
field % A % on the infinity in P2. The corresponding 2-form dx A dy has a pole of the
third order on infinity: in the coordinates (z :y:1) = (1:z:t) it can be written as
ds A d% = —5dt A dz. Therefore the bivector field has a zero of the third order on
infinity (since in local frames the bivector field and the 2-form have mutually inverse
coefficients).



38 ISRAEL M. GELFAND AND ILYA ZAKHAREVICH

This means that the global sections of A*TP* can be written as P (z,y) & A £,
where P; is a cubic polynomial. Therefore on the projective plane a natural 10-
hamiltonian structure is defined.

Example 5.4. Since we are primary interested in bithamiltonian structures, we give
here another example. Consider two different cubic curves on P2. They intersect one
another in 9 points of the plane. Consider a blow-up M of the plane in these 9 points.
A bivector field n on M corresponds to a bivector field 77 on P? at least outside of
these points. However, the Hartogs theorem implies that the bivector field 7 can be
extended to the whole P2,

We have shown already that a nondegenerate polyvector on a 2-dimensional man-
ifold gets a pole when raised to a blow-up. This implies that the bivector field 7 on
P? has zeros in these 9 points on the plane. Therefore the corresponding to 7 cubic
polynomial on the plane has zeros in these points, therefore is a linear combination
of equations of initial cubic curves. That means that a canonical 2-bihamiltonian
structure is defined on M.

Remark 5.5. It is easy to see that this bihamiltonian structure is in general position in
a neighborhood of any point on M. However, the space of cubic polynomials vanishing
in given 8 points (in general position) on the plane is also 2-dimensional. That means
that instead of blowing-up 9 points it were sufficient to blow-up only 8 points of these
9—on the resulting manifold there is a natural bihamiltonian structure.

There is a remarkable algebro-geometrical construction on a plane that to a 8-tuple
of points on P? in general position associates a 9th point: any cubic passing through
these 8 points passes through this 9th point. (Therefore we cannot get an arbitrary
9-tuple of points as an intersection of two cubics!)

Now consider the result M’ of blowing up the plane at these 8 points. This manifold
has two independent global bivector fields, and they both vanish at the 9th point.

Therefore the bihamiltonian structure is not in general position in a neighborhood
of this point.

Now, when we have constructed a 2-dimensional manifold M with a canonically
defined bihamiltonian structure, we can consider the Hilbert scheme S™M (the defi-
nition of the Hilbert scheme can be found in the section 1). As it was shown in the
section 1.4, the bihamiltonian structure on M determines a bihamiltonian structure
on S™"M. We can show that if we are sufficiently lucky this bihamiltonian structure
on S™M is also canonically defined.

Lemma 5.6. Counsider a connected 2-dimensional manifold M such that dim T (TM) =

0, dimI' (O (M)) = 1. Then any bivector field on the Hilbert scheme S™M corre-
sponds (in the specified above way) to a bivector field on M. Moreover, dimT (A3T'S"M) =
0.

Proof. Fix n — 1 different point my, ms, ..., m,_; on M and consider another (vari-
able) point my € M. A neighborhood of the point {mg, m1,mo,...,my_1} on S"M
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can be considered as a direct product of neighborhoods of points mgy, my, mo,....
This decomposition associates to any bivector at {mg, mi,mso,...,m,_1} € S?M a
set of bivectors, one at any point mgy, mq, mo,..., m,_1, and a set of elements of
tensor products Tp,, M & Ty, M. Consider a global bivector field on S"M and the
first component of the value of this bivector field at {mg, m1, mso,...,m, 1}, that isa
bivector in the point my € M. We defined a bivector field on M~ {mq, ma, ..., my_1}.
However, by the Hartogs theorem again, this field can be extended to the whole M.

This bivector field is a linear combination of basic bivector fields on M. The
coefficients of this combination depend on my, ms, ..., m,_1. However, if we consider
a coefficient as a function of, say, m;, we see that it is defined anywhere outside of
Mo, - .., My_1, therefore it can be extended to a global function and is constant. That
means that we defined a global bivector field on M basing on a global bivector field
on S™M. It is easy to see now that this is an inverse map to the construction of
bivector field on S™M basing on a bivector field on M.

Moreover, let us fix a cotangent to M vector at m; for a fixed 7. Consider the
component in T, M Q@T,,, M of the value of the bivector field and the “scalar product”
of this tensor with the fixed covector at m;. In this way we get a tangent vector at
myp. This determines a vector field on M ~ {mq, ms,...,m, 1}, that again can be
extended to the whole M. Therefore the corresponding vector field is 0. Hence
the off-diagonal components of the bivector field vanish, so it is determined by the
diagonal components.

The same argument shows that any 3-vector field on S™M should be 0. O

In the above 2-dimensional examples of bihamiltonian manifolds there is no global
vector fields and global functions, therefore the corresponding Hilbert schemes are
also equipped with canonically defined bihamiltonian structures. So:

Theorem 5.7. Fix 8 point on a plane in general position (here that means that they
are not on the same conic and no 5 point subsets is on the same line). Consider a 9-th
point that is the only other point of intersection of two cubics passing through these
8 points. Denote the blow-up of the plane in these 8 points by M, in all 9 points by
M,. Then on the Hilbert schemes S™ M, S™ M, the spaces of global bivector fields are
2-dimensional, and any bivector field determines a Poisson structure. Therefore on
both these 2n-dimensional manifolds a canonical bihamiltonian structure is defined,
the set of (generalized'®) weak leaves is isomorphic to the corresponding 2-dimensional
manifold M, or M,y and these bihamiltonian structures can be reconstructed basing
on the canonically defined bihamiltonian structures on My, M.

Remark 5.8. As we will see in the section 6.4, a neighborhood of any point on these
examples of bihamiltonian manifolds is also an example of a local bihamiltonian
manifold to which we can apply a weak classification theorem from the section 1.7.
Therefore we found examples of global bihamiltonian manifolds that are classifiable

1866 section 1.7.
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in a neighborhood of any point. Of course, in these cases the classification theorem
shows only that we can reconstruct M basing on S™M.

