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. . . the history of the theory of numbers [. . . ] is dominated by the law of reciprocity.
Letter from Andre Weil to Simone Weil (Bonne-Nouvelle military prison, Rouen, March 1940)

When I discovered that the sine can be expressed algebraically as a series, a barrier came tumbling
down, and mathematics became one. To this day I see the various branches of mathematics, together

with mathematical physics, as a unified whole.
I.M. Gelfand, Interview with Quantum (Jan–Feb 1991)

These notes grew up from a brief discussion about the Langlands program we had at our Math Circles (in sections
for grades 3–4). The format of our Math Circles includes detailed reports about every meeting sent to the parents (who
are assumed to discuss them with the kids). At the meeting in question, we were intentionally vague about most of
technical details, painting only the rudimentary outline in very coarse strokes. However, it turned out that to make a
meaningful written exposition, we needed to fill these holes in the report. This resulted in a huge appendix1 to the
report to the parents; it became the bulk of these notes.

All that these notes require from the reader is a fluent working knowledge of “engineering-grade math”—and a lot
of stamina. We also had an ulterior motive: the way we wrote the “Langlands part” puts it out of reach for all but
a handful of most advanced high-schoolers. So we hope that these notes demonstrate how accessible this beautiful
landscape turns out to be, and that this may inspire one of the readers to find further simplification which would allow
detailed discussions of the Langlands Program in Math Circles for high-schoolers.

Moreover, we already know how to discuss the first segment of these notes (one dedicated to Quadratic Reciprocity)
at Math Circles. To reflect this, certain parts of this segment are written in a particular form to match what we did
with kids in our circles (Grades 1–4). We put such parts between the signs M M/// .

Essentially, our aim is to expose a few simplest cases (of those not covered by Class Field Theory) for which the
Langlands program works as a bridge between two “almost” completely elementary contexts—“almost” since one of
them needs Fourier series. . . 2 (In general, the Langlands program needs to be stated in terms of two “representations”
—and both are quite high-brow topics. In contrast, we do not mention representations until almost the end of these
notes.)

In the appendix, we highlight features of Euler’s approach to quadratic reciprocity. This approach (“look for
symmetries”) is more suitable to generalizations than Legendre’s approach (the “reciprocity”). (However, it is the
Legendre’s approach which the “popular math” movement made better known.)

1 We hoped to make it short, and the first versions were—but they turned out to be unreadable.
2 Only a very minimal knowledge of Fourier series is required. In this context, the most important feature is the

Fourier transform being a bijection between sequences and periodic functions— so it recodes the information contained
in the series into a function (and back).

It is also useful to understand that the rate of decay of Fourier coefficients corresponds to the smoothness of the
sum of Fourier series. (In particular, taking derivative—which makes a Ck-function “less smooth”—corresponds to
multiplication by n—which makes the Fourier coefficients decay slower. Likewise for integration: it makes a function
“smoother”, and makes the Fourier coefficients to decay quicker.)

Finally, it may help to know some particular cases of the preceding connection. In particular, if coefficents are in `1
(hence “do not decay too slow”) then the sum of the series is a continuous function. (In the opposite direction one can
get only a much weaker estimate: continuity implies that the coefficients are bounded.3 )

3 Recall that it is possible to get a 1-to-1 match between “degrees of the growth of coefficients” and “degrees of
smoothness of the sum”—but one needs a bit more complicated gauges of these degrees, such as the Sobolev classes

1

https://www.ams.org/notices/200503/fea-weil.pdf
http://israelmgelfand.com/talks/quantum_interview.pdf
https://en.wikipedia.org/wiki/Sobolev_space#The_case_p_=_2
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In the electronic copy there is a lot of clickable crossreferences and links to Web resources.4
The plots there allow a deep zooming in.

Contents

Digest: Meetings on Quadratic Reciprocity etc. (Grades 1–4, Ilya 2018-05):
the “hidden symmetries” in deg = 2 are periodicity and mirroring

Divisors of polynomial sequences: the simplest cases 5
Example in deg = 2: pizza numbers 6
Wheels 9
Conductor of another sequence of degree 2: “squares + 3” 10
Divisors of sequences of deg = 2: two more cases 12
Improved coloring 15
Euler’s formulation: the “hidden symmetries” 15

Degree 3: a coarse-grained approach (Grades 3–4, Ilya 2018-05).
The “hidden symmetries” are not as for degree 2

From degree 2 to degree 3 (and the M -family) 18
Example: Divisors of “tetrahedral numbers + 2” 19
Recent developments: the Langlands program 20

Exercises for the preceding chapters
Exercises 0: Polynomials 22
Exercises A: Wheels and modular properties of arithmetic progressions 23
Exercises B: Modular properties of 4-numbers 24
Exercises C: Quadratic Reciprocity modulo small numbers 25
Exercises D: “Qubic Reciprocity” cannot be exactly the same as quadratic 27
Exercises E: Aside: search’s cutoff and the degree of certainty 28
Exercises F: Aside: Counting mutually prime numbers 30
Example code to use in exercises 31

The simplest Langlands’ patterns in more detail:
the “hidden symmetries” in deg = 3 are fractal

Bread crumbs: A very coarse outline of the Langlands’ pattern 33
The appetizers for what follows 36
In more detail 40
Fractality laws: the simplified example 40
The zoo of fractality laws 43
Example: the toy fractality law as a symmetry 43
The Cantor set of non-smooth points on the example plot 45
All the fractal transformations together: infinities and regularizations 48
Fractality law for antiderivative 49
Hidden symmetries in degree 3: the first “real life” case 49
A simpler-to-plot example: M = 6 52
Maass fractality laws 55
The transliteration rules 59

Appendix: More patterns, and additional pictorial examples of symmetries
Plots for degree 2 62
The fractality laws in a reducible case 63

4 The paper copy has them dot-underlined, as above.

https://en.wikipedia.org/wiki/Langlands_program#Current_status


CONTENTS 3

Decompability inverts distillation 67
Abelian case of degree 3 and the “extra distillation” 67
The “extra” distillation in degree 4 and the “expected” behavior 68
Finer points of the transliteration rules 72
“Distillation” and Motives 75
Fractional-linear transformations 78
Prime conductors and “Tetrahedral + 2” again 79
The honest fractality law for F (−1)(t) 81
Historical approach: cases that only the Langlands program can explain 82

On Lobachevsky geometry and zones of self-similarity
The groups of symmetries 84
Lobachevsky-symmetries: the case c = 1 85
Enhance the picture: the gray disks 86
The case c = 5 87
The gray disks and the “special zones” 88
Covering properties of the zones of horizon-self-similarity 91
More symmetries 93
Adding “sign-flipping” zones 95
All horizon-similar zones 96
Complement to zones 99

Degrees higher than 3: the same “hidden symmetries” as for degree 3
appear only if an “extra distillation” is possible

Degree 4: the surprising (counter)examples 102
Distillation undoes “fusion” 114
Grand Unification I: Denominators in Weil Conjectures 115
Grand Unification II: Permutation matrices and Galois symmetries 117
Grand Unification III: From reducible polynomials to “distillation” 118
Example: the naive distillation 120
The “extra” distillation: the case D4 122
Fdist(t) and how to recover the sequence of colors 124
Cubic reciprocity: Class Field Theory in degree 3 125

Appendix: Getting closer to the Langlands Program
More on the fractality laws in a reducible case 128
Frobenius 131
Artin representations 131
Random yet-unincorported bits and pieces 132

Supplementary Musings: “Ghost jumps” in Eisenstein series
Examples of dealing with Eisenstein series 135
The case n = 2 140

Supplementary Musings: closing the gaping holes
More details on the M -family 144
3 smallest conductors 145
The flattened parts of the graphs 145



4 CONTENTS

ζ-functions 156
Appendix: On verification,—and the future

The adelic completion 160
The behavior near t = 0 and the relation to θ-factors 162
On γ-factors and ϑ-terms 162
Examples of ϑ-terms 165
The Hecke operators 167
The Hecke operators and higher degrees in Langlands program 169
Verification and further examples 171
The bird’s eye view and the Grothendieck group of manifolds 174

Exercises on Fourier transform
Exercises G: Fourier transform as black box—and other approaches 176
Exercises H: Fourier transform and “generalized functions” 178
Exercises I: Convergence of generalized functions 180
Exercises J: Visualization of generalized functions 181
Exercises K: Meander wave 187
Exercises L: Fourier transform and measures 191
Exercises M: Other starting points for formal derivatives 197
Solutions to Fourier “Meander wave” exercises 199
Exercises N: Cesàro-like summation 201

Appendix: Quadratic reciprocity: Euler vs. Legendre
Euler formulation was future-proof 207
Legendre’s notation and top-multiplicativity 208
Euler’s formulation implies the case of small |N | 208
Legendre’s p↔ q-reciprocity 209
Euler’s formulation implies p↔ q-reciprocity 209
Legendre’s formulation implies bottom-periodicity 210
Legendre’s formulation implies palindromicity 210
Legendre’s formulation and bottom-multiplicativity 210
Compare Euler’s and Legendre’s formulations 211

Appendix: A few more words on Quadratic Reciprocity
The case p = 2 of

(
n
p

)
and the shortest period 213

Divisors of P (n) with quadratic P 214
Used resources

How to compute 215

Oct 2022. Typeset: July 12, 2023.



Digest: Meetings on Quadratic Reciprocity etc. (Grades 1–4, Ilya 2018-05):
the “hidden symmetries” in deg = 2 are periodicity and mirroring

This chapter is very special: these (very mathematically rich and important for contemporary
math!) themes can be discussed—on a rather deep level—with a first-grader who is well advanced
in math; nevertheless, even many working mathematicians have a rather skewed impression what the
quadratic reciprocity “is really about”. As a workaround, here we try to intertwine three different
stories:

• What are the “hidden symmetries” in the simplest non-trivial cases;
• How a not-very-experienced-in-math person can “discover” these symmetries (and how to
teach this in Math Circles; these parts are bracketed by M / M/// signs);
• Remarks for experienced mathematicians on the general framework (mostly in the last two
sections).

This chapter is based on a digest of what we did in our Math Circles. An experienced reader who
is not interested in teaching does not need to read this meticulously—especially the parts bracketed
with M / M/// . In fact, a very experienced reader may jump to the last two sections (p. 14) immediately.

Divisors of polynomial sequences: the simplest cases

In these notes we start with a given polynomial sequence Pm—which is the sequence of values
of a polynomial P . (The group 0 of exercises on p. 22 covers our notations and the most elementary
properties of such sequences. Unless the reader is fully fluent with such sequences, we strongly
recommend going through these exercises now.) We look for numbers which divide one of Pm.

In other words:

For every number n, we ask: does it divide one of the numbers Pm?

The answer is a function of n with values Yes or No. (For pedants: above, “one” means “one or
more”.) We call the numbers with the answer Yes the divisors of a sequence .

This may be restated as describing modular arithmetics in which a given polynomial equation5
P (x) = 0 has a solution. M However, our particular formulation allows us to introduce this problem
to the kids quickly—all that is needed is a rudimentary knowledge of multiplication.6 M/// An impatient
reader may want to skip the examples and jump to the section on p. 15.

Start with the cases of very small degree of P . The first two are completely trivial:
• If P ≡ 0, then for every number n the answer is Yes.
• If P 6≡ 0 and degP = 0, then excluding finitely many numbers n, the answer is No.
• If degP = 1 and Pm = am+ b, then for every n mutually prime with a the answer is Yes.7

5 . . . or, in many applications, a system of polynomial equations.
6 M We introduce polynomial sequences by investigating the differences of differences of differences (etc.) and

eventually finding a sequence of 0s.
7 M For example, for n = 10, if a is odd, then the last digit of Pm would go through all the digits (unless the last

digit of a is 5). In particular, 0 appears as the last digit of Pm.

5
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(We discuss the details of the last case in the group A of exercises on p. 23.)
One can “fix” the last statement so that it is more similar to the preceding ones:

If degP = 1, then excluding finitely many numbers p,
every prime number p divides one of the values of Pm.

As this shows, even in the simplest cases, allowing a finite number of exceptions leads to significant
simplifications of the statements. Moreover, restricting attention to prime divisors may lead to further
similar simplifications. For example, one can cover all the cases as in:

If degP ≤ 1, then excluding finitely many numbers p,
the answer to “Is a prime number p a divisor of one of the values of Pm?”

does not depend on p.

These two ways to achieve simplifications are going to influence our formulations of similar
statements for higher degrees as well.

Example in deg = 2: pizza numbers

When I look at the history of mathematics, I see a succession of illogical jumps, improbable
coincidences, jokes of nature.

Freeman Dyson, Birds and Frogs, Notices of the AMS (Feb 2009)
What we are going to discuss here is one of the most dramatic discoveries in arithmetic. The

typical expositions try to play this dramactic aspect down; while we cannot have the Chorus singing
“Something is going to happen! Just you wight, ’enry ’iggins, just you wight!”, we want to start
with a sequence Pm having a clear combinatorial significance, and check what are the divisors of the
numbers Pm.8

Remark 1: A very adventurous reader may want to jump to the group C of exercises on p. 25. If
one wants to do this group of exercises later, what we discuss here may work as hints for them.

Observe the largest number of pieces of pizza one can make with m straight cuts:

The answers join into the following table, and differences follow a simple pattern:

Cuts 0 1 2 3 4 5 6 7 8 9 10 11 12
Triangular number 0 1 3 6 10 15 21 28 36 45 55 66 78

Pieces 1
ô
+1

2
ô
+2

4
ô
+3

7
ô
+4

11
ô
+5

16
ô
+6

22
ô
+7

29
ô
+8

37
ô
+9

46
ô

+10

56
ô

+11

67
ô

+12

79

Observing this pattern leads to an immediate description of pizza numbers Pm: they are 1 more than
triangular numbers.

8 This question may look like a joke from the epigraph to this section: why would one investigate divisors of the
number of (so different!) pieces of pizza? The only excuse we can claim is that the answer would demonstrate the
“improbable coincidences” from the same epigraph—by being completely unexpected, and eventually leading to a
progression of interrelations between completely separate branches of math. And, as Dyson said in the same paper,
“the deepest concepts in mathematics are those which link one world of ideas with another.”

https://www.ams.org/notices/200902/rtx090200212p.pdf
https://www.google.com/search?q=%22just+you+wait%22+lyrics&ie=utf-8&oe=utf-8&hl=en&num=10&pws=0
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M Indeed: We need to show that the next cut can increase the count of pieces by at most the green number (as
above). The increase is the number of “old” pieces this cut goes through. Observe that the new cut is subdivided
into the cuts made through these pieces. Moreover, these parts of the cut are separated by the points where the
new cut meets the old cuts.

Hence to show that the pattern observed above continues forever, it is enough to show that the m th cut meets
the old cuts in at most m− 1 points.—However, there are only m− 1 old cuts!

(In fact, one also needs a bound on the other side: that m − 1 meeting points is possible. However, this is
completely obvious after one notices that the answer for pizza is exactly the same as the answer for the whole
plane. Indeed, one can shrink the cut lines until all the meeting points fit inside the pizza.) M///
The pattern above shows that Pm−Pm−1 = m−1, which leads to the formula Pm = m(m+1)/2+1.

Therefore P is a polynomial of degree 2.
Ask the same question as above: what are the possible divisors of (one of) the numbers Pm?9

(Here we are interested in all divisors, not only the prime ones.) With the following table

Side 1 2 3 4 5 6 7 8 9 10 11
4-number + 1 2 4 7 11 16 22 29 37 46 56 67

As products 1× 2 1× 4
2× 2 1× 7 1× 11

1× 16
2× 8
4× 4

1× 22
2× 11 1× 29 1× 37 1× 46

2× 23

1× 56
2× 28
4× 14
7× 8

1× 67

one can see that 1, 2, 4, 7, 8, 11, 14, 16, 22, 23, 28, and 29 can be divisors of “pizza numbers”.
Observation: the same table shows that no other number up to 30 can divide a pizza number! (We

recommend solving Exercise C16 on p. 26 and the following exercises now. The group B of exercises
on p. 24 may also be of help here.)

Indeed, consider pizza numbers modn. If n is odd, then division by 2 in the above formula for
pizza numbers makes sense modn, hence pizza numbers modn are periodic with period of length n;
for even n, a similar argument shows that there is a period of length 2n.

Moreover, if we continue pizza numbers to the left,10 they form a palindromic sequence: P−1−m =
Pm. Hence if numbers P0, P1, . . . , Pl are not divisible by n, then numbers P−1, P−2, . . . , P−1−l are
also not divisible by n. If 2 + 2l is at least as long as the period of Pm modn, we can also conclude
that no number Pm would be divisible by n.

Conclusion: For n = 2m+ 1, it is enough to check that n does not divide P1, . . . , Pm, and then n
cannot divide any pizza numbers. Likewise for even n = m+ 1.

Looking in the list above, this means that if n ≤ 30 is not in the list, and divides one of pizza
numbers, then n > 23 for odd n, and n > 12 for even n. In particular, the list above is good up to
n = 17.

In the odd case only 25 and 27 remain—and they cannot be divisors, since we already know that
3 and 5 cannot be divisors! In the even case we know that the answer about n = 2l is No if it is
already known that l cannot divide pizza numbers; one can see that this implies indeed that the list
above is complete up to n = 30.

Conclusion: In the list
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 . . .

9 Recall that mathematically, we want to describe the modular arithmetics for which the polynomial equation
Px = 0 has roots.

10 M This is one of the favorite subjects in our Math Circles. Note that it is trivial to continue the row of green
numbers (in the first table of this section) to the left. After this, it is easy to continue the row of pizza numbers to the
left so that the green numbers continue to work as differences.
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the green numbers are divisors of pizza numbers, and red numbers are not divisors of pizza numbers.

This distribution of colors looks completely random. However, already Euler and Legendre knew
how to find the pattern in this distribution of colors. (Moreover, Fermat might have known the answer
too: he found patterns for several other polynomials of degree 2. In fact, he could prove that these
patterns would continue forever for all similar sequences simpler11 than this one.)

It turns out that a noticable proportion of people cannot see the pattern in the table below.12

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42
43 44 45 46 47 48 49
50 51 52 53 54 55 56
57 58 59 60 61 62 63
64 65 66 67 68 69 70
71 72 73 74 75 76 77
78 79 80 81 82 83 84
85 86 87 88 89 90 91
92 93 94 95 96 97 98
99 100 101 102 103 104 105
106 107 108 109 110 111 112
113 114 115 116 117 118 119
120 121 122 123 124 125 126
127 128 129 130 131 132 133
134 135 136 137 138 139 140
141 142 143 144 145 146 147
148 149 150 151 152 153 154
155 156 157 158 159 160 161
162 163 164 165 166 167 168
169 170 171 172 173 174 175
176 177 178 179 180 181 182
183 184 185 186 187 188 189
190 191 192 193 194 195 196
197 198 199 200

Answer: to see the pattern, we need to highlight prime num-
bers, and rewrite the sequence of natural numbers using 7 columns
(on the right). It is clear that bold numbers in certain columns
are all green, and in the remaining columns they are all red.

Moreover, although the columns of 3, 5 and 6 are fully red, the
columns of 1, 2 and 4 contain a mix of red and green. This means
that the pattern, indeed, does not work for composite numbers.
(For example, 50 and 64 are composites which are in the same
column: the column of 1.)

Of course, every column on the right represents a residue
modulo 7. Hence the pattern above shows that to find whether a
prime number p can divide a pizza number, it is enough to know
p mod 7. Yet another way to state it is that (slightly abusing
notation):

The pattern of colors is periodic
when restricted to prime numbers.

What does it mean for a function of a prime number to be periodic?!
The pattern above suggests the answer:13 a function f(p) is periodic if there exists a periodic function
F (n) on N such that f is a restriction of F . The function F is in fact uniquely defined on n mutually
prime with the length of its period. (This is due to existence of prime numbers in any arithmetic
progression with mutually prime step and values.)

One can illustrate this pictorially. Observe the colored sequence above; we copy it below, and, in
the next row, we write the sequence of colors with the period14 ••••••• (of length 7):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 . . .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 . . .

As you can see, these sequences match at prime numbers (marked bold) but not at 9, 15, 18, . . . !15

11 Here the measure of simplicity is the number of necessary columns in the tables below.
12 M Fortunately, for the kids the proportion is quite similar to one for adults; so recognizing this pattern is a

reasonably challenging problem to give at a math circle.
13 Another way to see this is that “usually” N -periodicity of Tn means Tn = Tn+N for any n. But this is equivalent

to Tn = Tn′ if N divides n′ − n.
The latter way makes perfect sense even if Tn is defined only for n in a subset of N. Hence it makes sense to say

that “the given function f(p) of a prime number p is periodic”. (As usual, a periodic function is one which is N -periodic
for some N > 0.)

Finally, for us “a period” is the part of a sequence which repeats forever. For example, N above is not a period,
but a “length of a period”.

14 Recall that for us, “a period” is a subsequence, as opposed to its length.
15 This is a very general observation about how patterns involving conductors behave: given a sequence, we provide

another sequence (defined by completely unrelated rules!) which matches the former sequence at prime numbers.
However, in general there may be a few “exceptional primes” where the match breaks. Observe 2×below, on p. 13.

https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
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2

34

5
6

pizza
numbers

Another way to restate this is to observe what happens if we ignore all the
non-bold (non-prime) numbers. Since every column in the table above matches a
particular position on the wheel of residues mod 7, we may color these position
matching the color of bold numbers in the columns (on the right).

One can call the wheel on the right “the conductor wheel”: to find out something about “behavior
of pizza numbers mod p” (“is there a pizza number which is 0 mod p”), it is enough to know p mod 7
(provided p is prime). So we say that

The conductor for the problem of divisors of pizza numbers is 7.
Summing up the same way as on p. 9:

The answer to “Is a prime number p a divisor of one of pizza numbers?”
depends only on p mod 7.

Wheels
0 1

2

34
5

6The group A of exercises on p. 23 covers the usage of wheels (“clocks”) to handle
the behaviour of divisors of terms of arithmetic progressions. (It expands on our
Observation on p. 7.)

Warning: the wheels drawn at the end of the preceding section (and in what
follows), in discussions of sequences of degree 2, are of very different nature. The rest
of this section is, essentially, a sneak summary of the architecture of such discussions. It is written
very cursorily, and it may be wise to skip it at the first reading.

Recall that when dealing with arithmetic progressions, we take a particular number n (a “potential
divisor of the sequence”); to answer the question: “is it a divisor of a number in our sequence?”, we
use the wheel of size n. The positions on this wheel are residues modn, and we consider residues of
the numbers in our sequence Pm. If one of these is 0 modn, then the answer for the number n is Yes.

This may be summarized as the first row in the table below. On the other hand, for P of degree
2, we work with “the conductor wheels”. There is one16 such wheel per sequence Pm, its size is called
the conductor c of the sequence (it is related17 to the discriminant of P ).

Size Take positions of: Look at: degP
n-wheel n Numbers Pm Reaching the position 0 modn 1

Conductor wheel The conductor c Potential divisors n The color of a position 2
Every position on the conductor wheel is marked with a color, and there is a certain correlation
between the the answer Yes/No for n (discussed in the section on p. 5) and the color at the position
of n. In fact, there is 1-to-1 match color↔answer for prime numbers n.

In short, instead of inspecting in the linear case whether Pm on the n-wheel may hit the 0-position
(for at least one m)—or Pm modn = 0, in the case degP = 2 what we inspect is the color of nmod c
on the conductor wheel.

Essentially, due to 1-to-1 matching mentioned above this may work only if the conductor c is the
length of the period of the function in:

If degP ≤ 2, then the answer to
“Is a prime number p a divisor of one of the values of Pm?”

is a periodic function of p.

16 Unless we are going to distinguish the “conductor” and the “level” so we get two wheels, as we do on p. 11.
Compare with Footnote 22 on p. 11.

17 While to shows the existence of the conductor is a very hard problem, there is a simple recipe calculating the
conductor for a quadratic P . On the other hand, while analogues of conductors exist in higher degrees (later, we discuss
mostly degree 3), the calculation of these conductors may be very involved.
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The preceding section and several following sections provide examples clarifying this claim. (“Period-
icity” is discussed in Footnote 13 on p. 8.)
Remark 2: Compare this statement in the case degP ≤ 1 with the results of the section on p. 5.
How come there is no need to exclude a finite number of exceptional values of p in the statement
above? We handle this question in Exercise A4 on p. 24.
Remark 3: However, if we allow a finite number of exceptions, then the laws of the section on p. 5
show that for degP ≤ 1 the periodic function may be taken constant (in other words: the conductor
may be taken to be c = 1).

Likewise, if we allow a finite number of exceptions for deg = 2, for many sequences the length of
the period in the law above may be decreased.18 However, for irreducible polynomials of deg = 2, the
“reduced” conductor is always greater than 1.

Conductor of another sequence of degree 2: “squares + 3”
It turns out that the pattern of colors we observed for divisors of pizza numbers is applicable to

all polynomial sequences of degree 2. (Instead of reading through this section, the reader may want
to solve the first two exercises in the group C of exercises on p. 25.)
Remark 4: In fact, some of polynomial sequences give easier answer than the others of the same
degree. For example, if the polynomial has a factor of degree 1, then we get the same answer as for
sequences of degree 1 (see p. 5).

Recall that for pizza numbers, after ignoring non-prime numbers, the red/green color pattern
is fully controled by the residue of the (prime) number mod 7. Compare this with the coloring of
positions on 7-wheel above.

The simplest similar answer is for the sequence n2 + 3. M Exercises mentioned above provide
the handout with a table representing the numbers in this sequence as products (similar to the table
on p. 7) up to n = 60; M/// so one can see that the divisors of numbers n2 + 3 with n ≤ 60 are

1 2 3 4 6 7 12 13 14 19 21 26 28 31 37 38 39 42 43 49 52 57.
Moreover, using the same arguments as for pizza numbers, one can show that no other number up to
60 can divide numbers n2 + 3. This gives the green/red coloring for divisors/non-divisors up to 60
(not all of which fits below):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 . . .
One can see that to work with more data, it makes sense to omit the red numbers.

Recall that the preceding section suggests existence of a certain pattern:
• Select the prime numbers from the first list (the list of divisors).
• Choose an approriate size of a wheel (the conductor), and write numbers 1,. . . ,60 in that
many columns.19
• Mark the prime numbers in these columns.
• Select suitable columns out of these tables.
• Then the prime numbers from the list above would coincide with prime numbers in the
selected columns.

(Recall also that one may expect several mismatches—but there should be very few of these.)

Of course, the real challenge is to choose what stands for “appropriate” in this recipe!

18 In other words: there is a sequence with a shorter period which also matches the answers Yes and No for primes
p if we allow a finite number of exceptions. (Compare with Footnote 22 on p. 11.)

19 Now each column matches one of the positions on the wheel.
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The prime numbers in the “green” list above are:
1 2 3 4 6 7 12 13 14 19 21 26 28 31 37 38 39 42 43 49 52 57 . . .

giving a rather short (so simple to work with) list of prime divisors 2 3 7 13 19 31 37 43 . . .
below 60. (Circling in green— instead of using green color— is easier to do by hand20 on printouts of
numbers arranged in columns.) What remains is to visualize this list using arrangements of natural
numbers into several columns.

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16 17 18
19 20 21
22 23 24
25 26 27
28 29 30
31 32 33
34 35 36
37 38 39
40 41 42
43 44 45
46 47 48
49 50 51
52 53 54
55 56 57
58 59 60

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32
33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48
49 50 51 52
53 54 55 56
57 58 59 60

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50
51 52 53 54 55
56 57 58 59 60

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41 42
43 44 45 46 47 48
49 50 51 52 53 54
55 56 57 58 59 60

One can immediately see that only the table with 6 columns matches: the bold numbers in its columns
1, 2, 3 coincide with the list above!

0

12

n2 + 3
2×

0 1
2

34
5

n2 + 3

In fact, there is another, smaller table which also matches—
but only if we allow “a few” exceptions for the match. In the
table with 3 columns the first and the last columns match all the
prime numbers in the list above—with one exception 2×.

This leads to the conductor wheels on the right.
Conclusion: based on the provided data, the conductor for

divisors of number2 + 3 is 6, and if we allow one exception, conductor 3 “would also work”.21 22

20 M . . . which allows conversion of what we do in this section into a rather simple exercise. We give the students
the list of “green” primes, and the printouts of numbers arranged into columns (with nothing circled yet). The kids
circle the numbers from the list and can find which of the arrangements lead to “observable patterns”.

21 We already saw (on p. 6) that it may be very convenient to allow a finite number of exceptions. Note that the
lists we considered are just what is near the start of infinite lists. Comparing with these infinite lists, any finite number
of exceptions is “relatively negligible”.

22 In some contexts the smaller number is called “conductor”, and the larger one “level”. Also, see p. 213 and
Footnote 18 on p. 10.
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Remark 5: This guess turns out to be correct. The law of quadratic reciprocity for n2 + 3 shows
that if we continue the tables with 3 or 6 columns, new circled numbers would appear only in the left
column, and all the bold numbers in this column are going to be circled. We return to this in the
section on p. 15.

Divisors of sequences of deg = 2: two more cases

(Instead of reading through this section, the reader may want to solve Exercise C3 on p. 25.)
Start with “squares+ 1”. M Same as in preceding section, one can use handouts from Exercise C3

on p. 25 presenting such numbers as products (up to 602 + 1). M/// This gives the list of divisors up to
60

1 2 5 10 13 17 25 26 29 34 37 41 50 53 58 . . .
The prime numbers in the list above are:

1 2 5 10 13 17 25 26 29 34 37 41 50 53 58 . . .

hence for “squares+1” we should circle prime numbers in 2 5 13 17 29 37 41 53 . . . . Clearly,
3 columns do not work: the circled numbers are scattered among the first 2 columns—and these
columns contain a lot of primes not in our list:

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16 17 18
19 20 21
22 23 24
25 26 27
28 29 30
31 32 33
34 35 36
37 38 39
40 41 42
43 44 45
46 47 48
49 50 51
52 53 54
55 56 57
58 59 60

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32
33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48
49 50 51 52
53 54 55 56
57 58 59 60

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50
51 52 53 54 55
56 57 58 59 60

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41 42
43 44 45 46 47 48
49 50 51 52 53 54
55 56 57 58 59 60

Likewise, the tables with 5 or 6 columns do not work—by the same reasons. However, the table
with 4 columns looks absolutely different: if a column contains a circled number, then all the bold
numbers in this column are circled.23 (Observe that 2 is in the “exceptional” column—containing
only 1 prime number—so for this column the description in the preceding sentence is void.)

23 However, these observations are just guesses: they do not show that the observed patterns would continue forever.
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Answer: the reasonable guess for the conductor is 4. (And, in fact, this is the correct answer: if
we continue the table with 4 columns, the circled numbers would appear only in the left column, and
all the bold numbers in the left column are going to be circled.) 0

1

2

3 n2 + 1

Hence the conductor wheel looks like this:

Compare this with the answer from the preceding section (for “squares+ 3”): the
list of circled primes we obtained there

2×, 3, 7, 13, 19, 31, 37, 43,

matched the left and the right columns of the table with 3 columns—but to match, we needed to
exclude 2×. With “squares + 1”, we do not need to exclude anything.

The next example is “squares− 2”. ( M Same handouts as in the beginning of the section give
factorizations, up to 602 − 2. M/// ) This gives the list of divisors up to 60 (with primes in bold):

1 2 7 14 17 23 31 34 41 46 47 49 . . .

which gives the list of primes to circle: 2 7 17 23 31 41 47 . . . .
With small number of columns, this leads to

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16 17 18
19 20 21
22 23 24
25 26 27
28 29 30
31 32 33
34 35 36
37 38 39
40 41 42
43 44 45
46 47 48
49 50 51
52 53 54
55 56 57
58 59 60

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32
33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48
49 50 51 52
53 54 55 56
57 58 59 60

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50
51 52 53 54 55
56 57 58 59 60

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41 42
43 44 45 46 47 48
49 50 51 52 53 54
55 56 57 58 59 60
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All these tables do not look like what we want! With more columns, this looks like that:

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42
43 44 45 46 47 48 49
50 51 52 53 54 55 56
57 58 59 60 61 62 63

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

and

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60

0 1

2

345
6

7
n2 − 2

For 3, 4, 5, 6, 7, 9 and 10 columns, we see that a lot of columns contain both circled
and non-circled prime numbers. This is not what we want to see.24 On the other
hand, with 8 columns we see exactly the same pattern as expected (and we do not
even need “a small number of exceptions”): columns of 1, 2 and 7 contain only
circled numbers, and there is no circled number in other columns. So, basing on the
table above (with 8 columns), it looks like the wheel on the right controls whether a
prime number can divide a number “squares− 2”: if the position of the prime number on this wheel
is circled green, it can; for red positions, it cannot.

Conclusion: the good guess for the conductor is 8. (Again, this is a correct answer: if we continue
the table with 8 columns, new circled numbers would appear only in the columns of 1 and 7, and all
the bold numbers in these column are going to be circled.)

24 However, these tables show the (relative) dearth of our data. Observe how the table with 5 columns contains no
circled numbers in the column of 4. If this continues forever, this would be at least a partial match with the pattern we
expect (the full match would be all columns having “all bold numbers circled”, or “all bold numbers uncircled”; but
already one column with this property is something “very interesting”25 ).

On the other hand, if we continue with numbers > 60, then soon we would find out that 79 divides 92 − 2 = 79, so
79 would appear in the column in question. Likewise for other columns in which no (or few) circled numbers appears.
—The only exception is the case of 8 columns—then the observed pattern would continue forever!

25 In fact, for sequence of degree 3, such “partial matches” do actually appear (see Footnote 47 on p. 19). However,
for degree 2, any non-trivial “match in one column” means that this is a “complete match”—here trivial matches are
the columns which have at most one prime number.
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Improved coloring

Combining together all the colorings discovered so far results in

0 1
2

34

5
6

pizza
numbers

0

12

n2 + 3
2×

0 1
2

34
5

n2 + 3

0

1

2

3 n2 + 1

0 1
2

345

6

7
n2 − 2

However, the naive way we obtained these pictures hides another extremely important property
of these colorings. Recall: a particular position on a wheel matches a particular column in the
corresponding table, and:

The color of a position on a wheel reflects the color26 of prime numbers in the matching
column—with a few exceptional prime numbers allowed in a column.

Note that if we follow this rule literally, it is not clear how to color those columns which have
only 1 prime number (and in examples above, we saw many such columns). Moreover, in the case
“squares− 2” (the wheel on the right), there are columns mod 8 which contain no prime numbers at
all— so in fact, we have no information about “the colors of these columns” whatsoever!

To be honest, we need to treat such columns in a special way. If we use gray color for the
corresponding positions on the wheel, the pictures become very different:

0 1
2

34

5
6

pizza
numbers

0
12

n2 + 3
2×

0 1
2

34
5

n2 + 3

0

1

2
3 n2 + 1

0 1

2

345

6

7
n2 − 2

These coloring are either preserved, or “made opposite” by a reflection in a vertical mirror! In
particular, the coloring of the right wheel leads to a palindromic period (•)•••••••, while the other
colorings lead to anti-palindromic periods (•)••••••, or (•)••, or (•)•••••, or (•)•••. Here we assume
that −• = •, and −• = •, and put 0 in parentheses to make this symmetry of the wheels more
visible in this “linear” rendition.

Euler’s formulation: the “hidden symmetries”

To see what are the common features of our colorings of the conductoror wheels, and what are
the differences, the more examples the better. First, the wheel for the pizza numbers coincides with
the wheel for “squares + 7” (see Remark 6 on p. 16). Second, Exercises C4–C7 on p. 26 give five more
examples of conductor wheels for four more quadratic polynomials:

0 1 2

3
4

5
6

7

8910111213
14

15
16

17

1819

n2 + 5

0 1 2
3

4

5678
9

10

11

n2 − 3

0

1

23

4

n2 − 5
2×

0 1

2
3

456

7
8

9
n2 − 5

0 1

2

345

6

7
n2 + 2

26 Well, recall that in some of the tables, instead of coloring prime numbers, we circled “the green ones”, and left
“the red ones” uncircled. M This allowed a conversion of these tables into problems for kids to solve.
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Collect the info27 on the size of the conductor wheel and (anti)symmetry w.r.t. vertical mirror:

Quadratic sequence n2 − 5 n2 − 3 n2 − 2 n2 + 1 n2 + 2 n2 + 3 n2 + 5 n2 + 7
Size of the conductor wheel 5 (10) 12 8 4 8 3 (6) 20 7

(Anti)palindromic Yes Yes Yes Anti Anti Anti Anti Anti
This suggests Conclusion:

• the size of tahe conductor wheel is one of |K|, |2K|, |4K|, and
• the (anti)symmetry of the wheel for n2 +K is determined by the sign of K.

Since what is |N |-periodic or |2N |-periodic is also |4N |-periodic, these examples suggest that
(1) Whether a prime number p can divide numbers “squares +N” depends only on p mod |4N |.
(2) For N < 0 the pattern of answers mod |4N | is palindromic.
(3) For N > 0 the pattern of answers mod |4N | is anti-palindromic.

Here we use a special answer (“gray”) for residues not mutually prime with |4N |.28
The first two of these three conditions29 constitute what is now known as

Euler’s formulation of Quadratic Reciprocity

invented by Swiss/Russian/Prussian mathematician Leonhard Euler. At his time, the proofs were
known for −5 ≤ N ≤ 4 (some of these are trivial due to factorization of x2 +N). In fact, most of these
known cases were established by Fermat (with proofs!)—almost a century before Euler. (Although
Fermat stated his discoveries in a very different way.)

After Fermat, it took more than 150 years to prove the general case (done by Gauss—when he
was 19)!
Remark 6: Similar questions about arbitrary polynomials of deg = 2 can be reduced30 to questions
about squares +N . For example, “completing the square” in pizza numbers Pm := m(m+ 1)/2 + 1
leads to 8Pm = (2m+1)2 +7; hence the question about divisors of Pm can be rewritten as the question
about divisors of l2 + 7 for odd l. It is quite elementary that the latter questions has the same answer
as “divisors of Ql := l2 + 7”, and the Euler formulation implies that the colors for prime divisors of
Ql have a period of length 28.

This shows that among prime divisors of Pm only 2 can be an exception—due to the factor 8
above. However, since 2 is the only prime which is p ≡28 2, it cannot be an exception in this residue
class!
Remark 7: However, we saw above that the observed period for the sequence (Pm) above has length
7. How to use Euler’s prediction of a period of length 28 to show that the observed period of length 7
would continue forever?

Note that in the Euler formulation there is no need to allow exceptions. So if we know the color
of a prime number p, one knows the color of its position p mod 28 on the 28-wheel (unless it is gray).
This means that to find the period of length 28 (predicted by Euler’s formulation), it is enough to
find primes for every (non-gray) position on 28-wheel (call the smallest such prime the check-prime).
There are 14 even positions (all gray); additionally, 7 and 21 are gray; so there are only 12 non-gray
positions on 28-wheel. And after we know the period of length 28, there is a chance to show that
length 7 will also work!

27 Observe the missing n2 ± 4 and n2 − 1. These omissions are discussed in Exercises C8 on p. 26 and C19 on p. 27.
28 Since a gray column may contain at most one prime number, the first condition is trivial for such primes.