6. APPENDIX ON THE LOCAL GEOMETRY OF A BIHAMILTONIAN HILBERT SCHEME

6.1. Preliminaries. We have shown above that a bihamiltonian structure in a neigh-
borhood of a regular point'® is isomorphic to a bihamiltonian structure on a Hilbert
scheme (under a mild assumption). However, the given point goes under this cor-
respondence to a regular point of the Hilbert scheme. It is easy to see (even in
4-dimensional example above) that not any point of the Hilbert scheme is a regular
point.

Example 6.1. Consider the coordinates X, Y on the plane M with Poisson struc-
tures diX A dLY and X diX A diY and corresponding coordinates
1 1 1 1
f:E(X1+X2),77=ﬁ(}ﬁ-i-}/z),x:E(Xl—Xz),y:E(Yl—yﬁ
on the M x M. We know that S?M is a blow-up of M x M/&, in the diagonal.
Consider a point on S?M on the intersection of the preimage of the diagonal and of
the preimage of x = 0. Then &, , @ = z/y and 8 = y? form a coordinate frame in
this point. (In the example in the section 1.6 we considered coordinates o = y/z,
B = z? in the remaining points of the exceptional divisor.)
The first Poisson structure on M x M corresponds to the bivector field

0 A 0 n 0 A 0
o oOn  Ox Oy’
hence the first Poisson structure on S?M corresponds to the bivector field

0o 0 0 0

To find the expression of the second structure it is more suitable to work with the
corresponding symplectic structure %dX A dY. We need to express X%Xm AdY; +
X%)dXz A dY3 in the frame &, 7, @, B
A tedious computation shows that this form coincides with
~2

V2 S a? o~ a .~

£
2

d&dﬂ)

197 et us remind that the regular point is a point where two tensors of Poisson structures form a
regular pair, i.e., the dimension of the stabilizer of this pair in GL (T, M), m € M is the minimal
possible.
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The corresponding Poisson structure can be calculated by inversion of this “matrix”
and is equal to

L (53/\2—&22/\3+2&52/\i—&2/\3+25ﬂ/\i>.
V2 \"0¢ On 0 O« o6 9B on Oa oa  9p
Therefore the corresponding recursion operator has in the basis d¢, dn, da, dg the
matrix
13 0 a 0
1|10 ¢ -a 28
V2lag o ¢ o
a?/2 a2 0 19

A 2 ~
The characteristic polynomial is ((f — )\)2 — &25> . When &2 # 0, the correspond-
ing pair of forms is decomposable, since the multiplicity of eigenvalues of the recur-
sion operator is only 2. However, if & = 0, then the recursion operator is diagonal,
therefore the corresponding pair of forms are proportional, therefore this pair is not
regular. Therefore the set of regular points on S?M coincides with the set & # 0.

So the reasonable question is to describe all the regular points on the Hilbert
scheme. We can note first that it is sufficient to consider points of the Hilbert
scheme (i.e., ideals on the 2-dimensional manifold) that do not come from products
of previous Hilbert schemes (i.e., to consider ideals contained in exactly one maximal
ideal). So let A be a ring of functions on a neighborhood U of the given point m € M
and I be an ideal such that A/I is a local ring with support at m.

Let us compute the tangent space to the Hilbert scheme S™U of U at the point
I € S"U. Let us remind that the Hilbert space is sitting inside the Grassmannian
Gr, (A) of subspaces of codimension n in A and that it consists of subspaces that
are ideals in A. Hence the tangent space to (the smooth submanifold) S™U is sitting
inside the tangent space to this Grassmannian. So we get the inclusion

T;S"U < T; Gry, (A) = Home (I, A/T) .

A standard theorem on the geometry of a Hilbert scheme (see section 1.6) shows that
the image of this inclusion coincides with the set of A-homomorphisms, i.e., with

Homy (I,A/I) = Homyu (I/1%,A/I) = Homy,; (I/1%, A/I) .

Now the analysis of the section on Hilbert schemes shows that to any Poisson
structure {, } on M there corresponds a Poisson structure on the Hilbert scheme, and
if the initial Poisson structure is nondegenerate, the Poisson structure on the Hilbert
scheme is also nondegenerate. A value at I € S™M of the bivector field on S™M
that corresponds to this Poisson structure is an element of A>Homy,r (I/1?, A/I).
However, it is very difficult to write this element explicitly.

We will use the fact that any Poisson structure {, } on 2-dimensional manifold M
with local coordinates x and y is proportional to a standard Poisson structure {, },
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on it:
0f g 0g Of\ def
Utk =v ) (Fot - 29) o 1.9k

Let us denote the corresponding to {, }, bivector in A> Hom 7 (I/I?, A/I) by ®, the
corresponding to {, } bivector by ®. What we are going to do is to express ® basing
on &, and ¢.

We note first that the vector space Homy,r (I/I%, A/I) is in fact an A/I-module.
We want to consider the space A2Homy; (I/1%,A/I) as a subspace of

Hom; (I/1?, A/I) ® Homy; (I/17, A/I) .

We can define a structure of an A/I-module on the latter space, where a - (o ® ) =
(a-a)® B. That action does not preserve the subspace A Homy,; (I/1%, A/I), how-
ever,

Lemma 6.2. Consider the element ®; € Homy,, (I/1?, A/I) @ Homy,; (I/1?, A/I).

(1) For any element a € A/I the tensor a®q is skewsymmetric;
(2) The bivector ® considered as an element of

Homy (I/IQ,A/I) ® Homy, (I/IQ,A/I)
is equal to ¢p®y.

Proof. Let us consider first the case when the ideal I of codimension n is a product of
n different maximal ideals m;. In this case the lemma is trivial, since we can identify
I/I? with the direct sum of 2-dimensional vector spaces @;m;/m? and can identify
A/I with the direct sum of 1-dimensional algebras &;A/m; ~ @;C acting in the first
direct sum diagonally. Since the bivectors ® and ®, are diagonal with respect to this
decomposition and the diagonal blocks are proportional with coefficient ¢ (m;), the
lemma is true in this particular case.

In the general case we can represent any ideal as a limit of a family of ideals of the
considered above type, hence the lemma remains true. [l

6.2. The description of the recursion operator. Let us remind the definition of
the recursion operator. We have two bivectors 7, 7o in a point m of manifold M. We
can consider them as elements of T,,, M ® T,,M = Hom (T;, M, T,,M). The recursion
operator is defined in the case when the bivector n; corresponds to an invertible
operator. We define it as 7 = mpn; ' € End (T,,M). In the general case, when the
bivector n can be non-invertible, we can consider the defined by this formula object as
a relation in the space T,, M, i.e., a subspace in T,, M x T,, M (when r is an operator,
this subspace is the graph of this operator).

Corollary 6.3. Consider two Poisson structures {, },, {, }, on 2-dimensional mani-
fold M given by following formulae:

{a}izwi{a}o’ 1=1,2.
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(Here {, }, is a nondegenerate Poisson structure on M, @1 and @, are two functions
on M.) Then on the Hilbert scheme S™M we can consider two corresponding Poisson
structures. The corresponding recursion operator (or relation) in the tangent space
to the Hilbert scheme S™M at I € S™M coincides with the operator (or relation)

Lo iyt € End (Hom; (I/17,A/T)),

where pu, is the operator of multiplication by ¢ € A in the A/I-module Hom s, (I/I?, A/T).

6.3. The set of regular points on S"M. Now we have sufficient information to
describe the regular points of the bihamiltonian structure on the Hilbert scheme.

Theorem 6.4. Let the point I € S™M is regular with respect to the bihamiltonian
structure on S™M corresponding to the pair of Poisson structures on M.

(1) If the support of the ideal I on M consists of several points, then the ideal I is
a product of k ideals I, ..., I with supports at k different points of M, any
ideal I}, l =1, ...k, is regular on the corresponding Hilbert scheme, and the
values of the ratio of Poisson structures on M at these points are different;

(2) If the support of the ideal I on M is one point m € M, then there is a smooth
curve C' > m on M such that I is a direct image of an ideal on C| i.e.,

dl

I _
fel (dtl

f|c> lm =0,1=0,...,codim] — 1.
Heret is a coordinate on C'. Moreover, if we write the second Poisson structure
on M as a multiple of the first one:

{a}QZSD{a}b

then m is a regular point of ¢|c, i.e., Lo|c # 0 at m.
(3) The previous conditions on I are sufficient for I being a regular point.

Proof. The first part of the theorem is trivial, since the corresponding ideal is coming
from S™ M x S™ M, and the bihamiltonian structure is a direct product. Hence we
can consider only the case when the ideal I has support at one point m € M.

We are free to change the second Poisson structure {, }, on M to the linear combi-
nation {, },—a{, },, @ = ¢ (m), that is degenerate at m. After this change ¢ (m) = 0.
It is clear that in that case all eigenvalues of r are 0. Let us remind that all Jordan
block of r appear by pairs. Therefore the condition of regularity is equivalent to the
fact that the recursion operator r has only 2-dimensional kernel (hence it has only
two Jordan blocks of size n). By the corollary this is equivalent to a fact that the
operator of multiplication by ¢ € A in Homy; (I/1?, A/I) has only 2-dimensional
kernel, or that the operator of multiplication by ¢" ! does not vanish. We want to
show that in this case there is an element g € I such that m is a regular point of g,
i.e., dg|m # 0 (we can take g as an equation of the curve C).
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There is a natural decreasing filtration in A/I consisting of images of functions on
M with increasing orders of zero at m:

F.(A/I) =mFA/I,

here m is identified with a maximal ideal in A. We can consider also the filtration in
I:
F.(I)=m"nI,
We need only to prove that Fy (I) # Fy (I), or what is the same, that dim Fy (A/I) /F» (A/I) <
2. We claim that dim Fy, (A/I) =n — k.

Indeed, we know that multiplication by "' is non-zero in Homy,, (I/1%, A/I),
hence "' # 0 in A/I. Therefore I is generated by " and some element g with
dg|m # 0, that proves the necessary conditions of the theorem.

To prove the last part of the theorem we should only inverse the previous discus-
sion. We should show only that multiplication by z in Homy; (I/1%, A/I) has two
Jordan blocks if I = (2™, y). An element o in Homy,; (I/1?, A/I) is uniquely deter-
mined by a (z™) and « (y), and these two elements of A/I can be arbitrary. Hence

Homy,; (I/1?, A/I) as A/I-module is isomorphic to a direct sum of two copies of
A/I, and z acts in A/I as a Jordan block. O

Remark 6.5. Let us compare this description with the above example of S?M. On
the latter Hilbert scheme any ideal corresponds to a pair of points or to a double
point on some curve on M (as the description with the blow-up shows). Therefore
the only condition of the theorem is that this pair is not on one level set or this curve
is transversal to the level sets of the ratio of two Poisson structures. It is easy to see
that this condition coincides with the condition & # 0 from the above example.
Remark 6.6. We see that in the case n = 2 the condition that the ideal corresponds
to some curve is trivial. However, already in the case n = 3 this is not so. On the
6-dimensional manifold S M there is a whole 2-parametric subset corresponding to 3-
tuples of collided points on M such that the collision was “from different directions”.
If this 3-tuple collides in the point m € M then the corresponding ideal consists of
functions on M with trivial 1-jet in m, i.e., to

It is easy to see that this is exactly three conditions on a function f.

Of course, any ideal of codimension 3 with support in m can be described as a
result of collision of three points on M. If three points were moving along the same
curve C, then the corresponding ideal comes from C, as in the theorem. We can
see that this is a generic case of an ideal with support at m: there is a 2-parametric
family of such ideals. However, if we cannot approximate the movement of these
three points by some common curve, then the resulting ideal is the described above.
Therefore we came to a very strange fact: a collision in general position results in a
special ideal, and some special collisions results in ideals in general position.



ON THE LOCAL GEOMETRY OF A BIHAMILTONIAN STRUCTURE 45

Remark 6.7. Another consequence of the description of the bivector field in terms of
the ideal is a possibility to describe weak leaves of codimension 2. Consider an ideal
I € S"M and a weak leaf L passing through the point /. Let L be a symplectic
leaf for {,}, — A{, },. We can represent I as a product of relatively prime ideals I,
and I; such that I, has the support on the curve ¢; — Ay = 0, I; has the support
outside of this curve. Now we can see that the above arguments have already proved
the following

Proposition 6.8. We can compute codim L as
dim Ker i, _xg,: Homayr, (Io/I5, A/Iy) = Homayr, (Io/I5, A/ L) -

Here we use the notations of the previous section. Therefore codim L = 2 is equivalent
to Iy being a regular point of S¥M, k = dim A/I,. Therefore I, has support in
mo € M such that ¢, (mg) = Ay (myg), and the closure L of L consists of ideals
inside the maximal ideal I,,,,.