Moreover, such prime p 6= 2 is a divisor of 02 +N , so is of the “can divide” type. Likewise, p = 2 divides either 02 +N
or 12 +N .

29 The third condition turns out to be an immediate corollary of the periodicity for N = 1 and of top-multiplicativity
(discussed below on p. 208). See Remark 120 on p. 210.

30 See the section on p. 214 for details.

https://en.wikipedia.org/wiki/Quadratic_reciprocity#Other_statements
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It turns out that the largest check-primes are 71 for the position 15 mod 28 and 83 for the position
−1 mod 28; the check-primes for 10 remaining non-gray position are all below 60. Finding colors of
these primes (e.g., from the table on p. 8), one can see that the period is •••••••••••••• repeated
twice. One can immediately see that the shown sequence is ••••••• repeated twice, with every second
color replaced by gray.—And this is exactly what is needed to see that the pattern of colors in the
table on p. 8 would continue forever.

(We describe how to find the length of the shortest period in the general case in the section
on p. 213.)
Remark 8: A surprising aspect of the discussions of Euler’s formulation is that the people who
already know about Quadratic Reciprocity may be at a disadvantage. The reason is that most of them
know it in a very different formulation, one which was found about 50 years after Euler’s by a French
mathematician Legendre. On the surface, Legendre’s formulation looks much more concrete and
much more powerful. Until about 100 years ago, it was considered as “the only worthy” formulation.
Most popular-math expositions of Quadratic Reciprocity discuss only Legendre’s formulation.31

On the other hand, as the (amazing!) progress in number theory in 20th century has shown, it is
Euler’s formulation which has far-fetched generalizations.32 Moreover, nowadays we know that either
one of these formulations is an almost immediate corollary of the other!33

Summing up: Euler’s approach shows that studying divisors of numbers in a quadratic sequence
uncovers “hidden symmetries” in the answers. Moreover, in what follows Legendre’s formulation does
not play any role.

For people who are already fluent with Legendre’s formulation, to make it easier to switch gears to
Euler’s we discuss interconnections between these formulations in the Appendix on p. 207. (For the
readers interested only in the Langlands program: since we use the topics discussed in this appendix
in just a few very optional remarks, it may be safely skipped—unless you want to find more about
Quadratic Reciprocity.)
Remark 9: For generic polynomial sequences Pn of degree 3 or more, the periodicity-in-prime-p
described above is not going to be applicable. However, there are particular polynomials for which
the divisibility properties are “almost the same”34 as for quadratic polynomials.

Such polynomials are called abelian. There is a simple36 criterion: P is abelian iff the solutions to
P (x) = 0 are rational linear combinations37 38 of roots of 1. We return to this topic in Footnote 139
on p. 59.

31 It looks like the majority of people who know quadratic reciprocity found it first in popular-math expositions.
Contemporary “serious math” testbooks, and short overviews of Quadratic Reciprocity by prominent mathematicians
would highlight Euler’s formulation.

32 The key difference is in Euler’s formulation being way “more natural”: it focuses on patterns in solutions to one
particular problem about divisors of numbers in a quadratic sequence. On the other hand, Legendre’s one highlights
coincidences between answers to two different problems of this kind. (This is why “reciprocity” is a part of its name!)
Like Euler’s one, the most important generalizations target questions about divisors of values of a particular polynomial,
—as opposed to questions about interrelations between divisors for different polynomials.

33 Nowadays, the most useful application of Legendre’s formulation is to prove the the Product Formula for Hilbert
symbol—compare with the section on p. 144 and Footnote 280 on p. 100. However, this deduction is not immediate,
so using Euler’s formulation instead would not make the proof much harder.)

34 The most important difference is that to encode the divisibility properties, one needs to colors the “conductor
wheel” into more colors. These extra colors would not only describe whether the prime numbers p with this position on
the wheel are divisors or not, but also “how frequent” are the numbers n with p|Pn. (For degP = 3, the frequency
determines the color.)35

35 N.B. (???) Wrong!
36 Although non-constructive!
37 For example, one proof of quadratic reciprocity writes

√
n explicitly as a linear combinations of roots of degree

4n of 1 with coefficients ±1.
38 N.B. (???) Move to another place where we discuss abelian polynomials?

https://en.wikipedia.org/wiki/Quadratic_reciprocity
https://en.wikipedia.org/wiki/Hilbert_symbol#Hilbert%27s_reciprocity_law
https://en.wikipedia.org/wiki/Hilbert_symbol#Hilbert%27s_reciprocity_law


Degree 3: a coarse-grained approach (Grades 3–4, Ilya 2018-05).
The “hidden symmetries” are not as for degree 2

This part completes the digest of what we did at our Math Circles (this time, just in Grades 3–4).
It is still OK to not read this meticulously (especially the parts between the signs M M/// , written with
Math Circles in mind!). The purpose of this part is only to proclaim the existence of “the Langlands
pattern”— in the rest of the notes we are going to describe this pattern and the related issues.

From degree 2 to degree 3 (and the M-family)

In the investigation of divisors of polynomials of degree 2, one could restrict attention to polynomials
x2 +N (see Remark 6 on p. 16). As we saw, there are two different important particular cases: for
N < 0 the pattern is governed by a palindromic period, for N > 0 by anti-palindromic period. In
a certain sense, “when N crosses the boundary N = 0”, there is a “phase transition”: “the hidden
symmetries” of the answer make a drastic change.

Likewise, the cases of larger degree break into a few similar “regions” (two for degree 3), and
“crossing a boundary” between these regions leads to a dramatic change in the type of “hidden
symmetries”. So if we want to restrict attention to a particular collection of, say, polynomials of
degree 3, it is very important to ensure that this collection would have representatives from both
regions. It turns out that this means that the collection should have both polynomials with 3 real
roots, and (irreducible) polynomials with 1 real root.

This immediately rejects the “obvious first choice” of the family39 “cubes+N”. M For our students,
triangular numbers are as natural as squares, and, with 3D shapes, tetrahedral numbers are as natural
as cubes. So in analogy to “triangular numbers + 1” they propose to use “tetrahedral numbers +
1. M/// Unfortunately, this polynomial has a root when40 side = −3—and (Exercise on p. 27) such
(“decomposable”) polynomials sequences have every n as a divisor.41

As a workaround, we propose considering the sequences “tetrahedral numbers+N” with a suitable
N , for example,42 N = 2.

However, it turns out that the polynomials “tetrahedral numbers +N” taken for integer values
of N have either 1 real root (for N 6= 0), or are decomposable. Fortunately, considering a rational
N makes perfect sense (prime factors of its denominator may be considered as “exceptions” allowed
above43), so one can investigate “M · tetrahedral numbers + N”. Below, we consider cases M = 1,
N = 2, as well as the M-family with N = 1.

When M ∈ Z, the M -family has several elements with 1 real root, the rest has 3 real roots. As a
bonus, among the latter, several are abelian (as in Remark 9 on p. 17). This gives a rich enough zoo
of polynomials of degree 3, which is quite sufficient for our purposes.44

39 This was one of the reasons for us to start with pizza numbers: since “cubes + N” is not a good choice, we
wanted to avoid “squares +N” for as long as possible.

40 M When discussing triangular and tetrahedral numbers, we introduce continuation of these sequences “to the
left”.—This is easy to do due to our description via (repeated) differences, as in the table on p. 6 and the group 0 of
exercises on p. 22.—So the students know that dealing with a tetrahedral number for “a negative side” makes perfect
sense.

41 While they are not directly related to the Langlands program, it turns out that using our approach with
decomposable polynomial leads to very interesting effects. Compare with the section on p. 63.

42 M The kids also suggest another sequence: the “cake numbers”. The difference with pizza numbers is that the
cake is 3D, and we allow cuts to be non-vertical. This leads to “a tetrahedral number−a triangular number+it’s side+1”.
Unfortunately, this is also decomposable (it vanishes when side = −1).

43 For example, in Footnote 21 on p. 11.
44 See also the section on p. 144.

18
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Example: Divisors of “tetrahedral numbers + 2”

M Proceeding as45 for deg = 2, we fill the table of divisors:

Side 1 2 3 4 5 6 7 8 9 10 11
Tetrahedral number + 2 3 6 12 22 37 58 86 122 167 222 288

As products 1× 3
1× 6
2× 3

1× 12
2× 6
3× 4

1× 22
2× 11

1× 37
1× 58
2× 29

1× 86
2× 43

1× 122
2× 61

1× 167

1× 222
2× 111
3× 74
6× 37

1× 288
2× 144
3× 96
4× 72
6× 48
8× 36
9× 32
12× 24
16× 18

M/// This leads to possible divisors 1, 2, 3, 4, 6, 8, 9, 11, 12, . . . . Note that the numbers 5, 7, 10 do
not appear in the row “As products”. In fact, if we continue the table to the right, they would never
appear (so we may color them red).46 Extending the table far enough to the right, one may obtain
the following color pattern:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 . . .
It turns out that even after grouping into several columns, and looking only at prime numbers, the
patterns of colors we observed for sequences of degree 2 won’t work for this sequence.

For example: since 11 and 23 are of different colors, grouping into 12 columns would not help
(unless 11 or 23 are exceptional—but similar mismatches also happen further to the right). From
this it follows that grouping into 3, 4, or 6 columns cannot help either.

Likewise, the mismatch of 19 and 29 excludes 10 columns (hence 5), while mismatch of 17 and
31 excludes 14 (hence 7). The data above excludes also 16 (hence 8), 18 (hence 9), and 22 (hence 11).
Extending the table, one would exclude more and more arrangements into columns.47

45 Recall that mathematically, we want to describe the modular arithmetics for which the polynomial equation
Px = 0 has roots.

46 For pizza numbers, we found (see our Observation on p. 7) how far in the table it is enough to check to be sure
that the given number would never appear as a divisor listed in the table. It is easy to do the same for the sequence
above.

47 While we won’t see the pattern “in some columns all primes are red, and in the remaining columns they are all
green”, in fact, with a suitable number of columns, a “partial pattern” would appear. The suitable number of columns
is 971 (this is not a misprint!48 Compare with Remark 48 on p. 77).

With 971 columns, about half of them would contain only green primes. However, the remaining columns would
not be “all red”, even when one observes the primes only—every such column would contain a mix of red and green
primes (the mix happens to be in “proportion” 2-to-1; compare with Remark 48 on p. 77).

Existence of such “all green” and “red/green mix” columns was first discovered even before Gauss; it was proven to
hold in general about 100 years ago. However, until recently, the question

Describe the pattern of colors inside a mixed red/green column

could be answered only in the particular cases covered by the Class Field Theory (compare with the section on p. 82).
We discuss this in more details in Remark 49 on p. 77.

(Actually, the particular polynomial considered above has negative discriminant (−3,884 = −22 × 971), so it is
covered by the Class Field Theory. See Remark 18 on p. 36.)

48 We investigate these effects in the group D of exercises on p. 27.
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Since for about 20 years now we know the actual pattern of the colors for deg = 3, we may
definitely exclude the patterns similar to those found above for sequences of degree 2. However, this
requires using one of the most important (and impressive) tour-de-forces of math of 20th century!49

Recent developments: the Langlands program

The sequence of colors above is a part of a big zoo of sequences. One can start with different
polynomials of degree 3; one may also consider polynomials of higher degrees.

As usual, having a wider collection of examples may uncover a more beautiful landscape—and
sometimes this makes the previously known examples easier to understand. In our settings, this
happens with introduction of polynomials in several variables.

However, in this case instead of coloring a number according to whether it can divide a value of
the polynomial, one should mark how often a given number is a divisor of the values. Compare with
our “transliteration rules” on p. 60.

In fact, another extension of the pool of examples happens when one considers common zeros of
several polynomials (with several unknowns).

These sequences of colors remained mysterious for a long time. M A few weeks before considering
this topic at Math Circles, we discussed discrete logarithms. M/// One of the main messages was that
mathematicians expect that this problem (“how discrete logarithms depend on the size of the wheel”)
does not follow any pattern. Until recent decades, there was no clue whether the color sequences like
those above would all have a pattern (but possibly, a very complicated pattern), or sometimes the
situation could be as with discrete logarithms.

Things changed about 50 years ago, when a Canadian mathematician Langlands started to ask
his colleagues some “crazy” questions; a few years later, these questions crystallized into a chain of
conjectures connecting

• questions about divisibility in polynomial sequences50 (really hard; considered very important,
but impenetrable before), and
• questions of mathematical analysis (hard, but much easier to handle).

These connections would show that all these problems about divisibility have a pattern in the answers
—however, this pattern is extremely complicated even to describe (not mentioning proving this!). At
the coarsest possible level, one can say that the (hidden) symmetries we saw in red/green coloring of
prime numbers in the case of a polynomial of degree 2— periodicity and mirror (anti)symmetry51—
are replaced by yet “more hidden” symmetries.

M To be able to expose the pattern of hidden symmetries, one needs to understand many different
concepts:

• Wheels (= residue classes and their symmetries);
• symmetric tessellations (or “tilings”);
• curved geometries,
• working with infinities,
• fractals,
• harmonies, harmonics and waves (“Harmonic Analysis”),
• heat propagation. M///

49 In fact, in his review written in 1972 (before the importance of the Langlands program was fully realized),
Wyman claims that it is possible to exclude these patterns using only the tools of the Class Field Theory. However, I
do not recollect seeing this argument actually written down. (See the discussion on MathOverflow/11688, especially
the answer by Keith Conrad.)

50 . . . and tables=bi-sequences etc.
51 In other words: (anti)palindromicity of the period.

https://en.wikipedia.org/wiki/Harmonic_analysis
https://www.jstor.org/stable/pdf/2317083.pdf
https://mathoverflow.net/a/11815/116825
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Similar to the case of degree 2, there is a particular size of the wheel (the conductor) which is
related to a particular polynomial sequence. However, it controls the sequence not directly, but by
selecting a particular “size”52 of a tessellation of a curved geometry (as mentioned above) in which we
consider the heat propagation.53 54 Tesselations of different “sizes” have different symmetries—and
these symmetries become the “hidden symmetries” of the pattern of colors.

These conjectures (called the Langlands program) explain (among other things) how to find the
conductor—however, the recipe is not straightforward. Before going half-way in writing these notes,
I had no clue what the conductor for the sequence “tetrahedral numbers + 2” above (and similar
sequences) may be!55

One must keep in mind that initially Langlands has been working on a very specific circle of
problems. Until his dreams crystallized, nobody expected these problems to be related to the questions
of red/green coloring we consider here.

Following the parable about blind men and an elephant, Langlands have been investigating an
ear of an elephant, while our questions concern the trunk of the elephant. What happened next is
that, contrary to the parable, he could figure out the general appearance of the whole elephant using
just the data from his research of the ear. From this, he unraveled how to access all the particular
features of the elephant in a uniform way.

Meanwhile, during these 50 years, mathematicians managed to investigate “the trunk” by following
the recipes of Langlands. Other mathematicians could prove that what Langlands visualized actually
holds in “the particular case of the trunk”. So today, we can discuss the trunk of an elephant in detail
—which has not been dreamed of before Langlands.

After the Langlands program was thought up, it became one of the most important focus points
of contemporary mathematics. A lot of mathematicians work on realizing this program. Moreover,
about 20 years ago, one of the major way points of the program was achieved: the Langlands program
was proved in the cases connected to 2D tessellations (as opposed to higher dimensions).

Such 2D tessellations are related to polynomial sequences up to degree56 3. In particular, this
leads to a proof of Langlands’ pattern for our sequence of colors for57 “tetrahedral numbers + 2”.

M Moreover, just a few weeks before we discussed that at our Math Circles, the achievements of
Langlands were formally recognized as well: he won what is considered the most prestigious award
for mathematicians: the Abel prize. This prize is in fact much more prestigious than the Nobel
Prize. For example, every year 2 or 3 physicists are awarded the Nobel Prize—but typically, only
one mathematician a year wins the Abel prize. M///

52 Note that in the “usual” geometry, given a tessellation, we can rescale it, and it remains a tessellation. However,
curved geometries allow no rescaling—so every “type” of tessellation may exist in one size only.

53 We provide examples of such tesselations in Chapter on p. 84. We discuss some idiosyncrasies of the heat
propagation in curved geometry in Footnote 96 on p. 39.

54 An alternative approach is to say that the conductor controls “the laws of fractality” of the graph of Fourier
transform of the sequence in question. (However, if one calculates this Fourier transform “naively”, one would get
infinite values! We will start addressing this in Remark 20 on p. 37.)

55 After finding the conductor, the Langlands program leads to a recipe describing certain integrals (see Remark 15
on p. 35). The values of these integrals are whole numbers matching the colors above: for example, the number may be
0, 1 or 3 (with 0 for red, 1 and 3 for green; compare with p. 60).

One can calculate these integrals approximately, then round to the closest integer. This gives a “practical” (meaning:
computationally feasible) recipe to find colors of arbitrarily large prime numbers.

56 They also cover a (small) subset of polynomials of degree 4 (see the section on p. 131), as well as polynomials of
degree 5 if the discriminant is a perfect square.

57 When discussing this in Math Circles, we cheated, and pretended that to treat this sequence one needs the
Langlands program. In fact, this particular sequence of degree 3 is covered by the Class Field Theory.

One must massage this sequence a bit so that one needs Langland’s approach to see the pattern. For example, one
may consider “20× tetrahedral numbers + 1.” See Remark 18 on p. 36.

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant
https://en.wikipedia.org/wiki/Abel_Prize


Exercises for the preceding chapters

Exercises 0: Polynomials

This section explains our notations first, then the exercises follow. On one hand, these exercises
are not used in the main text directly. However, they explore the landscape of the fundamental
properties of polynomials taking integer values.

In math, the symbol “=” is used in a multitude of different meanings. It may be used in the
meaning “solve this”, as in x2 + 3x − 7 = 0. Or it may mean “define this in terms of that, as in
“put P (x) = x2 + 1”. Or it may mean that two things “are the same”, as in “now we can find the
polynomial P , and the answer is: P (x) = x2 + 1”. Sometimes, it also appears as a part of larger
notation, as in “r = smod 5”.

In these notes in potentially confusing situations we try to use different notations for different
meanings of this symbol. In particular, b ≡ c means that b and c are the same “as a whole”; for
example, if they are polynomials, this means that their coefficients coincide (so the values coincide
everywhere). When we define b in terms of c, we may write58 b := c or c =: b. Time to time we
may use b def= c meaning that “to see that b equals c one does not need any tricks, just inspect the
definitions”. Furthermore, r ≡5 s means that the residues of r and s modulo 5 (denoted rmod 5 and
smod 5) coincide.

Below, we consider a polynomial sequence with elements P0, P1, P2, . . . . (As everywhere in these
notes, this means that there is a polynomial p(x) such that P0 = p(0), P1 = p(1), P2 = p(3), etc.)
When we want to consider this sequence “as a whole”, we use parentheses, as in (Pk), or just use one
symbol P .
Exercise 01: Consider a sequence (Pk), k ≥ 0, such that Pk+1 − Pk = k. Show that Pk is a quadratic
polynomial of k.

Hint: Write a formula for Pk in terms of k and P0.
Exercise 02: Show that the sequence (Pk) from the preceding exercise can be “extended left”, to k < 0,
such that the equality Pk+1 − Pk = k holds for every k ∈ Z.
Exercise 03: Show that in the preceding exercise P−k−1 ≡ Pk.

Below we denote by Tk the k th triangular number.
Exercise 04: Show that T−k−1 ≡ Tk.
Exercise 05: Given a polynomial sequence (Pk), define Qk := Pk+1 − Pk. Show that (Qk) is a polynomial
sequence of degree less than degP .
Exercise 06: Show that in the preceding exercise, if Qk is odd (as a function of k), then P−k−1 ≡ Pk.

In the following exercises, we define a collection of polynomial sequences. We could denote them as
a sequence (Nk), and a sequence (Qk), and a sequence (Rk), etc.—but this quickly becomes unwindy.
To simplify mentioning these sequences, we use “an extra index” on top left; so instead of (Nk) we
write ((0)Pk), instead of (Qk) we write ((1)Pk), instead of (Rk) we write ((2)Pk), etc.

With these notations,
• define (0)Pk := 1,
• then (1)Pk := (0)Pk·k/1,
• then (2)Pk := (1)Pk·(k − 1)/2,
• then (3)Pk := (2)Pk·(k − 2)/3,
• then (4)Pk := (3)Pk·(k − 3)/4, etc.

58 Sometimes people can use b def= c in this context—or maybe even c def= b, but only when it is absolutely clear
what is defined in terms of what. We avoid this; the notations we use are “directional”, so less confusing.
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(so (5)Pk ≡ k(k − 1)(k − 2)(k − 3)(k − 4)/5! etc.).
Exercise 07: Write down the first 8 elements of every sequence ((0)Pk), ((1)Pk), ((2)Pk), etc. up to (5).

Exercise 08: Show that all the numbers (n)Pk are non-negative integers (if k, n are non-negative integers).

Exercise 09: Show that given any positive integer n, the sequence ((n)Pk+1− (n)Pk) coincides with ((n−1)Pk).

Exercise 010: Show that for any quadratic polynomial Sk, there are three numbers α, β, γ such that
Sk ≡ α·(0)Pk + β·(1)Pk + γ·(2)Pk. Express numbers α, β, γ in terms of the numbers S0, S1, S2, S3, . . .
(you may use as many of values of Sk as you need).

Hint: If a quadratic polynomial U(x) vanishes at x = 0, 1, 2 (so U(0) = U(1) = U(2) = 0), then U ≡ 0.
(Indeed, if its degree is 2, it can have at most 2 roots, and if it is 1 then it has only 1 root.)

Hint: Guess α, β, γ, then put Q := S − (α·(0)P + β·(1)P + γ·(2)P ).
Exercise 011: Start with any polynomial sequence written as a row of numbers, then proceed as below:

Side 0 1 2 3 4 5 6 7 8 9 . . .
Cube 0 1 8 27 64 125 216 343 512 729 . . .
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write the differences of the numbers next to each other (as in the green line), then the differences of differences
(as in the blue line), then the differences of differences of differences (as in the red line), etc. (Obviously,
after one gets a whole line of 0s, there is no sense to continue!)

Denote the leftmost number in the row of the initial polynomial α, denote the leftmost number in the
row of differences β, then continue with γ, etc. Write the initial sequence in terms of the numbers α, β, γ
etc. and our sequences (0)P , (1)P , (2)P etc.

Exercise 012: Starting with the table in the preceding exercise, plug the corresponding numbers α, β, . . .
into the expression you obtained as the answer to this exercise. Simplify the result, and check that it matches
the name of a row in this table.

Exercise 013: Given any polynomial sequence such that all the numbers in this sequence are integers, show
that it coincides with a polynomial whose coefficients are integer numbers divided by d!. Here d is the degree
of the sequence.

Hint: Check that this holds for any sequence ((n)Pk), then use the result of Exercise 011.
Exercise 014: Show that for any given polynomial sequence (Qk), there is a polynomial sequence (Pk) such
that Qk ≡ Pk+1 − Pk.

Hint: Exercises 09 and 011.

Exercises A: Wheels and modular properties of arithmetic progressions

0 1
2

34

5
6

One way to visualize the divisors of numbers in arithmetic progression is to use
“wheels” (sometimes called “clocks”). To check whether, e.g., 7 is a divisor, organize
residues mod 7 in a circle, as on the right (“the wheel of size 7”). An arithmetic
progression with the step J corresponds to a sequence of jumps of equal length J
between the positions on the wheel. (Here J may be larger than the size of the wheel.
Then “such a jump” includes several full rotations around the wheel.)
Exercise A1: Say that a jump of length J is universal on a wheel of size S if one can travel between any
two positions on the wheel by a suitable number of such jumps. (Note that a jump is universal iff one can go
from the given position to one of its neighbor by several such jumps.)
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Show that a jump of length J is universal on a wheel of size S iff a jump of length S is universal on a
wheel of size J .

Hint: These satements may be written as identities of the form . . .− . . . = ±1.
Exercise A2: Show that a jump of length J is universal on a wheel of size S if J is mutually prime with S.

Hint: Induction based on: if J ≥ S, then one can decrease J by replacing it by its remainder in division by S;
otherwise, if J > 0 use the preceding exercise. (But the base may be non-obvious!)

Exercise A3: In the preceding exercise one can replace “if” by “if and only if”.

The preceding two exercises essentially describe the Euclid’s algorithm. It calculates the largest
common divisor using the described inductive process.

Recall that “periodicity” of function defined on a subset of N is discussed in Footnote 13 on p. 8.
Exercise A4: Consider a function Tn of n defined on a subset S of N. Suppose that S′ is a subset of S and
that the restriction of T to S′ is N -periodic. Show that if S r S′ consists of numbers n1, . . . nk and the
numbers in S′ are not divisible by n1, . . . , nk, then T is n1 . . . nkN -periodic.

Exercises B: Modular properties of 4-numbers

Here (same as in the rest of these notes), “the period” of a periodic sequence (Sk) is a certain
“range” of values which repeats indefinitely. (In particular, we need to use the term “the length of the
period” for the other meaning of the word “period”.) For example, the infinite word “Banananana. . . ”
has periods “an”, “na”, “nanana” etc.

Below we denote by Tk the k th triangular number.
Exercise B1: Denote by Dk the last digit of the number Tk. Find the minimal length of the period of the
sequence (Dk).
Exercise B2: Show that Dk has a period which is a palindrome.

Below, the “digital root” of a number N is obtained by taking the sum S of digits of N , then the
sum Σ of digit of S, then the sum of digits of Σ (repeating until the result does not change—which
happens when the result is less than 10).
Exercise B3: Denote by Rk the “digital root” of the number Tk. Find the minimal length of the period of
the sequence (Rk).
Exercise B4: Show that Rk has a period which is a palindrome.
Exercise B5: Show that for every integer t > 0 the sequence (Tk mod 2t) cannot have a period of length 2t.
Hint: For every t and every k the sum (k+ 1) + (k+ 2) + . . .+ (k+ 2t) is not divisible by 2t (but it is divisible by

t).
Exercise B6: Show that the length of the shortest period for the sequence (Tk mod 2t− 1) is 2t− 1, and for
the sequence (Tk mod 2t) it is 4t.
Hint: reduce periodicity to a statement about divisibility of certain expressions; take into account that it should

work for every k.
Below, “an interval” may be an interval in R, or an interval in Z (depending on the exercise).

Exercise B7: Given a number t > 0, find the length of the shortest interval I ⊂ R such that any even
t-periodic59 function f(x) is positive for x ∈ I iff it is positive for every x ∈ R.

Hint: If we know that f(x) > 0 for x in [−t, 3t], does it follow that f(x) > 0 everywhere?
Exercise B8: Same question as in Exercise B7, but when f(x) is defined only for integer x.
Exercise B9: Same question as in Exercise B8, but instead of “even” f(x) we consider a function such that
f(−1− x) ≡ f(x). (In other words, the graph of f(x) is symmetrical w.r.t. reflection not in the line x = 0,
but in the line x = −½.)

59 In other words, we require that f(x+ t) ≡ f(x).

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Exercise B10: Show that for any function f(x) defined on x ∈ I for the interval I of Exercises B7–B9,
there is a way to extend it to a function of x ∈ R (or x ∈ Z) such that f is t-periodic, and has the required
symmetry (“evenness” or a “reflection in x = −½).

In presence of symmetries, such regions as the interval I above are called “fundamental domains”
of this collection of symmetries. Note the similarity to what we discuss in the section on “toy fractality”
on p. 43, on “c = 1 in Lobachevsky geometry” on p. 85, as well as the “polygones with colored lines
as the sides” in the section “The case c = 5” on p. 87.
Exercise B11: Show that for any integer t the sequence (Tk mod t) has a palindromic period.

Hint: The solution is different for even/odd t.

Exercises C: Quadratic Reciprocity modulo small numbers

The solutions of the following two exercises form the core of our discussion in the section on p. 10.
We recommend the reader to solve them independently. (As an extra hint, one can use Remark 10
on p. 25.)
Exercise C1: For the last table of 3 attached tables in a handout60 (the table for Number2 + 3), circle the
numbers below the table according to the instructions.

Exercise C2: Analyse the pattern of circled numbers from the preceding exercise using a printout with
arrangements of numbers 1, . . . , 60 into 3, 4, 5, . . . , 10 columns (from the handouts for the main text61):

• In each arrangement, circle the same numbers as in the preceding exercise.
• In one (or more) of the arrangements, the circled numbers have a very strong tendency to appear in
certain columns only.
• To see these patterns, one needs to pay attention to bold/non-bold numbers (same as we did in the
section on p. 6).

Find all the arrangements for which such tendency appears. (There should be at most 1 exception62 to the
pattern you found!)

We say that the corresponding “number of columns” works as a conductor for this sequence. If
there are no exceptions, we say that it works as a level (see Footnote 16 on p. 9). (Of course, what is
interesting is to find the conductor and the level: the smallest numbers working as a conductor or as
a level.)

The solution of the following exercise is discussed in the section on p. 12. We recommend the
reader to solve it independently.
Exercise C3: For each of the first two tables of 3 attached tables63 (the tables for Number2 + 1 and
Number2 − 2) proceed as in two preceding exercises.

Remark 10: Summarize the main result from the first chapter: there is a number C such that the
“green/red color” of a prime number p (i.e., whether p is a divisor of one of the numbers in the
quadratic sequence) depends only on pmodC (with only a finite number of exceptional p). (Moreover,
one can avoid exceptions increasing C appropriately.)

In particular, if one arranges numbers into C columns and circles as above (in Exercise C2), the
prime numbers in every column are going to be all circled (“green” in the notations of ???) or all
uncircled/“red” (possibly with a finite number of exceptional p—if exceptions appear for the given
C).

60 The name of the handout is handout-factor-squares.pdf.
61 The name of the handout is handout-primes-in-columns.pdf.
62 Compare with the section on p. 213.
63 The name of the handout is handout-factor-squares.pdf.

handout-factor-squares.pdf
handout-primes-in-columns.pdf
handout-factor-squares.pdf
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Remark 11: It may help to know that for quadratic sequences of the form n2 + const only p = 2
may be an exceptional prime.64 Note that we saw that appearing for n2 + 3 in the first arrangement
on p. 11: the bold/prime number 2 is circled in green, while the rest of primes in this column are not
—hence they “are red”).

For more general sequences, the divisors of (the numerator of) the leading coefficient may also be
exceptional.

The following exercises continue what we do on pp. 10–14 (as well as in exercises above); they
investigate 4 more variants of quadratic sequences.
Exercise C4: Proceed as in Exercise C1 using 4 attached tables65.
Exercise C5: Use the tables with circled numbers from Exercise C4. For each integer n = −5,−3, 2, 5 find
whether one can use the arrangements of numbers into columns as on pp. 10–14 (or from Exercise C2) to
expose the pattern of colors for sequences (Pk) := (k2 − n). (In other words, find whether the conductor C
may take values below about 10.) Here we do not allow exceptional primes.
Exercise C6: The same with exceptional primes allowed.

Our tables with “the arrangements of numbers into columns” allow finding conductors C up to 10.
However, if one pays attention only to every other row of the arrangement, one can also cover even C
up to 20. So:
Exercise C7: Investigate the cases of two preceding problems where the conductors C ≤ 10 could not be
found. Show that these collection of “numbers to circle” match certain even conductors C ≤ 20.
Exercise C8: Solve a similar problem about Pk := k2 + 4 using the results for k2 + 1 obtained in the text.

Hint: p = 2m− 1 divides k2 + 4 iff p divides K2 + 1 for a certain K. (For an extra hint see Remark 12.)
Exercise C9: For every n between −5 and 5 find whether the polynomial Pk := k2 − n allows C ≤ 10
(separately for the case “without exceptional primes”, and “with them”).
Exercise C10: For every n between −5 and 5 for which you could find C (with or without exceptions) in
the preceding exercise, fill a column in a table with 3 rows: a row for n, a row for the minimal possible C
with exceptions, and a row the minimal possible C without exceptions.
Exercise C11: Find the pattern for the table, and try to fill the missing cells. Check whether your guesses
work. (May be hard. . . )

The exercises below may be solved either heuristically using numerical experiments (provided one
can write a simple program), or by inspecting the results from the Appendix starting on p. 207.
Exercise C12: Find four integers n with the smallest possible |n| such that one cannot use the arrangements
into ≤ 8 columns to find the pattern of colors for sequences (Pk) := (k2 − n). (In other words, the size of the
conductor wheel for each of these sequences should be larger than 8.) Here we allow exceptional primes.
Exercise C13: The same questions (with five integers n) when we do not allow exceptional primes.
Exercise C14: Find seven integers n with the smallest possible |n| > 100 such that C ≤ 8 for (Pk) := (k2−n).
Here we allow exceptional primes.
Exercise C15: Same question (with six numbers) if we do not allow exceptional primes.
Remark 12 (Extra hint for Exercise C8 on p. 26): Show that a prime p = 2m− 1 divides k2 + 4
iff p divides K2 + 1 for a certain K. Here one can take K = mk with m ∈ Z or k = 2K.

The following exercises explore the fine points of what we did in the observation on p. 7. One can
use the results of the group B of exercises on p. 24.
Exercise C16: In the context of Exercise C4, explain why there is no marked numbers in the bottom third
of the tables.

64 We discuss the details in the section on p. 213.
65 The name of the handout is handout-factor-more-squares.pdf.

handout-factor-more-squares.pdf
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Exercise C17: Explain why marked numbers appear so rare in the middle third of the table.
Exercise C18: In fact, using only the factorizations in these tables, one can find all numbers (up to a
certain number N) which may appear as divisors of numbers in each quadratic sequence. Find N .

Hint: There is a simplified variant of this exercise in Remark 13 on p. 27.

Remark 13 (Variant of Exercise C18): It might be easier to split this exercise into two. (Here
we assume that the table is extended on the left with a column for 0.)

(1) Given the list 1, . . . , 60 at the end of the problems in the handouts, using the whole table in
the beginning of the problem is an overkill. In fact, Exercise C16 shows that one can use a
much shorter table, and still verify that any uncircled number cannot be a divisor.

How much can one shorten the tables for polynomials we consider (of the form Pk ≡ k2−n
for a fixed n ∈ Z)? Try to find the smallest feasible answer.

(2) Given the table as in the problem going from 0 to 60, one can make the list 1, . . . , 60 at the
end of the problem longer, and still verify that any uncircled number is a divisor (for any
polynomial of the form Pk ≡ k2 − n for a fixed n ∈ Z). How much longer? Try to find the
largest feasible answer.

In exercises below, we assume that P takes integer values in integer points.
Exercise C19: Show that if a polynomial P (x) has an integer root x (we do not prohibit x < 0) then any
integer d > 0 is a divisors of one of the numbers P (n) with integer n > 0.

Hint: Increasing d this may be reduced to the case of P having integer coefficients.
Exercise C20: Show that if a polynomial P has a rational root x then all prime numbers (with a finite
number of exceptions) are divisors of one of the numbers P (n) with integer n > 0.

Exercises D: “Qubic Reciprocity” cannot be exactly the same as quadratic

When dealing with Quadratic Reciprocity, we start with a quadratic polynomial sequence Pk, and
try to find a “colored conductor wheel”: a number C (a “level”, or a “conductor”, see Footnote 16
on p. 9) such that for a particular position on the wheel (which is “a residue modC”) all the prime
numbers p with this residue “have the same color w.r.t. (Pk)”. In other words, given every residue
rmodC, we can assign to it a “color” Yes or No such that all primes p ≡ rmodC are either all
divisors of certain numbers in the sequence (Pk) (with k which may depend on p; this is the Yes-case),
or no number Pk is divisible by any such p (the No-case). (This condition is, of course, vacuous if
there is no such prime number p ≡ rmodC, or only one such number—which happens if (r, C) 6= 1.)

Recall that “a complete” generalization of this simple pattern (which we call “the hidden symmetry
of translations by CZ”) to polynomials of higher degree requires the (much more complicated)
approaches of the Langlands program. (Exposing these approaches is the main aim of our notes.)
However, if we ignore the Langlands program, a partial “direct generalization” of these patterns is
possible.66

In this “partial approach”, we do not require the statement above to work for all residues rmodC,
but only for some of them. We investigate this effect in the exercises below.

For the exercises below, the number C may be larger that one may investigate “by hand” using only
the “arrangements of whole numbers into columns” from the handout handout-primes-in-columns.pdf.
So we assume that the reader can write a program checking the conditions of the exercises below—
so we do not provide the table of divisors of the numbers Pk, and do not promise that the provided
in the handouts “arrangements into a few columns” are enough to cover these exercises. (Example
subroutines needed for such a program are provided below.)

66 When the dust settles down, it turns out that such “partial results” have very little relation to the “actual”
hidden symmetry which may be exposed for divisors of numbers in the sequence (Pk). This is why we pay so little
attention to this effect in the main body of the notes. (We discuss it in Remarks 48, 49 on pp.77–77.)

handout-primes-in-columns.pdf
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Moreover, what is easy is to check whether “many prime p s behave as expected” but not whether
“all prime p s behave as expected”. So for the purpose of the exercises below, it is permitted to replace
“all primes in a column have a property ℘” by “the first 100 primes in a column have a property ℘”.
(Below, we call this number 100 “the poor man’s infinity”.)
Exercise D1: Consider Pk := k3 − k − 1. Find the smallest integer C such that there is a residue rmodC
satisfying the condition67 (r, C) = 1 and

• Either: for all primes p ≡ rmodC, there is an integer k such that p|Pk.
• Or: p - Pk for all primes p ≡ rmodC and all numbers Pk in the sequence.

Exercise D2: Double-check the result by increasing “the poor man’s infinity” to 10,000.
Exercise D3: Same question for Pk = k3 − k + 1.

Hint: there is no need to rerun the calculations!
Exercise D4: In conditions of Exercise D1, count how many residues rmodC satisfy (r, C) = 1. (This is
called “Euler’s ϕ-function”.)
Exercise D5: Which part68 of the count of residues r from Exercise D4 satisfies the conditions on r from
Exercise D1?
Exercise D6: Would one get false positives (in other words, the “fake=extra” pairs (r, C) with a smaller C)
if in Exercise D1 one uses 10 instead of 100 for “the poor man’s infinity”?

(We investigate these effects in the next group of exercises E.)
Exercise D7: The same questions as above, but for Pk := k3 + k − 1.

(We mention this sequence in Footnote 445 on p. 145.)
Exercise D8: The same questions as above, but for69 Pk being the k th tetrahedral number plus 2. (Expect
a very long calculation!)
Hint: To speed up the final step of calculations, one should make “the poor man’s infinity” as small as possible
(but so that it still avoids false positives; of course, one needs to recheck such “preliminary” answers similarly to

how we did it in Exercise D2).

Exercises E: Aside: search’s cutoff and the degree of certainty

The following exercises are not fully tuned/debugged yet.70

In the preceding exercises, we completely ignored the question “How to choose the poor man’s
infinity?”. The experiments described in these exercises show that a lot of prime numbers “demonstrate
the needed behaviour”. How can this be translated into “the degree of certainty” that this behaviour
would continue for all prime numbers?