6.4. The compact case revisited. Now we have made all the preparations for a
look on the known examples of compact bihamiltonian systems from the point of
view of classification theorems. Consider a Hilbert scheme of a compact surface with
two global Poisson structures. We want to show that though not any point of these
manifold is a regular point, the weak classification theorem from the section 1.7 is
applicable in any point of these manifolds.

Indeed, we know all the weak leaves of codimension 2 on S™M: a closure of such
a leaf consists of ideals that are supported in some maximal ideal I,,, m € M.
Moreover, if n > 1, then this point m can be any point but a common zero of
two Poisson structures. Therefore, if M is connected and two Poisson structures are
linearly independent, then the closure of the incidence set from the weak classification
theorem coincides with the natural incidence set

C"={(m,I)|ICl,}CMxS"M.

Now we only need to show that the natural projection C” — S™M is a flat mapping,
what is a standard fact of the theory of Hilbert schemes.

Remark 6.9. Now we finished a circle in the description of the bihamiltonian sys-
tems. First, in the section 1.7 we showed that under some mild conditions a point of
a bihamiltonian manifold can be described as a point on a Hilbert scheme of some
canonically defined surface. Then in the section 5 we constructed examples of com-
pact bihamiltonian manifolds as Hilbert schemes of compact surfaces. At last, in
this section we show that these Hilbert schemes satisfy indeed the conditions of the
classification theorem. Therefore, first, we cannot weaken the conditions of the weak
classification theorem, and second, the conclusions are sufficiently weak to be true
on a compact manifold.

Remark 6.10. Now we can also see how the generalized weak leaves look like. They
are of two different types: either closures of a weak leaf—i.e., the ideals in a given
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(generic) maximal ideal; or the ideals in the maximal ideal such that both Poisson
structures vanish in the corresponding point. We see that in the case of the Hilbert
scheme of a plane with 9 blown-up points there is no leaves of the second kind, but
they do exist if we blow up lesser number of points.

However, we can see that if we forget about Poisson structures, both this types
of generalized weak leaves look the same. Here we want to consider an example of
possible singularity on a closure of a weak leaf. In fact what we are doing here is to
investigate

L,={leS"M| I, DI}
for a fixed m € M.

Example 6.11. We have seen in the section 1.6 that in the case n = 2 the subman-
ifold L,, is smooth (and equal to the blow-up of M in m). Let us consider the case
n=.3.

It is easy to understand that the only point I, on L,, that can be singular is the
result of a generic collision of a triple of points to m. We can consider a local frame
such that m is a solution of x+ = y = 0. The corresponding ideal is (22, zy, y?).
Consider a nearby ideal I. It should contain a function that is near to x2, the same
for zy and y2. The transversality allows us to correct these monoms by terms of the
form Az 4+ By + C to get an element if /. Let us denote the corresponding functions

2?4+ ax + by + o
xy +cx +dy+ 5
v +ex + fy+ 7.

From the other side, a tangent vector to S*A? at I; is a mapping from

HomC[w,y]/(w2,zy,y2) (($27 Ty, y2) / ($4, xsy) - ay4) ) C[.T, y] / (.IQ, TY, y2))
= Hom(C[w,y]/(w,y) (($2a Ty, y2) / (3:3: ny, ny: y3) ’ (JI, y) / (xQ’ xy, y2)) -

Therefore, if we denote TyA? by V', then this tangent space is just Homg (S?V, V).
Hence the functions a, b, c,d, e, f form a good coordinate system in a neighborhood
of I().

We want to find the equations of the subset Ly of S®A? consisting of the contained
in (x,y) ideals. This subset is of dimension 4, and it easy to see that Iy is a singular
point of this manifold. Indeed, the SL (2)-action shows that there is only one invari-
ant subspace of dimension 4 in the tangent space to S®A? at I, and this subspace
obviously consists of triples with the center of mass at the origin. (The complimen-
tary 2-dimensional invariant space consists of translations of I;.) From the other
side, the tangent cone to Lg at Iy is SL (2)-invariant, therefore if it were smooth, it
would conincide with that subspace, what is obviously wrong. However, it is not so
difficult to write the equation for a tangent cone to this subset at [ explicitely.
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Indeed, if (z,y) D I, then a = § = v = 0. We claim that there are 2 ways to get
a homogeneous element of degree 2 in I. First, we can take a linear combination of
the above elements with a vanishing linear part, what is

(cf —de)z* + (be — af) zy + (ad — be) y* € 1.

Second, we can use the relation 22 - y? = (ajy)2 and substitute instead of quadratic
monoms the congruent linear functions, what gives

(ae — ) 2® + (af 4+ be — 2cd) zy + (bf — d*) y* € L.
Compatibility gives us equations of Ly:

cf —de  be—af  ad—bc
ae —c2  af +be—2cd bf —d?

(it is easy to see that these conditions are sufficient for the ideal

(z* + az + by, zy + cx + dy, y* + ex + [y)

to be of codimension 3).
We see that even in the simplest possible case the tangent cone in a singular point
is given by rather complicated equations.

Remark 6.12. We have seen in the previous remark that a generalized weak leaf looks
exactly as the closure of the weak leaf if we forget about the Poisson structure on it.
Therefore the singular points on it have the same geometry. However, it is a union
of weak leaves of codimension > 4, therefore it is interesting to investigate how these
leaves are positioned in a neighborhood of the singular point.

So suppose that the origin is a common zero for both Poisson structures on A2,
Then the considered above subset

Lo={I € S*A? |1 C (z,y)}

is a generalized weak leaf. A closure of a weak leaf of generic position inside Lg
consists of ideals of codimension 3 inside the ideal (z,y) - (z — xo,y — yo), Where
xg # 0 or yy # 0. The equations of this subset in the coordinates a, ..., f are

$g+a$0+by0=0
ZoYo + CTo + dyo =0
Yo + exo + fyo =0,
therefore these submanifolds are flat sections of the cone in question. These sections
miss the vertex of the cone, are flat and isomorphic to the blow-up of the plane at
the origin and at the point (o, yo)-

The others weak leaves of dimension 2 are limits of the above ones when the point
(x0,%0) goes to the origin. So consider the limit of (exg,eys) when € —0. The
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corresponding equations in the coordinates a, ..., f are
axg + by() =0
CcXo + dyo =0
exy + fyo =0,

we can suppose xg = 0. The equations of the weak leaf become b = d = f =0, and
the equation of the cone after this restriction become

ae — c? = 0.