On one hand, strictly speaking this question is completely irrelevant to what we do in the main
body of our text. However, the spirit of our exposition is that a lot of “hidden symmetries” could

67 This condition ensures that there are infinitely many prime numbers p ≡ rmodC. Compare with Dirichlet’s
theorem on arithmetic progressions.

68 As Remark 48 on p. 77 suggests, one should expect this number to be something like 1⁄6, or 1⁄3, or 2⁄3, or ½, or 5⁄6

of “residues mutually prime with C”. This is more or less the claim of Chebotarev’s density theorem.
However, explaining the connection of this exercise with the Chebotaryov’s density theorem requires results on

Galois extensions of residues mod p. Since in these notes we only mention these results really cursorily, there is no
hope to draw on the actual connection. (On the other hand, let us note that for the fractions above, the common
denominator is 6—which is the order of the “Galois group of P ”. Since elements of this groups are permutations of the
roots of P , its order divides (degP )!—which is 3! = 6 for our P .)

69 We discuss this polynomial in the mentioned above remarks.
70 N.B. (???) Test?

https://en.wikipedia.org/wiki/Euler%27s_totient_function
https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
https://en.wikipedia.org/wiki/Chebotarev%27s_density_theorem
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have been (or have been!) discovered by examining the results of “mathematical experiments”. Such
experiments lead to questions very similar to our: “would the observed behavior continue?”.

In a lot of cases there is no way (and no heuristical ways) to assign a “degree of certainty” to an
experimentally observed pattern to continue for all values of parameters. (Of course, this excludes
the case when one can prove this!) However, sometimes there is

• A lot of similar problems where the pattern does break at some moment;
• A heuristical probabilistic model describing the distribution of “the threshold where the
pattern breaks”.

Hence if the thresholds found by the “failing” experiments match the heuristical model, one can
estimate “the heuristical probability” that the results of our— apparently successful— experiment are
only a fluke (so the observed pattern is going to break later, beyond the range of our experiment).

This “heuristical probability” can be interpreted as “a degree of uncertainty” of our experiment.
(This is close to the Bayesian approach to experiments.) Here we inspect a toy example: the
experiments of the preceding section.

In the exercises above, one checks arithmetic progressions for “the color” of the primes in these
progressions. Before we find a “good” arithmetic progression, we need to check many progressions
which would “eventually fail”; in other words, we would eventually find a “prime of ‘another’ color’”
inside this progression. In other words: at this moment, we inspected the first several primes in the
progression, and found a few (denote this number W ) primes of the same color, but the W + 1 st one
is of different color.

 0
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 0  100  200  300  400  500  600  700  800  900  1000
The maximal step of arithmetic progressions

max(W encountered)+1
Where probability of meeting such W is 0.5

How large may be W we would actually en-
counter? The answer to this question, obviously,
affects our choice of “the poor man’s infinity”: it
should be larger than any such number W . The plot
on the right shows how this number grows when
we allow progressions with larger and larger step
in Exercise D8 on p. 28 (but, of course, we must
exclude the step found in this exercise). One can see
that these data can be approximated “reasonably
well” by a red curve drawn according to a certain
rule. Below, we examine how to guess a suitable
rule for this curve. (Since 100 is much larger than the values on the blue and red graphs, and since the
“sock model” below gives an exponential decay in probability w.r.t. this value, these plots substanciate
our choice of 100 for “the poor man’s infinity”.)
Exercise E1: Calculate how many arithmetic progressions one should check to cover all C ≤ C0; here
C0 = 400.

Hint: Exercise D4 on p. 28
.
In fact, the answer is very similar to the answer at the end of Remark 41 on p. 73: we need to

check about 61% of the pairs (r, S) with 0 < r < S < S0. See also the remarks at the end of the
section on the average growth rate of ϕ on WikiPedia (and the group F of exercises on p. 30).

We continue discussing this after Exercise E3.
As mentioned in the Remarks considered above,71 approximately 1⁄3 of primes p are going to be

“red” (meaning that p - Pk for every k). How can this help us to estimate the maximum value of W
after considering about 50,000 arithmetic progressions (as in Exercise E1)?

After we choose a polynomial, the color of every prime is uniquely determined by our rules.
However, these rules are very unwindy to work with; very surprisingly, it turns out that for a large

71 Compare also with Footnote 68 on p. 28.

https://en.wikipedia.org/wiki/Bayesian_probability
https://en.wikipedia.org/wiki/Euler%27s_totient_function#Growth_rate
https://en.wikipedia.org/wiki/Euler%27s_totient_function#Growth_rate
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category of questions there is no radical change of answers if we suppose instead that colors are
assigned randomly (with expected frequencies)!

It is “reasonable to expect” that if 1⁄3 of socks are red (and the rest are green), and we take socks
from a drawer at random, then “on average” we will pull 2 green socks before getting a red one.72
However, the intuition tells us very little about how large this “run” of green socks may turn out if
we try many times! We start with examining this question.

Exercise E2: Show that the probability of the first W socks being all green is (2/3)W .

Exercise E3: Show that when we repeat “taking socks until you get a red one” 50,000 times, it is more
probable than not that for every one of these sequences the initial run of green socks is less than 29 socks
long.

To believe that these results are related to questions of color of primes in arithmetic progressions,
we need to make the following two leaps of faith:

• When we consider 50,000 arithmetic progressions from Exercise E1, the color of prime
numbers near the beginning behaves as if the colors were random, with probabilities as above.
• The colors in different arithmetic progressions behave as if they were independent.

(Here we interpret the word “random” as meaning what the Probability Theory calls “independent
identically distributed”. The word “behave” means only the behaviour of the maximal number W we
can see.)

Such statements are extremely hard to verify.73 Nevertheless, it turns out that surprisingly often
the corollaries of such “heuristical assumptions” are compatible with numeric experiments (e.g., as
the plot above shows)!

For example, one can compare the value 29 obtained above with what is actually needed to avoid
“false positives” in Exercise D8 on p. 28. The largest value W encountered for C ≤ 400 is 33, which
is larger than 29—but it is not much larger (as promised above)! Moreover, the largest value W
encountered for C ≤ 380 is 26, which is smaller than 29.

Conclusion: a jump in the maximal observed value of W happens near the value of C0 where the
“sock model” gives a “significant” probability of encountering a larger value of W . (Here “significant”
is of order of magnitude ½.)

Exercise E4: Using the results of preceding exercises, write a formula suitable for the red plot mentioned
above.

Exercises F: Aside: Counting mutually prime numbers

Below we continue the discussion started immediately after Exercise E1 on p. 29. As in the
preceding section, these exercises just clarify a phenomenon encountered in the exercises above.
Nevertheless, the number 61% which appears below is mentioned once in the main body of the text, in
Remark 41 on p. 73. M These exercises examine routine “elementary calculus” questions. However,
they are written so that the readers who do not know calculus have a chance to solve them. M///

Note that to remove all unsuitable pairs (r, C) in Exercise E1 on p. 29, one needs to remove those
for which 2|r and 2|C (this is about ¼ of all pairs); then remove those for which 3|r and 3|C (this is
about 1⁄9 of all pairs); then remove those for which 5|r and 5|C (this is about 1/25 of all pairs); etc.

72 Theoretically, with our description of the number W , we also need to consider the case of pulling out W red
socks before pulling a green one. However, it is intuitively clear that this chance is way smaller than pulling out W
non-red socks before pulling a red one (for W � 1). So we ignore this possibility below.

73 . . . especially when we know that this is going to break for a certain larger value of C, when suitable rmodC
would give all-green sequences.
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Exercise F1: Show that if the limit C0 of Exercise E1 on p. 29 is large enough, then after doing 3 steps of
the preceding paragraph, about α5 := (1− 1/22)(1− 1/32)(1− 1/52) of all pairs remain. In other words, if
we start with S pairs, and R pairs remain, then R/S ≈ α5, and the precision improves arbitrarily high when
C0 grows to ∞.

Hint: If one replaces 5 by 4, this is not going to be correct!
Exercise F2: Show that if numbers 0 < an < ½ are summable (in other words, there is a number M such
that a1 + a2 + . . . an < M for any n), then (1− a1)(1− a2) . . . (1− an) > e−2M for any n.

Hint: Use derivatives to show that −2x < log(1− x) < 0 for 0 < x < ½.
Exercise F3: Show that ak + ak+1 + ak+2 + . . .+ am < 1/(k − 1) for every m ≥ k > 1 if an := 1/n2.

Exercise F4: Show that the sequence (an) := (1/n2) is summable.

Exercise F5: Define numbers αp as in Exercise F1: αp := (1− 1/22)(1− 1/32)(1− 1/52) . . . (1− 1/p2); here
p is a prime number, and the factors 1− 1/l2 are taken for all prime numbers l ≤ p. Show that the numbers
αp have a certain limit α.

Exercise F6: Using prime numbers below 1,000, show that 0.605 < α < 0.61.
Hint: Use programs to calculate α997; use the estimate from Exercise F2 on p. 31 to understand what happens

with αp/α997 for primes p ≥ 1,009.

It is not very easy to show that the limit α from Exercise F5 coincides with the number we discuss
after Exercise E1 on p. 29. However, Euler found a heuristic using the Taylor series for sin x to suggest
that α = 6/π2 ≈ 0.6079271. Furthermore, now we know how to make his arguments into real proofs.
(Compare with this section on WikiPedia.) The original Euler’s argument is in Polya’s book “How
to solve it”.

74

Example code to use in exercises

For a quadratic P (such as “a triangular number + 1”) one can check what happens for rmodC
with r = 4, C = 7 in GP/PARI by

check_p(p,P)=for(k=1,p,if(0==subst(P,'x,k)%p,return(1)));0;
my(r=4,C=7,p);for(l=0,100,p=r+C*l;if(isprime(p),print([p,check_p(p,x*(x-1)/2+1)])))
To answer other exercises, one may use the following subroutines and use the example code as

templates:
check_r(r,C,P,L=100)=my(p,c,cc=[0,0]);for(l=0,oo,p=r+C*l;if(isprime(p),\
cc[1+check_p(p,P)]++;c++;if(cc[1]&&cc[2],return([cc,0]));if(c>=L,return([cc[2]!=0,1]))));

check_C(C,P,L=100)=my(l=List);for(r=1,C-1,if(gcd(r,C)==1,listput(~l,[r,check_rr(r,C,P,L)])));l;
check_C_count(C,P,L=100)=my(l=check_CC(C,P,L),c=0);for(j=1,#l,if(l[j][2][2],c++));c;
my(r);for(C=383,383,r=check_C_count(C,x*(x^2-1)/6+2,33);if(r,print([C,r]);return);if(C%100,,print(C)))
check_C_count_elevate(C,P,L,Lmax=100)=my(r,l=L);for(j=1,oo,r=check_C_count(C,P,l);if(r&&l<Lmax,l++,return([l,r])));
check_elevating(fr,to,LOG=1,Lmax=100)=my(L=1,l,r);for(C=fr,to,l=L;[L,r]=check_C_count_elevate(C,x*(x^2-1)/6+2,L,Lmax);\
if(r,print([C,r]);return);if(L>l,print([C,l,L]));if(!LOG||C%100,,print(C))); \\ a few minutes to calculate up to 400

This gnuplot code produces the plot above (remove set output and term to output to the
screen):
##### perl -wlne "s/[\[\]]//g; @F=split /,\s+/; print qq($prev\n$F[0] $F[1]) if $prev; $prev = qq($F[0] $F[2])" W-values > W-crv
set key right center
set xlabel "The maximal step of arithmetic progressions" offset 0,0.5 tc "dark-green"
set output "Wmax.pdf"
set term pdfcairo
plot "W-crv" w l title "max(W encountered)+1" lc "#1859a9", \
log(x*(x+1)*6/pi**2)/log(3/2.) title "Where probability of meeting such W is 0.5" lc "#ed2d2e"

These commands use this input file W-values generated with the preceding GP/PARI code:

74 N.B. (???) A problem I forgot (with separate constants for each polynomial).

https://en.wikipedia.org/wiki/Basel_problem#Euler%27s_approach
https://www.google.com/search?q=Polya+book+%E2%80%9CHow+to+solve+it%E2%80%9D&ie=utf-8&oe=utf-8&hl=en&pws=0
https://www.google.com/search?q=Polya+book+%E2%80%9CHow+to+solve+it%E2%80%9D&ie=utf-8&oe=utf-8&hl=en&pws=0
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The simplest Langlands’ patterns in more detail:
the “hidden symmetries” in deg = 3 are fractal

Bread crumbs: A very coarse outline of the Langlands’ pattern

We did not discuss what follows at Math Circles.

On p. 20 we gave very vague hints about what one should be fluent with to be able to understand
the Langlands’ patterns (the “hidden symmetries”) for our sequence of colors encoding divisors
of “tetrahedral numbers + 2” (on p. 19). These patterns also fit other similar sequences of colors
constructed, for example, from divisors of “20× tetrahedral numbers + 1” (although the finer details
for this example would be very different; we postpone them until Remark 18 on p. 36). Here we want
to leave a tiny bit more bread crumbs on this path.

This section is just a very coarse outline. Later we are going to clarify the details.
While we tried to keep this outline as accessible as possible, there is a limit to this. Your mileage

may vary. All discussions below are heuristical only; it would take 100s of pages to give rigorous
arguments.

Exposing the pattern goes in 3 steps.
• First one needs to apply several “transliterations” to the colors. They are very straightforward,
though the technical details are quite involved. To cut the long story short: in the outcome,
we replace colors with “suitable” whole numbers.

It is simplest to describe what happens to “bold” colors (colors of prime numbers): for
sequences of degree 3, we replace red by −1; green becomes either 0 (“non-interesting green”)
or 2 (“interesting green”). (Which of the greens are “interesting” will be discussed later.75)
Moreover, a few prime numbers76 may need a special treatment.

In fact, this is the step where we forget about colors of non-prime numbers: for example,
the whole number assigned to pq does not depend on the color of pq, but only on the whole
numbers assigned to p and to q.77 We discuss this in more detail in the section on p. 59.
• Denote the resulting sequence of numbers by Nn. The second step is to take the Fourier
transform of this sequence.78 This is, automatically, a periodic function F (t) = ∑

nNn cosnt.79

75 So, in fact, it is not “pure transliteration”: we need a bit more information than our colors! However, the extra
information is contained in what we already know: the color sequence corresponding to a certain polynomial of degree
2. For our example, it is “square numbers + 971” (this is not a misprint!). See Remark 40 on p. 72 for details.

76 Divisors of the discriminant, of the denominators of coefficients, and of the numerator of the leading coefficient.
77 For sequences of degree 2, already this first step exposes the pattern (so we do not perform the other two steps):

the sequence Nn is periodic. In fact, we already saw this result (in disguise): it is the second row of colors on p. 8.
To unmask the disguise, note that in this case, the numbers Nn given by transliteration rules are either −1 or 1.

For example, red or green primes p are replaced by Np = −1 or Np = 1 correspondingly. For composite n, one uses
the rule Nab = NaNb. (For more general polynomials, this works only if k, l are mutually prime.) Since Nn takes
only two possible values, one can change Nn “back to” red/green colors. This makes it into a “double transliteration”:
“colors”→ Numbers Nn → “colors”. It turns out that it replaces our row of colors by a periodic row of colors (see p. 8).
On prime n, the colors are automatically unchanged.

(Here we ignore “the exceptional primes” of the preceding footnote. They may lead to a mismatch between these
two rows of colors in a few bold places.)

The obtained sequence Nn is called the “Legendre symbol”. (Compare with p. 208.)
78 Recall that these notes need only very cursory knowledge of Fourier series— see Footnote 2 on p. 1.
79 A lot of things become simpler if we consider FC(t) :=

∑
nNneint instead, so F = ReFC. However, since until

the discussion on p. 84 we are concerned mostly with plotting, it is much easier to ignore the imaginary part of FC(t).

33

https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Legendre_symbol
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• At last, we can state how the Langlands program describes the pattern of numbers Nn. This
goes through fractal properties of the function F (t):80

The graph of F (t) is an exact fractal.
Note that the word “fractal” is used in math with two different meanings:
– A shape where every small part may be obtained from the whole by certain transforma-
tions, called “the fractality laws” (we call such a shape an “exact fractal”).

– A shape of fractional Hausdorff dimension.
It is the first meaning which we need above, and “the fractality laws” play the role of
“hidden symmetries”.82 Here is an example of such a fractal behavior of a graph from an
about-15-years-old paper:

The function (1.1) is merely the tip of an iceberg. In this Letter, we continue the

study, begun in [12], of the properties of automorphic distributions for subgroups of

finite index C � SLð2;ZÞ. These automorphic distributions have continuous an-

tiderivatives which are nondifferentiable everywhere, or everywhere with the exception

certain rational points, as in the case of the function (1.1). We establish more: the

continuous antiderivatives satisfy global Hölder conditions jfðyÞ � fðxÞj ¼
Oðjy� xjaÞ, but definitely violate the pointwise Hölder conditions jfðxÞ � fðx0Þj ¼
Oðjx� x0jcÞ, b < cO1, for values b ¼ bðx0ÞPa which depend on the arithmetic

properties of x0. This behavior reflects a high degree of oscillation around all rational

points. Figure 1, for example, plots the real part of the antiderivative /ðxÞ of the

automorphic distribution corresponding to the Maass form of smallest nonzero

eigenvalue for C ¼ SLð2;ZÞ; Re /ðxÞ is continuous, but everywhere nondifferen-

tiable. Near the origin /ðxÞ � jxj1þk/ð1=xÞ, with k � 27:56 i, and this behavior is

replicated at all rational points. The absolute value of /ðxÞ also oscillates rapidly, as

is illustrated by Figure 2. Near the origin j/ðxÞj evidently displays fractal behavior –

see Figure 3.

Modular forms of weight one are another source of continuous, nowhere differ-

entiable functions. The holomorphic function
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Figure 1. The real part of the antiderivative /ðxÞ of the automorphic distribution cor-

responding to the Mass form for SLð2;ZÞ with k � 27:56 i:
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Figure 2. The absolute value of same function /ðxÞ as in Figure 1.

STEPHEN D. MILLER AND WILFRIED SCHMID266

Note the pattern in the graph near x = 0. This pattern is in fact repeated near every point of
this graph. The copy may be centered at any rational point x = R/S—though the larger S is,
the smaller is the copy (zooming into this graph can uncover many such copies corresponding
to small S). Moreover, every “oscillation” of this pattern is, in fact, a particular “fractal
transform” of the period of the graph (on this period x changes between 0 and 1).

Remark 14: Let us clarify in which sense the “fractal properties” above may be thought of as “a
pattern in the sequence of numbers Nn” (or, transliterating back, as a “pattern of the sequence of
colors”). If we know just “a very coarse overview” of the graph of F (t), the fractality laws translate
this information to “the coarse overview” of every small piece of this graph; combining these together,
one gets “a much finer overview” of the graph. Repeating the process, one gets more and more details
about F (t). In a certain sense, the fractality laws “fill in” the information about the fine details of
the graph which was missing in the overview.

So it should not be surprising that given the fractality laws and sufficiently many details of “the
coarse overview”, one can reconstruct the whole graph of F (t). Since the “coarse overview” of a
periodic function is given by its first few Fourier coefficients, it is natural to expect that

The fractality laws and the first few numbers Nn determine all the numbers Nn.
80 This may look very indirect as far as we are interested in numbers Nn—or red/green colors. However, first, this

is expected to be “as good as it gets”: probably, there is no pattern which is “more direct” than this. Second, currently
mathematicians gradually learn how to extract “more useful” information about Nn out of such fractal properties.81

81 This started with the circle method of Hardy–Littlewood.
82 The corresponding law is the red-framed formula in Footnote 102 on p. 42.

https://en.wikipedia.org/wiki/Hausdorff_dimension
https://arxiv.org/abs/math/0402382
https://arxiv.org/abs/math/0402382
https://en.wikipedia.org/wiki/Hardy%E2%80%93Littlewood_circle_method
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And this is what actually happens!83 Moreover, this is exactly what one expects from “a sequence
having a pattern”: knowing “the type of the pattern”84 and a few first terms, “the pattern” would
allow us to reconstruct the rest of the sequence.

For example, for the graph above, it looks like all the “bumps” on the graph are fractality-law
images of the “principal oscillation” on the graph. Then knowing the period (1) and amplitude (≈ 0.7)
of the “principal oscillation” would allow one to find heights (and positions) of all the “bumps” on
the graph, in effect reconstructing the whole graph.

We discuss how the regions where we “fill in the details” are positioned with respect to each other
in the section on p. 87.
Remark 15: Note that to find whether a prime number p may be a divisor of numbers in our
sequence of degree 3, it is enough to calculate the whole number Np. On the other hand, if we know
F (t) then Np is just a certain integral (the “inverse Fourier transform”) involving F (t) and p.

This shows that the questions of divisibility are inherently related to the questions of calculus.85

Remark 16: In discussions on the future (and history) of science, the prevailing mood is to claim
that science becomes more and more fractured, so that even specialists in relatively similar areas
cannot understand each other. Nevertheless, many leading mathematicians champion the exactly
opposite point of view.

Yes, if one observes what happens on the bleeding edge of science now, one would see that people
may focus on quite narrow questions. However, there is nothing new in this— this is the natural way
the human mind works. Moreover, such narrow interests might be just “tactical” in nature, and such
a close focus can be temporary only. (This is the synchronous view on science.)

On the other hand, the diachronous view would show a completely different perspective. Instead
of looking at what people thought about what was “the bleeding-edge research” at that particular
moment of time, this point of view focuses on a particular theme, and observes how it was perceived
at different moments of time, from the time it was “bleeding-edge” till today. It turns out that as
time goes we understand more and more the interrelations of these themes. What may have looked
“very specific and narrow” when it was discovered, later would turn out to be included in wider and
wider vistas. New points of view appear all the time; they interconnect things which were previously
thought to be completely dissimilar.

This confluence of mathematical theories leads to the idea of “Unity of mathematics”.86 Remark 15
on p. 35 provides one of the most striking examples of such a unity.
Remark 17: While “Unity of mathematics” is a very captivating phenomenon, it may also lead to
hard-to-surmount difficulties. This is what happens with the Langlands Program!

It brings together a dazzling amount of very different branches of contemporary mathematics.
Even if one could make an intelligible sketch of every one of these themes, the sheer count of the
involved topics would overwhelm all but the most persisting readers.

To cope with this, we go over the same ideas in several passes, trying to increase the amount
of details gradually. Additionally, inside every pass we attempt to use strokes as bold as possible,
cloaking all the “fine print” into footnotes, and interconnecting87 the passes by cross-references.

83 After explanations above, it should not be too surprising. What is surprising is that all this “filling in of details”
does not lead to contradictions. In other words, the existence of any non-0 function satisfying the fractality laws is an
amazing miracle!

84 For example, in the case of the pattern of periodicity, the “type” is the length of the period. If we know that
many first numbers Nn in a periodic sequence, the rest may be reconstructed by periodicity.

85 Moreover, the famous circle method of Hardy–Littlewood is based on a very similar observation. Compare with
Footnote 80 on p. 34.

86 . . . although for most mathematicians, maturing to this idea takes much longer than it took I.M.Gelfand in an
epigraph to these notes!

87 . . . as sparsely as possible, to avoid making these notes into Borges’ Ts’ui Pên’s The Garden of Forking Paths.

https://www.google.com/search?q=%22unity+of+mathematics%22&ie=utf-8&oe=utf-8&hl=en&num=100&pws=0
https://en.wikipedia.org/wiki/Hardy%E2%80%93Littlewood_circle_method
https://en.wikipedia.org/wiki/The_Garden_of_Forking_Paths
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The appetizers for what follows

We continue laying the bread crumbs on the way to the Langlands Program. This is still just a
very coarse outline of hidden symmetries (in degree 3)!
Remark 18: As an appetizer for the following discussion, here are the “real-life examples” of two
types of behaviour of plots of functions related to our sequences of colors for polynomials of degree 3:

1.6438

-1.6393
-1 90 1 2 3 4 5 6 7 8

1.7372

-1.7457
-1 90 1 2 3 4 5 6 7 8

0.4968

-0.54
0 0.450.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.33583

-0.33583
-0.002 0.10.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.13995

-0.029865
0.24818 0.298180.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29 0.295

0.051348

-0.10721
0.079 0.0910.08 0.081 0.082 0.083 0.084 0.085 0.086 0.087 0.088 0.089 0.09

For each of two columns above, we picked a polynomial of the corresponding type for which the
patterns of fractality are easiest to recognize.88 Each plot in the top row shows two graphs: about 1½
periods for the real and the imaginary part of the function F (−1)

C (t) (see Footnote 79 on p. 33). The
88 Mathematically, this means that the conductor is as small as possible.
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second row zooms into the red graph of the graph above it near the origin; the third row zooms yet
more into the plot above it near its most interesting point.

One can see that the “shape of oscillation” in the second row matches the period in the first row
—but on the left it matches the violet shape, while on the right it matches the red shape. However,
for both columns, the “shape of oscillation” in the bottom row matches the red shape of the top row.

This difference between these two columns suggests that one may need to consider two different
flavors of fractality—and this is what actually happens. By historical reasons, in math these flavors
are called by unrelated names: “modular form” fractality, and “Maass form” fractality. (Due to
harder-to-explain mathematical arguments of the Langlands Program, nowadays they are also called
“the odd case”—on the left,—and “the even case”.)89

The “odd” case was understood a few decades before Langlands—but before the Langlands
Program it was just a mathematical curiosity. The investigations of the “even” case succeeded only
very recently.90 We examine another approach to these two cases in Remark 24 on p. 39. See also
Remark 36 on p. 59, and the section on p. 82.

Remark 19: In the outline above, we needed to cheat to circumvent certain delicate points. Note
that the graph above, on p. 34, plots not the function F (t), but its antiderivative F (−1)(t). (Same for
plots of Remark 18 on p. 36.)

The reason for this is that, in a naive sense, the function F (t) has no value anywhere: the Fourier
series defining F (t) diverges for every value of t. In particular, the graph of F (t) itself does not make
a lot of sense. However, the antiderivative of F (t) has “a much milder” Fourier series; and it has an
honestly defined graph. (Note how this is similar to the relation of “white noise” and “Brownian
motion”—see Remark 32 on p. 48.)

Essentially, the phrase “the fractal properties of the graph of F (t)” should be understood as a
metaphor. To proceed any further, one needs to assign a precise meaning to this metaphor. There
are two approaches to “infinities” which are used to “define F without defining its values F (t) at
particular values of t”.

t

t

t

t

t

s

Remark 20: One approach provides ways
to work with these infinities directly. This
has immediate advantages of “visually ob-
vious” fractality (see the plots above—and
below). It also helps to internalize why the
fractality laws allow a few initial values of
Nn to define the rest of values of Nn, as we
discussed in Remark 14 on p. 34. (See the
section on p. 48 for details.)

The plots of functions shown above (and
those below!) are results of application of
this approach.

Remark 21: The other approach “regular-
izes” the infinities away altogether. Here
“regularization” means a particular way to

89 In elementary terms, these cases correspond to the polynomials having 1 or 3 real roots. Alternatively, they are
the cases of a negative or positive discriminant.

90 This is just my reconstruction— I could not find any appropriate reference.
It looks like during the last couple of decades, there is a widespread understanding that ”this follows directly”

from what is already proven about the Langlands Program.—However, apparently, nobody wrote this statement down
explicitly.

https://en.wikipedia.org/wiki/Modular_form
https://en.wikipedia.org/wiki/Maass_forms
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morph a function which makes it “more smooth”. In fact, this morphing process can be applied repeat-
edly (as done above). So one can “regularize” with different “strength”; the “strength” parameter s
shows how many steps of “morphing” were used. Moreover, interpolation is possible, so the parameter
s may be fractional as well.

Start with the function F (t) and apply regularization with strength s; this leads to a function of
two variables f(t, s) (as on the plots above). For more details, see the section on p. 84.

(In fact, these pictures91 illustrate a repeated application to F (t) of a certain type of low-pass
filtering with lower and lower cut-off frequency 1/s. Compare with the discussion in Remark 32
on p. 48.)
Remark 22: At first, the fact that we need to work with a function of 2 variables may be seen as an
inconvenience. On the other hand, with 2 variables one gets many more possibilities in interpreting
what these variables mean. In particular, while all geometries with 1 degree of freedom are essentially
the same, with 2 degrees of freedom a new opportunity appears: some of these geometries are “curved”
(somewhat similar to how the geometry of the surface of Earth is “curved”).

It turns out that
• If one chooses a “suitable” way to regularize, and
• if one chooses a “suitable” curved 2-dimensional geometry,

then the transformations of the fractality law for F (t) become just “rotations” (or “shifts”) in this
curved plane of parameters (t, s). One gets the following translation rules:

Fractality laws for F (t) ←→ Rotational/Translational symmetries for f(t, s).

These rules show that “the fractality laws” are symmetries, explaining how they can play the role of
“hidden symmetries”.

Moreover, the “rotations” (or “shifts”) in question happen to be symmetries of a tessellation (or
tiling) of this “Lobachevsky” geometry. (We return to this topic later, in the section on p. 84.)

t = −∞
t = +∞

Remark 23: In the second approach, the domain of definition of the
function F (t) becomes “the absolute”, or the “horizon” of the curved
geometry.92 A point t of the absolute encodes “the azimuth” ϕ of the
direction going to this point (the encoding is similar to the rule t = tan ϕ

2
in the usual geometry which sends (−π, π) to (−∞,∞)).93 In Remark 22
on p. 38, we worked with a point of Lobachevsky geometry writing it as

91 For technical reasons, these plots are based not on our function F (t), but on a function Φ(t) with random Fourier
coefficients of approximately the same magnitude as for F (t). However, since “the degree of smoothness” of a graph
depends on how quickly the Fourier coefficients decrease, “the roughness” of these graphs is very similar to the graphs
for f(t, s). (However, because of randomness, Φ(t) allows no fractality laws.)

To unclutter the picture, we avoid small values of s: they would result in very high spikes; these spikes would ruin
the plots. Above, s changes in [0.015 . . . 0.095], while t changes in [0 . . . 14].

In fact, the scales of variables s and t are closely interconnected (see Remark 22). Us using a very different scale
for s means that we scaled s up about 200 times. So the plots illustrate what happens in a very narrow strip near the
line {s = 0}.

92 A point of the absolute is “a point at the ‘infinity’ of the geometry”; different points of the absolute correspond
to different azimuths: “directions to look at” (this assumes that we look at something “very far” away).

This notion works equally well in non-curved (Euclidean) and in Lobachevsky geometries. While each observer
living in this geometry would have their own coordinate system for “azimuths”, what is crucial for existence of the
absolute is that if two cowboys ride “to infinity”, and their azimuths become closer and closer for one observer, the
same would happen with any other observer. So a particular value of azimuth for one observer “matches” a certain
value of azimuth for another observer.

This identifies “the absolute” with something observant-independent. We do not want to reuse the word “horizon”
in this context since we need it below in the non-curved situation.

93 People familiar with the Stereographic Projection may recognize the significance of this formula.

https://en.wikipedia.org/wiki/Lobachevsky_geometry
https://en.wikipedia.org/wiki/Stereographic_projection
https://en.wikipedia.org/wiki/Stereographic_projection#Tangent_half-angle_substitution
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(t, s) with s > 0. This is the half-plane model of this geometry; however, there is another, equally
useful model in a disk,94 where the absolute is the circle which is the boundary of this disk. One point
of this circle matches t =∞, the rest is identified with the t-axis.

The pairs of numbers (t, s), s > 0, used above are coordinates on a half-plane. However, they may
be also thought of as curvilinear coordinates in this disk; very vaguely speaking, s corresponds to
how far away from the boundary is the point. In particular, points with s = 0 are on the absolute,
matching the setup of Remark 22 on p. 38.95 Moreover,

Regularization F (t)→ f(t, s) is the interpolation of F (t)
from the boundary to the inner part of the Lobachevsky disk.

Assume that F (t) describes “the temperature on the absolute”. In other words, F (t) is the
temperature “far away in the direction encoded by t”. Keep this temperature on the boundary steady,
and let the temperature inside the Lobachevsky plane “settle down”, eventually reaching a steady
state. What may be the distribution of temperature in this state of stable equilibrium? The answer
to this question turns out to be exactly our choice of f(t, s).

In this language, f(t, s) is “the steady-state-heat-propagation interpolation” of F (t) from the
boundary of the unit disk into the whole disk. Moreover, F (t) may be interpreted as the “bound-
ary trace” of f(t, s). Hence, when the description above is applicable, one gets an “intertwining”
compatibility rule:

If the function F (t) on the boundary has a symmetry,
then its interpolation f(t, s) has a “similar” symmetry.

and vice versa.
Moreover, it turns out that “fractality laws” for F (t) may be considered as such symmetries. This

shows that the fractality laws are indeed “hidden symmetries” we have been looking for:

If F (t) is an exact fractal, then f(t, s) is highly symmetrical.

(And vice versa.) This is the reason for the rules from Remark 22 on p. 38.
Remark 24: In the preceding remark, we hid a very important effect: it turns out that the ordinary
process of heat propagation in our familiar non-curved geometry has two analogues in the case of
curved geometry. Some of the features of steady-state temperature distributions in our “flat” geometry
are inherited by one analogue, while some other features are inherited by the other.96

These two different analogues of the heat transfer process lead to two different choices of the
interpolation f(t, s) of F (t) into the disk.

Compare this with two flavors of “fractality laws” mentioned in Remark 18 on p. 36. It so happens
that one of them is compatible (in the sense of preceding section) with one type of heat transfer, while
the other one is compatible with the other type. This way, modular/Maass forms corresponds to
different kinds of heat propagation in a curved geometry.97 We illustrate this in the section on p. 55.

94 There is no best way to visualize this curved geometry. Sometimes the half-plane model ((t, s) with s > 0) used
in Remark 22 on p. 38 is more convenient; sometimes the disk model.

95 We illustrate these coordinates on p. 85.
96 This is, eventually, related to so-called “non-amenability”: the area of the circle in this curved geometry grows

exponentially with its radius. Therefore, even if you heated a part of radius 999 of a disk of radius 1,000, when this
heat propagates to the whole disk, the temperature would drop several times.

Essentially, all our intuition breaks in this case. Mathematically, this corresponds to appearence of a “spectral gap”
for the heat propagation operator. One analogue of heat propagation “ignores” this gap, the other analogue introduces
a new term cancelling this gap.

97 In fact, this is how these forms were first discovered: not on the absolute, but on the Lobachevsky plane.

https://en.wikipedia.org/wiki/Hyperbolic_geometry#The_Poincar%C3%A9_half-plane_model
https://en.wikipedia.org/wiki/Hyperbolic_geometry#The_Poincar%C3%A9_disk_model
https://en.wikipedia.org/wiki/Representation_theory#Equivariant_maps_and_isomorphisms
https://en.wikipedia.org/wiki/Hyperbolic_geometry#The_Poincar%C3%A9_half-plane_model
https://en.wikipedia.org/wiki/Spectral_gap_(physics)
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Remark 25: We must stress out that what people recognize as exact fractals are the fractals
“optimized for beauty”. When repeated due to fractality laws, the features of such shapes can remain
sufficiently large to be immediately recognizable. This makes these shapes attractive enough to be
put on a wall.

Unfortunately, most (or all?) examples of fractals in these notes are not “beautiful” in the above
sense. One needs to zoom in to recognize repetition of features. In fact, the smallest needed zoom
ratio is the conductor—and there are no polynomials of degree 3 with a small conductor!

However, even if not “beautiful enough to be put on a wall”, exact fractals remain exact fractals.
While the pictures below require zooming in to see the self-similarities, mathematically, they are on
equal footing with “beautiful fractals”.

Remark 26: For example, the plot above, on p. 34, is optimized for beauty: it has conductor 1. To
achieve this, the authors used a certain “tuning parameter” λ (mentioned in the caption to the plot).98
In our context λ must be 0. In fact, they took the smallest |λ| allowing conductor 1.

In more detail

The exposition of the previous two sections was intentionally made very sketchy, to avoid drowning
the reader in excessive details. I expect that for many readers, already the level of details in the
sketches above may be an overkill—and then here is a good place to stop reading.

On the other hand, the rest of this report is written for people left unsatisfied by the vagueness of
the preceding exposition. From this point on, the notes are going to become way more technical.

Anyway, to make the level of difficulty raise as slow as possible, we start with topics which allow a
“more visual” presentation, and would postpone “dry algebraic” themes for as long as possible.

Unfortunately, the usual way the Langlands program is stated is extremely technical and very
far removed from the simplified point of view discussed above. Translation to down-to-earth terms
is error-prone if one is not a specialist; on the other hand, there are very few published attempts
to do this—and all the attempts I know cover just the cases of negative discriminant (such as
“tetrahedral numbers + 2”), which were, in fact, understood well before Langlands. (Compare with
Remark 18 on p. 36.)

The (pseudo-)exposition we did in class (and do in these notes) is based on scratches of information
extracted from “the attempts mentioned above” combined with what I could distill from the original
papers. As I said, this is an error-prone process; apply salt as needed—one grain may be not enough.

Fractality laws: the simplified example

The first thing we want to describe more precisely is the “fractal transformations”. Recall that
these transformations map the whole graph of the function to its small parts. In fact, we want to
start with a “toy example”: it does not match “the actual transformation” exactly, but is its very
close cousin.

Take a graph of a periodic function g(t):

squeezed between two horizontal lines. The graph continues forever to the left and to the right; image
it drawn on a horizontal floor, and look at this graph from above. When our gaze follows the graph

98 This number is related to the eigenvalue for this eigenfunction of the heat transfer operator.
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to the horizon, near the horizon we see the picture like this:

Here two red lines “converge” near the horizon like rails of a straight railroad.
As it is customary done in “Projective Geometry”, above the horizon we put the reflected picture

of what is “behind us”:

Note that rotating this, we can make it into a graph of a function (on
the right). And this is the transformation we had in mind.

As it is easy to see, given any periodic function g(t), the graph on
the right is the graph of the function tg(−1/t). (This assumes that the
intersection of the red lines is the origin.)99 Call this the toy transformation
of the graph of g(t).

With this transformation defined, we may state the required “toy fractal
property” of the graph of the function F (t): (after appropriate rescaling
and horizontal shift) every small piece of the graph of F (t) coincides with
the “toy-transformed” graph of F (the graph of tF (−1/t)).100

More precisely: In fact, even more is true. Shift the graph of g(t) so that a point P of the graph moves to the
origin. Suppose that there is a periodic function gP (t) such that the shifted graph is the “toy-transformed” graph
of gP (t). We say that near P , the graph of g(t) is horizon-similar to gP (t).101

The periodicity of gP (t) is already an extremely strong condition on the graph of g. For the function g(t) = F (t),
it holds for any P whose t-coordinate is t = 2πR/S with whole numbers R, S. Furthermore, the exact-fractality
property can be restated as this amplification: “for many” such points P , the function gP (t) is “a shifted and
rescaled” function g(t) itself. In other words, gP (t) = AP g(BP t+ CP ). Such points P appear arbitrarily close to

99 Moving our “observation point”, one can also get functions tG(−1/t) with G(t) = Ag(Bt+ C).
100 What we said above is a simplification; in fact, instead of applying this law to the graph of F (t), it should be

applied to the graph of 1/F (t).
This may be restated as follows: one should apply not the “toy transformation” tF (−1/t), but the “actual

transformation” F (−1/t)/t. (This restatement is applicable even though 1/F does not make sense for “white-noise-like”
generalized functions F we consider in our notes. Compare with Footnote 111 on p. 47.)

101 In other words, g(t+ 2πR/S) = tg2πR/S(1/t).

https://en.wikipedia.org/wiki/Projective_geometry
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any given point of the graph. Which particular points of the form t = 2πR/S “work this way” is determined by the
conductor; call them “horizon-self-similar points”.102

Remark 27: Above, what we did “above the horizon” looks very logical—provided one knows
projective geometry. Indeed, when we look in some direction, our gaze “hits” everything on the
half-line starting at our pupil, and going in the direction we look at. Now, half-lines are not very
natural geometric objects; a projective geometer would try to replace them with whole lines.

After such a replacement, we imagine that we “can see” not only along the “forward” half-line,
but also along “backward” one. How would it play out in practice?

When one looks above horizon, there is nothing along the “forward” half-line, but along the
“backward” half-line one “can see” the objects hit by the “backwards continuation of our gaze”—
which are below the horizon! So the objects on the ground behind us “would appear” above horizon
in front of us. (This is the central symmetry with the fixed point in our pupil.) This is exactly how
we plotted the illustration above. In turn, this led us to the fractality law tF (−1/t) stated above.

For many years, this law was known to “provide” the pattern in sequences of colors considered
above, at least for some of polynomials of degree 3 (those of negative discriminant, see Remark 18
on p. 36). On the other hand, a lot of polynomials were not covered by this kind of fractality.

Eventually, due to the Langlands program, it was understood that to cover these “remaining”
cases, we need to change what we do “above the horizon”. There is another way to attach the top
part of the picture above: reflect it flipping left and right:

This way, the “reflected” “toy” fractality law sends the graph of F (t) to the graph of |t|F (−1/t), and
the “reflected” “actual” fractality law sends it to F (−1/t)/|t|.

These absolute values are very unnatural, almost sores in the eye—but this is what turned out to
actually work (in the cases of positive discriminant; see Remark 18 on p. 36). The contrast between
having t and |t| leads to the difference of the graphs in Remark 18 on p. 36: the right one needs |t|.

102 Using the formula from Footnote 100, horizon-similarity “to G(t)” at t = 0 means:

F (t) = ε ·G(−1/γt)/t. Alternatively: tF (t) = ε ·G(−1/γt).

With “self-similarity” G = F . Likewise, horizon-self-similarity at t = 2πR/S can be written as

tF (t+ 2πR/S) = ε · F (ζ − 1/γt).

for certain constants ε, ζ, and γ. (Note that the relation between the arguments of F on the right and on the left
coincides with what is described in the section on p. 78.)

Below, we illustrate the notions of “horizon-similar” and “horizon-self-similar” with many plots.103

We quantify the notion of “many such points P ” in the sections on p. 79, p. 90, p. 96. Moreover, the possible values
of R and S—and the corresponding ζ and γ—are described in Footnote 201 on p. 78.

103 However, since what we plot is F (−1)(t) we need the transformation law for the antiderivative of F . For visual
comparison, it turns out to be very similar to the toy law! (See the section on p. 42.)
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The zoo of fractality laws

Let us collect together the fractality laws we use in these notes:

The “actual” fractality law

F (t) ù F (−1/t)/t
or tF (t) ù F (−1/t)

From Footnotes 100, 102.

The “honest law for antiderivative”
Φ(t) ù tΦ(−1/t) + extra term
Introduced in the section on p. 49

The “toy” fractality law
g(t) ù tg(−1/t)

Illustrated by the pictures above.

Visually very similar (see the plot on p. 81)

Antiderivative
Φ = F (−1)F = 1/g

(The extra term comes from integration by parts. See the calculation on p. 81 for details.)
Moreover, every one of these laws comes in two flavors: one is as above, the other has |t| instead

of t as a factor or a denominator.
It is the “actual” (or the “honest”) fractality laws which are “the hidden symmetries” of the

Langlands Program. In these notes, we play with the “toy” fractality law only for instructive purposes,
because

• It is so simple to deal with.
• It has a very strong visual similarity to the “honest” fractality law.
• The dashed connection above (F = 1/g) permitted us to quickly introduce the “actual”
fractality law (in Footnote 100 on p. 41).104

Recall (see the section on p. 33) that we are interested in particular (generalized) functions F (t):
the Fourier transforms of “arithmetic” sequences Nn. The main message of these notes is that these
functions satisfy the “actual” fractality law. However, the graphs of functions F (t) turn out to be
“unplottable” (see the section on p. 48), and the best choice we have is to plot their antiderivatives;
in this context the blue arrow above leads to the “honest” fractality laws.

Finally, the “honest” law leads to pictures practically indistinguishable from those of the “toy”
law—hence the features of such “fractal plots” are easy to recognize. The only important difference
is that the “extra term” can move these features up or down on the graph. (See the section on p. 81
for details.)

Example: the toy fractality law as a symmetry

Now we want to demonstrate how the “toy” transformation discussed above works as a part of a
fractality law. We want to simplify the situation above yet more so that we may discuss a handy
example. With this in mind, replace the property stated on p. 41 before Remark 27 by a much weaker
property:

The origin P = (0, 0) of the graph is “horizon-similar” to the function itself.

(So, first, we require horizon-self-similarity near one point P only. Second, we do not need to shift the
graph.)

104 Recall that the particular function F (t) we study cannot be written as 1/g(t). Hence the dashed connection
above is again “didactic only”. (Compare with Footnote 111 on p. 47.)
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In other words:

The graph is a rescaled toy transformation of itself.

Can this happen with a periodic function? Since the typical gut reaction to this question was: “this
is not possible”, we start with an example of such a graph.

The idea of our construction is very simple:

Force the graph to be preserved by toy transform, and force periodicity.

Forcing preservation by toy transform is easy: keep the given definition of the function far from 0,
and define it near 0 by the formula for the toy transform. Likewise forcing periodicity is easy: one can
extend any function on [−π, π] periodically.105 We are going to apply these two steps alternatingly,
and see what happens.

So we start with a smooth function g0(t), then define g1(t) as tg0(−1/t) on [−π/2, π/2], and
extend periodically so that the shift g1(t+ π/2) of the resulting function g1(t) is even. Then we get
g2(t) likewise, etc.106 Every next function would have “a thicker pool” of non-smooth points than the
previous one.

Very quickly (for plotting purposes, it reaches the limit already about n = 8) the process above
leads to a sequence of functions flipping between 4 states. Essentially, gn+2(t) almost coincides with
−gn(t) when n � 0. In other words, putting G(t) := gn(t) − ign+1(t) with n � 0 gives a function

105 For continuity, it is better to start with [−π/2, π/2], then extend it to [−π/2, 3π/2] so that f(t+ π/2) is even. Then
one can extend from [−π/2, 3π/2] by 2π-periodicity.

This is what we do below. However, to improve the visibility of the pattern, we rescale the t-axis; essentially,
we use gk+1(t) := tgk(−C/t)/

√
C with C = π/2. (This particular choice has no significance except for t = 0.5 being

non-smooth.)
(Note that this creates discontinuity of derivative at t = π/2. With a bit more ingenuity one could extend avoiding

this discontinuity. Instead, we are going to just ignore this defect.)
106 However, to improve the visibility of the pattern, we rescale the t-axis; essentially, we use gk+1(t) :=

tgk(−C/t)/
√
C with C = π/2. (This particular choice has no significance except for t = 0.5 being non-smooth.)
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such that tG(−1/t) is iG(t); in other words, it is G(t) rescaled by the imaginary unit i. Observe:
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The first graph plots a bit more than 2 periods of this function. The second shows a small part of its
period.107

The Cantor set of non-smooth points on the example plot

Here we continue inspecting what happens if a periodic function G(t) is symmetrical w.r.t. the toy
fractality law.

Automatically, the graph of G(t) near the origin looks “at least as bad” as the graph on p. 41
used in the definition of the toy transform. In fact, it must be much worse! That graph was a “toy
transformation” of a smooth function g(t)—and this transformation had a “very non-smooth point”

107 It should not be “very surprising” that we obtained a complex-valued function. Recall that above we promised
that FC(t) is easier to deal with than F (t). Indeed, FC(t) has “better” fractal properties than F (t)—and it takes
complex values.

The simplification comes from the fact that we allow our fractal transform to rescale the function—and there are
“more ways to rescale” a complex number than a real number. For example, one can multiply it by i. (Algebraically,
appearence of i is unevitable since the toy transform chained with itself sends G(t) to −G(t).)
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with oscillating behavior near the origin.108 However, as the example graph of the preceding section
shows, there is a process “proliferating” already known non-smooth points.

Proceed marking the already known non-smooth points in color:
• The origin is a “bad” (“non-smooth”) point for G(t):

• By periodicity, G has many such “non-smooth” points going to infinity:

• Since the graph of G(t) near the origin is a “toy transformation” of such a non-smooth graph
of G(t), these non-smooth points “near the horizon” (so when t ≈ ∞) are transformed to
non-smooth points accumulating near the origin:

• Now take the periodicity into account again: this red “family” of non-smooth points near the
origin must be repeated near every blue point:

• Use the toy transform again. The red points near the origin were “toy transforms” of the blue
points. However, now every blue point is surrounded by “a red family”. So every red point
near the origin must be surrounded by a (tiny!) “toy transform” of the red family near the
corresponding blue point; draw this in green. Here we zoom about 10 times near the origin:

Together, the red and green points accumulating at the origin form a “super-family”.
(The origin is surrounded by red points, and every red point is surrounded by green points.)
• By periodicity, there is a repetition of this super-family near every blue point.
• Time to use the toy transform again! Since every green point near the origin is a toy
transform of a red point, and now we know that every red point is surrounded by points of a
super-family, near every green point there is a toy transform image of this super-family. This
forms “a super-duper-family”. (The origin is surrounded by red points, every red point is
surrounded by green points, and every green point is surrounded by its own family.)

Etc.
Conclusion: every non-smooth point of the graph of G(t) is surrounded by a whole “pool” of non-
smooth points. Taken together, these points form an exact fractal. Call it the Cantor hyper-family.109

Warning: do not confuse the exact fractality of this set with exact fractality of the graph of F (t).
This fractal is formed by the arguments t of the function G(t) where it has singularities (so it is
a fractal in dimension 1). (The latter function is still too uncomplicated for its graph to have the
required fractality property!)

Fortunately for our construction of the graphs of the functions gn(t) in the preceding section, while
new steps add “more and more points of oscillation”, it turns out that every next step “thickens” the
pool in smaller and smaller increments. So, as far as visualization is concerned, this leads to a very
quickly converging process.

Remark 28: Due to the nature of toy transform, the constructed functions gn(t) vanish at their
non-smooth points. Hence the non-smooth points on the graphs above are where the graphs meets

108 This is yet more pronounced when the “toy transformation” tg(−1/t) is replaced by the “actual transformation”
g(−1/t)/t.

109 The closure of this hyper-family is a Cantor set (a closed totally disconnected subset of R of full cardinality; it
is homeomorphic to {0, 1}N).

For those who know continued fractions, this set is quite similar to the set of numbers such that the coefficients an
of their continuous fractions are all larger than c. Here c depends on how much we shrink the transformed graph of
G(t) to match the graph of G(t) (and we allow negative numbers as coefficients).

In examples related to the Langlands Program, c depends on the conductor.

https://en.wikipedia.org/wiki/Closure_(topology)#Closure_of_a_set
https://en.wikipedia.org/wiki/Cantor_set#Topological_and_analytical_properties
https://en.wikipedia.org/wiki/Continued_fraction
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the t-axis. For our plots of F (−1)(t), which are symmetric w.r.t. the “honest” fractal transform, the
“extra term” (see p. 42) can move these points off the t-axis.

Remark 29: Since the non-smooth points of the graph form a fractal, “for most110 of the points t”
the function G(t) is smooth and non-0. In particular, 1/G(t) makes sense “for most of the points t”.

Moreover, since G(t) satisfies the rule above with the “toy transformation”, H(t) := 1/G(t)
satisfies the similar rule with the “actual transformation” H(1/t)/t instead. This gives an example of
a function satisfying the “actual fractal transformation” law for one point P : the origin.

We do not plot the graph of H(t): if we want its interesting parts to fit the page, most of them
are going to be too small. However, it is not hard to imagine how this graph looks like.111

Remark 30: One can see that near any point from the Cantor hyper-family the graph above looks
like a toy transform of itself. And indeed, this is what necessarily happens. (In other words: chaining
any number of operations of the toy transform and shifts of the arguments would not give any new
transformation comparing to just “shift argument, then toy-transform, then shift argument again”.
We discuss more of this on p. 78.)

Summarizing: if we know that a graph of a periodic function allows a fractality law which works
at t = 0 (in other words, the function is not changed by a “toy transformation” at one point 0 ),
then there is a huge collection of other points t for which the fractality law holds. These points are
horizon-self-similar (see p. 41 before Remark 27).

These points (together with their accumulation points) break the real line into intervals; in every
one of these intervals the mentioned above fractality laws do not restrict the behaviour of Re g
whatsoever. (Recall that above we, essentially, defined the function ReG in such an interval almost
arbitrarily.) Two plots above show an example when the function changes smoothly on such an interval
(with a few corner points).

Moreover, our fractal transforms interchange these intervals; combining these transforms, one can
send any such interval to any other. Additionally, there is a fractal transform which “inverts” a given
interval (and multiplies the function by i). In particular, if we know the graph of Re g in one of the
intervals, it determines g on the whole real line.

For more details, see Remark 51 on p. 78.

Remark 31: The fractality laws of the preceding remark work at particular points t (the horizon-
self-similar points), and these points avoid certain intervals. This allows us to define the function
Re g arbitrarily on one of these intervals. This means that these fractality laws still leave infinitely
many degrees of freedom for the choice of function g.

Compare this with the promised fractality laws for the function F : the horizon-self-similar points
appear in every interval.112 Moreover, the fractality laws determine F up to a finite number of degrees
of freedom (compare with the discussion near Footnotes 83 and 84 on p. 35).

In fact, the contrast between these situations reflects what was happening in number theory for
half a century before Langlands. In 1918 Erich Hecke has shown that our function F (t) is horizon-
self-similar at 0 (hence in all points from the “Cantor hyper-family” on the graphs above).113 Until
Langlands, mathematicians wouldn’t suspect that there must be many more points of self-similarity,

110 . . . meaning: outside of a “meagre set of measure 0”.
111 In fact, this trick with replacing F (t) by 1/F (t) may be a complete red herring. Here, we could use it only

because G(t) was behaving nice at a lot of points—and this won’t happen for functions satisfying the fractality law at
every point 2πR/S.

The functions F (t) considered below are “too singular”— I do not know any mathematical approach which would
make sense of the expression 1/F (t). One is forced to proceed as in Footnotes 100, 102 on p. 41.

112 In a certain very precise sense a positive fraction of the set of numbers 2πR/S are horizon-self-similar. Compare
with Footnote 205 on p. 79.

113 In fact, he found another—equivalent— formulation. (In Footnote 128 on p. 54 we have a few more details.)

https://en.wikipedia.org/wiki/Meagre_set
https://en.wikipedia.org/wiki/Null_set
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and that these laws would severely restrict how our red/green coloring (or numbers Nk; see p. 33)
may look like.114

All the fractal transformations together: infinities and regularizations

Return back to the situation when “horizon-self-similar points”115 appear everywhere. Now every
small piece of the graph contains a smaller piece which ”looks the same” as “what happens with the
graph near horizon”. Comparing with two graphs above, the function should be at least as pathological
as that—but the behavior of the graph above near the origin should now happen near every point of
the graph. With “actual” fractality law we get a pole instead of each zero on the graph—and this
means that such functions are not possible to graph at all!

How can it happen that a function is impossible to graph? Above, we described F (t) as the
Fourier transform of the sequence Nn. On the other hand, numbers Nn are whole numbers; one can
immediately see that at any real point t, the series ∑nNneint diverges! In other words: we defined
the function F (t) using a summation which does not makes sense anywhere!

Did we cheat? In fact, no! Mathematicians established a solid foundation for working with
similarly divergent series (in a certain sense, “to work with infinities”) already in mid-20th century.

For example, one can write F (t) = −H ′′(t), with H(t) being the Fourier transform of the sequence
Nn/n

2. This sequence decreases quickly enough for its Fourier transform to make perfect sense; so
H(t) is a well-defined continuous function. While not every continuous function has a derivative which
makes sense as a “usual function”, every continuous function may be thought of as “a generalized
function”116, and any generalized function has a derivative which is also a generalized function.
Conclusion: F (t) makes perfect sense as a generalized function.

We can describe this generalized function as a second derivative of a continuous function. In other
words, the second antiderivative of F (t) is continuous. This gives us a way to work with F (t) via “its
regularization” H(t) (since it carries all the info about F (t)!); this is what we meant in Remark 20
on p. 37.

In fact, already the first antiderivative of F (t) is plottable. In what follows we work with this
antiderivative F (−1)(t) as a “regularization” of F (t).
Remark 32: The reason why this generalized function “is impossible to plot” is that it has “too
much energy” in high-frequency harmonics; the situation is quite similar to the theory of “white
noise”.117 When we filter out high frequencies from white noise (low-pass filtering), we get “a usual
function” with well-behaving graph. However, adding higher and higher frequencies (i.e., raising the
cut-off frequency) adds more and more “bumps” on this graph, and the amplitude of these bumps
grows larger and larger. When we draw the graphs of results of low-pass filtering with growing cut-off
frequencies together, the lengths of these graphs increase, so every next graph “requires much more
ink than the previous graph”. The “un-inked white space” left on these graphs “shrinks” when we
raise the cut-off frequency.118

Conclusion: the graph of unfiltered white noise “would fill the whole plane”. The same would
happen with the graph of F (t).

114 Indeed, since there is just a finite number of degrees of freedom, knowing a color of a few prime numbers plus
the fractality laws should determine the colors of the rest of prime numbers.

115 These are defined on p. 41 before Remark 27.
116 In other words, “a function which may have no value at any particular point, but ‘weighted averages’ of these

values still make perfect sense”.
117 Any particular white noise function is also “only a generalized function”. It is a derivative of the corresponding

Brownian motion—which is a continuous function with “no derivative in the ‘usual’ sense”.
118 Compare this with the plots in Remark 21 on p. 37. While the filters there are not the “usual” low-pass filters

(they are much stronger on high frequencies), these filters also have a characteristic frequency which goes down as s
grows.

https://en.wikipedia.org/wiki/Generalized_function
https://en.wikipedia.org/wiki/Generalized_function
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Remark 33: If the graph of F (t) does not make sense, what is the description that “it is an exact
fractal” good for? Indeed, this should be understood “as a metaphor only”.

On the other hand, the property like “F (t) is the same as F (−1/t)/t up to rescaling” makes
perfect sense for generalized functions as well.119 So our description of the fractal behavior of the
graph is a metaphor for the “transformation properties” of the function F (t).

Fractality law for antiderivative

In the previous section, we established that
• The function F (t) satisfies the “actual” fractality law—but we cannot plot F (t).
• The antiderivative F (−1)(t) may be plotted.

Fortunately, the antiderivative F (−1)(t) also satisfies a certain “fractality law”.
However,
• When written down as a formula, this law looks way more complicated than the “toy” and
“actual” fractality laws considered above. For example, it includes integration.
• On the other hand, in these notes we use fractality laws only “visually”: essentially, we
observe graphs, and recognize “features” related to a fractality law.

It turns out that for the purpose of visual comparison,

the fractality law for the graph F (−1)(t) is indistinguishable from the toy fractality law.
In fact, this claim has one exception. Essentially, there is “an extra term” in the fractality law,

and this term “moves the features of the graph up and down a bit”—comparing to the toy law.120
For example, compare the graph on p. 45 with the graph on p. 34. With purely-toy fractality law,

all the non-smooth points are on the t-axis—while in the “Maass” plot the similar features appear at
different heights.

From this moment on, all our plots are graphs of antiderivatives of functions
satisfying the “actual” fractality laws.

Such graphs closely resemble a graph of a function satisfying “the toy law”, except for vertical
shifts.

So to recognize the type of fractality dictated by the Langlands program, we inspect the graph of
F (−1)(t) looking for features related to the toy fractality law—but we allow these features to appear
at different heights. (We return to this theme and show some plots in the section on p. 81.)

Hidden symmetries in degree 3: the first “real life” case

Return back to the function F (t) which was constructed based on our sequence of red/green colors
related to “tetrahedral numbers + 2” (on p. 19). Recall that (see p. 33) we “transliterate” a sequence
of colors to a sequence of numbers Nn, and the function F (t) is the Fourier transform of this sequence.
We claimed that the graph of this function follows the fractality laws described in the last three
sections (at least in a “metaphoric sense”).

Hopefully, the preceding section gives an idea which kinds of nastiness one may expect from this
graph:

• This function is impossible to plot directly.
• Its antiderivative is plottable.
• This plot satisfies a fractality law very similar to the “toy fractality law”.
• However, in contrast to the “toy fractality law”, the “matching pieces” may be at different
heights.

119 At least if one understands it as tF (const · t) = const · F (−1/t), as in Footnote 102 on p. 42.
120 We discuss this extra term below, on p. 81.
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Essentially, these expectations are fully satisfied by the graph on p. 34. For example, near the origin
this graph looks very similar to a “toy transform” of itself”.

However, the actual graph121 of the antiderivative F (−1)(t) (about 11
2 periods)

2.1396

-2.1356
-1 90 1 2 3 4 5 6 7 8

does not look this way—there is no piece similar to the toy transform of this periodic graph! What
is the reason for this?

Answer: what is spoiling the fun in the graph above is the conductor! For the graph on p. 34, the
conductor was 1. For the graph above, the conductor is 971—and the larger is the conductor, the
smaller are the parts where “the patterns of toy transformation” are clearly visible.

121 The specs of blue (hardly) visible on this graph are due to this being two graphs of top of each other: blue for
500,000 terms of Fourier series, red for 1,000,000 terms. So where blue is visible, this means that 500,000 terms were
not enough to get the required precision of calculation.
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So, to see this pattern near the origin (to observe the “hidden symmetries”), we need to zoom into
the graph with a very strong magnification (about 971 times):

0.08725

-0.079238
-0.0001 0.0080.001 0.002 0.003 0.004 0.005 0.006 0.007

Now the pattern is clearly visible.122 Moreover, it can be seen that while this looks like a toy transform
of a periodic function, this is a toy transform of a function different from F (−1)(t) (for example, the
parts below the t-axis look very different from the parts above).123

To see the part of the graph which is recognizable as the toy transform of F (−1)(t) itself (we
called such points “horizon-self-similar”, see p. 41), we need to zoom again scaling 971 times near,
for example, 2π/971. Unfortunately, the computational facilities accessible to me right now are not
enough for doing this plot: without further speedups, it would take several weeks to plot this! (We
revisit graphs of this function in the section on p. 79. For a heuristic estimate of zoom factors needed
to expose the extent of fractality see Remark 62 on p. 100.)

122 Note how the graph gets separated from the (violet and purple) straight lines when we get closer to the origin.
This is due to numerical errors. There are two contributions: first, the finite number of terms of Fourier series we take
(16,000,000 for the red graph). Second, as we get closer to the origin, the plot gets fewer and fewer samples on one
“period” of oscillation, missing the maximal/minimal values more and more (in the graph, we used 7,500 samples—
with density increasing near 0).

Zooming in, one can see a completely flattened region near 0. The experiments show that it is a result of the first
contribution (as above)—but I cannot invent any simple argument explaining this! (Saddle-points calculation clarifies
that this has the same nature as the Riemann–Siegel summation formula for ζ-function.)

123 Additionally, recall that F (t) is even (by definition), hence F (−1)(t) is odd. If we can write F (−1)(t) = tΦ(−1/t),
then Φ must be even—so it cannot be F (−1)(t) rescaled! (Indeed, looking at the graph of F (−1)(t), no shift would
make this function even.)

However, it turns out that Φ(t) is ImF
(−1)
C (t) rescaled. We return to this theme in Footnote 128 on p. 54 and in

the section on p. 81.

https://en.wikipedia.org/wiki/Riemann-Siegel_formula
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A simpler-to-plot example: M = 6
As the preceding section shows, the plots related to the polynomial “tetrahedral numbers + 2”

turn out to be very hard to draw. However, eventually, to get closer to the situation which could not
be dealt with without Landlands program,124 we would need to consider different sequences anyway.
For example, for a fixed number M , one can consider the sequence125 “M × tetrahedral numbers + 1”.

The difficulty encountered in the previous section is related to the fact that discriminants126 of
polynomials of degree 3 tend to be quite large in magnitude (hence the conductors are also expected
to be large). For the example of the preceding section, the discriminant is −4 × 971. In fact, the
smallest value for the magnitude of discriminant is 23 (for discriminant −23).

Fortunately for us, this smallest value is reached on one of the example sequences we just defined,
for M = 6. Moreover, zooming twice into the graph, each time scaling 23 times is quite within the
grasp of the software I have. Finally, this discriminant is negative, so one does not need the Langlands
program to see that “the toy transformation” is going to be applicable to the graph.127

So let’s redo what we did above, starting with the polynomial “6× tetrahedral numbers + 1”.

• Assign colors to numbers according to whether they can be divisors of “6×tetrahedral numbers+
1”.
• Transliterate colors to numbers Nn (for details, see the section on p. 59).
• Take the Fourier transform F (t) of the sequence Nn.
• Plot the antiderivative F (−1)(t)

124 See the section on p. 82.
125 Note that doubling this sequence to become “2M × tetrahedral numbers + 2” leads to the same prime divisors,

with a possible exception of 2. However, such an exclusion is “negligible”, since when matching the patterns of colors,
we allow a few primes to be exceptional anyway (compare with 2× above, on p. 13).

This shows that the sequence “tetrahedral numbers + 2” is, for all practical purposes, also covered by this scheme,
since it is “2M × tetrahedral numbers + 2” with M = 1

2 .126 Discriminant of a polynomial is a very fundamental “invariant” of the polynomial. It correlates with the minimal
distance between roots of the polynomial. It also governs many features of the modular reductions of the polynomial.
(This number is a polynomial expression of the coefficients of coefficients of the polynomial.)

127 Again, compare with the section on p. 82.

https://en.wikipedia.org/wiki/Discriminant
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Here is the result (about 1½ periods)

1.6438

-1.6393
-1 90 1 2 3 4 5 6 7 8

This time, one can guess that the region near 0 may resemble the toy transform of a periodic function.
Still, with this graph, it takes a leap of faith to trust that it actually happens.
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Now zoom in (about 23 times) near the origin:

0.4968

-0.54
0 0.450.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

The pattern “a toy transform of a periodic function” is again clearly visible. In notations introduced
on p. 41 before Remark 27, this periodic function is (F (−1))0(t). Moreover, the same as in the previous
section, comparison of two preceding graphs shows (F (−1))0(t) is different from F (−1)(t). Again, the
parts below the t-axis look very different from the parts above.128

Next, zoom again with scale 23 times near, for example, the point with t = 2π/23 ≈ 0.27318.
This point is clearly visible on the graph above; around it is the largest region away from 0 which

128 In fact, this is one of the situations where FC(t) is easier to deal with than F (t). One indication of this is that
F0(t) = ImF

(−1)
C (t). (Compare with the violet graph of ImF

(−1)
C (t) in the top-left plot of Remark 18 on p. 36.)

It turns out that the point t = 0 is very special from historical point of view. Its horizon-similarity can be explained
by the functional equation for the Dedekind ζ-function which was discovered more than 100 years ago—half a century
before the Langlands program. See the section on p. 82 for details.

https://en.wikipedia.org/wiki/Dedekind_zeta_function#Analytic_continuation_and_functional_equation
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resembles “a toy transform of F (−1)(t) itself ”:

0.13995

-0.029865
0.24818 0.298180.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29 0.295

Finally, this part of the graph indeed looks very similar to the toy transform of the whole graph—as
expected! Indeed, every “oscillation” of the graph is similar in shape to the period of the whole graph.
(So here we encounter the first “real” example of “horizon-self-similar”129 point—defined on p. 41,
and the first explicit “hidden symmetry”.)

Maass fractality laws

Above, all our graphs were for the “odd case” (or “modular forms”), when the fractality laws for
the function F (t) could have been described by the Class Field Theory (see p. 82). This happens for
polynomials “M × tetrahedral numbers + 1” with a whole number M ≤ 15. At last, here we consider
what happens in “the other” case.

Unfortunately, the smallest conductor in “the other” case is c = 22 × 37 = 148 (for M = 24, when
the discriminant is 24 × 37). In general, this would require zooming in 1482 times for our method of
plotting. This may be too large for the software we use (would take days to calculate).

129 With a correction that here we get not a “toy” transform, but the “honest” fractality law (see p. 81).
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Fortunately, “an extra coincidence” happens, leading to extra symmetries in this case, which make
zooming feasible:

1.7372

-1.7457
-1 90 1 2 3 4 5 6 7 8

Above, M = 24; the plot of the corresponding function F (−1)(t) is in red, and the corresponding
imaginary part ImF

(−1)
C (t) is in violet. Note the mirror symmetry of the red graph w.r.t. the line

t = π/2.
This extra symmetry (which may be suspected from the factor 22 in the conductor c = 22 × 37 =

148)130 makes our zooming factors behave as if this number was about 4 times smaller. This makes
plotting feasible.131

1.4209

-1.4036
-1 90 1 2 3 4 5 6 7 8

Aside: It is interesting to note that the zooming factors needed for the
simplest polynomials in the cases of positive and negative discriminant
(37 and 23, with M = 24 and M = 6 correspondingly) are of the same
order of magnitude—although the smallest conductors in these cases
(148 and −23) are very different in magnitude.132 (On the other hand,
this coincidence may be a red herring: a similar symmetry may decrease
the needed zoom factor in the “odd” case as well. On the right, we
show what happens when M = 12: the conductor is −22 ·11; it is larger
than 23 in magnitude, but the zooming factor of 11 is enough. So it is
not 37 vs. 23, but 37 vs. 11.133)

130 This mirror symmetry is due to the transliteration rules for the prime 2 following the last case of Step (d)
on p. 60. Because of this, N2k = 0 for any k, which implies N2k = 0 for any k by the rule of Step (e) on p. 60.

131 For the graphs below, we used Nn for n up to 1, or 4, or 16 millions.
132 Recall that the case M = 6 is the cubic polynomials with negative discriminant, which are covered by the Class

Field Theory (see p. 82)— so do not need the Langlands program.
133 On the other hand, Arnold’s Principle of Fragility of Good Things134 focuses on behaviour of roots of x3 + px+

q = 0 for small p, q; just “a minority” of these have 3 real roots. This scarcity may explain why conductors which are
“large enough” to “work” for general polynomials may be “not large enough” for polynomials with 3 real roots.

134 . . . referenced in WikiPedia article on “Anna Karenina principle”.

https://www.maths.ed.ac.uk/~v1ranick/papers/arnold14.pdf#page=8
https://en.wikipedia.org/wiki/Anna_Karenina_principle#General_mathematical_backgrounds
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In this section, we focus on the case M = 24.
Recall what we saw in the left column of Remark 18 on p. 36 (discussed in the section on the case

M = 6 on p. 51): in the “odd case” what happens near 0 on the red graph is visually indistinguishable
from the toy transform of the violet graph. Now the situation is, in a certain sense, much easier (this
is the right column of Remark 18 on p. 36): near t = 0 the graph is visually indistinguishable from
the toy transform of itself :

0.33583

-0.33583
-0.002 0.10.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.70525

-0.70525
-0.002 0.210.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Remark 34: Note that the rightmost maximum,
near the violet asymptote, is the transform of the
maximum of the first red graph near −3π

2 . In
particular, we could have used 3 times smaller
magnification so that the extended graph would
also include the transform of the minimum at
−π

2 (on the right). Unfortunately, the difference
between the honest fractal transform and the toy
transform becomes very large in such an extended
domain135. In particular, this minimum is far
away from the green asymptote of our graph—
and this makes the extended graph too confusing
(compare with Remark 53 on p. 82).

Near the right edge of the large graph above (close to t = 0.085 and near the t-axis) one can see
what looks like a tiny “copy” of this whole picture. This much more magnified view of what happens

135 Compare with the section on p. 49, where we called this difference “the extra term”.
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near the point t = π
37 ≈ 0.0849079 confirms this: the graph behaves similarly to t ≈ 0:

0.051348

-0.10721
0.079 0.0910.08 0.081 0.082 0.083 0.084 0.085 0.086 0.087 0.088 0.089 0.09

Conclusion: in this case considering the complex-valued function FC(t) gives no benefits— the whole
theory becomes completely real! The shapes of oscillations in all these red graphs match each other.

Remark 35: Recall what we did in Remark 21 on p. 37: in the “odd” (“modular forms”) case, we
would extend the function F (t) to a function f(z) on the upper-half plane (with z = t + is); this
changes FC(t) := ∑

nNneint to f(t, s) := ∑
nNneint−ns. In other words, we replaced Nn by NnR(ns)

with R(s) = e−s being the “regularizing factor”. (See also the section on p. 84.)
Such a replacement turned out to be compatible with fractal transforms (in the sense of Remark 23

on p. 38). In the “even” case we use |t| instead of t as a factor in our fractal transform—so for
compatibility, we need a different regularization. The Langlands theory predicts which regularization
is needed, leading to the case of “algebraic Maass forms”.

The answer: instead of R(s) := e−s used for the “modular forms” regularization, one should
write R(s) :=

√
|s|K0(|s|) with K0 the Bessel function.136 In particular, instead of looking at

f(t + is) := ∑
nNneinte−ns, one should write f(t + is) := ∑

nNn

√
|s|eintK0(|ns|). Additionally, this

summation involves negative indices n as well; in particular, one needs a way to extend Nn to negative
values of n (for the plots above, we use N−n := Nn).

This time, f(z) is not complex-analytic (but it is still real-analytic). The formula above ensures
that F (t) is “the trace” of f(z) on the absolute:137 the main term in the asymptotic of f(z) when

136 The precise form of K0 is not important for our purposes.
137 (Ignore this footnote unless you are used to different notations!) This is the reason for us taking a shortcut in the

formula above: if one follows our recipes literally, then one would need to write f(t+ is) :=
∑
nN

lit
n

√
|ns|eintK0(|ns|).

So to get the “intertwining” property with F (t), an extra substitution would be needed: N lit
n = Nn/

√
|n|.

Keeping track of both N lit
n and Nn turns out to be a quite messy approach; compare with Remark 12 of Kevin

Buzzard’s Explicit Maass forms.

https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1
http://wwwf.imperial.ac.uk/~buzzard/maths/research/notes/explicit_maass_forms.pdf#page=5
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s = Im z → 0 is F (t)
√
s log s. Moreover, taking “the trace” is compatible with Lobachevsky-moves

(“intertwinging”), which means that the fractal trasforms of F (t) are the traces of Lobachevsky-moves
of f(z).

This means that with this “‘intertwingingly’ compatible” regularization, f(z) should behave in
the same way with respect to the tessellation as in the “odd” case: knowing f(z) on one piece, one
can find it everywhere: a Lobachevsky-rotation or Lobachevsky-translation which sends one piece to
the other preserves f(z).

The properties of K0(S) show that there is another condition on f(z) replacing the complex-
analyticity; it is one of a curved-geometry analogues of the condition of being harmonic in flat
geometry (compare with Remark 24 on p. 39). Functions satisfying this condition are called algebraic
Maass forms.
Remark 36: Historically, the “odd case” was easier to deal with since it could be treated using the
techniques of the Class Field Theory, developed about 90 years ago.138 In fact, the first conjectures
about particular examples of the “odd case” started to appear yet before Gauss; the first proofs for
the cases of these examples were discovered by Gauss.139

I cannot find precise references for who completed the “even case” (for polynomials of degree 3) and
when. I expect that this case should be completely understood now, judging basing on the (essentially)
second-hand information about which parts of the Langlands Program are already completed.
Remark 37: The last graph is very special among the graphs of these notes. It is the only graph
which requires the Langlands program to explain it. For details, see the section on p. 82.

The transliteration rules

Here we explain how to construct the sequence Nn from a polynomial of degree 3.
Recall our process; essentially, we do this (compare with the section on p. 33):
• Start with a particular polynomial sequence of integers (of degree 3);
• Collect all the possible divisors of the numbers in this sequence;
• Color all the whole numbers: green for possible divisors (as above), red for the rest;
• Transliterate this sequence of colors into a sequence of numbers Nn;
• Take Fourier Transform of the obtained sequence;
• Inspect the fractal properties of this function.

What is left unexplained is the transliteration process. As we said, it is quite straightforward (with
the exception of how to treat prime divisors of the discriminant).

Below, we first go through the steps of transliteration, listing only the rules one should follow to
perform these steps. Here we treat these steps as a “black box” recipe; in the next chapter, we try to
demystify these rules—but only as far as it is possible: no matter how trivial the step may look, all
of them have extremely deep connections to very profound themes of contemporary math.140

138 Recall again: this theory was a triumph for mathematics of the first half of 20th century. However, nowadays it
settled down to be a run-of-the-mill feature of mathematical landscape.

139 In addition to “odd” and “even” cases discussed above, there is also “a special” case of the abelian, or cyclic
polynomials of degree 3. In this special case (also covered by the Class Field Theory), the colors follow the exactly the
same pattern as in the case of degree 2: prime numbers are colored according to their position on the conductor-wheel.
(See also the section on p. 82 and Remark 78 on p. 130.)

This happens when the discriminant is a complete square. For the polynomials of the type we consider here,
M × Tetrahedral Numbers + 1, for integer M this happens for M = (k + 35/k)/2 with integer k, which means
M = 18, 42, 122. (Likewise for rational M .)

140 The manipulations below may look purely algebraic in nature. However, one of the major achievements of math
of 20th century was to expose very deep connections of such steps to setups of geometry. Unfortunately, the format of
these notes does not allow us to dwell on this connection.141

Essentially, our “chain of demystifications” goes up to the section on p. 120.
141 N.B. (???) Give a reference to a book?

https://en.wikipedia.org/wiki/Representation_theory#Equivariant_maps_and_isomorphisms
https://en.wikipedia.org/wiki/Class_field_theory#History
https://en.wikipedia.org/wiki/Cubic_field#Definition
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(a) In the sequences above (see example for degree 2 on p. 10 and one for degree 3 on p. 19),
we used two colors: red and green. Recall how to color a particular number n: we use the
residues modn, and write down residues of several elements of the sequence. We know that
these residues should be periodic, and know the length of the period; after we have that
many residues, we can check whether 0 modn appears in this period. If it appears, we mark
the number n green, otherwise red.

For degrees higher than 2, and for several variables (as in the beginning of the section
on p. 20), one should replace these colors by more detailed information: instead of marking
whether the residue 0 modn occurs in the sequence or not, mark how many times it occurs
in the shortest period. While nothing special happens to red (it is transliterated to 0), green
“attains several tints”: it may be replaced by different numbers.