We see that these 2-dimensional weak leaves (that are exeptions!) have simpler
singularities than the 4-dimensional leaves (that correspond to the case of general
position!).

6.5. The Magri subset. Now, when we know the set of regular points in S™ M, we
want to show what this set is already described in the Magri work. First, we suppose

that M is C?> = T*A!, the first Poisson structure is the standard one % A % and the

second is x% A di (any generic bihamiltonian surface can be reduced locally to such
y

a form by a coordinate change and a change {,}, = a1 {, }; + @2 {, }, with some
constant «;;). Here we are going to introduce the coordianate system on the Hilbert
scheme that establishes a connection between the subset of regular points and the
Magri coordinate system on a bihamiltonian manifold in general position.

Consider the subset U of S™M consisting of regular points I on S™M such that
the first Poisson structure is non-degenerate in these points. Any such point satisfies
the following condition: if {ms, ms,..., my} is the support of the ideal I, then all
the z-coordinates = (m1) ,x (m2), ...,z (my) of these points are (finite and) distinct.
In this case the factors I}, [ = 1,...,k, of the ideal I at points my, | = 1,...,k,
determine some n;-jets of curves in these points that are transversal to the level sets
x = const. That means that we can find a curve C = {(z,y) | y = f (z)} with given
jets in points m,;. Since

k
Z (n+1) =mn,
=1
we can in fact choose f to be a polynomial of degree n — 1, and this condition
determines the curve C' in the unique way. We call this polynomial f;.

If we know the curve C, then to determine the ideal I it is sufficient to find the
corresponding ideal in the ring of functions on C'. (We should remind that the ideal
I is by definition a direct image of an ideal on C.) However, the projection z on Al
identifies this ring with the ring of functions of x.

Any ideal in the ring of functions on line is uniquely determined by its support (con-
sidered as a finite subset of C with multiplicities). In turn, this subset (1, zs, ..., %)
is uniquely determined by the values of the elementary symmetric functions on it.
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Here we want to show that the Magri coordinate system is associated with a partic-
ular choice of the set of symmetric functions, with s; = " 2!, 1 = 1,...,n, This choice
identifies S"A! with a subset in the dual space to the vector space of polynomial of
degree < n by

(X1, -y Ty) > (PHZP(&:J) )

Indeed, we see that to determine the ideal I € U C S™M it is sufficient to provide
the corresponding polynomial f of degree n — 1 in = and a linear functional

l1: P P(x)

on the vector space P, of polynomials of degree n. Since I sends 1 to n, it depends
essentially only on the derivative P’ € P, _:

I (P) = nP (z0) + 1; (P).

Let us consider instead the corresponding functional on P, _;:

E:PHZ/ P (t) dt.
i Yo

A change of the constant xy results only in an addition of an independent of I func-
tional on P,_y, i.e., the translation of the image of T*A! in P*_,, what is irrelevant
in what follows. We put zo = 0.

Hence we identified U with P,,_y x P;_, =T~
there is a natural symplectic 2-form

(6.33) ((f1, 1) 5 (f2s 02)) = (fr,02) — (f2, 1),

that determines a translation-invariant symplectic or Poisson structure. Let us show
that this structure coincides with the first Poisson structure on S"M = T*Al. It is
sufficient to show this on an open dense subset, hence we can consider the subset of
U where all n points x4, ..., z, are different.

If n = 1, then the ideal I (i.e., a point (x1,y1) € M) goes to a constant function
fr(z) = y; and a functional [;: 1 — 7, so the claim is evident in this case. In
general case let I correspond to {(z;,y;)}, i = 1,...,n, in (z,y)-representation. We
can represent any tangent vector {(dz;, 0y;)} at I as dox; = P (z;), 6y; = Q (y;) with
appropriate P, € P,_1, and the bracket of two such vectors with respect to the
symplectic structure is

{P.Q).(P.Q)} = (PQ-PQ) ().

1

" _1- On the latter vector space
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On the other side, consider ( f,l‘)—representation. Since f (z;) = vy;, the Pp_1-
component ¢ f of this tangent vector is

Q—Zp(xi)f'(ivi)Ti,

where T is the only polynomial of degree n — 1 with zeros in z;, j # ¢, and a value
1 in z;. The P;_,-component is

P Y P () ((di) p> (@)=Y P @)p @),

so the symplectic structures coincide indeed.

We can see now that we have identified an open subset U of the set of regular
points on S™ (T*A') with 7* (S™A') (here, in 1-dimensional case, the Hilbert scheme
S"A! coincides with (A!)" /&,,), and the first Poisson structure on U goes to the
natural Poisson structure on the cotangent bundle.

It is also easy to see now that the second Poisson structure can be also described
easily in terms of P and P*. It is slightly easier to work with symplectic structures
again, so consider the open subset x; # 0, 7 = 1,...,n, where the second Poisson
structure is non-degenerate. Working with symplectic structures allows as consider
the pairing of tangent vectors instead of cotangent, and the bracket of the above
tangent vectors with respect to this (second) symplectic structure is

{P.Q),(P.Q)}, =Y (P2~ PQ) () /o

7

Therefore, if we denote by M, a linear operator in the space®® P,_; such that
(M{ﬂ?i}f) () =f(x)a, 1=1,...,n,

then the corresponding symplectic form in P,,_; X P;_; at ( f,f) , Where l~corresponds
to {x;}, is

((0£1,0¢1) , (82, 02)) = (Mho 1,802 ) = (MY Sz, 001)

That means that the corresponding Poisson pairing (given by the inverse pairing
matrix) can be written as

(6.40) ((dfv, depr) , (dfa, dpa)) = (M, qdf1, da) — (M, dfa, dir) .

Here df,, are linear functionals on P,_; = Tf dy1 2 are linear functionals on

*
n—1’
%

n—1-

20That is the vertical tangent space for the cotangent bundle to Pr_i.
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Let us note now that ME‘M} depends polynomially on the point Emi} € P;_,. Indeed,
M.,y is essentially the multiplication by x corrected by a term killing the coefficient
at ™

(6.41) My f = xf — (the leading coefficient of f) - Py,
where Py, is the only polynomial of degree n with the leading coefficient 1 andzeros
in z;, 2 =1,...,n. The coefficients of P, are another set of elementary symmetric

functions of z;,
Py (z) =2" — 012" ' + 092" — -+ Lo,

However, the variables o, depend polynomially on the variables s;, i.e., coordinates in
the vector space P;;_,, therefore the operator M(,,; depends polynomially on the point

liz;y € Pi_,, therefore the second Poisson structure on the linear space T* (S"A') =
T*P;_, is polynomial.

Formally speaking, we proved that these formulae are true only on the open dense
subset x; # 0, however we can extend them anywhere by continuity. We get the
fact that the identification of the open subset U of the set of regular points on
S™ (T*A') with the vector space T*P*_, transforms the first Poisson structure into a
constant one, and the second Poisson structure into a polynomial Poisson structure.
In the following section we consider another coordinate system that will simplify this
situation yet further.

However, the formulae we get coincide literally with the formulae for a bihamilto-
nian structure in the Magri’s coordinate system. Let us consider the Magri’s hypoth-
esis. He considered the characteristic polynomial of the recursion operator. As we
have seen, this polynomial is an exact square. Consider a mapping from the bihamil-
tonian manifold to the set of polynomials that sends a point to a square root of this
polynomial. We call this mapping the Magri mapping.?* The Magri theorem claims
that if this mapping is a submersion, then in an appropriate coordinate system there
is a local normal form of the Poisson structures on the manifold (that coincides®?
with the formulae (6.33), (6.40), (6.41)). From these formulae (or the formulae of the
Magri’s paper) we can see that any such a point is a regular point of bihamiltonian
structure, and the non-degeneracy condition is satisfied. This shows that in fact our
conditions are equivalent to the Magri’s ones.

Therefore combining two local classification theorems, the Magri’s one and the our,
we get the following

Corollary 6.13. The following two conditions on a point on a bihamiltonian mani-
fold are equivalent:

2 fact the Magri considered a slightly different mapping: instead of considering the coefficients
of the square root, that are the elementary symmetric functions o;, he considered the symmetric
functions s;, exactly as we here. However, the conditions of submersion are equivalent for these two
mappings, so we permitted ourselves to interchange these two mappings.

2270 see this we can note that s; are exactly the local Hamiltonians in the original Magri mapping.
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(1) The point is a regular point, any weak leaf passing through it intersects the
set of good points, and the first Poisson structure is locally non-degenerate;

(2) The first Poisson structure is locally non-degenerate and the Magri mapping
is a submersion.

It is not clear how to get this corollary more directly.

6.6. Another coordinate system. Here we want to show that if instead of con-
sidering the elementary symmetric functions s; on S"A! we consider the elementary
symmetric functions o;, then the formulae of the previous section can be simplified
a lot. Considering a particular set of functions on S™A! is just a way to introduce a
coordinate system on this set, so to rewrite the formulae of the previous section in
another coordinate system we want first to give a coordinate-independent description
of two Poisson structures.

It is very easy with the first Poisson structure, since it is just a canonical Poisson
structure on T* (S™A!), therefore we can easily rewrite it in any coordinate system.
However the description (6.40) of the second Poisson structure uses the decomposition
of the tangent space to a point in 7* (S"A') into a horizontal and a vertical parts,
what is much more difficult to rewrite. Here we give another description of the second
Poisson structure on T* (S™A!).

In the previous section we defined an endomorphism My, of the linear space P,_1,
and considered it as an endomorphism of the cotangent space to S"A! = P*_, at the
point {z;} € S"A!. Here we want to consider this family of mapping of cotangent
spaces as a universal mapping M : T*S"A! — T*S"AL.

Proposition 6.14. Consider a subset W = {z; #0|i=1,...,n} of S"A'. The
restriction of M on T*W is a diffeomorphism, and the second Poisson structure on
T*W is a direct image of the first structure under the action of this diffeomorphism:

(643) {(pla 902}2 = {(pl © Ma ®2 © M}l :

Proof. 1t is sufficient to prove this on an open dense subset of configurations of
different points. Locally on this subset S™A! is isomorphic to (A!)", so T* (S™A!) is
locally isomorphic to a direct product (T*A!)". Both Poisson structures, as well as
the mapping M can be written as direct products, so it is sufficient to consider the
case n = 1, that is obvious. O

Remark 6.15. The fact that the second Poisson structure can be written by both the
formulae (6.40) and (6.43) requires very special properties of the mapping M. These
properties are insured by the following nice, simple, and totally unexpected lemma
that expresses symplectic properties of the dependence of o; on s;. To formulate it
we need to repeat some definitions.

Consider the coordinate system s;, i = 1,...,n, on S"A!. It essentially identifies
SmA! with a dual space to the vector space of polynomials of degree < n with a zero
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at the origin:

{zi} — (P () — ZP(%‘)> .
i

The differentiation identifies this space of polynomials with P,,_;. Denote the corre-
sponding mapping S"A! — P’ by S.

Consider the coordinate system o;, i = 1,...,n, on S®Al. It essentially identifies
SmA! with the space of polynomials of degree n with a leading coefficient 1:
The translation by —z" identifies the latter space with P,_;. Denote the correspond-
ing mapping S"A! — P,_; by X.
Lemma 6.16. Consider the mapping

Sx¥: S"Al =Pk x P, =T*P:_,.

The image of this mapping is a lagrangian submanifold, and the corresponding 1-form

. d . . .
on P;_, is —%. Here we consider the elementary symmetric function s,,; as a
function of sy, ..., Sp.

Now, when we know the coordinate-independent expressions for the Poisson struc-
tures in question, we can write them down in the coordinate system o; on S"A!. The
only thing we need to do is to write down the expression of the operator M in the
new coordinate system.