Call this count Ñ res
n (for the residues modn). For a polynomial of degree 3, for almost all

prime numbers p the value Ñ res
p is 0, 1 or 3.142

(b) We obtained a sequence (Ñ res
n ) of numbers which are 0, 1, or 3 at all prime positions (with a

few exceptions). To get a fractal behavior for F (t), we need to “distill” this sequence a bit.
Recipe: Put Np := Ñ res

p − 1 for a prime number p (with exceptions from Footnote 142;
we cover them in Step (d)).

(c) Next, we need to define Nq for q = pk with a prime number p. Recipe:143 for every prime p,
choose one of the following sequences:
• −1, 0, 1, −1, 0, 1, . . . (3-periodic);
• 0, 1, 0, 1, 0, 1, . . . (2-periodic);
• 2, 3, 4, 5, 6, 7, . . . (a linear function),

so that its first number matches the known value for Np. Assign these values to Npk .
(d) For an “exceptional” prime number p (of Footnote 142), one cannot find Npk given Ñ res

p only,
even for k = 1. The procedure is quite involved; it suffices to say that for the sequence Npk

one should choose one of the sequences above, or one of:
• 1, 1, 1, 1, 1, 1, 1, . . . (1-periodic);
• 0, 0, 0, 0, 0, 0, 0, . . . (1-periodic).

While there is a recipe explaining which of 5 variants to choose,144 it is easier to note that
since only finitely many primes p are involved, this ambiguity leads to only finitely many
choices of the sequence Nn. Exactly one of these choices would lead to the desired fractal
behavior of F (t).145

(e) For composite indices of the form pkqr with different primes p and q, put Npkqr := NpkNqr .
Likewise for indices with more than 2 distinct prime factors.

Example: For “tetrahedral numbers + 2”, the discriminant is −4× 971, so small prime numbers
greater than 3 are covered by the rule (c). Inspect the sequence of colors on p. 19. This shows that 11
is green, and 7 is red. So N7 = −1; moreover, checking the table on p. 19 shows that 11 divides only
one number of our sequence for sides 1,. . . ,11—which is the shortest period of our sequence mod 11.
Hence Ñ res

11 = 1, and N11 = 0. Picking up a matching sequence above, N112 = 1 (the second number

142 The exceptions are the prime divisors of the discriminant, where the value may be 2 as well. Moreover, one
should include the divisors of the leading coefficient (and of denominators of coefficients, if present), and p = 2 or p = 3,
when the period is longer than p.

143 See Remark 43 on p. 74 for more details.
144 See the section on p. 115.
145 Compare to the answer of 2010-08-14 in the discussion Zeta Functions: Dedekind Versus Hasse-Weil in

n-Cat Café discussing how the errors at “exceptional” primes would break the horizon-self-similarity at t = 0 (which is
due to Hecke’s functional equation—see the section on p. 82 for details).

https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html#c034304
https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html#c034304
https://en.wikipedia.org/wiki/Dedekind_zeta_function#Analytic_continuation_and_functional_equation
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in the sequence 0, 1, 0, 1, 0, 1, . . . ), and N74 = −1 (the 4th number in the sequence −1, 0, 1, −1, 0,
1, . . . ). Finally since say, 290,521 = 74 × 112, we conclude that N290,521 = −1.146

Keep in mind that any error made during transliteration would ruin the function F (t)—it won’t
have the desired fractal behavior. To obtain the graphs used in this report, we followed these steps
precisely (treating divisors of discriminant by hand—which turned out to be very error-prone147).
Remark 38: As we explained, for degree 3 and residues mod a prime number, the count Ñ res

n may
be 0, 1 or 3 (with exceptions as in Footnote 142). The count 3 appears less often than the others; in
the part of the colored sequence shown above (on p. 19), it appears only for prime 3. The first few
other occurrences are for the primes 37, 61, 83, . . . .148

Remark 39: Replacing the sequence of colors by the sequence of counts Ñ res
n (as in Step (a) on p. 60)

was not needed for sequences of degree 2: then for the residues mod a prime number p the count is 0
or 2 (except for finitely many p s—and since above we allowed a few exceptions in the pattern of
colors anyway, these would not matter). So two colors were enough to encode all the information in
these counts for prime n (and eventually, we ignored the colors for non-prime n anyway!).

Essentially, this finishes our first goal (started on p. 33): to give the simplest possible self-contained
rough outline of how to get a fractally-symmetrical function starting with a polynomial of degree 3.
This example exposes both sides of the Langlands program: on the arithmetic side we have a problem
about divisors of numbers in a polynomial sequence; the other side is related to fractal symmetries of
F (t) (or Lobachevsky-symmetries of f(t, s)).

In the rest of these notes, we unravel a few clarifications and finer points related to the steps of
this outline.

146 This illustrates that in general, whole numbers |Nn| grow very slowly.
147 Compare with Footnote 145.
In fact, a few months ago an α-release of GP/PARI mathematician’s calculator (version 2.10.1) changed this: it

has tools to automate these tasks.
148 As we will see in Remark 48 on p. 77, close to ¼ of green primes are going to have the count 3, the rest—

the count 0. However, for relatively small prime numbers, the proportion is going to be measurably smaller than ¼
(compare with the section on p. 156.



Appendix: More patterns, and additional pictorial examples of symmetries

If all you have is a hammer, everything looks like a nail.
Abraham Maslow, The Psychology of Science, 1966

The preceding chapter sets up the minimal possible context illustrating how (and when) the
“hidden symmetries” of the Langlands program may be expressed as fractality of certain explicitly
written Fourier series. Here we provide more bread crumbs to connect this setup with more customary
accounts of the topics related to the Langlands program. We also expose a few beautiful effects which
we kept hidden in the rough outline of the preceding chapter.

It turns out that when our hammer is the statement “‘hidden symmetries’ mean the fractality of
F (t)”, a lot of themes related to the Langlands program happen to work very well as nails!

Plots for degree 2

A very natural question to ask is: what happens if we make a plot following the same recipe as
before, but starting with a polynomial of degree 2 instead of degree 3? It turns out that while one
does not need to change the sequences listed in Steps (c)) and (d) on p. 60, one still needs to extend
the list of such sequences for deg = 2: for some primes one of the “old sequences” should be used,
and for the remaining primes two new types of “cases” appear. While the first “typical case” recipe
below was relevant for degree 3 too (as “an exceptional case”), the other two are new.

Now the modified recipes are: for every odd prime p which is not “exceptional”, choose one of the
following sequences:

• 1, 1, 1, 1, 1, 1, . . . (1-periodic; for green primes);
• −1, 1, −1, 1, −1, . . . (2-periodic; for red primes).

so that the first number matches the value for Np given by Step (b) on p. 60 (with a minor obvious
modification of this recipe since now Ñ res

p may be 2). Assign these values to Npk .
For “exceptional” primes (divisors of the discriminant, of the denominators of coefficients, of the

leading coefficient, and possibly for p = 2) either one of “typical recipes” should be chosen, or the
sequence below (we did not see it in degree 3):

• 0, 0, 0, 0, 0, 0, . . . (1-periodic)
(we postpone the recipe how to check which of 3 choices should be used until the section on p. 115).

1.8218

-1.821
-0.7 70 1 2 3 4 5 6

Above, we wanted to write the recipe in the
form similar to our recipe for degree 3 (see (c), (d)
on p. 60). However, observing these 3 sequences,
one can see that there is a remarkable shortcut
(not possible in degree 3): Npk = Nk

p . In particu-
lar, the sequence Nm is “totally multiplicative”:
149 Nab = NaNb.

Moreover, Quadratic Reciprocity shows that
Np =

(
p
D

)
, with D being the discriminant of the

polynomial. (Here we use the Legendre sym-
bol from p. 208.) By top-multiplicativity of Le-
gendre symbol (see p. 208), Nm =

(
m
D

)
for every

149 Compare this with “ordinary” (non-total) multiplicativity which is the property of Step (e) on p. 60.
The chapter on p. 101 rewrites the conditions added to “ordinary” multiplicativity as Npk+1 = CpNpk (with

Cp = Np) and reads it as “the sequence (Npk ) satisfies a recurrence relation of length 1”.

62

https://en.wikipedia.org/wiki/Completely_multiplicative_function
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m. Conclusion: the sequence Nm is D-periodic.
(Moreover, the periodic extension to m ≤ 0 is either odd or even.)

This immediately implies that150 F (t) is a sum of δ-functions (with certain coefficients) at points
proportional to 2π/D. Unless D is a square, the integral over a period vanishes, and F (−1)(t) becomes
a periodic step function. The plot above152 is for the polynomial 4n2 + 2n− 3; its discriminant 4·13
has the square-free part D = 13, and since D ≡4 1, it coincides with the fundamental discriminant
(the shortest period in the Euler’ reciprocity; compare with Footnote 698 on p. 214).

Conclusion: in the case of degree 2, the “hidden symmetries” are “already exposed” in our
sequence of colors (see p. 8, which are the periodic and mirror symmetric when colors are restricted
to prime numbers; see the section on p. 15). Taking the Fourier transform converts this pattern not
into symmetries of the graph (as in the case of degree 3), but into the fact that the F (t) is a sum of
δ-functions. Compare this with our discussion of motives on p. 75: every “flavor” of a distilled motive
needs a specific approach to expose its pattern of (hidden) symmetries.153 Above, we applied an
approach which works with one type of motive to a motive “of wrong type”—and the result does not
exhibit any symmetry.154 (And, as we said before, applying such approaches to “a mix” of distilled
motives leads to yet messier results. We consider two such examples in the section on p. 63.)

The fractality laws in a reducible case

As we discussed it on p. 55, the polynomials “M × tetrahedral numbers+ 1” with a whole number
M ≥ 16 have a positive discriminant, so may be used as “true” examples of the Langlands program
(as opposed to the examples with negative discriminant, for which the fractal properties were already
known before Langlands due to the Class Field Theory; see p. 82).

It turns out that for M = 16 the discriminant is 26 × 13, and experiments with the graph show
that the conductor c happens to be155 very small, 13. This is much smaller than c = 148 considered
on p. 55. To see why we needed to deal with the harder case (one with larger conductor) observe
how the graph of F (−1) behaves in this case; the plot of F (−1)(t) is in red, and the corresponding

150 More precisely: either F (t) def= ReFC(t) or151 ImFC(t), depending on whether the Euler formulation of Quadratic
reciprocity involves “even” or “odd” behaviour. (This happens since the Fourier series defining FC(t) involves only Nn
for n > 0.)

151 The other graph would have a plot with log-spikes instead of jumps (we show such plots on p. 104 and p. 63). This
may be explained since FC(t) extends to Im t ≥ 0, hence Re and Im are related to each other by the Hilbert transform.
But this operator is pseudo-differential (of order 0); hence the singularities of Re are determined by the singularities of
Im (and vice versa).

152 Here to highlight the relevant features of the graph, we needed to use only 1,000 Fourier coefficients, instead of
millions used for other graphs. However, because of this, the “Gibbs phenomenon” takes sufficiently wide zones around
the jumps, and is very visible even without magnification. (Compare with Footnote 160 on p. 66.)

153 There is a very nice (and more detailed) summary of relevant issues in the discussion
What is the Langlands Programme? in n-Cat Café.

154 Compare with the discussion at the beginning of the chapter on p. 101.
155 For example, big upward jumps on the red graph happen at x ≈ 0.483/n with n ∈ N. Observe that 2π/13 ≈

0.48332.

https://en.wikipedia.org/wiki/Hilbert_transform
https://en.wikipedia.org/wiki/Pseudo-differential_operator
https://en.wikipedia.org/wiki/Gibbs_phenomenon
https://golem.ph.utexas.edu/category/2010/08/what_is_the_langlands_programm.html#c034451
https://golem.ph.utexas.edu/category/2010/08/what_is_the_langlands_programm.html#c034451
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imaginary part ImF
(−1)
C (t) is in blue:

2

-2
-1 90 1 2 3 4 5 6 7 8

Observe the principal properties of the blue graph which make it so different from what we saw
before:

• The blue graph has a lot of “spikes”; this is due to the “logarithmic singularities”156 at all
points 2πR/S.
• Only the widest “spikes” of the blue graph reach the top/bottom edges of the graph. In fact,
the more narrow spikes are cut-off due to approximations in plotting. If we could increase
the number of sample points for our graph by many orders of magnitude,157 one could see
that all these spikes actually go up or down to infinity!
• Conclusion: the low resolution of this plot hides another pathology: the function ImF

(−1)
C (t)

is unbounded near these points. Since this points are dense, this means that the function is
unbounded in every small interval—which means that it is impossible to plot it honestly!158

For the red graph:

• The red graph has a jump at every point 2πR/S.

156 These log-spikes are closely related to the jumps on the red plot. See Footnote 151 on p. 63.
157 A singularity y = 1/n log t becomes exponentially more narrow when n → ∞. The corresponding jumps on

the red graph are visible for n up to hundreds. One would need astronomical number of sample points to see similar
number of spikes on the blue graph!

158 While the “spikes” on the graph of ImF
(−1)
C (t) happen for t in an everywhere dense subset of R, their projections

to the t-axis happen to be a “meagre subset of measure 0”, meaning that for a “random” value of t (such that t/π does
not have “pathogologically good” approximations by rational numbers) ImF

(−1)
C (t) is close to the blue graph. (To have

a plot for every t, one needs to take an extra antiderivative: ImF
(−2)
C (t) has a honest plot.)

https://en.wikipedia.org/wiki/Meagre_set
https://en.wikipedia.org/wiki/Null_set
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• Moreover, the graph above and its fragments shown below suggest that all the variation of
the function Φ(t) := F (−1)(t) “happens via jumps”. In other words, Φ(t− 0)− Φ(t0 + 0) is
the sum of jumps of Φ between t and t0 (if t > t0).159
• On the right of every jump t0, the red graph behaves as a Lipschitz function: |Φ(t)− Φ(t0 +

0)| ≤ C · (t− t0). (Likewise on the left.)
Recall what we saw for M = 24 (on p. 55): what was happening near 0 on the red graph was

visually indistinguishable from the toy transform of the same graph. Now, near t = 0 the graph jumps
from about −1.04 to about 1.04, then follows the “toy transform” pattern:

1.6061

0
0 0.70.1 0.2 0.3 0.4 0.5 0.6

With a jump at t = 0 = 2π0/1 of magnitude J ≈ 2.08, inspection of other jumps shows that the
magnitude of the jump at 2πR/S is J/S; moreover, the direction of the jump depends only on J mod 13;
one can recognize that the jump has the same sign as in S6 ≡13 ±1 (this is the Legendre symbol

(
S
13

)
from p. 208). All this works for 13 - S.

The jumps at the remaining points 2πR/S with 13|S behave differently: the magnitude of the jump
is
√

13J/S; the sign of the jump coincides with
(
R
13

)
.

159 One should be extremely careful with statements like this, since this sum is only conditionally converging. There
is a way to overcome this (see Footnote 425 on p. 138). However, the result is strikingly unexpected: the sum of jumps
is twice the variation Φ(t)− Φ(t0) of the function!

In short (we return to this in Remark 74 on p. 128): one can break jumps into two distinct types, depending on
whether 13 divides Q for 2πP/Q. It turns out that if one runs the sum above over only one type of jumps, this gives a
correct answer! (In particular, this sum does not depend on which of two types we choose. . . ) In other words: if one
“forces” the correct jumps at one type of the points 2πP/Q, the correct jumps at the other type of the points would be
“spontaneously generated”.

We know no heuristic which would explain this. . . . (This is an example of a situation when having a proof— in the
section on p. 135—does not lead to more understanding of what happens.)

https://en.wikipedia.org/wiki/Lipschitz_continuity
https://en.wikipedia.org/wiki/Conditional_convergence
https://en.wikipedia.org/wiki/Spontaneous_generation
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For example, zoom in a lot160 near t = 2π/13 ≈ 0.48332:
1.2944

0.82911
0.44032 0.526320.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52

The jump is by about 0.577 ≈ 2.08/
√

13, as predicted above.

When one focuses attention on the pattern of oscillations either on the left, or on the right of the
points of jump, then (same as in the case c = 148) the shape of “one oscillation” matches the shape
of the graph of one period of the function (compare with the first graph of this section). Under these
restrictions, the shape behaves quite similarly to the shapes in horizon-self-similar points. However, if
one wants to consider both left and right sides simultaneously, the jump between these sides breaks
horizon-similarity completely (we discuss how to fix it in Remark 77 on p. 129).

How to explain the difference between what we see here (for M = 16) and what we saw forM = 24
(on p. 55)? The reason is very simple: the polynomial “16× tetrahedral numbers + 1” is reducible: it
vanishes at the point ½. In other words, 8m(m2 − 1) + 3 = (2m− 1)(4m2 + 2m− 3). So the zeros
of this polynomial (including residues modn at which the polynomial is divisible by n) break into
two types: the zeros of 2m − 1 and zeros of 4m2 + 2m − 3. Note that 2m − 1 has zeros modulo
any odd number n (at (n+ 1)/2). Therefore in the sequence of red/green colors (as those related to
“tetrahedral numbers + 2”, on p. 19) the color of primes p ≥ 3 is going to be always green. Moreover,
the number of solutions mod p (used by the transliteration rules on p. 59) is one more161 than the
number of solutions for 4m2 + 2m− 3 = 0.

160 The “overshoots” on the jump(s) are examples of a phenomenon explained in the middle of 19th century: the
“Gibbs phenomenon”: they are due to sharp cut-offs in the low-pass filtering we use. Since we sum up millions of
Fourier terms, these overshoots are very narrow (recall that the height of Gibbs’ oscillations does not depend much on
the number of terms, but the width does!), so the sample points for our plotting program miss the regions of these
overshoots unless we use very high magnification.

161 There is no collision between these solutions. This is due to the value of 4m2 + 2m− 3 at m = 1/2 being −1—
which has no prime factors!

https://en.wikipedia.org/wiki/Gibbs_phenomenon
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In the language of the section162 on p. 75 and of Remark 65 on p. 119 “the corresponding motive
is not fully distilled”—and the patterns corresponding to the factors are “overlayed on top of each
other”, contaminating these patterns.

In short: for a reducible polynomial the sequence of red/green colors is a “mix” of colors for the
factors of this polynomial. Likewise for numbers Nk from the section on p. 59: they are determined
by the corresponding numbers Nquadr

k for 4m2 + 2m− 3 = 0.

Recall that in the sections on p. 114 and p. 118, we introduced the reducible case Reduc as one
of the motivations of the notion of distillation. We claimed that distillation (or, in this particular case,
factorization) simplifies the “hidden symmetries” a lot—but we did not provide the examples. Now
we can give the example: factoring out 2m− 1 changes the plots above to the plots for 4m2 + 2m− 3,
—which we considered in the section on p. 62.

Conclusion: to see the results of factorization on the plots in the case of degrees of the factors
1 + 2, compare the plots here to the plot in that section: fractality of Fourier transform is replaced by
the periodicity of coefficients.

Decompability inverts distillation

The plots in the preceding sections show. . . 163

Abelian case of degree 3 and the “extra distillation”

Another case in which our naive procedure of distillation Np = Ñ res
p − 1 does not result in a

distilled motive is the case of an “abelian=cyclic” polynomial P of degree 3. While in this case the
periodicity Np = Nper

p still holds (here Nper
m is a certain periodic sequence), the identities Npk = Nk

p

and Nper
pk = (Nper

p )k and Nper
pk = Nper

pk do not hold. The corresponding graph looks (again!) like an
antiderivative of a sum of δ-functions (as we saw in the cases of degree 2 and D4 without “extra”

162 N.B. (???) The next four paragraphs duplicate what is at the beginning of the section on p. 128.
They also refer to sections in the future.

163 N.B. (???) Better move the elementary parts of these discussions here.
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distillation):
1.7629

-1.7546
-1 90 1 2 3 4 5 6 7 8

(Here M = 18 in the the M -family of polynomials “M · tetrahedral numbers + 1”, see p. 18, and the
discriminant is D = 92; compare with Footnote 139 on p. 59 and the discussion in the next section.164)

While the jumps on this plot make it similar to the cases mentioned above, the reasons for these
jumps seem to be completely different. For degree 2, the rank 1 of the sequence Nn was too small for
our method of visualization (which “works” for rank 2); in the case D4 the rank was 3—which is too
large. In both cases, the plots were not “exact fractals”.

On the other hand, the rank for the plot above is 2, and the plot above is an exact fractal!
However, the laws of fractality are slightly different from the plots covered in the chapter on p. 33
(since they need to take into account the jumps); we inspect what needs to be changed in Remark 77
on p. 129.

The reason for the jumps above is the sequence Nn being not “fully” distilled. More generally,
motives for an abelian polynomial split into “motives of rank 1”—or permutation matrices Mp can
be simultaneously diagonalized in an appropriate basis. In other words, the number of fully distilled
parts is equal to the degree of the polynomial. In the case above the degree is 3, so we start with
3 distilled parts, and “what remains after the ‘naive distillation’ step” is still a fusion of two fully
distilled parts.

The “extra” distillation in degree 4 and the “expected” behavior

Our construction of a graph associated to a polynomial P goes through 3 steps:
• Find numbers Npk following specific recipes (see below).
• Use the formula Nmn = NmNn valid for mutually prime m and n (multiplicativity).

164 It is easy to verify that this polynomial 3m(m2 − 1) + 1 is cyclic. Given a root x, consider x′ := 3x2 + x− 2—
which is also a root of P . Moreover, x′′ = −3x2 − 2x+ 2, and x′′′ = x. Since any Galois symmetry should preserve the
mapping ’, it can only make cyclic permutations of the roots x, x′, x′′. (This is similar to what we did in the D4-case in
the section on p. 122).
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• Plot the antiderivative of the Fourier transform F (t) of the sequence (Nn).
So far, we had two descriptions of what the numbers Npk actually mean: one in Footnote 179

on p. 74, and the other in the section on p. 115 (the compatibility of these desciptions was discussed
in Footnote 319 on p. 117). While we illustrated these recipes only on examples of polynomials of
small degree, it is straighforward165 to generalize them to arbitrary polynomials.

However, in the preceding section we saw that in case of degP = 4, while the resulting graphs
are fractal-like, they are not exact fractals. In particular, this is not the way to uncover “the hidden
symmetries”. This happens because for rank > 2, the hidden symmetries predicted by the the
Langlands program act on something which is much harder to describe than the function F (t).

Here we do not try to explain166 which symmetric object replaces F (t) when rank > 2, but instead
we focus on the exceptional polynomials P of degree 4 for which there are “hidden symmetries with
rank = 2” (so the Langlands program describes symmetries of an explicitly provided function167).
Recall that above we saw one case (on p. 103), of Galois type168 D4, where F (−1)(t) had jumps and
“spikes”—and we claimed that they are due to the sequence (Nn) being “not fully distilled”. Moreover,
recall that every step of distillation simplifies each sequence (Npk) (see Remark 45 on p. 75); this
decreases the rank.

In the case D4 the second distillation decreases the rank from 3 to 2—which is related to exact
fractals F (t). If one believes this, plugging the simplified sequence (Ndist

n ) into the construction above
(instead of Nn) should give the Fourier transform Fdist(t) which is an exact fractal—and the fractality
laws are exactly the same as what we saw in degree three!

Moreover, in the case D4 it is possible to treat the “extra distillation step” as a very simple “black
box”: given the initial sequence (Npk), the following rules produce (Ndist

pk ):169 170

(Npk) before the 2nd distillation Switch(p) (Ndist
pk )

(3, 6, 10, 15, . . .) (2, 3, 4, 5, . . .)
(−1, 0, 0, 1,−1, 0, 0, 1,−1, 0, . . .) (0,−1, 0, 1, 0,−1, . . .)

(−1, 2,−2, 3,−3, 4,−4, . . .) 1 (−2, 3,−4, 5, . . .)
−1 (0, 1, 0, 1, 0, 1, . . .)

(−1, 1,−1, 1, . . .) (0, 1, 0, 1, 0, 1, . . .)

Note that in all the cases except for (Npk) = (−1, 2,−2, 3,−3, 4,−4, . . .) the sequence (Ndist
pk ) is

determined by (Npk), however, in the exceptional case we also need to know one more bit of
information; we call it Switch(p) = ±1. Anyway, for our example polynomial x4 − x3 − x2 + x+ 1 of
type D4, this bit may be determined as171 Switch(p) = ±1 ≡3 p mod 3.

Recall that this is the polynomial172 of type D4 with the smallest magnitude of the field discriminant,
D = 9×13 = 117 (and no real roots). The plot of the real and the imaginary parts of the antiderivative

165 We cover the general case in the section on p. 115.
166 We do this in the section on p. 169.
167 N.B. (???) Ref? Need to write explicitly earlier!
168 This notion is discussed in Footnote 299 on p. 103.
169 We postpone discussion of these rules until the section on p. 114.
170 5 rows in this table correspond to 5 flavors (“conjugacy classes”) of symmetries of a square: rotations by 0°, or

by ±90°, or by 180°, or reflections in vertical-or-horizontal or diagonal mirrors. Compare with the table on p. 122.
171 In general, this is

(Ξ
p

)
, and Ξ = −3 for our polynomial. Hence this expression simplifies to

(
p
3
)
. See Remark 69

on p. 123.
172 N.B. (???) Should we consider also x4 − x3 + 2x − 1 which has not 2, but 1 signs “-” (2 real roots)

in the field discriminant D = −52 · 11 = −275? Should not this be combined with the sign of Ξ?
Likewise, x4 − x3 − 3x2 + x+ 1 has 0 signs “-” (4 real roots), and D = 52 · 29 = 725.
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F
(−1)
dist (t) of the Fourier transform Fdist(t) of the sequence (Ndist

n ):
1.6231

-1.6118
-0.1 71 2 3 4 5 6

shows clear signs that it is indeed an exact fractal.
A moderate zooming near the origin demonstrates linear asymptotics near 0:

0.23897

-0.36105
-0.03 0.650.1 0.2 0.3 0.4 0.5

One can also see that all the oscillations have a very similar shape—and this shape coincides with
the blue graph on the previous plot.
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Near t = π one can see the same shape of oscillations:
0.079141

-0.048386
3.1396 3.17163.145 3.15 3.155 3.16 3.1653.145 3.15 3.155 3.16 3.165

Finally, the behaviour near t = 2π/3 shows a shape of oscillations where the top “half” is similar to
the bottom “half”:

0.94783

0.34082
1.85 2.452 2.1 2.2 2.3

It is not hard to recognize that this shape matches the red graph of the first plot.
Moreover, the zoomed-in graph above for the region of small t demonstrates a very prominent

fractal-like feature near the point t = 2π/13 ≈ 0.4833 (this point is in the Cantor hyper-family). Near
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this point one gets the same shape of oscillations as the blue graph above (only upside-down):
-0.0085973

-0.34339
0.35 0.5950.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58

Conclusion: the “extra” distillation led to the antiderivative F (−1)
dist (t) which is horizon-self-similar:

it satisfies our “actual” fractality law173!

In case D4 the “extra distilled” Fdist(t) is an exact fractal— in constrast to other cases of deg = 4.

To preview the following discussion: only the abelian cases and the case D4 allow an extra distillation
—and the abelian cases lead to hidden symmetries of rank = 1 (as we will see in the section on p. 67
this is somewhat similar to quadratic reciprocity in Euler formulation; moreover, these symmetries
“are not fractal”).

Finer points of the transliteration rules

. . . Grothendieck constructed them, thus forever changing our understanding of the
relationships between continuous and discrete.

Yu. I. Manin, Mathematics as Metaphor: Selected Essays, 2008
What we discuss here is an immediate continuation of what we did in the last section of the

preceding chapter.174

Remark 40: Note that we already know that Ñ res
p = 0 if a prime number p is red. (As usual, we

need to omit a few exceptional p s.) When p is green, we need to decide whether Ñ res
p = 1 or Ñ res

p = 3.
Above, we said that one should consider residues mod p of our polynomial sequence of degree 3;
count 0 mod p s among the first p of them. On the other hand, all we need is 1 bit of information to
distinguish these two case.

173 . . . from the section on p. 42.
174 The only reason we made a chapter break in the middle of this discussion was to signal the readers with less

stamina that the remaining parts are just clarifications of the process outlined above.

https://books.google.com/books?id=D8t0rWSX1DEC&pg=PA13&dq=Manin+%22Mathematics+as+metaphor%22++%22relationships+between+continuous+and+discrete%22&hl=en&sa=X&ved=0ahUKEwjnkZboxJzgAhUCO60KHa7DBmcQ6AEIKjAA
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In fact, already in the time of Gauss mathematicians knew how to get this extra bit of information.
Answer: One should take a certain other sequence of degree 2, and color numbers into red and green
according to whether they are divisors of numbers in this second sequence.

For example, for our sequence “tetrahedral numbers + 2” of degree 3 we should consider the
sequence “squares + 971” of degree 2. Now we have two colors assigned to a number n: one according
to whether n may divide numbers in the first sequence, the other according to whether it can divide
numbers in the second sequence. Finally, for prime p one can find Ñ res

p from the following table:

Second color
� �

First color � 3 1
� 0 ×

(with× meaning “cannot appear”).
Now we remind that Quadratic reciprocity says that the second color depends only on the position

of p on the “conductor” 971-wheel, similarly to the coloring of the wheel on p. 14. Conclusion: One
can find Ñ res

n knowing the first color of the number n and the position of n on 971-wheel.175

Remark 41: The counts Ñ res
n form a very fundamental mathematical object, leading to the notion

of an L-function—another math tool as important as the functions F (t) and f(z) we discussed
above. However, comparing our definition of Ñ res

n with the formal definition of the “coefficients” of
the corresponding L-function, one can discover that we oversimplified a bit; our definition is “correct”
just for “about 61% of indices n”! (We explain it below.) Moreover, removing this “oversimplification”
would allow replacing Steps (c)) and (d) on p. 60 above by something much easier to explain.

To see where we “cheated”, inspect the particular case n = 9. Our (Gauss’!) 9-wheel is an
example of a “new” arithmetic which has only 9 different “numbers” (residues mod 9). We can
add/subtruct/multiply in this arithmetic; we may also divide by any “number” but 0 mod 9, 3 mod 9
and 6 mod 9. What we do above to find Ñ res

9 is we “replant” our polynomial to this arithmetic, and
look how many times it takes the value 0 mod 9.

However, already in 1830 a French mathematician Évariste Galois (with very romantic biography;
he was 19 when he published this) found out that there is another arithmetic with 9 “numbers”—and
in this arithmetic one can divide by every number except 0. So Galois’ arithmetic is, in a certain sense,
“better” than Gauss’!176 177 In fact, to get the fractal behavior, and/or the remarkable properties of
L-functions, one must use Galois’ arithmetic in place of Gauss’ when finding Ñ res

9 .
So instead of finding the count Ñ res

9 of residues where the polynomial takes value 0, we do the
same in the Galois arithmetic. Denote these counts ÑGal

n (here n is a power of prime). However, as
we already saw, the residues mod a prime number already have the required property: division by any
non-0 residue is possible. This leads to ÑGal

n = Ñ res
n provided n is prime; this also works if n is not

divisible by any square (except 12).178 It turns out that this holds for about 61% of numbers! (The
exact fraction turns out to be 6

π2 ≈ 0.6079. We discuss this in the group F of exercises on p. 30.)

Remark 42: We said that to obtain fractal behavior, one must use the counts ÑGal
n instead of Ñ res

n .
How come that the recipe for Nn given above does not mention ÑGal

n ?
175 The cubic polynomial we considered above has discriminant −3,884 = −22 × 971. This means that finding

solutions is related to taking the square root of −971; since −971 ≡4 1, the conductor wheel related to this square root
is the 971-wheel (see p. 213).

176 Gauss’ notebooks show that he also knew about this arithmetic—but he did not publish this.
177 Essentially, Galois’ “numbers” is the answer to the question: what are analogues of complex numbers if one starts

with residues mod p instead of reals? (For others results of Galois we use in these notes see Footnote 322 on p. 118.)
178 For example, Ñ res

30 is OK, but Ñ res
60 needs to be recalculated, since 22 = 4 divides 60.

https://en.wikipedia.org/wiki/Hasse%E2%80%93Weil_zeta_function
https://en.wikipedia.org/wiki/%C3%89variste_Galois
https://en.wikipedia.org/wiki/Square-free_integer#Distribution
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In fact, polynomials of degree ≤ 3 are very special: one can find ÑGal
pk for prime p provided one

knows Ñ res
p . Moreover, this is almost exactly the process we apply on Step (c) on p. 60! Conclusion:

Step (c) hides recalculation from Ñ res
pk to ÑGal

pk . One can omit this step if one uses suitable formulas
like Np2 = (ÑGal

p2 + (ÑGal
p )2)/2− ÑGal

p etc.179

Remark 43: The recipes of Steps (c)) and (d) on p. 60 look coming out of a clear blue sky. In fact,
they come from a very general principle:

The numbers ÑGal
pk satisfy a simple recursion relation in k.

(This relation is very similar to one for Fibonacci numbers: Fn = Fn−2 + Fn−1; for examples, see
Footnote 184.) In fact, the same holds for the sequence (Npk).181 Additionally, instead of our
polynomial of degree 3, one can take any polynomial; the same works for polynomials of any number
of variables182 —and even when one counts “common zeros”: arguments where several polynomials all
take value 0 mod pk (or 0 in Galois’ arithmetic).

The simplicity of these statements is completely deceptive. It turns out that they constitute
another triumph of mathematics of 20th century. To make a long story short: in 1973 a Belgian/French
mathematician Pierre Deligne finished his proof of Weil Conjectures (which were invented about 25
years before this). The conjectures (and the proof) are based on a revolutionary approach erasing
boundaries between geometry and arithmetic. (Compare with the epigraph to this section: Yu. I. Manin
writes that this “forever chang[ed] our understanding of the relationships between continuous183 and
discrete.”) In fact, these recursion relations make a significant part of these conjectures.

In case of our polynomials of degree 3, the recursion relations simplify so much that we can write
down all the possible solutions. This is what we did in Steps (c)) and (d) on p. 60.184

Warning: quite often in math, when there is a recursion relation between counts of objects of certain
types, they come from simple “matching arguments”: the relation between counts reflects “relations
between individual objects”. However, Weil relations between “counts of solutions” are much deeper:
the solutions themselves have no relation to each other!

Unfortunately, with this topic our intuition can easily deceive us: what gets in the way is that
for residues mod pk, there is an obvious “connection” between nearby values of k: a particular
residue mod pk gives us a residue mod pk−1. Contrarily, an analoguous “connection” between Galois’
arithmetics has very different properties:

The “related” powers pk and pl of p are “far away”: the connection works185 only if k|l.

179 The first term on the right-hand side is not as mysterious as it looks like. Denote it by Np2 . Then the general
formula is 1 +

∑
kNpkuk = exp

∑
k Ñ

Gal
pk uk/k (equality of Taylor series in u).

The subtraction of the second term ÑGal
p is harder to explain, since it is due to distillation process of Step (b)

on p. 60. Essentially, in the formula above we may replace N by N if we replace180 ÑGal
pk by ÑGal

pk − 1. (One can also
define Nn for composite n by multiplicativity, as in Step (e) on p. 60.)

180 Since exp(u+ u2/2 + u3/3 + . . .) = 1 + u+ u2 + u3 + . . ., this gives the formula 1 +
∑
kNpkuk = (1 + u+ u2 +

u3 + . . .)
(
1 +

∑
kNpkuk

)
, or Npn = Npn − Npn−1 . In the sections on p. 115 and on p. 120 we use this formula as

1 +
∑
kNpkuk = (1− u)

(
1 +

∑
kNpkuk

)
.

181 Moreover, the same also holds for Ñ res
pk —but this is trivial: for most p the numbers Ñ res

pk do not depend on k.
182 Compare with the beginning of the section on p. 20.
183 Unfortunately, the cases we consider here, of 1 equation with 1 unknown, result in the sets of solutions of

dimension 1− 1 = 0. One needs to go to cases of dimension ≥ 1 to see the “clearly geometric”=“continuous” facets of
the Weil conjectures.

184 The relations boil down to Npk+2 = aNpk + bNpk+1 , with (a, b) being (−1,−1), (1, 0), (−1, 2), (0, 1) and (0, 0)
in 5 cases of Steps (c)) and (d) on p. 60. (If we do not know which case is applicable, then the Weil conjectures do not
predict anything better than “the merge” of these recursion relations Npk+6 = Npk+5 +Npk+4 −Npk+2 −Npk+1 +Npk .)

https://en.wikipedia.org/wiki/Recurrence_relation
https://en.wikipedia.org/wiki/Weil_conjectures
https://books.google.com/books?id=D8t0rWSX1DEC&pg=PA13&dq=Manin+%22Mathematics+as+metaphor%22++%22relationships+between+continuous+and+discrete%22&hl=en&sa=X&ved=0ahUKEwjnkZboxJzgAhUCO60KHa7DBmcQ6AEIKjAA
https://books.google.com/books?id=D8t0rWSX1DEC&pg=PA13&dq=Manin+%22Mathematics+as+metaphor%22++%22relationships+between+continuous+and+discrete%22&hl=en&sa=X&ved=0ahUKEwjnkZboxJzgAhUCO60KHa7DBmcQ6AEIKjAA
https://en.wikipedia.org/wiki/Local_zeta-function
https://en.wikipedia.org/wiki/Local_zeta-function
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(For example, Weil conjectures may claim that there is a relation between the counts of solutions of a
certain (system of) equations in the Galois’ replacements for mod p3, mod p4, mod p5. On the other
hand, the only things in common between these “arithmetics” are the p residues mod p—hence one
cannot “match” the solutions themselves.186) This is the reason why Weil conjectures are so deep
(and, for many people, much deeper than they seem to be on the first sight).
Remark 44: Nowadays, one could consider Weil relations as the first tiny but general enough step in
the direction of the Langlands approach. It looks like Weil arrived at these relations by doing many
“numerical experiments”.

To see how revolutionary all this was at the time, note that when Hasse conjectured what is
essentially the next step,187 Weil himself did not believe that Hasse conjectures can keep water.188

“Distillation” and Motives

The operation we did on Step (b) on p. 60 looks very innocuous: all we do is subtracting 1. In fact,
an explanation of why this leads to appearance of fractal properties is related to very deep branch of
mathematics of today, Theory of Motives. It is a very hot and not yet fully settled down theme in
contemporary math.

Essentially, “the motive of zeros of our polynomial” can be “distilled” to two independent parts.
Each “distilled” part has its own symmetries (maybe “hidden”), but these symmetries are so different
that when they are “overlapped” on top of each other, no recognizable pattern remains. (This is
similar to playing two very different pieces of music at the same time: if they are sufficiently dissimilar,
no theme would remain recognizable. We will clarify these notions in Remark 66 on p. 120.)

This section turns out to be the most technical in the first half of this report.189 I did not find a
way to make it simpler; however, nothing else in this report depends on the explanations of this part,
so feel free to skip it altogether.
Remark 45: One way to explain what happens in Step (b) on p. 60:

There is a hierarchy of “difficulty” of sequences, and:

“Distillation” means: “remove” from the given sequence any trace of “simpler” sequences.