Lemma 6.17. Denote the dual to o; coordinates on T*P,,_1 by ;. Then the matrix
of the operator M., in this basis is

g1 g2 [P Opn—1 Op
-1 0 ... 0 0
o -1 ... 0 0 = M.
o o ... =1 0

The second Poisson structure can be written as

- (0f g g Of 9f 99
i ’9}2_%:%’(80,- 0%, 90,05, +ZN”02Z- oy’

where
0o X ... X,
-3 0 ... 0
N;j = . .. .
-, 0 ... 0

We see that in this coordinate system two Poisson brackets in question are of the
simplest possible form: the first is constant, the second is linear. In fact we defined
a pair of affine Poisson brackets on T*P,,_1.
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6.7. The corresponding Lie algebra. Let us remind the usual description of affine
Poisson brackets:

Lemma 6.18. Call a Poisson bracket on a linear space V an affine bracket, if the
bracket of two linear functions is a linear (nonhomogeneous) function. There is a
1 — 1 correspondence between affine Poisson brackets on V' and pairs (|, ],c), where
[,] is a structure of Lie algebra on V*, and c is a 2-cocycle on V'*.

Proof. Define the Lie operation on V* as a linear part of the Poisson bracket:

[1, 2] = the linear part of {1, ps},
and the cocycle as

c(p1,02) = {¢1, 92} lo-
The inverse operation is the consideration of the corresponding to ¢ central extension

V* of V*, and the identification of V and the subspace of (17*) passing through

c € (‘N/*>* Due to this identification the Lie—Kirillov bracket on (17*)* defines a
Poisson bracket on V.

The formulae of the previous section show that any linear combination

)‘{’}1+{’}2

of brackets on T* (S™A!) is affine in the coordinate system o;, and the linear parts
of these brackets coincide. That means that on the dual space to T*P,_; there is a
structure of Lie algebra. Moreover, there are two cocycles ¢y, co for this algebra, and
the Poisson brackets A {, }, + {, }, are associated with the sums A¢; + c,.

To write down this Lie algebra structure let me remind that we write a generic
polynomial p € P,_; as

—o " Pt o™ — -+ 0,

(so o; are linear coordinate functions on P,_1, 0; € P;_,), and we call the dual

coordinates on P} _, by ¥;, ¥; € P,y (in fact X; = (=1)" 2" %).

Lemma 6.19. The only non-zero brackets of basic elements for the Lie algebra
structure on P,_1 X P;_, associated with the second Poisson structure are

2,%]=%;,i#1, and [Xq,0%] = —0%.
The only non-zero coordinates of the cocycle ¢, are
c(0i,5,)=1, i=1,...,n.
The only non-zero coordinates of the cocycle cy are

CQ(O’i,EZ’_H):l, izl,...,n—l.
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Remark 6.20. It is interesting to find some algebraic conditions on this algebra that
make it appear in this geometrical situation. It is easy to recognize the Jordan case
of undecomposable pairs of bilinear forms in this pair of cocycles. One conjectural
description would be that this is a generic case of a Lie algebra structure on a vector
space such that this pair of forms is a pair of cocycles. See the next section for a
discussion of a simplest example n = 2.

In that section we show that in this particular case the set of compatible Lie algebra
structures has two irreducible components of maximum dimension, and that any of
these components contains an open orbit of the group of automorphisms of the pair
of forms. Moreover, though two Lie algebra structures corresponding to these com-
ponents are noon-isomorphic, the corresponding local bihamiltonian structures are
isomorphic (so this isomorphism is non-linear). We will see also that the considered
here structure corresponds to one of these two components indeed.

6.8. Examples of linearizations and non-smooth spaces M. The discussion
in the previous section allows as to formulate the following

Problem 6.21. Consider a pair of skewsymmetric bilinear forms «, 5 in a vector
space V. Find all Lie algebra structures in V' such that o and S are cocycles.

We have seen that such a structure determines a bihamiltonian structure in the
space V*. It is especially interesting to consider this problem in the case when «
and [ form an undecomposable pair of forms. In this section we give the solution of
this problem in the first non-trivial case, when dimV = 4 and «, [ form a pair that
corresponds to a Jordan block.

Theorem 6.22. Consider a pair of skew forms

a*Na*+b"ABY, at Ab*
in 4-dimensional vector space V with a basis a, b, o, . These forms are 2-cocycles for
the following Lie algebras:

(1) [o, 8] = B, [, a] = a, [o, 0] = —b;
[Ck ﬁ]_2ﬂ7 [Ck (L]—G, [Ck b] b; [ﬁab]:a;
la,0] = o, [b, ] =
o] = 6,[ba]—a[bﬁ]
b,8] = B;

In this list we write only non-zero brackets. Moreover, any Lie algebra structure
for which these forms are cocycles can be transformed to one of these forms by a
linear transformation of V' which preserves this pair of forms.

Remark 6.23. Consider the set £ of all Lie algebra structures on V' such that the
above forms are cocycles. The theorem claims that the group G of automorphisms of
this pair of forms acts on £ with 7 orbits. Denote by H the subgroup of G consisting
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of elements which preserve vectors o and 3. Note that G = SL, X H. Then the
first two orbits are principal homogeneous spaces for GG, the stabilizer of the third is
Z/27 x H, the stabilizers of the fourth and fifth are H, the stabilizer of the sixth is
Z/3Z x H, and the seventh orbit consists of one point. Here the generator of Z/27Z
is the element

a— —08, f—a a— —b b a,
of SLy, and the generator of Z/3Z is the element
a—po, B p'B, am pTla, b pb,

here 3 = 1.

It is interesting also to understand which of these orbits are adjacent. Unfortu-
nately, the simple analysis leading to the theorem 6.22 could not give the answer on
this question. A cumbersome and absolutely straightforward calculation shows that
the picture is as the following:

(1) (2) (3)

N
4) — (?) = (7)

(5)

However, it is unclear how to check that this calculation contains no error, so one
should handle this statement with some care. One check is the compatibility with
the classification of bihamiltonian systems. The description below shows that there
is no immediate contradiction with the geometric intuition.

If we accept the above statement, we can see that £ contains 5 irreducible com-
ponents in two connected components. The bihamiltonian structure considered in
the previous section corresponds to Lie algebra structure that is a point in an open
subset of one of two irreducible components of maximal dimension. We will see that
the points in another orbit of maximal dimension correspond to the same (local)
bihamiltonian structure.