The main idea is that the result of distillation is much simpler to deal with than the initial sequence.
Sequences simpler than degree=3 are sequences of degree 0, degree 1 and degree 2. Conclusion:

in our sequence Ñ res
n , we need to

• find “the traces” of “Ñ res
n for sequences of degree 2”,

• find “the traces” of “Ñ res
n for sequences of degree 1” (and degree 0), and

• subtract these traces from our sequence Ñ res
n .

Essentially, we want to write down our counts Ñ res
n related to a sequence of degree 3 as

Ñ res
n ≡ Tn + (Ñ res

n − Tn),

185 Another difference: this connection goes in “the opposite direction” comparing to one with residues: an element
for smaller pk induces an element for larger pkm.

186 Moreover, the real show-stopper is that these 3 arithmetics have “interesting sets of symmetries”—but these
symmetries are “not compatible”. This alone breaks any attempt to “match” solutions between these arithmetics—
except for the solutions which already exist mod p. (We discuss such symmetries in Footnote 322 on p. 118.)

187 This probably happened before WWII. The simplest case of this conjecture was proven about 20 years ago—
essentially, together with the proof of Fermat’s Last Theorem.

188 Later he changed his mind and confirmed the conjecture in a few cases—and now it is named “Hasse–Weil
conjecture”.

189 Our calculations with Eisenstein series on p. 135 are yet much more technical. So is our second round of attack
on the topic of distillation in the section on p. 120.

https://en.wikipedia.org/wiki/Hasse%E2%80%93Weil_zeta_function#Hasse%E2%80%93Weil_conjecture
https://www.jmilne.org/math/xnotes/pRH.pdf#nameddest=subsection*.61
https://en.wikipedia.org/wiki/Motive_(algebraic_geometry)
https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem
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with Tn being a combination of counts related to sequences of degree 0, 1 or 2, and Ñ res
n − Tn “having

no similarity to counts Ñ res
n related to sequences of degree 0, 1, or 2”.

Remark 46: It turns out that it is easy to characterize sequences “having no similarity to counts
Ñ res
n related to sequences of degree 0, 1, 2”:

The average value of such a sequence on primes in any arithmetic progression is 0.

(We must ignore progressions containing just one prime. This happens when the step is not mutually
prime with the elements; otherwise the progression contains infinitely many primes.) In other words,
the sequence Ck is of this form if the average value of the sequence Cak+b restricted to prime values of
ak + b is 0 provided a > 0 and a and b are mutually prime.190

Moreover, putting Tn ≡ 1 in the formula above achieves the goal:

The average value of the sequence Ñ res
n on primes in any arithmetic progression is 1.

Indeed, numbers Tn ≡ 1 are counts of 0 modn s related to the sequence 1,2,3,. . . of degree 1. Indeed,
in residues modn the shortest period of this sequence has length n, and the count of 0 modn s in
this period is exactly Tn = 1. This leads to

There is no trace related to degree 2. The trace related to degree 1 is Tn ≡ 1.

Clearly, this immediately leads to the rule of Step (b) on p. 60. As a result of subtracting these Tn,
the counts Ñ res

p = 0, 1, 3 at prime indices p become −1, 0, and 2.

Remark 47: It is not that hard to explain the meaning of the rule in the red frame.
First of all, degree 0 leads to Ñ res

p = 0 for most of primes p—so we may forget about it.191 Note
that degree 1 leads to Ñ res

p = 1 for most of primes p.
Next, recall the pattern we observed for “Ñ res

n for sequences a 2
n of degree 2”: it appears when we

write numbers in a suitable number of columns. Every column is an arithmetic progression with the
step equal to the conductor for a 2

n , and:

The value Ñ res
p on primes p in any such arithmetic progression is the same (for degree=2).

Moreover, one can show that this is “the whole pattern”: a similar average in other arithmetic
progressions is 0 unless the progression is related to the columns (which means: its step is not
mutually prime with the conductor). And: the same rule works for degrees 0 and 1.

Conclusion: to “distill”, all we need to do is to avoid the pattern in the box above. Note that any
finite sequence can be written as “a constant sequence” + “a sequence with average 0”, and these two
parts are “orthogonal” to each other. Although we deal with infinite sequences, a similar approach
still works—and this leads to the rule in the red frame.

190 As usual, we needed to over-simplify a bit. In fact the framed rule describes not the dichotomy “the degree is 0,
1 or 2” vs. “the rest”, but a related dichotomy abelian (or even cyclic; it happens for degree up to 2, as well as “in
some cases of higher degree”) vs. purely-nonabelian (which may be restated as “covered by the Class Field Theory for
Q” vs. “needing the Langlands program”; compare with the section on p. 82). However, since anything of degree 0, 1,
or 2 lives in the “abelian” realm, and we do not consider the abelian case of degree 3 (except for Remark 78 on p. 130),
this is enough for our purposes.

191 On the other hand, tuning an equation of degree 0 (such as an equation 35 = 0 in an unknown m—which does
not enter the equation!) allows us to get “exceptional counts of solutions” in a prescribed list of prime (such as p = 5, 7
in the example above: any m is a solution modulo such p). This shows that when “removing traces of degree 0” allows
to ignore a few “exceptional values” of p where the general approach gives “wrong answers” for the number of solutions.

https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
https://en.wikipedia.org/wiki/Cubic_field#Definition
https://en.wikipedia.org/wiki/Cubic_field#Definition
https://en.wikipedia.org/wiki/Class_field_theory#History
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Given a general sequence νn, how to “distill” it, making the average of νp on primes p in every
arithmetic progressions to be 0 after distillation? It looks like for every arithmetic progressions we
need to subtract the “averaged” value in this progression.192

This may look like a hopeless task: progressions with different steps may overlap, and dealing with
such overlaps may lead to contradictions. Miraculously, this does not happen for Nn: the average in
every progression is the same: and is equal 1 (see the green frame above!).
Remark 48: To illustrate the miracles which must happen to have the “average over primes” in all
arithmetic progression to be the same, 1, note that the most interesting arithmetic progressions related
to our example above (“tetrahedral numbers + 2”) have step 971. Indeed, in Remark 40 on p. 72 we
saw that the counts Ñ res

p for prime p are controlled by our green/red colors, and by the position on
971-wheel. As the table in this remark shows, in some of these progressions only the count 1 appears,
while in the others only the counts 0 and 3 appear.193

Obviously, the average of Ñ res
p for prime p in the former kind of the progression is 1. It is very

natural to expect that the average for the latter kind is going to be different (such as 1.5)—but this
does not happen!194

This was discovered about 150 years ago— it was the first precursor of the Langlands Program (a
very remote precursor!). This is called Chebotaryov’s density theorem.195 In our case, it says that
Ñ res
p = 1 for 1

2 of primes p (this matches196 our claim that 1
2 of 970 arithmetic progressions have “the

second color red” in the table of Remark 40 on p. 72), while Ñ res
p = 0 for 1

3 of primes p and Ñ res
p = 3

for 1
6 of primes p.
So under the condition “the second color is green” in the table of Remark 40 on p. 72, 2

3 of the
primes are going to have Ñ res

p = 0, and the remaining 1
3 of them have Ñ res

p = 3. Obviously, this leads
to the average being 1. (We return to this topic in Remark 105 on p. 157.)
Remark 49: The discussion above leads to another question: what happens inside one of 970
arithmetic progressions of the preceding remark? (We excluded the dull one, where the only prime is
971.) Half of them are not very interesting: only Ñ res

p = 1 appears there (for prime p)— so the all the
primes there are green. In the other half, primes are red and green matching Ñ res

p = 0 and Ñ res
p = 3.

For example, in the progression starting with 1 (so it goes 1, 972, 1,943, 2,914, 3,885, 4,856, . . . )
the sequence of colors is
◦◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦◦◦•◦◦◦◦◦•◦◦◦•◦◦◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦• . . .
Here ◦ stand for non-prime numbers. Removing even numbers (which are always ◦) allows to see more
colored circles (note that the step now is 2× 971, so this progression goes as 1, 1,943, 3,885, . . . ):
◦◦◦•◦◦◦◦◦◦•◦◦•◦•◦◦◦•◦◦◦◦◦◦◦◦•◦◦◦◦◦•◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦◦◦•◦◦◦◦◦◦•◦•◦◦•◦◦•◦◦◦•◦◦◦◦•◦◦•◦. . .
To see yet more colored circles, remove all ◦ s, leaving just the prime numbers:
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• . . .
This did not help: still no pattern is visible!197

Conclusion: inside this arithmetic progression there is no observable pattern.
192 This is the limit of averages on longer and longer parts of this sequence.
193 Actually, out of 971 possible progressions with this step, one does not have infinitely many prime numbers (just

one prime 971). Out of 970 remaining progressions, half are of one kind, half of the other.
194 We already mentioned this in Remark 38 on p. 61.
195 In fact, for our question, the earlier version discovered by Frobenius is enough.
196 Well, this also involves the Dirichlet theorem on primes in arithmetic progressions.
197 . . . except the approximate pattern we mentioned above: the ratio of green:red is close to 1:2. Indeed, the

observed value is 26:57—which is reasonably close to 1:2 for a sample of size less than 100. If we consider longer and
longer chunks of our sequence, the ratio would go closer and closer to 1:2.

https://en.wikipedia.org/wiki/Chebotarev%27s_density_theorem
https://en.wikipedia.org/wiki/Chebotarev's_density_theorem#Formulation
https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
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On the other hand, there are transliterations rules similar to those discussed above which are tuned
to these sequences of colors •, • and ◦. They translate them to numbers Mn such that their Fourier
transform G(t) := ∑

Mneimt also has fractal properties. (However, the fractality law for G(t) is a bit
more complicated than what we considered above: it has extra factors of the form exp i(at+ b/t).)

Conclusion: to expose the patterns in colors in these arithmetic progressions one needs to go
through the steps very similar to those for our initial sequence of red/green colors. There is no
simplification due to restriction of attention to such progressions!

Fractional-linear transformations

In the section on p. 43 we constructed an example of a 2π-periodic function g(t) which has a
horizon-self-similar point t = 0.198 As we saw, the non-smooth points of any such function G(t) are
images of t = ∞ under chains of transformations199 t′ = −1/γt and translations t′ = t ± 2π (with
a certain fixed γ; what we used was γ = ±2/π—the choice of the sign is irrelevant since our seed
function g0 was odd).
Remark 50: In fact, chains of transformations t′ = −1/γ0t and t′ = t ± 2π may be controlled
to some extent: these chains may result only in transformations of a very specific form. Indeed,
both transformations can be written as t′ = αt+β

γt+δ , one with α0 = δ0 = 0, β0 = −1, the other with
α1 = δ1 = 1, β1 = 2π, γ1 = 0. Since composition of such (fractional-linear) transformations is again a
fractional-linear transformation, any chain of toy-transforms and shifts results in a fractional-linear
transforms of t.

Moreover, if 4π2γ0 is an integer,200 then using the new variable T = t/2π, these fractional-linear
transformations are going to have integer coefficients α, β, γ, δ.201

Remark 51: It turns out that if π2γ0 > 1 (as in the example in the section on p. 43, where γ0 = 2/π,
and as in all examples related to divisors of polynomial sequences), then there are other restrictions.

198 Note that for self-similarity, we needed to use the imaginary unit i as a scaling factor. If we want to have real
scaling factors, then what we constructed is a pair of functions ReG(t) and ImG(t) such that near t = 0, ReG(t) is
horizon-similar to − ImG(t), and ImG(t) is horizon-similar to ReG(t).

199 The −-sign is very convenient. With it, the transformation is (locally) increasing; moreover, it enables the
relation αδ − βγ = 1 used below. (See also Footnote 222 on p. 85.)

200 This is what happens in examples related to divisors of numbers in polynomial sequences, when γ0 = c/4π2 with
c being the conductor.

201 To understand the example graphs below, it is crucial that one can say more. Call a fractional-linear transforma-
tion T ′ = αT+β

γT+δ with integer coefficients, with αδ−βγ = 1 and with c|γ “congruence”, and with extra conditions α ≡c 1
(then automatically δ ≡c α) “strongly-congruence”. Then any transformation τ we may encounter in chains as above is
either strongly congruence, or τ ◦ (−1/cT) is strongly congruence. (Here c = 4π2γ̃0, here the base transformation is
written as t′ = −1/̃γt.)

Actually, it is very important for us that the strongly congruence transformations form a “sufficiently small” collection
of fractional-linear transformations: this makes the tesselations of the section on p. 87 possible. The Lobachevsky-
rotations sending one “tile” of tesselation to another one coincide with the strongly-congruence transformations.202

The Langlands program predicts that any congruence transformation gives a fractal symmetry of F (t) (possibly
changing the sign of oscillations). About half of them (including all strongly-congruence) preserve the sign as well
(compare with Footnote 206 on p. 80).

202 Moreover, for c > 4 the arguments in Remark 51 on p. 78 show that just a tiny part of the collection of
strongly-congruence transformations may be formed by chaining T ′ = −1/cT and T ′ = T ± 1.203

Indeed, the latter collection was already discussed in Remark 30 on p. 47; as we saw, the corresponding horizon-
self-similar points avoid certain intervals. (There is no such avoidance when one considers all strongly-congruence
transforms; see Footnote 204. We discuss such an example in Remark 52 on p. 80.)

With the pictures of the section on p. 87 one will be able to see that chaining T ′ = −1/cT and T ′ = T ±1 corresponds
to “walking” between the gray disks through the tangency points. Moreover, since the green lines separate these gray
disks, from a particular gray disk one cannot walk to all the gray disks. (See Footnote 237 on p. 88.)

203 Note that the transform T ′ = −1/cT is not a strongly-congruence (and not even congruence!). However,
combinations as above involving an even number of these transforms are going to be strongly-congruence.

https://en.wikipedia.org/wiki/Linear_fractional_transformation
https://en.wikipedia.org/wiki/Congruence_subgroup
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The preceding remark restricts the transformation obtained by chaining both qualitatively (they
should be fractional-linear) and quantitatively (see footnotes: there are divisibility properties related
to the conductor c). However, there is another metric as well: look at how far the image of the point
t = 0 (if it exists) can go from multiples of 2π.

Indeed, if a point near 0 is inside |t| < π − ε, then its non-trivial translations by multiples of 2π
are in |t| > π + ε > 1/πγ + ε, hence applying t′ = 1/γt to these points sends them again into |t| < π− ε
(with an appropriate choice of ε). (Compare with what we do on p. 46.) Hence starting with t = 0,
shifting by multiples of 2π, and applying t′ = 1/γt (and combining these transformations in an arbitary
order) would never get the point further than π − ε from a multiple of 2π. Hence there is going to be
a zone (π − ε, π + ε) which the image of 0 cannot visit!204

In fact, we already saw this effect in pictures of the section on p. 43, when such a “prohibited
zone” appeared as a “smooth” zone in the graph near t = π. In the following section (on p. 45) we
saw that going from a “family” to “super-family” to “super-duper-family” etc. could never extend
these sets close to the boundary of [−π, π].

The moment we know one such “prohibited” zone appears, one can proliferate this zone along R
using the transformations above. This puts a “copy” of such a zone between any 2 given “possible
images of 0”, hence these copies “appear everywhere”: near any point of R, there is such a “prohibited
zone”. In fact, “possible images of 0” form what is called a “meagre” subset of measure 0.

Prime conductors and “Tetrahedral + 2” again

Recall that when discussing the graph for F (−1)(t) for the polynomial “Tetrahedral numbers+2”, we
eventually abandoned plotting this function near horizon-self-similar points: it is not computationally
feasible. So we could not fully demonstrate that our description of the visual Langlands pattern
works for this function. (We needed to switch to a polynomial 6 × Tetrahedral + 1 with a much
smaller conductor to do so.) Recall that this description (stated on p. 41 before Remark 27) can be
summarized as:

Near every t there is a number 2πR/S which is a horizon-self-similar point for F (t).

(Reminder: the “actual” transform for F (t) implies “the honest transform for antiderivative” for
F (−1)(t); see p. 42.)

However, the conductor c = 971 for “Tetrahedral + 2” is a prime number. It turns out that for
prime conductors, there is a very simple and powerful generalization of this pattern. It is especially
strong if the discriminant d is positive (in other words: if the polynomial has 3 real roots; the “Maass
case” of Remark 18 on p. 36):

If c is prime and d > 0, then every number 2πR/S is horizon-self-similar.

For negative discriminant (the “modular form case”), the situation can be described as

If c is prime and d < 0, then every number 2πR/S is horizon-similar to either F (t), or ImFC(t).

We already saw indications of this in our plots of F (−1)(t) near t = 0: these plots were fractal
transforms of ImF

(−1)
C (t). Now we know that something similar is going to happen for every rational

point: F (−1)(t+ 2πR/S) is going to be (up to additive constant) similar to205 the toy transform either
of a shift F (−1)(t+ C2πR/S) of F (−1)(t), or to the toy transform of a shift of ImF

(−1)
C (t).

204 Compare with strongly congruence transformations: it is not hard to see that for any c, one can make the image
β/δ of 0 to be arbitrarily close to any given number.

205 The first case happens when c divides S. Note how the transform t 7→ −1/|c|t exchanges this subset of Q and its
complement.

(If c is not prime, this happens when c divides S, while the other case happens when S is mutually prime with c.
In particular, there are yet other cases!)

https://en.wikipedia.org/wiki/Meagre_set
https://en.wikipedia.org/wiki/Null_set
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Going back to the case of the prime conductor 971 with d < 0: while reaching horizon-self-similar
points requires zooming about c2 times, many points which are “horizon-similar to the imaginary
part” may require much smaller magnification. For example, here is what happens for R/S = 1/2:

0.067189

-0.068049
3.1376 3.14563.139 3.14 3.141 3.142 3.143 3.144

Comparing to the graph near t = 0 on p. 50, one can observe 3 differences:
• The “oscillating zone” is half as wide for the new graph.
• The sign of oscillations is inverted.206 Indeed, focus on the right half of the graphs; the
minima on the new graph match in shape the maxima on the old graph.
• To match these two graphs, one needs a non-linear “transform of the variable t”. Indeed, the
outermost of the minima on the new graph is about 3 times as far from the “center” as the
next minimum (and the next such ratio is about 12/3). For the maxima on the old graph, the
corresponding ratio is about 2 (and the next one is about 1½).207

Remark 52: We want to stress that all the preceding examples of graphs of F (−1)(t) but one on p. 58
and the last one were for t ≈ t0 with t0 for which the horizon-similarity could be explained by chaining
the transformation T ′ = −1/cT of Hecke’s functional equation208 and the translations by multiples
of 2π (which preserve F (t) by definition). This means that horizon-similarity at these points t0
could have been discovered during the half-a-century between Hecke’s discovery and the rise of the
Langlands program.209

206 It turns out that this is due to 2 mod 971 being not a square. With Legendre symbol from p. 208,
( 2
−971

)
=(2

3
)

= −1.
207 This non-linear transformation is fractional-linear (see p. 78): T 7→ 1/2 + T/2(971T + 2); here T = t/2π.
The reader may find it interesting that composition with non-linear transformation T 7→ T/2(971T + 2) sends an odd

function F (−1)(t) to an odd function F (−1)(t+ π). This cannot happen for an arbitrary odd periodic function; this
reflects extra “fractal” symmetries of F .

208 See the section on p. 82 for details.
209 I do not know whether such observations were actually made during this period.
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However, the last graph illustrates a “hidden symmetry” which (as far as I know) cannot be
explained by Hecke’s result alone.210 (In fact, the majority of points 2πR/S are of this type; see
Footnote 202 on p. 78.)

The honest fractality law for F (−1)(t)

Above, on p. 49, we claimed that the fractality law for the antiderivative F (−1)(t) is “almost
visually indistinguishable” from the toy fractality law. In particular, F (−1)(t) is very similar to a toy
transform of a suitable function.

Example: (matching the discussion on p. 53): the red curve is the plot of the toy transform of
F (−1)(t), the blue curve plots ImF

(−1)
C (t) (for conductor 23),211 and violet plots the difference:212

1.4438

-1.5583
-1 90 1 2 3 4 5 6 7 8

The graph for difference is scaled up 10 times;213 it is, obviously, completely “negligible”. Moreover,
it is much smoother than the functions we subtract. Obviously, without plotting the red and blue
graphs “on top of each other” there would be no way to tell them apart.

210 We need to repeat: since this is the case of negative discriminant, it is covered by the Class Field Theory for
imaginary quadratic fields. So this particular case of horizon-similarity could have became known about a decade after
Hecke (but it is doubtful people noticed it before 50s). For more details, see the section on p. 82.

211 Compare with Footnote 128 on p. 54.
212 The “thickness” of the graph of difference is a result of numerical errors due to ignoring the higher Fourier

coefficients. It decreases roughly as the inverse of the number of terms to sum. The actual graph is quite smooth—but
even 16,000,000 Fourier coefficients are not enough to demonstrate this! (Recall that this is the simplest case, with very
small conductor, 23. To do a similar graph with higher precision, or a larger conductor would require prohibitive time
for computation, of order of magnitude of weeks—or I would need to add features like FFT to the software I use.)

On this graph one can also recognize that F (−1)(t) is proportional to the derivative of the “negligible” term—as it
should be, due to “integration by parts” (see below).

213 To visualize this scale of magnification: observe that where the violet graph is positive, the red graph is (slightly)
above the blue one.—And likewise for where the violet graph is negative.
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Calculation: Assume that F and F̃ are related by the “actual” fractality law, so F (t) = F̃ (1/t)/t. Integrate
by part, denoting the antiderivatives of F and F̃ by g and g̃ (so F (t) = g′(t) and F̃ (t) = g̃′(t)). Then g(t) =
−tg̃(1/t) + Rest(t) (here Rest′(t) = g̃(1/t)). These three terms are exactly what is plotted above. These relations
explain the observations above.214

Conclusion: the fractality law for F (−1)(t) has two terms—and the principal one is exactly the
“toy fractality law”. The remaining term is “negligible”: on our graph, its contribution cannot be seen
—with one exception.

Indeed, all that the “negligible” term does is “moving” the features of the graph up and down a
bit. The reason for this is that this term is much more smooth than the principal term. Essentially,
comparing to wild variations of values of F (−1)(t) in any small region in t, this extra term is practically
constant. Hence adding this term would just move the graph up or down.
Remark 53: Of course, moving the features up or down too far may make the “visual pattern of toy
transform” harder to recognize. Compare with the small plot on p. 57.

Historical approach: cases that only the Langlands program can explain

In these notes we illustrate one application of the Langlands program: based on the list of divisors
of values of a cubic polynomial, we construct a sequence of numbers Nm. The Langlands program
predicts that the Fourier transform of this sequence has fractal symmetries.

However, if we want to investigate this application in historical settings, instead of the Langlands
program we could have used its two precursors. These precursors became known about half a century
before the Langlands program. While they are not as powerful as the actual Langlands program, in
our application all easiest-to-reach fruits may be obtained using just the precursors.

The newer of two precursors was finalized about 90 years ago: the Class Field Theory. In general,
it works by “splitting the complexity of a given polynomial P” into two parts: recall that solving
P = 0 may be “relatively uncomplicated”215 if we already know roots of a certain other, much simpler
polynomial P0 (in other words: P is “cyclic”, or, at least, “abelian” relative to P0). If degP = 3,
then P0 has

√
D as a root; here D is the discriminant of P . The Class Field Theory converts many

delicate questions about solutions of P = 0 to (rather involved) questions about P0.
Two most useful (and most completely investigated) cases when the latter questions may be fully

answered are when degP0 = 1 (for degP = 3 this means that D is a complete square216), and when
degP0 = 2 and it has no real roots (for degP = 3 this means that D < 0). In the former case one gets
a complete description of numbers Nm very similar to what we saw with Quadratic Reciprocity: there
is a periodic sequence Nper

m such that Np = Nper
p for prime p. (Compare with Remark 78 on p. 130.)

The latter case is what we called the “even” (or “modular form”) case in Remark 18 on p. 36. In this
case the description of numbers Nm is less direct, but it is nevertheless sufficient to deduce all the
fractality properties we use in these notes.217

Conclusion: to expose cases which are not covered by the Class Field Theory, our cubic polynomial
should have D > 0 which is not a complete square. This is the “even” (or: the “Maass form”) case.

214 A very observant reader would note that with the formula above, Rest(t) would be very singular at 0. To avoid
this singularity, we cheated and shifted the argument t in the graph by 2π.

215 How to do this was discovered about two centuries ago.
216 We discuss this case in a lot of details in the section on p. 67 and the section on p. 125.
217 Apparently, the first example (in our terms, M = 6) was investigated by van der (den?) Blij in 1952. He

(essentially) identified FC(2πz) with η(z)η(23z) = q
∏∞
m=1(1−qm)(1−q23m); here q = exp 2πiz and we use the Dedekind

modular form η.
However, he did not mention the (known) connections of his approach with polynomials of degree 3 (it looks like he,

essentially, uncovered a very simple particular case of the result of Hecke of 1927). In an example in his 1975 lectures in
Durham, Serre stresses this connection (and says that most of his examples came from Tate’s letters of 1973/74—but
probably not this one. . . ). Don Zagier’s chapter in the book The 1-2-3 of Modular Forms exposes these connections
directly.

https://en.wikipedia.org/wiki/Class_field_theory#History
https://en.wikipedia.org/wiki/Abelian_extension
https://en.wikipedia.org/wiki/Kummer_theory
https://www.sciencedirect.com/science/article/pii/S1385725852500702
https://en.wikipedia.org/wiki/Dedekind_eta_function
https://en.wikipedia.org/wiki/Dedekind_eta_function
https://link.springer.com/article/10.1007%2FBF01447866
https://www.google.com/search?q=Algebraic%20number%20fields%20L-functions%20and%20Galois%20properties%20Durham%201975&ie=utf-8&oe=utf-8&hl=en&num=10&pws=0
https://www.google.com/search?q=Algebraic%20number%20fields%20L-functions%20and%20Galois%20properties%20Durham%201975&ie=utf-8&oe=utf-8&hl=en&num=10&pws=0
https://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/978-3-540-74119-0_1/fulltext.pdf
https://www.google.com/search?q=book+The+1-2-3+of+Modular+Forms+Lectures+at+a+Summer+School&ie=utf-8&oe=utf-8&hl=en&num=10&pws=0
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The other precursor is the Hecke’s functional equation for the Dedekind ζ-function discovered a
century ago. (While it is usually not stated this way, in our setup) it claims exactly that our fractality
law works at t = 0.

Recall that we already investigated what happens if the fractality law works at t = 0: by chaining
our fractal transformation with periodicity, one obtains a giant “Cantor hyper-family” of other points
at which the fractality law works as well (see Remarks 30 and 31, as well as Remark 51 on p. 78).
Since this hyper-family avoids a lot of intervals, and we expect that horizon-self-similar points “appear
everywhere”, it should not be hard to pick up a horizon-self-similar point which cannot be explained
by such chaining.

However, we have been working under a severe constraint: the zooming factor needed to expose
the “fractal pattern” should not be prohibitively large (we do not want to spend weeks computing
these graphs!). It turns out that many of the simplest points with “reasonable” zoom factors are
in the hyper-family! This leads to the situation when most of our graphs can be explained by the
Hecke’s result.

Conclusion: to expose cases which are not covered by the functional equation, our graphs should
show the fractal pattern about a point t = t0 which is not in the “Cantor hyper-family”. However,
of the graphs in these notes, the only graphs not related to the hyper-family are one on p. 50 for
D = −23 < 0, and one on p. 79 for D = 24 × 37 > 0.

Combining two restrictions above, we need to provide a graph for the Maass case (so D > 0 and
not a square) at a point which cannot be obtained from 0 by a chain of integer translations in T and
applying T 7→ 1/cT (here t = 2πT ). The only graph which satisfies both restrictions is one on p. 79
with c = 37. (Compare with Remark 52 on p. 80.)

(Another educating facet of this paper is that the sequence he works with is a “mix” of our Nm with a Fourier
coefficients of a certain Eisenstein series—compare with Remark 76 on p. 129. So this gives a very different example of
a need to “distill” to see the patterns.)

https://en.wikipedia.org/wiki/Dedekind_zeta_function#Analytic_continuation_and_functional_equation


On Lobachevsky geometry and zones of self-similarity

The groups of symmetries

In the preceding chapters we used a relatively new (about 25 years old) approach where we consider
the Fourier transform F (t) as a generalized function, and plot its antiderivative F (−1)(t). Note that
“taking the antiderivative” is a regularization in the sense of Remark 21 on p. 37—however, it is
a very “mild” regularization: it replaces the sequence Nn (this is a sequence of integers, hence not
decaying!) by a sequence Nn/n which decays, but rather slowly.

However, in this chapter we are going to ignore this approach (and F (−1)(t)) until p. 90. Instead, we
start by introducing geometric methods suggested by the other, older approach. That approach applies
a very strong “regularization” making the Fourier transform much smoother. Such a regularization
was described in Remark 21 on p. 37. One of the disadvantages of this approach is that one needs to
use different regularizations in the odd and the even cases (introduced in Remark 18 on p. 36)—so
with the older approach the difference between these two cases appears much earlier than necessary.
(The exact form of these regularizations was described in Remark 35 on p. 58.)

On the other hand, using these particular regularizations has amazing corollaries. Indeed, they
depend on the parameter s (“strength”, which for s ∈ N may be thought of as a “repetion count”).
For example, in the “odd” case the regularization replaces Nn by Nn/ens; now the Fourier transform
of Nn/ens is a function of two variables t and s with s > 0. Writing t+ is =: z converts the Fourier
transform of (Nn) into a function f(z) defined on the upper half-plane H := {Im z > 0}.

It turns out that if one considers the complex Fourier transform (as in FC) then
• The function f(z) is complex-analytic.218 The “boundary trace” of this function is FC(t).219
• Every transformation we saw preserving the function F (t) would preserve f(z) too—when
we write z instead of t in the formula for the transformation.

Moreover, in Remark 22 on p. 38 we claimed that (with Lobachevsky geometry!)

these transformations of z become just “rotations” if one equips H with a certain curved geometry.

Essentially, the conditions on F (t): periodicity and horizon-similarity (the latter makes a match
between the “behavior on horizon” and the “behavior at finite points t”) become to symmetries of
f(z) in Lobachevsky geometry. A geometric description of these symmetries allows us to detach the
properties of these symmetries from the properties of F (t) and f(t, s).

So, in this chapter, we inspect these symmetries as “separate entities”. Then we use the results to
deduce a much more detailed information about regions of self-similarity for F (−1)(t).
Remark 54: In this approach, all the arithmetic information about the polynomial of degree 3 we
started with boils down to one integer c: the conductor. Recall that conductors for cubic polynomials
have a tendency to be very large, leading to hard-to-visualize situations. However, in the context of
symmetries, small conductors c make perfect sense—and lead to much nicer pictures.

So while c in our pictures is too small to be related to any polynomial, these pictures still illustrate
the general trends on manageable examples with very small conductors.
Remark 55: Already in Remark 18 on p. 36 we saw that the behaviour of horizon-self-similarity may
be different in the odd and the even case (even if the conductor is the same220). The even case would

218 This should be replaced with real-analyticity in the “even” case.
219 Recall that FC(t) has “no values at points”. The “boundary trace” coincides with the boundary value when

values at points are defined—but the trace makes sense for generalized functions as well.
220 The smallest conductor for which both even and odd cases are possible is 756 with the corresponding “even”

and “odd” polynomials m3 − 6m− 2, m3 − 6m− 12.
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have more regions with such self-similarity (for example, a region near t = 0); in a certain sense, there
are twice as many of them. Likewise, there are also twice as many symmetries of f(t, s).

To simplify our pictures as much as possible, given c we start with the smallest “reasonable”
collection of symmetries (which “works” for both even and odd cases), and postpone more complicated
cases until the section on p. 93.

Lobachevsky-symmetries: the case c = 1
The easiest way to deal with a collection of symmetries is to find a picture such that these

symmetries coincide with the symmetries of the picture. A particular case is when the picture consists
of cut line which tessellate (“tile”) the plane into pieces of the same shape and the same size. Moreover,
when the collection consist of symmetries of a function f(z), then if we know its values in one of these
pieces, then we know its values everywhere:

A Lobachevsky-symmetry which sends one piece to the other preserves f(z).

t=
+
∞

t=
−
∞

Of course, the same holds for the boundary trace F (t) of f(z). Con-
clusion: given such a coloring, one can discuss symmetries of f(z)
(and of F (t)) without mentioning f whatsoever. This is what we are
going to do: after we describe the colorings, we won’t need to mention
f(z) anymore. We would just apply the symmetries of the colorings
to describe the symmetries of F (t).221

However, it turns out that to simplify visualization of these examples,
it is convenient to be creative with the interpretation of t and s.

While the function f from the preceding section takes arguments
(t, s) in the upper half-plane {(t, s) | s > 0}—which can be naturally
identified with “the half-plane model” of the Lobachevsky plane, it
is much easier to visualize the Lobachevsky moves using the “other
flat-geometry model” of the Lobachevsky plane: the model inside a
disk. (Geometrically, these two models—half-plane and disk—differ
by inversion.)222 In this model t and s become curvilinear coordinates
in the disk; we show several coordinate lines on the right (t is in red,
s is in gray).

Start with the simplest tesselation of Lobachevsky geometry (on
the right; on Wikipedia, it is in the article Truncated triapeirogonal
tiling223 together with a few other examples, some of which are for small
conductors). Every piece of tesselations we consider is made of several
copies of “an elementary tile”. This tile (in yellow on the right)224 is
marked as “index 1” in the Wikipedia article above. How the piece is made of these elementary tiles

221 Essentially, the purpose of introducing f(z) was to lead us to the Lobachevsky geometry. The interpretation of
F (t) as a boundary trace of something “as symmetric as” F (t) is sufficient for our purposes: we do not care about finer
details of f(z).

222 In our context, the major advantage of the disk model is that our toy/actual transforms have −1/t as the
argument; this means they, essentially, exchange points t = 0 and t = ∞. In the disk model, both t = 0 and t = ∞
make perfect sense as points on the boundary of the model. Compare with the picture in Remark 23 on p. 38.

In fact, if the point i of the half-plane H matches the center of the disk, then the transformation above becomes
just the rotation of the disk by 180◦. (By the way, this is the main reason why we prefer writing −1/t in the argument
—as opposed to just 1/t—which would lead to a mirror symmetry of the Lobachevsky plane. See also Footnote 199
on p. 78.)

223 I do not know anybody using such bizarre names in real life, or in real math.
224 Note that in Lobachevsky geometry it makes sense “to pull a vertex of a triangle to infinity”. When we pull, the

angle at this vertex goes to 0°. The yellow piece is such a triangle with angles 90°, 60°, and 0°.

https://en.wikipedia.org/wiki/Hyperbolic_geometry#The_Poincar%C3%A9_half-plane_model
https://en.wikipedia.org/wiki/Hyperbolic_geometry#The_Poincar%C3%A9_disk_model
https://en.wikipedia.org/wiki/Hyperbolic_geometry#The_Poincar%C3%A9_disk_model
https://en.wikipedia.org/wiki/Inversive_geometry#Circle_inversion
https://en.wikipedia.org/wiki/Truncated_triapeirogonal_tiling#Symmetry
https://en.wikipedia.org/wiki/Truncated_triapeirogonal_tiling#Symmetry
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depends on the conductor only.225 The yellow tile “combined” with any one of its neighbor tiles forms
the piece good for226 c = 1.
Remark 56: On the picture, the elementary tiles have different shapes and different sizes. Actually,
in the sense of Lobachevsky geometry, these tiles have the same shape and the same size.227

The observed difference is just a defect of our “visualization” of the Lobachevsky plane. Similarly
to how the surface of Earth cannot be mapped exactly onto a flat surface, the features of Lobachevsky
geometry cannot be rendered without defects on flat images.

Conclusion: What is drawn above is just a hint of what is going on in Lobachevsky geometry. In
fact, it takes a lot of training to be able to interpret these hints fully! Below, the reader may need a
long leap of faith with our recurring claims like “that picture demonstrates this symmetry”.228

Enhance the picture: the gray disks

For what follows, it is convenient to add extra “features” to the
coloring above (made of the “cut lines” of the tesselation). Note that
on the picture above every red line meets one blue line; this marks a
point on every red line. Look at these meeting points for the red lines
which “emerge” from a given point of the boundary of the disk (“the
absolute”)— they all lie on a particular circle tangent to the absolute.
In fact, these circles are the circles from so-called Apollonian gasket
which touch the boundary (on the right, we shade the insides of these
circles gray229).

By construction, any (Lobachevsky) symmetry of the picture
above is also a (Lobachevsky) symmetry of the white/gray coloring
on the right. Moreover, the opposite is also true.230 Conclusion: two
pictures above have the same symmetries; moreover, if one combines
these two pictures, the result still has the same symmetries.231 (In
the combined picture on the right, we keep only the red lines from
the preceding picture of the cut lines.)

This picture fits c = 1. For larger c, the group of symmetries is
going to be a subgroup of the group of symmetries of this picture.
This leads to this picture being a template for the pictures for larger
c. We would need to omit some of the gray disks, and modify the

225 Keep in mind that for a large conductor c, one may need about 4c elementary tiles to make the shape needed
above. Since conductors have a tendency to be quite large, most examples would lead to shapes made of monstrously
huge number of tiles.

226 Without doubling the yellow tile is a “piece” if we allow mirror symmetries. Compare with Footnote 271
on p. 94.

227 In particular, there is a (unique!) Lobachevsky-symmetry of the picture above sending any “elementary tile” to
any other tile.

228 There are videos visualizing geometry and movements of the Lobachevsky plane. Google for
movement OR visualizing hyperbolic demo OR projections video.

229 We use darker gray for smaller disks to make them easier to see. This tint has no math significance.
230 Indeed, one can reconstruct the red lines on the gasket: take two tangent gray disks, and connect the points

where they touch the absolute. Likewise, any blue line is a common Lobachevsky-straight tangent to such a pair of
disks.

231 In fact, the disks make it easy to describe these symmetries. One can find a Lobachevsky-rotation sending any
disk to any other disk. Moreover, note that the disks touching a given disk make a “necklace” surrounding the disk.
Now given a disk, there is a unique Lobachevsky-rotation which keeps this disk in place, and sends a particular disk in
this necklace to another such disk. (Finally, there is a unique reflection keeping two touching disks in place.)

(Compare with Footnote 227.)

https://en.wikipedia.org/wiki/Apollonian_gasket
https://www.google.com/search?q=movement+OR+visualizing+hyperbolic+demo+OR+projections+video&ie=utf-8&oe=utf-8&hl=en&num=100&pws=0
https://www.google.com/search?q=movement+OR+visualizing+hyperbolic+demo+OR+projections+video&ie=utf-8&oe=utf-8&hl=en&num=100&pws=0
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colored lines. (Additionally, we would need to rescale the coordinate
t on the disk—and its boundary.)

The case c = 5
For larger conductors c one can draw pictures which are very similar in spirit. Here we consider

the case of c = 5.232 What one needs to do is:
• Remove some of the gray disks and the red lines;
• Change some red lines into green;
• Add suitable gray and blue lines.

(After this, there is still a lot of tangencies between the gray disks!) This gives the picture on the left
(on the right, we remove the gray disks to make the colored lines easier to see):

It is easy to imagine yet another picture with gray disks only, and no lines. All three ways to color
(gray disks only, and two colorings above) have the same collection of symmetries. Moreover:

• The gray and colored233 lines on the right picture match the red lines on the picture on p. 85.234

• These lines cut the picture into “triangles”. Every such triangle matches a red-sided triangle
which on the picture on p. 85 is made out of 6 “yellow elementary tiles”.
• For any two of these triangles, there is a Lobachevsky-rotation or Lobachevsky-translation
sending one to the other (one can even send a given corner to a given corner). In other words,
in Lobachevsky geometry these triangles have the same shape and the same size.235
• Ignore the gray lines. Then the colored lines cut the picture into 6-sided pieces having 2 red
sides, 2 green and 2 blue. Each piece is made of 4 triangles.
• These larger pieces are also the same shape and the same size (in Lobachevsky sense).

232 As we discuss it in the section on p. 93, there are several different analogues. Until then, it is enough to say that
here we consider the “smallest useful” collection of symmetries.

233 Here and below “colored lines” means “non-gray” lines.
234 For this and other matches below, it is better to Lobachevsky-move the picture on p. 85 (“squeeze it to the

left”).
235 Well, the Lobachevsky geometry is not scaling-invariant: if shapes match, the size should also match!
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• Moreover, these pieces are fundamental domains: they have no symmetries,236 and any
symmetry of the whole picture moves a piece to a piece.
• Therefore, these pieces are closely related to the gray disks. For example, every one contains
exactly one tangency point of the gray disks.237

Moreover, the gray disks color every piece with 2 colors: gray and white. One can
Lobachevsky-overlay any two pieces so that they match, moreover, the colors match as well.238

Remark 57: For any gray disk, the unit “necklace rotation” of Footnote 231 on p. 86 repeated c
times is a symmetry of the whole picture. (This shows that 2 of every 5 consecutive “beads” in such a
necklace for c = 1 remain in the picture for c = 5.)239

The gray disks and the “special zones”

Above, we constructed a coloring of the Lobachevsky plane such that its symmetries coincide with
the symmetries240 of the (generalized) function F (t) on the absolute and of the function f(t, s) on the
Lobachevsky plane.241 242 Here we reap the fruits, using the symmetries of the picture of gray disks to
inspect the fractal transforms243 which preserve F (t).

Since there is a symmetry of the picture moving any gray disk to any other gray disk, and these
symmetries preserve F (t):

The function F (t) “behaves the same” near any two points where a gray disk touches the absolute.

Following Remark 23 on p. 38 we identify the leftmost point of the absolute with t =∞ (as on the
picture on p. 85). Recall that the absolute is essentially the t-axis on which a periodic function F (t)
is defined, and the behaviour of a periodic function “near t =∞” is its behaviour “near horizon”—
which is what matters for our fractal transforms. This immediately implies:

The points where a gray disk touches the absolute are horizon-self-similar points of F (t).

(The horizon-self-similar zones are as on the graph on p. 55.)

236 Indeed, there is a Lobachevsky-reflection of a piece which preserves the coloring of its edges,—but it does not
preserve the gray diagonals drawn in the piece. (This implies that there are no symmetries of the picture which are
Lobachevsky-reflections; compare with Footnote 271 on p. 94.) Anyway, in this chapter we ignore reflections!

237 Moreover, the corner of a “piece” where two red sides meet is contained inside a gray disk. Likewise, the other 5
corners are contained in the disks which were removed when changing the picture for c = 1 to one for c = 5; hence
these corners do not meet the remaining gray disks. Hence every “piece” meets only two gray disks, and two green
sides of the piece completely avoid the gray disks.

238 The same holds if we also take into account the coloring of the edges of the pieces.
239 Warning: this match of the disks does not extend to a match of triangular tiles and/or the coordinate t on the

absolute. As c grows, the “triangles” above the horizontal diameter become squeezed closer and closer to this diameter,
and the range of t covering “the right half” of the absolute decreases (approximately as [−3π/c, 3π/c]).

240 Here it helps to interpret the functions F , F (−1), and f as tensor-valued, as in Footnote 378 on p. 130. Then
the toy/actual transforms become just coordinate-changes applied to tensor fields, and horizon-self-similarity may be
interpreted as “being symmetrical”.

241 Recall that the key reason why F and f have the same symmetries is that our constructions of “continuation
into the plane” and of “taking the boundary value” were intertwining: Lobachevsky-moving one of them would
Lobachevky-move the other in exactly the same way. See Remark 23 on p. 38.

242 The function f(t, s) can also be considered as a coloring of the Lobachevsky plane: its value at (t, s), which is a
real number, may be considered as a color assigned to this point. So the idea of gray disks is that we can replace this
infinity of colors with only 2 colors!

(Well, to take into account that f is a tensor field, one can consider |f | as a color. Otherwise f colors not the
Lobachevsky plane, but its tangent bundle.)

243 See p. 34.

https://en.wikipedia.org/wiki/Fundamental_domain
https://en.wikipedia.org/wiki/Representation_theory#Equivariant_maps_and_isomorphisms
https://en.wikipedia.org/wiki/Tangent_bundle
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As we explained above,244 Euclidean-rotations of our pictures of the Lobachevsky plane are also
Lobachevsky-rotations, but there are many more Lobachevsky moves. They lead to more complicated
“skewed rotations” of the absolute (“fractional-linear transforms”, see p. 78). The non-linearity of
these transforms may shrink some parts of the absolute and expand the others. Hence if a graph of a
function has a visible pattern, such a “non-linear” coordinate transform may distort this pattern—
although it would remain visible in a smaller region, where the non-linearity is not “too strong”.

Therefore, if this transform is not “too non-linear” near one tangency point, then
It sends the zone of “visual horizon-self-similarity” near this point to another such zone.

Doing a similar thing with the leftmost point t =∞ of the absolute gives:

The zones of “visual horizon-self-similarity” are transforms of a certain region near t =∞.

Conclusion: If we can identify this region, then the zones above are images of this region under
Lobachevsky-symmetries of the picture with the disks!

Loosely speaking (and there is no other way to discuss this, since “the zones of visual horizon-self-
similarity” depend on our visual shape-recognition245), use as “the unit of measure” “the projection of
the gray disk near t =∞ to the absolute”.246 This leads to a reformulation:

The zones above are certain central parts of the projections of gray disks to the absolute.

(. . . except for the zone near t =∞ itself: then the transform is not a fractal-transform, but identity!)
The answer: The region in question is the central 4/c of the projection of the leftmost gray disk (recall
that c = 5 in the example above). Call the corresponding zones inside the projections of other gray
disks the 4/c-central zones.247

To understand why this recipe works, we need to
• visually inspect the zone of “visual horizon-self-similarity” for a toy transform of a sample
periodic function,
• identify the matching range near t =∞;
• Find which part of the absolute on the pictures above matches this range of t ≈ ∞.

We will address the last item in the next remark, and the first two in the remark which follows it.
Remark 58: Following Remark 23 on p. 38, on the pictures above the leftmost point is “the infinity”
of the absolute, and the rightmost point is t = 0. Moreover, any Lobachevsky-rotation which exchanges
these two points is t 7→ −1/γt on the absolute, for a certain γ > 0 (the “toy transform”!).

Now observe the “pieces” next to the leftmost point t = ∞; as we described it above, one can
Lobachevsky-rotate one of them to overlay it on top of its counter-clockwise neighbor. Moreover, by
Footnote 238 on p. 88 the edge colors must match. Observing the red edges near t =∞ shows that
this move ρ sends every red line starting at the leftmost point to its counter-clockwise neighbor.

244 See Footnote 222 on p. 85.
245 Indeed, “mathematically” the fractal transform is defined everywhere. However, it is not everywhere “visually

recognizable”: the non-linearities hide the similarities.
246 Making this rigorous requires choosing the center of projection. However, there is no “best” way to do this.

Different choices would result in “slightly different” regions—but for us just the approximate size of regions is important.
247 In fact, we could have replaced every gray disk by a c/4 times smaller disk (“the 4/c-disk”), and then all the

properties of our coloring discussed above would be still preserved, and the projections of the 4/c-disks would match
exactly the sizes of the regions of visual horizon-self-similarity. However, then (even with our small conductor c = 5)
the disks would be yet harder to see clearly. Moreover, the facts that the original disks are tangent to each other, and
that they match the case c = 1 (so that on our pictures just the quantity of the disks depends on c, not their sizes and
placement) are sufficiently interesting for us to prefer the picture with larger disks.

Later (in the section on p. 96), when we work with harder-to-understand pictures, we are going to have both the
“original” and the 4/c-disk marked on the picture.
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Recall that the whole idea of the coloring above, on p. 87, is that its symmetries are also symmetries
of f(z) (hence, automatically, of its “boundary trace” F (t)). This immediately identifies the action of
ρ on the absolute with the translation of t by the period 2π of F (t). Conclusion: the ends of the red
lines starting at t =∞ are at t = 2πk with integer k.248

For general c the picture would still contain a “necklace” accumulating at the rightmost point t = 0.
The k steps of the corresponding “necklace rotation” of Footnote 231 on p. 86 can be recognized as
the strongly-congruence transform T ′ = T/kcT + 1. Hence the disks of this necklace touch the absolute
at points T = 1/kc, or t = 2π/kc.

So two disks in this necklace next to the leftmost one are at t = ±2π/c, and the edges of the
projection of the leftmost disk are twice this, at t = ±4π/c. This shows that the regions between t =∞
and points t = ±π (from the next remark) take 4/c of this projection— leading to the answer above.

1.856

-2.728
-1 60 1 2 3 4 5

Remark 59: To quantify the effects of non-linearity of
−1/T , on the right we consider a typical example of a func-
tion249 Φ(T ) with period 1, and graph Φ(T ) and 1/4TΦ(1/T )
for T in [−1, 6]. One can immediately see that for |T | > 2
the red plot “does not look as” following its pattern clearly
visible for |T | < 1 (although “mathematically”, it is “the
same” pattern).250 In other words, the visible pattern “ex-
ists” in [−2, 2] (the “narrow flavor”), or maybe even up to
[−4, 4] in the “wider flavor” which stresses our imagination.

To make our description work equally well with trans-
formations T = 1/cT ′ with different c s, one can rewrite the estimate we obtained for c = 1 in terms of
T ′. This is |T ′| > 1/2 for the “narrow flavor” (or |T ′| > 1/4 for the “wider flavor”). One can restate
this as

The pattern on the graph of TΦ(1/cT) is visible when T = 1/cT ′ with T ′ > 1/2.

Note that T ′ > 1/2 means that we remove one period of Φ around 0.
Conclusion: “the pattern is visually recognizable” on the image of all the periods of Φ(T ) except

one251 period around 0.

248 Doing similar arguments at the rightmost point t = 0 shows that ends of all lines starting at t = 0 are at t = 2π/k
with integer k. (Moreover, for the piece immediately above the horizontal diameter and bounded by the colored lines,
one can find that its corners are at t being 0, π, 6π/5, 4π/3, 2π, ∞. For the piece to the right of it, the values are 0, 2π/5,
π/2, 2π/3, 4π/5, π.)

249 We use the “same“ letter T for the variable as before, when we had t = 2πT and 2π-periodic functions of t.
250 The situation does not improve for |T | > 6, where TΦ(1/T ) quickly converges to a certain limit.
251 This gives just an estimate “of the order of magnitude” of the zone to delete. Moreover, this estimate is sensitive

to the shape of the graph of Φ(t).252

However, in practice, we need not the toy transform, but the “honest law for antiderivative”, see p. 49. It turns
out that the extra term in this law already messes up (a little) what happens near the edges of “the narrow flavor”
of this zone, and its contribution breaks up the visual pattern in the “wider flavor”. (We already mentioned this in
Remark 34 on p. 57.) So to get a recognizable pattern, the narrow flavor (or maybe even it is a bit more narrow) could
be a better fit.

Compare with what happens near the rightmost point t = 0 on the pictures above (on p. 87). There is a “necklace”
of gray disks converging to t = 0; their projections fill the whole neighborhood of this point. Taking 4/c-central zones
gives zones “converging to 0” with gaps of relative width about c− 4 : 4 (or maybe c− 8 : 8). Now observe the plot
on p. 54 (for M = 6, c = 23): this is exactly what happens there! (Likewise for plots near t = 0 for other values of M .
—Unfortunately, these zones become invisibly narrow if the conductor is in the hundreds!)

252 . . . as we have seen in the section on p. 55, with Φ(T ) having “extra” symmetries.
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Covering properties of the zones of horizon-self-similarity

Up to now, we were somewhat vague about visual patterns in F (−1)(t), avoiding the question:

Given t0, can we zoom into the graph of F (−1)(t) and see t = t0 in a region of horizon-similarity?
Recall what the preceding section started with a picture with gray

disks and established:
• The periodicity253 of F (−1)(t) “observed near ‘the horizon point’
t =∞ on the absolute” makes “the hourglass” pattern (as on the
right);
• We can consider this pattern as “a template” in a certain zone near the tangency point t =∞
of the corresponding gray disk.
• Lobachevsky-symmetries of the picture “distribute” this template near every other gray disk.
• On the other disks (not at infinity) “the hourglass” patterns become the toy transform
patterns.

Hence every gray disk leads to:
• A special point on the absolute (the tangency point).
• A special (although “approximately defined”) region about this special point (the 4/c-central
zone).

Conclusion: The special point shows where we should zoom in, and the zone shows how much to
scale to see the zones of horizon-self -similarity.254

Now the question above can be reformulated as:
Question: which part of the absolute is covered by the 4/c-central zones?

It turns out that while the claim
Every small piece of the graph of F (−1)(t) looks like a fractal transform of the whole graph.

does not “work 100%”, one needs255 to allow just a tiny amount of exceptions.256

In terms of the gray disks, this means that the projections of these disks to the absolute should
cover “almost” the whole absolute. (Moreover, they would overlap strongly enough so that the
4/c-central zones would also cover it “almost completely”.) Contrary to this, on the picture above with
the gray disks for c = 5, one can clearly see big regions near the absolute where there is no gray disks
—even if one tries to zoom into the picture (this is possible in the electronic copy).

Indeed, on the picture above on p. 87, note the “worst offenders”: the points of the absolute where
the green lines join together. (Below, we focus on one of them, a bit left of the top point, matching
t = 4π/5.) Near such points there are no gray disks drawn!

However, it is just an artifact of computer plotting. It is not possible to create a PDF graph into
which one can zoom forever; but if it were possible, and one was patient enough to zoom deep enough,

253 . . . together with F (−1)(t) being actually a tensor field! (See Footnote 240 on p. 88.)
(The difference between t =∞ and t 6=∞ is due to extreme non-linearity of the coordinate t near t =∞.)
254 Furthermore, note that to simplify our pictures, so far they were related to the “smallest possible” flavor of

various groups of symmetries we may consider (compare with the section on p. 93). This means that we do not yet
list all the possible zones. We complete this list later, in the section on p. 96. In the same section we also discuss
horizon-similar but non-self -similar zones.

255 To see that there are exceptions, take a gray disk which is in the picture for c = 1, but is removed in the picture
for c = 5. It touches the absolute at a rational multiple of π (for example, t = 0 is such; for c = 5 another example is
t = 4π/5), and (for example, on the picture with gray disks on p. 95) it is not hard to see that every nearby disk has
much smaller diameter than its distance to this point t.

(When we add more symmetries later, in the section on p. 94, we will see that the point t = 4π/5 is also a point of
horizon-self-similarity. However, t = 2π/3 is not, and a similar argument works there too.)

256 The uncovered set is a “meagre” subset of measure 0.

https://en.wikipedia.org/wiki/Meagre_set
https://en.wikipedia.org/wiki/Null_set
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one would see that the framed statement above holds. However, one would need to zoom scaling up
hundreds or thousands times—even with the tiny conductor c = 5 we discuss here!

To substantiate the framed claim above, it helps if we can zoom near the “worst offender” point:
where green lines join (on the left of the topmost point). Unfortunately, the more we zoom into our
Euclidean picture so that this point is visible, the smaller is going to be the relative size of the disks
in our field of view!257

Fortunately for us, some Lobachevsky-moves look like zooming in pictures drawn in “our” geometry.
For example, a Lobachevsky-translation along a Lobachevsky line looks like zooming in at the “tail”
end of this line, and zooming out near the “head” end of this line. So a Lobachevsky-translation to
the left along a horizontal diameter of our disk would zoom in at the rightmost point. Therefore,
this way we can zoom near our point of interest while keeping the whole picture visible, and without
breaking the “spirit of the picture”.258

Before we can zoom this way near our “worst offender” point on the picture on p. 87 (where the
green lines join), we must apply a Lobachevsky-rotation “about” the leftmost point of the absolute
to make “the worst-offender” point into the rightmost point; the result is below on the left. (This
already has a side effect of zooming in near the point of “green convergence”. Note also that the point
which was rightmost ends on the left of the bottom of the picture):

Finally we can make the horizontal Lobachevsky-translation to the left which we discussed above.
This results in the right picture (and now we zoomed a lot into the rightmost point and have a much
more clear picture of the green lines).

To see how the gray disks behave near what is now the rightmost point, note that the green lines
cut the disk into “slices”. Moreover, there is a Lobachevsky-symmetry of our picture which keeps the
righmost point intact and sends a slice into the next slice clockwise. (This is similar to what we did in
Remark 58 on p. 89.) Conclusion: all slices have the same shape and the same size (in Lobachevsky
sense) and are “colored in the same way”.

257 As in Footnote 255.
258 This happens because Lobachevsky-symmetries are conformal maps when considered in our, Euclid geometry.

Near every point, such a map always looks like zooming and/or rotating. So unless it is linear, a conformal map would
zoom into some points, and zoom out of some others.

https://en.wikipedia.org/wiki/Conformal_map
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In particular,
The gray disks in every slice are positioned the same way.

Moreover, the green lines also cut the absolute into chunks. Observing the largest slice shows that
In any chunk of the absolute, the projections of two largest gray disks to the boundary cover about 1/3 of it.

Conclusion: although we cannot see tiny disks near the rightmost point, nevertheless even if we
count just the two largest disks in every slice, together their projections cover about 1/3 of the space
near this point. (Indeed, this claim holds in every chunk of the absolute near this point, so it must
also hold if we join the chunks together.)

In the original picture with the gray disks “before zooming”, it is easy to see that the point we
considered is the “worst” point with respect to having gray disks nearby. Conclusion: near every
point, at least 1/3 of the absolute is covered by the projections of gray disks—provided we include
the tiny “invisible” disks as well.

Furthermore, it is easy to improve this estimate 1/3 above. Indeed, to obtain the estimate 1/3
we considered only the projections of two largest disks in a slice—but now we know that at least
1/3 of the rest is also covered by projections of tiny disks. This means that at least 1/3 + 2/3× 1/3 =
5/9 > 1/2 is covered by the projections. Repeating this argument again improves the estimate first to
1/2 + 1/2× 1/2 = 3/4, then to 3/4 + 1/4× 3/4 = 15/16 etc. Continuing like this, we can get as close to 1 as
we want to—however, it is clear that to get close to 1, we need to consider incredibly small disks!

(Of course, a similar argument works if we consider just the 4/c-central zones of each projection—
only one would need more steps.)

More symmetries

In fact, out of several possible flavors of fractal symmetries the example above deals with the
smallest one: in terms of Footnote 201 on p. 78 these symmetries are both the “strongly-congruence”
type, and the “keeping sign” type (these types of “congruence” transforms coincide259 for c = 5).
Because these symmetries keep sign of F (t),260 in the zones considered above every oscillation of the
graph of F (−1)(t) matches the shape of the period of the graph of F (−1)(t) without flipping its sign.261

One can also show262 that in the “odd” case these zones exhaust all the “keeping sign” regions of
horizon-self-similarity. (In the even case one needs to take into account Remark 61 on p. 94 too. We
do it in the following section.)

However, if we do not mind the extra “minus” signs, we need to consider a larger group of
symmetries. The spirit of the pictures above was that our symmetries send one gray disk to another;
so if we want to switch to a larger collection of symmetries, we should increase the number of the
gray disks likewise.

Conclusion: for c = 5, there is a similar picture with twice as many disks—and with this new
picture the arguments above work as well. (Below, in the section on p. 94, we illustrate this by adding
the red disks to the gray ones.) Hence there are twice as many 4/c-central zones too, and in the “newly
added” zones every oscillation of the graph of F (−1)(t) matches the shape the period of this function
with the opposite sign.263

Moreover, the “sign-flipping” symmetries can be described geometrically, as symmetries of the
right picture on p. 87 which exchange red and green lines. So the newly added disks are tangent to

259 Compare with Footnote 266 on p. 94.
260 In pedantic mode: . . . would “keep” the sign— if F with such a tiny conductor existed.
261 In terms of formula of Footnote 102 on p. 42, this means ε > 0.
262 N.B. (???) Check!!!
263 Compare with Footnote 206 on p. 80; a similar thing happens for c = 5 near t = 4π/5—this time for horizon-

self -similarity (as opposed to “similarity to what happens at t = 0”, or to “horizon-similarity to ImF
(−1)
C (t)”).
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the absolute at the points where the green lines meet264, and the newly added 4/c-central zones are
the central regions inside projections of these disks.265

Example: the point t = 4π/5, where the green lines meet, is not covered by the projections of “the
old” gray disks; however, there is a “sign-flipping symmetry” which sends t = 4π/5 to t =∞ (where
the red lines meet). This shows that the function is also horizon-self-similar at t = 4π/5—but with
the sign-inversion.

Remark 60: Theoretically, for large conductors one could investigate yet another picture (but we
are not going to do it here!): the sign-keeping flavor of symmetries has a very natural strictly smaller
sub-collection of “strongly congruence” transforms.266 This leads to three different arrangements
of disks: one for “only strong symmetries”, one for all sign-keeping symmetries, and one for all
“congruence” symmetries.267

Remark 61: To add insult to injury, on our graphs we saw still other zones of fractality, for example
the zone near t = 0.268 As we already mentioned, the corresponding transformation t′ = 1/γt is directly
related to Hecke’s functional equation (see the section on p. 82 for details).

Before, we connected the horizon-self-similarity in the zones we saw with existence of “good”
moves of the Lobachevsky plane which send a neighborhood of t =∞ to such a zone (here a “good”
move preserves f and F ). Likewise, this zone near t = 0 is also an image of a neighborhood of t =∞,
however this time the effect of this move T ′ = −1/cT on f and F depends on the “parity”: in the
“odd” case it would multiply FC by the imaginary unit i, in the “even” case it preserves F .

Obviously, the images of this zone under “good” moves would have exactly the same fractality
pattern as the pattern in this zone. Hence these images are also horizon-similar!

Adding the T ′ = −1/cT to any flavor of “congruence” symmetries doubles this class (one can
consider the “old symmetries”, as well as their “combinations with T ′ = −1/cT”).269 So this provides 3
more classes (“as above, but possibly combined with T ′ = −1/cT”) to consider.270

We investigate the largest of these augmented types in the section on p. 96.271

Conclusion: we already illustrated the “sign-keeping” symmetries above. Below, we first add
“sign-flipping” symmetries; then we double the class of symmetries once more by adding T ′ = −1/cT .

264 . . . (but not the points where the green and the blue lines meet! The size of the disks is determined by them
“filling the void” between the gray disks

265 For this larger arrangement of disks, four out of any five consequent disks in a necklace would be included—as
opposed to two-out-of-five of Footnote 247 on p. 89. Compare with the picture on p. 95—where we color the added
disks red.

266 This does not happen for c = 5 since in this case {±1 mod c} includes all non-0 (or invertible) squares mod c.
(Compare with Footnote 206 on p. 80. Such c s are divisors of 23 × 3× 5 = 120.)

267 The symmetries of the first and third arrangements have names: Γ1(c) and Γ0(c).
268 While we saw that the behaviour of F (−1)(t) in such zones is different in “even” and “odd” cases (see Remark 18

on p. 36), the geometry of the zones themselves are the same. So here we treat these cases uniformly.
269 The transform T ′ = −1/cT is not a congruence transform (unless c = 1)! A possibility of “adding it” like we did

above is due to its being a “normalizer” of the “old” group of symmetries.
270 This is related to the fact that the suitable symmetries live in PGL2Q and not in PSL2Z.
271 Since F (t) is even, it has another symmetry t′ = −t. This leads to a mirror symmetry of the Lobachevsky plane

—however, it does not add extra info about fractality properties.
To avoid proliferating our symmetries yet more, in this chapter we focus only on non-mirror (orientation-preserving)

symmetries.
(On the pictures above for the case c = 1, allowing mirror symmetries leads to a very nice and useful kaleidoscope

—“the yellow piece” fills the whole plane using only reflections in its sides.—However, I do not see any similar
simplification for cases of higher c. So it looks like avoiding mirror symmetries has only positive effects. Compare this
to our choice to consider only solutions to αδ − βγ = 1 > 0 in Footnote 201 on p. 78—the reflections correspond to
αδ − βγ < 0.)

Warning: if one consider FC(t), this mirror symmetry changes its values by complex conjugation.

https://en.wikipedia.org/wiki/Congruence_subgroup#Examples
https://en.wikipedia.org/wiki/Centralizer_and_normalizer
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Adding “sign-flipping” zones

Considering larger groups of symmetries would lead to yet more disks in our pictures. If we
continue as above, the pictures would become very crowded. Before we proceed, we need to modify
our infrastructure.

First, we want to visualize 4/c times smaller gray disks (this follows Footnote 247 on p. 89) to take
advantage of their projections to the absolute matching in size the horizon-similar zones. However,
we do not want to abandon the convenient features of larger disks (see the same Footnote). So we are
going to draw them both: a smaller disk inside a larger circle.

With this modification, the recipes we used before become:
• Take the “outside” circles in the Apollonian gasket (those touching the boundary).
• Introduce an appropriate coordinate on the boundary=absolute.
• Remove all the circles except those matching the “sign-preserving” horizon-self-similar zones.
• In the remaining circles, shade sub-disks of c/4 times smaller radius.

The projections of the shaded sub-disks to the absolute are approximations to the “visually” horizon-
self-similar zones.

Second, we want to use a different model of the Lobachevsky plane. While the model in the
disk used above simplifies visualization of Lobachevsky moves, the required book-keeping is too
complicated.272 The half-plane model of the Lobachevsky plane allows us to state a more explicit
description of the pictures.

In this model the “outside” circles of the Apollonian gasket turn into the the Ford circles: the
circles tangent to the boundary at points with rational coordinates x = R/D with the diameter 1/D2:

-1 0 1 2 3 4 5 6 → x

(The Apollonian circle tangent to the absolute at t =∞ is an exception; it becomes the horizontal
line at height 1.)

For our purposes, the suitable coordinate on the absolute is t = 2πx/c. From this moment on,
we mark the horizontal axis with this rescaled coordinate. With a prime c (below c = 5
again), it turns out that to get the correct picture of the gray disks, we must omit the disks with the
numerator R of t = 2πR/D divisible by c:

0 π 2π → t

This still leaves twice as many disks—but it turns out that the “extra” disks (marked in red) are
exactly what we wanted to add:

The red disks “match” the “sign-flipping” Lobachevsky-symmetries of f(t, s).

In particular, the “sign-keeping” symmetries send gray and red disks to the disks of the same color,
while the “sign-flipping” symmetries exchange the colors. The projections of the gray disks are

272 For example, we could not state explicitly which of the Apollonian circles are omitted on our pictures for c = 5.

https://en.wikipedia.org/wiki/Ford_circle
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the horizon-self-similar zones “keeping the signs”, and the projections of the red ones are for the
“sign-flipping” zones. (The color depends on

(
R
c

)
.)273

The new process may be summarized as:

Remove some Ford circles, and “inscribe” smaller disks in the remaining circles.

(The scaling factor for the smaller disks is 4/c.)
As c grows, the coordinate t rescales, so the height of the strip goes down as 2π/c, likewise for the

step/pitch between the largest green circles. Moreover, the shaded disks would shrink (relative to the
green circles); as a result, the horizon-self-similar zones become (relatively) more and more narrow.
(This matches the behaviour we saw on our plots of F (−1)(t).)

All horizon-similar zones

Above, we already doubled the collection of disks we consider by adding red disks to the gray
ones. However, in Remark 61 on p. 94 we introduced yet another way to double: via adding the
transformation T 7→ −1/cT (of Hecke’s functional equation; here T = t/2π.) This transformation would
multiply274 fC and FC by a (complex) constant (which may be 1). In coordinate x this transformation
becomes x 7→ −c/x. Conclusion: to account for these additional zones, we need to add to the picture
of Ford circles above its transform under x 7→ −c/x.

However, one can immediately see that z 7→ −1/z preserves the Ford–Apollonian gasket. (Here we
extend the coordinate x on the horizontal axis to a coordinate z := x+ iy on the upper half-plane
with Im z ≥ 0.) Hence a transform of the Ford–Apollonian gasket by z 7→ −c/z is the same gasket
upscaled c times. What remains is to shade the corresponding disks (purple and yellow, depending on
whether the preimage of the Ford circle contains a gray or a red disk):

0 π 2π 3π

273 Note that in the disk model, we had a gray disk tangent to the absolute at t = ∞. In half-plane model it
becomes a half-plane Im x > const. We do not shade it, since it does not contribute to the zones in question anyway!

274 Here again we need to consider F and f as tensor fields. (See Footnote 240 on p. 88.)
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This time we must omit circles with tangency points t = 2πR/D with c|D (we mark a few of them
with green arrows), and the color depends on

(
D
c

)
(violet is for

(
D
c

)
= 1). Conclusion:

The orange circles and the green circles are tangent to the absolute in two complementary subsets of 2πQ.

In other words: the tangency points of green circles on the picture with gray and red disks on p. 95
coincide with positions of “omitted” Ford circles in the pattern of orange circles.

Overlaying the last two pictures on top of each other gives:

0 π 2π 3π

Even if we ignore the disks, the orange and green circles look like a mess. But we can fix this!
Indeed, now, as in the Ford arrangement, every rational multiple of 2π on the boundary is the

tangency point of exactly one orange or green circle—but while the diameters of orange circles are
given by Ford’s rule (1/D2 on p. 95), the diameters of the green ones are c times too large. The fix is to
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replace every green circle by a blue one with the same tangency point and c times smaller diameter:

0 π 2π 3π

This way, the orange and (tiny) blue circles form a perfect Ford pattern. Moreover, the remaining
visual mess of the disks can be clarified by a simple recipe for their diameters:

“Inscribe” smaller disks into the orange Ford circles. For every blue circle, “outscribe” a larger disk.

(The scaling factors are 4/c and 4 for orange and blue circles correspondingly. The color is choosen
depending on c|D in t = 2πR/D.) Summarize the relation of this picture with the fractal properties of
F (−1)(t):

• Projections of gray and red disks are zones of visual horizon-self-similarity.
• Projections of violet and yellow disks are zones of visual horizon-similarity (self- for “even”
case, to-ImF

(−1)
C (t) otherwise).

• In projections of yellow and red disks the horizon-similarity “flips” sign (but not for violet
and gray disks).

When c grows (but remains prime), blue circles become more scarse (they match denominators
D divisible by c) and smaller. So although the size of gray and red disks relative to blue circles is
c-independent, their possible sizes go down with c,—and the rate of going down is similar to one for
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violet and yellow disks. For example, below we illustrate c = 11:

0 π 2π 3πϕπ 2πϕ2πψ

Here ϕ := (1 +
√

5)/2 ≈ 1.6180 and ψ := 1/(2 + 1/(1 + ϕ)) ≈ 0.4198.
As above, orange and blue circles form the Ford pattern, violet and yellow disks are incribed in

orange circles, gray and red are outscribed “in” (tiny!) blue circles. Four different colors of disks
correspond to the types of symmetry described in the bullet list above.275

Complement to zones

One can restate our construction of the disks above for a prime c this way: to find a disk whose
projection contains a given number t = 2πα, we need to solve |α − R/D| < 2/c · 1/D2, or to solve
|α− R/D| < 2 · 1/D2 with c|D (which is equivalent to solving |c ·α− R/D| < 2/c · 1/D2 with c - R). Hence
any number which is “not badly approximable” (can be approximated by rationals with more than
quadratic precision) is in such a projection. (It is well-known that badly approximable numbers are
“very rare”: they form276 a “meagre subset of measure 0”.)

To give an example of such an exceptional number, we need α such that both α and c · α are
“sufficiently” badly approximable. However, for c = 11, while ϕ is the usual suspect for an example
of badly approximable numbers,277 the number 11ϕ = 17 + 1/(1 + 1/(3 + 1/(11ϕ + 6))) has infinitely many
continued fraction coefficients being 17 + 6 = 23—hence it has many approximations good for c < 46.
Because of this, 2πϕ is in the projection of a gray disk for c = 11.278 279

275 If c is not prime, one may need to repeat this process of addition of new colors of disks. For example, if
c = pa1

1 . . . pal

l with distinct pl, then instead of one extra symmetry −1/cT , it is possible to define l “independent”
fractional-linear symmetries wpa1

1
, . . . , wpal

l
(see Lemma 9.24 of Knapp’s Elliptic curves). This would increase the

number of colors for the disks to 2l+1.
276 It is still the same formulation as we had in Footnote 256 on p. 91. However, now we can relate our set of

exceptions to a classical problem in number theory. In particular, any upper bound on the Hausdorff dimension of the
set of solutions to |α− R/D| ≥ 2/c · 1/D2 ∀R,D works as an estimate for our exceptional set as well.

277 It cannot be approximated by rationals with the required precision for c > 2
√

5 ≈ 4.472136.
278 This is almost visible on the picture above—but one may need to zoom in a lot.
279 Moreover, it is way easier to see that ϕπ is in a projection. This is not surprising since it is much easier to

approximate ϕ/2 (and also 11ϕ/2) by rationals.

https://en.wikipedia.org/wiki/Diophantine_approximation#Badly_approximable_numbers
https://en.wikipedia.org/wiki/Meagre_set
https://en.wikipedia.org/wiki/Null_set
https://www.google.com/search?q=Knapp+%22Elliptic+curves%22+book&ie=utf-8&oe=utf-8&hl=en&num=12&pws=0
https://en.wikipedia.org/wiki/Hausdorff_dimension
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On the other hand, both ψ and 11ψ = ϕ + 3 are extremely badly approximable by rationals—
and 2πψ on the picture above behaves correspondingly.280

Remark 62: Here we want to get a very rough heuristical estimate of which part of the absolute
is covered by the projections of the disks. First, focus on the projections of disks with the given
denominator D; they cover the fraction ≈ εDϕ(D)/D2 of the absolute; here εD = 4 if c|D, and εD = 4/c
otherwise. The averaged value ε of εD is about 8/c. Heuristically, it looks reasonable to assume (as
the 0th approximation!) that for different D, the intersections of zones behave as if the zones were
“independent”. This leads to the estimate ∏d

D=1 (1− εDϕ(D)/D2) for the relative size of what is not
covered by projections of disks with D ≤ d.

This product decreases as const · d−6/π2ε. We can estimate that to decrease the uncovered part by
half, we need to increase d about 10c/16 times; here we use 48/π2 log2 10 ≈ 16.16.

So for c = 23, to see half of the graph of F (−1) covered by the horizon-similar zones, we need to
zoom so that we can see zones of width 1/27 of the period. On the other hand, for c = 971, one would
need to zoom about 1060 times.

Numerical experiments (easily done up to c = 59) show that this estimate gives quite a good
match. For example, for c = 23 it turns out that to cover about half of absolute, one needs d = 23
(instead of 27 above).281

280 Similar examples of badly approximable numbers Ψ and c · Ψ (those with the tail of continued fraction
coefficients being 1,1,1,. . . ) exist for a prime c = p when p has a quadratic residue mod 5. (For c < 50, this gives
c = 5, 11, 19, 29, 31, 41.) We sketch a very rough scheme of the proof below.

First, one can immediately see that both Ψ and c ·Ψ should have the form (αϕ+ β)/(γϕ+ δ) with integer coefficients
and αδ − βγ = 1. From this it is easy to deduce that the condition above is necessary.

Moreover, if γ, δ > 0 and Ψ = (αϕ+ β)/(γϕ+ δ) > 0, then the continuous fraction for Ψ has the required form. Try
to solve c ·Ψ− ϕ ∈ Z; this equation can be reduced to γδ − γ2 + δ2 = c having integer solutions. Indeed, given such a
solution, one can find α, β with αδ − βγ = 1 and put Ψ := (αϕ+ β)/(γϕ+ δ); then δ|cβ − γ and c ·Ψ = ϕ+ (cβ − γ)/δ as
required.

Furthermore, any solution to γδ − γ2 + δ2 = c leads to another solution γ′ = 2γ + δ, δ′ = γ + δ; moreover, if δ > 0,
then δ′ > 0 and γ′ > γ. Iterating this, one can immediately see that if a solution exists, there must be solutions with
γ, δ > 0.

(The rest requires more esoteric math. Existence of a solution to γδ − γ2 + δ2 = c can be investigated via Hasse’s
local-global principle; in the case of indefinite binary form γδ− γ2 + δ2 it says that it is enough to find solutions mod pk
for all k ≥ 1 and all prime divisors p of 2c|D|; here D is the discriminant, so |D| = 5. Moreover, the Product Formula
for Hilbert symbol shows that one can replace “all p” above by “all but one”. Skipping p = c leaves just p = 2, 5—
which implies that the answer depends only on c mod 2a5b with a, b� 0. A simple check improves this to a = 0, b = 1,
and the criterion above.)

281 In fact, this change from 27 to 23 is “as expected” with a bit more precise analysis of the product above. Indeed,
note that the change of the product when d goes from kc− 1 to kc is approximately as large as the change between kc
and (k + 1)c− 1. Because of these, the answer for “when projections cover ½ of the absolute” tend to “be attracted” to
multiples of c.

With such a correction, our estimate is reasonably good already for c = 7, and the total length of projections with
d given by this formula tends to have only a tiny systematic error: it is close to 1/2 + 1/c instead of ½.

https://en.wikipedia.org/wiki/Hasse_principle
https://en.wikipedia.org/wiki/Hasse_principle
https://en.wikipedia.org/wiki/Hilbert_symbol#Hilbert%27s_reciprocity_law
https://en.wikipedia.org/wiki/Hilbert_symbol#Hilbert%27s_reciprocity_law


Degrees higher than 3: the same “hidden symmetries” as for degree 3
appear only if an “extra distillation” is possible

In construction! (Not yet optimized—but more or less complete—exposition.)

So far, in the context of the key question punctuating our notes:
Which prime numbers p appear as divisors of elements Pm of a polynomial sequence?

we encoded the answers into a sequence (Ñ res
n ) of numbers, and demonstrated two situations (each

“working” for certain P s) when distillation282 to sequences Nn can uncover “hidden symmetries” in
these answers:283

Rank=1 The sequence Nn is periodic (and either even, or odd284). Periodicity and even/oddness are
conditions of symmetry!285

Rank=2 The Fourier transform F (t) of the sequence Nn has a rich collection of fractal symmetries.
We saw the case of rank 2 appearing for “non-abelian” (irreducible) polynomial sequences of degree 3.
For P of degree 1, our “distilled sequence Nn” is286 0. The remaining irreducible287 cases of degree
≤ 3 lead to sequences of rank288 1.