It is easy to understand how to write the Poisson bracket {,}, = A{,}, +{, },
that corresponds to any particular case of the theorem. We want to investigate this
bracket in the third case of the theorem.

Example 6.24. On V* we can consider coordinates a, b, o, 8, and the basic brackets
are:

{a,a}, =a+ A, {68}, =0+ {ab}, =1

The conditions that two cocycles form a Jordan pair imply that the origin is a regular
point on V* with a double eigenvalue 0. Consider the space of weak leaves.

The Pfaffian of the corresponding to {, }, bivector is (o + A) (8 + A), therefore this
bivector is degenerate in two cases: @« = —\ and 8 = —\. Let « = —A. Under this
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restriction a bracket of « or e® (8 — «) with any other function is 0. Therefore

o = Qy, ea(ﬁ—a):ﬁo

are equations of weak leaves. In the same way § = —A\ gives the second set of weak
leaves:
e’(B-—a)=m, B=7p.

However, if 5y = a1 = 1 — ag = 0, then these two families of equations give the
same weak leaf. Hence the parameter space of weak leaves is a union of two planes
intersecting by a line.

Therefore we get an example of a reqular bihamiltonian structure that has a non-
smooth parameter space of weak leaves! Two Poisson structures on this space are
given by

{ow, Bo}y = —awBo,  {Br,01}; = Bra.
{ao, Boty = =B, {Br, 1}y, = au.

Any one of these two Poisson structures corresponds to bivector fields on the inter-
secting planes. We can see that the bivector fields on these planes vanish on the
intersection line with opposite linear parts.

Remark 6.25. Let us list the descriptions of bihamiltonian structures in the remaining
examples. The first two examples lead to the same bihamiltonian structure as the
considered in the previous section (for dim = 4). The first one leads to the same
coordinate system as before, the second one to a different coordinate system. The
remarkable property of the latter coordinate system is the fact that not only one of
the Poisson structures is constant and the other one affine, but also the Lie derivative
by a constant vector field % transforms the linear one into the constant one! We do
not know if it is possible to do the same in the case dim > 6.

We have already considered the third case. In the fourth case we get an example
of a bihamiltonian structure with bivector fields forming a Jordan pair at any point.
Turiel introduced the multidimensional generalization of this example in the paper
[8].

In the fifth example we get again a pair a planes intersecting by a line as a parameter
space of weak leaves. However, in this case one Poisson structure is as above, the
other Poisson structure vanishes on one plane, and on the second one it has a zero of
the second order on the intersection line.

In the sixth example the pair of Poisson structure can be transformed to a translation-
invariant form in the coordinate system a,b—a?/2, 3, Ba+ . In the seventh example
the pair of forms is already translation-invariant.

Remark 6.26. We want to explain here how to interpret the above example of non-
smooth M® using the language of Hilbert schemes. If M is smooth, then M can
be identified with a piece of the Hilbert scheme S¥M® (here k = 2). We want to
analyze here what can be a possible generalization of this fact to a case of non-smooth
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manifold. We know already both M and M®, below we compute S>M® and see
that S2M? is non-smooth, but normal, and M is an irreducible component of the
normalization of S?M®.

Consider a union M of two planes 7; and 75 in 3-dimensional (projective) space.
Consider a Hilbert scheme of this variety on the level 2. Consider three open subsets
on S2M: the first consists of pairs of different points, one on each of planes; and the
other two consist of pairs of different points on either one of planes. The closures
of these open subsets form three irreducible components of S2M. The last two
components are clearly smooth. We are going to study the geometry of the remaining
component.

To any pair of different points on M we can associate a line passing through these
points. It is easy to see that we can extend this mapping to a mapping from the
Hilbert scheme to the set of lines in the space. The preimage of a line consists of
one point of the Hilbert scheme excepting the case when this line is inside M. In
the latter case the preimage is a 1-dimensional manifold naturally identified with the
line in question, except the case when this line is m; N 7y, when this preimage is the
symmetric square of this line.

Since two subsets II;, II, consisting of lines inside 7; intersect transversely in the
set of lines in the space, we can consider a blow-up L of the latter space in these two
subvarieties. The order of two blow-ups is irrelevant because of the transversality.
The preimage of II; \ I, consists of lines in 7; with a marked point, the same for
[Ty \ I, the preimage II;5 of II; N II, consists of ordered subsets of two points on
IT; N I,.

We see that the first irreducible component of S?M can be identified with the
quotient of L by the action of the symmetric group G, on the submanifold Il;5. The
only non-smooth points on this quotient are the points on the image of ITy5. Consider
a point on this image. In a local coordinate system II;5 is given by the equations
xz =y =0 and &, is acting by (0,0, z,t) — (0,0, —z,t). We can split off the variable
t and consider the 3-dimensional manifold with coordinates x,y, z and an action of
Syonz=y=0hby (0,0,z) — (0,0, —2).

The basic coordinate functions on the quotient are (z,y,rz,yz,2%). We can see
that v/22 = % is an element in both the integer closure and the field of ratios of this
ring, therefore the normalization of the quotient is the initial 3-dimensional space.?
Hence the normalization of the Hilbert scheme is smooth. One of three connected

23The analogous 2-dimensional example where &, is acting on z = 0 as (0,y) — (0, —y) corre-
sponds to the famous Whitney’s umbrella. Indeed, the basic coordinate functions on the quotient
are

a:x’ b:'ry) C:y27
and the relation is b% — a?¢c = 0.

In this example it is easy to draw the corresponding picture and to see that the result of the
normalization (i.e., of the separating of two intersecting sheets of the umbrella) is the initial plane.
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components of this normalization is the discussed above blow-up of the space of
lines.

Now to a Poisson structure on M we can associate a Poisson structure on an open
subset of S?M. However, we cannot apply the proof from the section 1.6 to extend
this Poisson structure to the whole S?M: there are additional hypersurfaces where
the corresponding bivector field can have a pole. They are two exceptional divisors
on the blow-up. In fact a simple calculation shows that this bivector field has a pole
unless the bivector fields on the components of M have opposite linear parts on the
intersection. (These bivector field should vanish on the intersection for the Poisson
bracket of two functions to be a function on M.)
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