In fact, we saw that for a prime p, the sequence (ak) := (Npk) satisfies a certain linear recurrence
relation ak+r = Cr−1ak+r−1 + . . .+ C0ak of length r. Moreover, the minimal possible value of r is the
same for all p (with only a finite number of exceptions)—and it coincides with the rank.289

This bird’s eye view leads to two most important conclusions:
• The “hidden symmetries” in different ranks looks completely unrelated. (Compare with
Footnote 47 on p. 19 and Remark 49 on p. 77.)
• When one considers a “not fully distilled” sequence Nn, it is “merged” from separate “fully
distilled parts”, hence the parts have “unrelated” symmetries. Therefore, these symmetries
disappear when these parts “are merged together”.290

Finally, note that the abelian case for degree 3 is much more rare than the non-abelian: it happens
when the discriminant is a square.291 In particular, the hidden symmetry in the general case of a
polynomial of degree 3 has rank = 2; so it cannot be exposed in the same way as in the degree 2.

The purpose of this chapter is to demonstrate that for larger degrees, the same effects continue to
hold:

282 . . . as in the section on p. 75.
283 Here we want to use the new notion of “rank”. We explain this on p. 119.
284 Meaning that the periodic continuation to n ≤ 0 either satisfies N−n = Nn, or satisfies N−n = −Nn.
285 In fact, this case has an extra symmetry: the sequence Nn turns out to be totally multiplicative: Nnm = NnNm

for any m and n. (We also use this notion in the section on p. 62. Note that being even/odd is a particular case of
total multiplicativity—compare with Footnote 332 on p. 120.)

286 Moreover, the “undistilled” sequence Nn ≡ 1 is the “trivial” case of rank 1.
287 Recall that for polynomials sequences which are products of two polynomial sequences, the “key question” may

be reduced to the factors. So it makes sense to consider only irreducible polynomials.
288 For degree 2, the sequence Nn itself is of this form. In the “abelian” case of degree 3, the sequence Nn “distills”

into two components ζn and ζn of rank 1. (See the section on p. 67.)
289 N.B. (???) Mappings to other groups? (Take a minimal strict representation (to G). Then any

other is a sub in a tensor power, hence its image is included in the image of G ⊂ GLnC.)
290 Recall that the sequence Nn is already a result of the (“naive”) distillation corresponding to breaking of Npk

into two parts: 1 and Npk .
291 We put more details in Footnote 340 on p. 122.
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https://en.wikipedia.org/wiki/Completely_multiplicative_function


102 Degrees higher than 3: the same “hidden symmetries” as for degree 3 appear only if an “extra distillation” is possible

Rank > 2 The hidden symmetries in the general case of degree ≥ 4 cannot be exposed in the same
ways as in degrees 2 or 3.

Rank = 2
New cases

For special (non-abelian) cases in degrees 4, the sequence Nn can be distilled into a sequence
of rank 1 and a sequence of rank 2. Hence, one “distilled component” is periodic, the other
gives Fdist(t) which is an exact fractal. The hidden symmetries in the general case of degree
≥ 4 cannot be exposed in the same ways as in degrees 2 or 3.

Rank = 1
New cases

In abelian cases of degree > 2,292 the sequence Nn can be distilled into several sequence of
rank 1 (possibly with complex coefficients).

Degree 4: the surprising (counter)examples

The main arc of these notes is the discussion of fractal properties of (the graphs of antiderivatives
of) functions F (t) “corresponding” to counting modular solutions of cubic equations. Here we
demonstrate what happens for equations of larger degree if one follows the naive (direct) analogues
of the construction of F (t) working for degree 3. We are going to keep the notation F (t) for such a
result.

As annouced above, the Langlands program predicts that such cases are of higher rank 3 than
what we considered before. In particular, one should not expect the resulting function F (t) to have
the same fractality law as what we considered above.293

Summary: while in degree 4 it is not a problem to produce the sequence Nn (related to the
number of roots of our polynomial modn), its Fourier transform F (t) is not expected to have fractal
properties. In particular, there is no reason to expect that the same patterns of fractality as what we
saw for degree 3. On the other hand, the actual plots below show that:

• Surprisingly, the graphs show some of characteristic features of symmetry w.r.t. the toy
transform: for example, observe the “hourglass” shapes appearing near t ∈ πQ. The
most prominent of these shapes is near t = 0 (with a more symmetric hourglass).
• However, the graphs do not look like a toy transform of a periodic function. (The “shape” of
oscillations changes when we get closer to “the waist of the hourglass”.)
• Furthermore, zooming near the waist of the hourglass shows the “flattened” zone: ,
provided we calculate the Fourier series by abruptly cutting the sum off at a certain place294.
(In section on p. 145 we saw that these zones suggest a presence of discrete Fourier spectrum
for295 F (1/t)/t.)
• The fact that these features appear not only at t = 0, but also at other rational multiples
of π is really surprising. (Recall that for degree 3, the horizon-self-similarity at t = 0 is
due to Hecke’s functional equation—which has direct analogues in every degree. So having
something analogous at t = 0—and, as a corollary, at points of the Cantor hyper-family296—
is not extremely surprising. However, the validity at any t ∈ πQ is quite analogous to going
from Hecke’s functional equation to the whole Langlands program.)

I have no idea how to explain the appearence of these features. Below, the plots are provided without
any explanation!

Recall that in plots for degree 3, we would start by showing the graphs near t = 0, but our
final aim was to expose points t where horizon-self -similarity was present. For non-Maass cases,

292 N.B. (???) Not yet in this chapter!
293 Moreover, the “hidden symmetries” uncovered by the Langlands program are symmetries of a certain “new”

object having very indirect relationship to F (t). In fact, it seems that Langlands program does not say anything about
F (t) in these cases.

294 . . . as opposed to doing something like Cesàro summation, where instead of abruptly cutting the terms, one
uses a smoother cut-off function.

295 Recall that for degree 3, it is periodic, hence has only discrete spectrum, at frequencies 1/4π2cZ.
296 N.B. (???) Ref!

https://en.wikipedia.org/wiki/Ces%C3%A0ro_summation
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this required very strong zoom factors (quadratic in the conductor—which coincides with the field
discriminant—compare with Footnote 440 on p. 144).

Since discriminants of irreducible polynomials of degree 4 cannot be very low, it is not compu-
tationally feasible to show such regions of horizon-self-similarity. Instead, we proceed as on p. 79
and show what would be a non-trivial297 region of just horizon-similarity (in fact, it would be a
horizon-similarity to ImF

(−1)
C (t); see Footnote 205 on p. 79).

Moreover, recall that the conductor in the case of degree 3 was controlled not by the discriminant
of the polynomial, but by its divisor, the field discriminant. (Compare with Footnote 440 on p. 144.
For non-abelian case of degree 3, the conductor was equal to the field discriminant; for abelian,
the conductor is the square root of this number.) So in the examples below we describe the field
discriminant; moreover, it still seems that this number controls the size of the hourglass regions in
very similar way to how it was working in degree 3.

In addition to what is described above, in the graphs below it makes sense to pay attention to:

• Near the waist of the hourglass, the amplitude of oscillation decays a tiny bit slower than in
degree 3. This suggests that it is a toy transform of a function of very slow growth.298
• Absense of jumps and/or log-spikes (compare with our Eisenstein plots on p. 63; they also
appear in the first—not-fully-distilled—example below) indicates that what we have may
be related to something cuspidal (see Footnote 373 on p. 128).

This leads to

Conjecture: for sequences Nn corresponding to polynomials of degree 4, the Fourier transform of
Nn/n behaves as described above, unless the Galois group is abelian or dihedral.

In turn, this may be amplified this way (compare with the section on p. 171):

Question: Does this hold for all “Artin cases” of “components” of actions of finite Galois groups?

Finally, recall that discriminants of “random” polynomials of high degree have a tendency to
be very high. So instead of taking “beautiful” polynomials (such as our M -family, see the section
on p. 144), below for every “type” we choose a special polynomial with the field discriminant as low
as possible.

This finishes the introduction, and finally, we can provide the examples themselves.299

We start with the polynomial x4 − x3 − x2 + x + 1 with the smallest magnitude of the field
discriminant: D = 9× 13 = 117. It has no real roots and is not abelian, and the Galois symmetries
form the dihedral group D4. This implies that the corresponding motive (of rank 3) is not fully distilled
(it breaks into two, of ranks 1 + 2; compare with Footnote 551 on p. 172), so it is not surprising that
the corresponding graphs of F (−1)(t) “change via jumps”! This shows a bit more than one period of

297 Recall that for degree 3, the “trivial” points of self-similarity are those in Cantor hyper-family. If the function
F (t) has extra symmetries (as in the section on p. 55), the images of trivial points under these symmetries should be
also considered “trivial”.

298 Examples below suggest logarithmic growth; see the plot on p. 108.
299 The polynomials in these examples may be found using the “Online tables of number fields” (see the notes

on p. 215). The gory details on Galois group for polynomials of degree 4 are summarized in Keith Conrad’s notes
Galois groups of cubics and quartics (not in characteristic 2).

https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field
https://en.wikipedia.org/wiki/Dihedral_group
https://hobbes.la.asu.edu/NFDB/
http://www.ms.uky.edu/~sohum/ma561/notes/workspace/books/cubicquartic.pdf
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the real and imaginary parts:

4.5701

-3.6833
-0.1 71 2 3 4 5 6

The real part has log-spikes, while the imaginary parts has jumps300 (this is similar to what we already
saw in other examples of non-distilled motives301).

300 These two features are closely related. See Footnote 151 on p. 63.
301 Note that this is a much more complicated example than the non-distilled motives we demonstrate in these

notes: they either mix a constant sequence Nn with a periodic Nn (for reduciblel cubic polynomials; see the section
on p. 63), or two periodic Nn s (for abelian=cyclic cubic polynomials). This example mixes a “periodic” motive with a
“modular form” motive.
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Here is how it looks near 0:302

0.21085

-0.11283
-0.001 0.070.01 0.02 0.03 0.04 0.05 0.06

Here is the magnified view near t = π:
0.15562

-0.16678
3.1396 3.17163.145 3.15 3.155 3.16 3.165

302 Zooming into this graph shows that the top/bottom asymptotic near 0 are not linear, and follow the C|t log(t/K)|-
law we discuss below for field discriminant D = 229.
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While the behaviour on the sides of the jump does not look like toy transform of a periodic function,
the “hourglass” shape shows that it is a toy transform of an oscillating function of very slow growth!
(Another interesting feature is the presence of noticable “spikes” even that close to t = π. In examples
we saw before the widths of spikes were exponentially decreasing, so there were very few “high” spikes
visible with our discretization.)303

Our next example is the polynomial x4−x+1 with the smallest magnitude of the field discriminant
for the case of a fully distilled motive: D = 229 (which is a prime number). It again has no real roots,
and the Galois symmetries form the symmetric group S4. Observing about one period of the real and
imaginary parts:

1.4904

-1.8211
-0.1 71 2 3 4 5 6

303 N.B. (???) Plot also F (−1)(t) for the irreducible 2-dimensional representation of the Galois group.

https://en.wikipedia.org/wiki/Symmetric_group
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shows neither jumps/spikes, nor other types of discontinuity. When we looks near 0:

0.067297

-0.04091
-0.001 0.030.005 0.01 0.015 0.02 0.025

we again can see a “hourglass”: the behaviour resembling two top- and bottom-asymptotes as t→ π+0
which are “almost straight”. Moreover, zooming in 10 times shows that these “asymptotes” become
steeper when we get closer to the “waist”:

0.014581

-0.013577
-0.0001 0.0030.0005 0.001 0.0015 0.002 0.0025
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(So we can start to suspect that the “hourglass” is actually non-linear!) Zoom in 10 times more:

0.0029783

-0.0032454
-1e-005 0.00035e-005 0.0001 0.00015 0.0002 0.00025

Here the “hourglass asymptotes” look almost linear now.304
In fact, the non-linearity of the “asymptotes” of the “hourglass” suggests that C · t log t may be a

better approximation for the asymptotic behaviour. This looks very plausible: on this plot we divide
by t log t (the log t horizontal coordinate allows better view of what happens on different scales; the
precision is abysmal near the left edge of the plot):

-4

-3

-2

-1

 0

 1

 2

 3

0.00010 0.00100 0.01000

(Sum of 4M Fourier coefficients)/x log(7x)
(Sum of 8M Fourier coefficients)/x log(7x)

304 However, a flattened zone becomes very visible. See Footnote 122 on p. 51.
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One can check that near t = π very similar effects appear (we do not show the pictures with higher
zooms—but they behave as above):

0.059868

-0.056509
3.1356 3.16163.14 3.145 3.15 3.155

The minimal magnitude of a negative field discriminant with a fully distilled motive is D = −283
(which is a prime number). The polynomial is x4 − x− 1 with two real roots and the Galois group S4.
The plots as above still show no visible discontinuities:

1.6622

-1.6638
-0.1 71 2 3 4 5 6
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Here is how it looks near 0:

0.11102

-0.062907
-0.001 0.0250.005 0.01 0.015 0.02

Near t = π one can see yet another “irregular hourglass”:

0.047765

-0.034715
3.1386 3.15163.14 3.141 3.142 3.143 3.144 3.145 3.146 3.147 3.148 3.149 3.15
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Next, consider x4 − 4x2 − x+ 1; it has 4 real roots, and the smallest field discriminant for such a
case of a distilled motive305: D = 19× 103 = 1,957. Its Galois group is S4. Here is one period of the
real and imaginary parts:

1.8934

-1.8925
-0.1 71 2 3 4 5 6

Near t = 0 it still shows no horizon-similarity:
0.01801

-0.017974
-0.0001 0.0030.0005 0.001 0.0015 0.002 0.0025

305 Moreover, another measure of complexity, the narrow class number (hence class number) turns out to be trivial:
1. So this example is “the simplest one” in all the possible senses.
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The behaviour near t = π should not be surprising now:

0.011886

-0.013012
3.1413 3.14263.1414 3.1415 3.1416 3.1417 3.1418 3.1419 3.142 3.1421 3.1422 3.1423 3.1424 3.1425

Finally, consider x4 − 2x3 + 2x2 + 2, with the smallest field discriminant which is a square, and
leads to a distilled motive: D = 562 = 3,136. It again has no real roots,306 and (since the discriminant
is a square) the Galois symmetries form the alternating group A4. The graph of about one period of
the real and imaginary parts shows that the plot has “extra symmetries” (as in the section on p. 55):

306 The smallest square field discriminant D = 1632 = 26,569 for the case with real roots (x4 − x3 − 7x2 + 2x+ 9)
is too large to hope to see patterns in the graphs.

https://en.wikipedia.org/wiki/Alternating_group
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it is π-antiperiodic:

1.1945

-1.1913
-0.1 71 2 3 4 5 6

Here is how it looks near 0:

0.017138

-0.01183
-0.0001 0.0020.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018
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The graph near t = π is the sign-flipped graph near t = 0. Instead, we plot the behaviour near
t = 2π/3, with a familiar “irregular hourglass”:

0.9538

0.9406
2.0942 2.09472.09425 2.0943 2.09435 2.0944 2.09445 2.0945 2.09455 2.0946

Distillation undoes “fusion”

Above (on p. 69),307 we considered the “extra distillation” as “a black box”. While we gave an
explicit recipe how to calculate the numbers Ndist

n , we did not explain either of
• What is the “reason” for using such an ad hoc recipe (except that “it works”: we got an
exact fractal!).
• How could one “guess” that such a recipe may work.
• How these recipes are related to the rest of our discussion.

Before explaining these issues, recall the cases of distillation we have already dealt with. The
idea is that in problems like “count the number ÑGal

pk of roots of a polynomial in modular arithmetic”
the answer is often a sum of several “simpler parts”. However, eventually we want to translate these
numbers to a fractal function F (t); the process outlined in Footnote 179 on p. 74 goes in these steps:

ÑGal
pk

“exp”
ù Nn

simplify
ù Nn

Fourier
ù F (t) .

The first arrow involves exp, so instead of (ÑGal
n ) “breaking into a sum of simpler parts”, (Nn) is

obtained from the corresponding “simpler parts” (N [α]
n ) by a more complicated procedure. Below,

we call this procedure fusion. For example, the fusion of sequences (An) and (Bn) calculated at308
powers pk, k ≥ 0, with a prime p is the sequence

1, Ap +Bp, Ap2 + ApBp +Bp2 , Ap3 + Ap2Bp + ApBp2 +Bp3 , . . .

307 N.B. (???) Initially, this was following the section on the D4-case. Now this needs to be restated.
308 From these powers, one extends to arbitrary n by multiplicativity (same as in Step (e) on p. 60).
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To see the pattern, assuming A1 = B1 = 1, rewrite this using these “invisible factors” getting
A1B1, ApB1 +A1Bp, Ap2B1 +ApBp+A1Bp2 , Ap3B1 +Ap2Bp+ApBp2 +A1Bp3 , . . .. (As expected
—due to exp—this matches multiplication of power series309 with coefficients Apk and Bpk .)

In the beginning of this chapter we mentioned that if “the hidden symmetries” of these simpler
parts are “unrelated”, then after fusion these symmetries hide each other and become undetectable.
So if we want to find the “hidden symmetries”, we need to identify “its simpler parts”.
Assumption: Below, we always assume that these parts have “hidden symmetries” described by the Langlands
program. It turns out that this completely identifies such parts.
In many situations considered in these notes one of the parts may be easily found, so the question

becomes
Suppose we know one of these “simpler parts”. Identify “what remains”.

This follows the motto from Remark 45 on p. 75: “remove from the counts ÑGal
n all traces of simpler

polynomials”.
We already met several cases where one of the parts of N [P ]

n matched the sequence N [Q]
n (or maybe

N [Q]
n , see below) assigned to another polynomial sequence Qm:

Naive • For any polynomial sequence Pm, its N [P ]
n always “contains as a part” the sequence Npoint

n ≡ 1
for the polynomial Qm ≡ P point

m ≡ m.
“Unfusing” this part is exactly the distillation process of Step (b) on p. 60 resulting in

N [P ]
n . As in Footnote 180 on p. 74, this may be restated: N [P ]

n is a fusion of Npoint
n and N [P ]

n .
Reduc • If the polynomial P is reducible Pm = QmRm, then the corresponding sequence ÑGal

n

(obviously) breaks into a sum, hence Nn is a fusion of two parts N [Q]
n and N [R]

n .310
D4 • If degP = 4 and P is of Galois type D4, then there a quadratic polynomial Qm ≡ m2 − Ξ

such that N [Q]
n “works as a part of” N [P ]

n . (Hence N [Q]
n “works as a part of” N [P ]

n .)

The key fact is that the formulas for the fusion show that given a sequence (An) and the fusion of
(An) and (Bn), it is easy to find (Bn) (if it is multiplicative311). Hence finding “what remains” in the
framed question above is in no way complicated. Conclusion: if we know Ξ from the case D4 above,
it is easy to find such “what remains” (since N [Q]

n and N [Q]
n are given by Quadratic Reciprocity).

Below, we call it (Ndist
n ).

Essentially, this means that to explain the fractal symmetries of the plots in the preceding section
one needs to show that:

• The case D4 above holds.
• For Pm ≡ m4 −m3 −m2 +m+ 1, the constant Ξ is −3.
• In this case “what remains” (Ndist

n ) has “hidden symmetries ‘of rank 2’” (i.e., the same fractal
symmetries as in the non-abelian cases of degree 3).312

However, before we can explain these phenomena (in the section on p. 122), we need to introduce
a unified approach to all the cases of sequences Npk we have met.

Grand Unification I: Denominators in Weil Conjectures

In (c), (d) on p. 60, in the section on p. 62, and the section on p. 68, we saw 7 different cases for
the sequences Npk constructed for polynomial sequences Pm of degree 2, 3 and 4 leading to “fractal

309 We have already mentioned this in Footnote 180 on p. 74.
In particular, one can boil down (a part of) the definition of Nn to 1 +

∑
kNpkuk = (1− u)(1 +

∑
kNpkuk).

310 Hence it is also a (repeated) fusion of N [Q]
n and N [R]

n with two copies of Npoint
n .

Moreover, this may be restated as N [P ]
n being a fusion of N [Q]

n , N [R]
n , and Npoint

n . (We discuss this in detail in the
section on p. 63.)

311 Defined in Footnote 149 on p. 62.
312 Recall that so far we did not show any explanation of existence of fractal symmetries even when degP = 3.
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symmetries”. For particular values of p and particular polynomials P , we saw the sequences in the
first column of this table:

Sequence How to extend Series of Or d

−1, 0, 1, −1, 0, 1, . . . 3-periodic 1
1 + u+ u2

1− u
1− u3 3

0, 1, 0, 1, 0, 1, . . . 2-periodic 1
1− u2

1− u
(1− u)(1− u2) 1, 2

2, 3, 4, 5, 6, 7, . . . a linear function 1
(1− u)2

1− u
(1− u)3 1, 1, 1

0, −1, 0, 1, 0, −1, . . . 4-periodic 1
1 + u2

(1− u)(1 + u)
1− u4 4

−1, 1, −1, 1, −1, . . . 2-periodic 1
1 + u

1− u
1− u2 2

1, 1, 1, 1, 1, 1, 1, . . . 1-periodic 1
1− u

1− u
(1− u)2 1, 1

0, 0, 0, 0, 0, 0, 0, . . . 1-periodic 1
1

1− u
1− u 1

What is common between these sequences is that if one adds 1 in front, they are Taylor coefficients
at 0 of very simple rational functions (indicated in the third column). In the fourth column, we
rewrite them with the numerator 1− u (responsible for “distillation”),313 and the denominator being
a product of terms 1− ud, with the list of numbers d given in the right column.

We start our process of unification by reminding that for the cases of degP = 2, 3 and a “non-
exceptional” primes p, we already described how to choose a row of this table (or, what is the same,
choose the list of numbers d) in Steps (c)) and (d) on p. 60 and in the section on p. 62. It turns out
that they may be restated in a uniform way:

The numbers d are degrees of the irreducible factors of the reduction mod p of the polynomial P .314

Note that here we must ignore the multiplicity: if a certain factor of P appears many times, we still
count it once.

313 This numerator is always going to be eventually cancelled, since all the possible factors of denominators discussed
below are divisible by 1− u. (The fourth row appears only in D4 case, so we write it with the “extra distillation” factor
1 + u in the numerator.)

314 For P of a small degree and an “exceptional” prime p, the same rule holds after a suitable “improvement” of
the polynomial P consisting of a variable change n 7→ αm+ β and/or multiplying the polynomial by a constant in Q.
The aim is for the “improved” version to have as many distinct roots mod p as possible.

For example, P (n) := n(n − p) − p3 has a double root n = 0 mod p. Plugging in n = pm and considering
P/p2 = m(m − 1) “splits” this double root mod p into two m = 0, 1 mod p. (So these roots contribute two numbers
d = 1, 1.) Note that this would not work for n(n − p) − p: one cannot split this double root. (So this double root
contributes one number d = 2.)

(To be honest, we must mention that for polynomials of higher degree the procedure for “improving” may be more
involved than what is suggest above: for example, splitting different multiple roots may require different transformations:
try to do the same for P (n)P (n− 1). I’m not even sure that nowadays it is known how to proceed in the case of general
systems of polynomial equations!315 )

315 Judging by the answer of Matthew Emerton on 2010-07-29 in the discussion
Zeta Functions: Dedekind Versus Hasse-Weil in n-Cat Café, with the approach of “point counting” we use in
these notes is not known how to deal with “exceptional” primes in the general case; the only known cases are when the
dimension of the set of solutions of our polynomial equations is 0 or 1 (and then the genus of a curve must be ≤ 1).
(At least in absense of Hironaka resolution in positive characteristic.)

As a substitution for these missing definitions, the current approach needs to go through a certain “arithmetic
theory of cohomology”. See also the answer of 2010-08-14, and the article posted by Minhyong Kim.

https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html#c034132
https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html#c034132
https://en.wikipedia.org/wiki/Resolution_of_singularities
https://en.wikipedia.org/wiki/Weil_cohomology_theory
https://en.wikipedia.org/wiki/Weil_cohomology_theory
https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html#c034304
https://www.ucl.ac.uk/~ucahmki/ihes3.pdf
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For example, a polynomial P of degP = 3 has no roots mod p iff its reduction mod p is irreducible;
hence and p a red prime, the denominator is 1−u3, leading to the first sequence. In the same situation,
having only one root mod p (with multiplicity 1) leads to (1− u)(1− u2), giving the second case; the
third case corresponds to having 3 distinct roots mod p (leading to (1− u)3). In the fifth case the
denominator 1− u2 means (for degP ≤ 3) that P mod p is an irreducible quadratic polynomial. The
last but one case with (1 − u)2 may appear either for a polynomial of degree 2 with 2 roots, or a
polynomial of degree 3 with a double root mod p (it automatically has another simple root). The last
case matches 1− u, which means a single multiple root of multiplicity equal to the degree.

Finally, in degrees up to 7 the denominator 1 − u4 of the fourth case may appear only when
P mod p is an irreducible polynomial of degree 4. However, the “extra factor” 1 + u in the numerator
“makes sense“316 only in the case D4. (In the context of this section, we cannot explain this!)

For general polynomials of degree 4 which “do not allow an extra distillation” one would need to
add more rows to our table—and one of them would have the same denominator 1− u4 in the fourth
column, but no “extra factor” 1 + u in the numerator. As we saw, for these polynomials our methods
are not enough to expose their “hidden symmetries” (which are of “rank 3 which is too high” for our
methods).
Remark 63: The denominators (denote them as ∆[P ]

p ) in the third columns are examples of Weil
denominators317 from Weil Conjectures, see Remark 43 on p. 74). The general case of Weil conjectures
characterizes possible factors of the rational function associated to p and P in more complicated
situations, when the polynomial equations P = 0 depend on several variables, and there may be more
than 1 equation. (Still, the corresponding numbers Npk are the Taylor coefficients of these rational
functions.)318

Additionally, denote by ∆[P ]
p the denominator in the fourth column (matching what happens

before distillation). When P is clear from the context, we may omit the subscript.

Grand Unification II: Permutation matrices and Galois symmetries

Note that for a sequence to have a linear recurrent relation (with constant coefficients) is equivalent
to being Taylor coefficients of a rational function. So what we described above is a significant
refinement of Remark 43 on p. 74: here we claim that this rational function may be represented as a
product of very simple terms.

To further demystify the denominators above, note that they are characteristic polynomials
det(1 − uMp) of certain permutation matrices Mp.319 The powers d appearing above form the
cycle decomposition of this permutation. Moreover, one can recognize these cycles as orbits of this
permutation.
Remark 64: Until the section on p. 122 all we care about Mp is that the sizes of cycles of this
permutation coincide with the degrees of irreducible factors of P mod p. Indeed, for non-exceptional
primes the degree of the denominator is equal to the degree of the polynomial, hence the permutation
with such cycle lengths may be thought of as a permutation of the roots of the polynomial!321

316 . . . meaning that it is a part of “the extra distillation” which leads to fractal symmetries of the corresponding
function Fdist(t).

317 . . . or “Weil factors”, since in the case of many unknowns such expressions may appear in the numerator too.
318 N.B. (???) Mention cohomology?
319 . . . which are matrices with exactly one non-zero entry (equal to 1) in every row and column. The importance

of this description of numbers Npk lies in it being compatible320 with the description in Footnote 179 on p. 74. These
denominators, essentially, compress the sequence of numbers Npk of solutions into a very compact form!

320 This immediately follows from Footnote 321 on p. 117 together with an appropriate generalization of Fermat’s
Little Theorem.

321 Moreover, take into account that one can identify the complex roots of P with the roots modulo p (in an
appropriate Galois extension). Factoring P mod p = Q1Q2 . . . Qr, the modular roots of P separate into roots of Q1, of

https://en.wikipedia.org/wiki/Weil_conjectures
https://en.wikipedia.org/wiki/Cyclic_permutation
https://en.wikipedia.org/wiki/Group_action_(mathematics)#Orbits_and_stabilizers
https://en.wikipedia.org/wiki/Frobenius_endomorphism#Fixed_points_of_the_Frobenius_endomorphism
https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
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We postpone the more detailed discussion of Galois symmetries until the section on p. 131.322

Grand Unification III: From reducible polynomials to “distillation”

The permutations of the preceding section are examples of a general construction: given a
polynomial equation, one can assign to a prime p a particular permutation324 of the roots of P . If
P = P [1]P [2], then this permutation of the roots of P coincides with “joined together” permutations
assigned to P [1] and P [2].

In particular, this implies that the Weil denominator ∆[P ]
p (u) assigned to P is the product of Weil

denominators assigned to P [1] and P [2]. Since (N [P ]
pk ) are Taylor coefficients of 1/∆[P ]

p (u), this implies

The sequence (N [P ]
pk ) is the fusion of the sequences (N [P [1]]

pk ), (N [P [2]]
pk ).

Likewise, if P is written as a product of L factors, this separates the roots of P into L flavors
(“roots of P [1]”, “roots of P [2]”, etc.). The permutations considered above preserve the flavors, which
describes (N [P ]

pk ) as a fusion of several simpler sequences assigned to simpler polynomials.325

However, in 1920, Emil Artin understood that there is another way to look at the “flavoring”
of the roots. In terms of the section on p. 117, instead of a collection of permutations, one should
consider the corresponding permutation matrices. When the permutations preserve the flavors, the
permutation matrices are broken into blocks, as in

( )
(with 0s outside of the blocks; these 3 blocks

match a flavoring into 3 flavors). Moreover, the sizes of these blocks do not depend on the choice of
the permutation from our collection.

Q2, etc. It turns out that the permutation in question has roots of Q1 as one orbits, roots of Q2 as another orbit, etc.
(Compare with the motto from Remark 69 on p. 123. For details, see the construction of the Frobenious permutation in
the section on p. 131.)

322 Note that the non-real complex roots come in complex-conjugate pairs; this gives one (very trivial!) symmetry
of the roots. What Galois discovered is that it makes sense to define other symmetries as well—nowadays we call this
Galois group. Every such a symmetry permutes roots in a certain way.

(Formally speaking, a permutation σ of roots x1, . . . , xd is a Galois permutation if any polynomial relation
P(x1, . . . , xd) = 0 between roots with integer coefficients continues to hold after the permutation; in other words,
P(xσ1 , . . . , xσd

) = 0. Galois theory turns this clumsy definition into one of the most important tools for studying roots
of polynomials equations.)

The relation to our denominators is that for every non-exceptional prime p, there is a particular Galois permutation
of the roots whose permutation matrix is exactly as described above. This symmetry is named the Frobenius element
for p (well, we cheated a bit: this symmetry is defined just “up to rotating it by other symmetries”; in other words, it is
just a conjugacy class of a symmetry—but exceptional primes require more work—see Footnote 408 on p. 134).323

323 The situation is similar (but not exactly the same) for many unknowns (and, maybe, many equations). The
reason for the differences is that in our case two different complex roots “cannot be equal mod p” (whatever this means)
for p� 0.

This can worked around by considering the action of Frobenius symmetries not on individual roots, but on “families
of roots”. Moreover, while the geometry of families is very complicated, this complexity can be avoided by replacing
families by their “algebro-topological footprints” in a suitable cohomology theory. While the intermediate steps are
very complicated, the net result is as simple as above: a matrix is assigned to every prime number (but this time, it is
not necessarily a permutation matrix). Instead of using sizes of orbits of the permutation as numbers d, one takes the
characteristic polynomial of this matrix (for permutation matrices the latter holds the same information as the former)
as the denominator we considered above.

For 1 equation with 1 unknown, only 0-dimensional families of roots may appear.
324 One may need to put some fine print here—but it does not affect what we do in this section. Compare with

Footnote 413 on p. 134.
325 This is the Reduc case of the section on p. 114. We illustrate it in the section on p. 63.

https://en.wikipedia.org/wiki/Artin_L-function
https://en.wikipedia.org/wiki/Splitting_field#Definition
https://en.wikipedia.org/wiki/Galois_theory
https://en.wikipedia.org/wiki/Frobenius_endomorphism#Frobenius_for_global_fields
https://en.wikipedia.org/wiki/Conjugacy_class
https://en.wikipedia.org/wiki/Algebraic_closure#Examples
https://en.wikipedia.org/wiki/Algebraic_cycle
https://en.wikipedia.org/wiki/Algebraic_cycle
https://en.wikipedia.org/wiki/Cohomology
https://en.wikipedia.org/wiki/Weil_cohomology_theory
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On the other hand, if we allow making a certain change of basis (what is critical is that this basis is
the same for all the permutations we consider), such a “block decomposition” may be possible326 even
for certain irreducible polynomials P . This leads to another description of what we call “distillation”:

Choose a block, and replace a permutation matrix by this block of this matrix (in the new basis).

This description is much more general than one in the section on p. 75, as well as complete and precise.
Now given a block M [l]

p of the matrix Mp assigned to p, one can consider its characteristic
polynomial ∆[l]

p (u), and define (N [l]
n ) via the Taylor coefficients of 1/∆[l]

p (u). The multiplicativity of
characteristic polynomials of block-diagonal matrices implies

This presents (Nn) as a fusion of sequences (N [l]
n ).

For reducible polynomials, this works without any basis change,—but does not bring new insight:
as before, this “fuses” the sequences (N [P [l]]

n ) into the sequence (N [P ]
n ) if P = P [1] . . . P [L]. However,

the moment we allow a basis change, this gives us a new way to write (N [P ]
n ) as a fusion—and

(according to the Langlands program327) this is a fusion of simpler sequences. However, this is not
very interesting328; the crucial part is that (at least conjecturally) these parts also have “hidden
symmetries” !

Conclusion: What Artin discovered is that distillation allows splitting complicated problems of
Number Theory into significantly simpler subproblems. According to the Langlands Program329

The distilled parts have “hidden symmetries” of simpler “types” than the initial problem.

In the beginning of this chapter we described two simplest types of “hidden symmetries”: rank 1
and rank 2. Now we can enhance the framed rule claiming that these types corresponding to the
1×1 blocks and the 2×2 blocks in the rule. Using distillation, it is sometimes possible to split more
complicated questions into “fusions” of problems with “hidden symmetries” of these “simple” types.
We discuss what happens in higher ranks later (see the section on p. 169).330 331

Notation: if the l th block of the matrix has size d×d, we say that the corresponding hidden symmetry
is of rank d. (It is the minimal possible length of the linear recurrence relation in k satisfied by the
subsequences N [l]

pk .)

Remark 65: “A fully distilled block” is one which cannot be distilled into subblocks of smaller
ranks. (In other words, no change of basis inside this block would subblock-diagonalize this block—
simultaneously for all the permutation matrices we consider.) The Langlands program focuses on the
behaviour of “fully distilled” cases.

326 However, sometimes one may need to use a basis with complex coefficients. Compare with Footnote 363
on p. 126.

327 This is the Artin case of the Langlands program (i.e., the simplest case, of 1 equation with 1 unknown).
328 N.B. (???) Any sequence can be written as a fusion—and we discussed it before! Ref!
329 We discuss the relevant to these notes part in the section on p. 171.
330 In these notes, we do not discuss how to use the hidden symmetries. However, it is clear that knowing the

symmetries of the problem may be a significant help for solving the problem.
One of the most striking examples is the Fermat’s Last Theorem. It has been proven (after almost 400 years of

trying!) by reducing it to existence of “hidden symmetries” of cubic equations with 2 unknowns. When this part of the
Langlands Program was verified (it is of rank 2, so is “relatively simple”), this gave a proof of the FLT.

331 N.B. (???) Reference to Manin–Panchishkin?

https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem
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Going historically, the Class Field Theory claims that the sequences (N [l]
n ) of rank 1 are periodic

and totally multiplicative.332 The Langlands Program shows333 that such sequences of rank 2 have
a Fourier transform with the same kind of fractality as what we investigated for non-abelian cubic
polynomials. The Langlands Program conjectures that such sequences of any rank have a certain very
specific “hidden symmetry”—but for rank above 2, the description of the corresponding symmetric
function is much harder than our explicit construction of F (t) “by taking the Fourier transform” of
Nn.334

Remark 66: For the purpose of these notes, “motives” are just “imagined geometric counterparts
of the blocks of matrices Mp”. When we can “split” the roots of P = 0 into L “independent parts”
(in other words, we can factor P = P [1] . . . P [L]), this leads to block-diagonalization of matrices Mp

into L blocks (after a suitable shuffle of the basis). Likewise, we imagine that any simultaneous
block-diagonalization of matrices Mp in a suitable basis “matches” a certain “imagined splitting into
of the set of roots into ‘motives’”.

We allow this abuse of language since these “parts” present a huge mathematical interest, and (as
we pointed in the section on p. 75) while there are very particular definitions of the notion of motive,
it is not yet completely settled down.

Example: the naive distillation

The action of a permutation matrix on a vector can be thought of as permuting real weights
assigned to the permuted points. Note that these permutations preserve the total weight,335 as well as
preserve the vector subspace corresponding to weight assignments with the total weight 0. Conclusion:
there is a basis such that in this base any collection of permutation matrices acting on d points splits
into a 1×1 block, and a (d− 1)×(d− 1) block.

Given an arbitrary polynomial P , this is applicable to the considered above permutations of roots
of P . This splitting into blocks corresponds to our “naive distillation”, described in Step (b) on p. 60
and in Footnote 179 on p. 74. Conclusion: the statement of the preceding section (combined with the
arguments from the other “Grand Unification” sections) implies the presence of “hidden symmetries”
of rank d− 1 for the sequence Nn assigned to P .

For the convenience of the reader, we summarize these arguments here. Since we gave several
independent recipes of the sequence Nn, we start with the recipe going via Nn from Footnote 179
on p. 74. Recall that by this definition Nn is the fusion of Nn with N [Q]

n for Q(x) := x, which is
N [Q]
n ≡ 1. (Indeed, the equation Q(x) = 0 has exactly [Q]ÑGal

pk ≡ 1 root in any Galois arithmetic; the
Taylor series for logarithm shows that N [Q]

pk ≡ 1. The rest follows from multiplicativity of Nn.)
First, the 1×1 block above is (1), hence its characteristic polynomial is det(1 − u(1)) = 1 − u.

(So this indeed matches N [Q]
pk ≡ 1 from the preceding paragraph!) Since fusion corresponds to

multiplication of denominators ∆[l]
p (u), removing the 1×1 block with characteristic polynomial 1− u

corresponds to putting 1− u into the numerator.
332 Note that total multiplicativity (together with T -periodicity—needed if the sequence is defined only for positive

n) implies even-or-oddness. Indeed, (−1 modT )2 = 1 modT (together with (1 modT )2 = 1 modT ) show that
NT−1 = ±1 =: ε, hence NT−n = εNn.

333 See the section on p. 171.
334 For these descriptions to work, our collection of matrices should be related to a certain system of polynomial

equations. In our examples, the matrices are permutation matrices of Galois symmetries of complex roots of a polynomial
in one variable—or common blocks of such matrices after an appropriate change of basis.

Yet more generally, instead of considering blocks of permutation matrices, we may assign any invertible matrix
Mg to any Galois symmetry g provided that this assignment is compatible with the composition of symmetries:
Mgg′ = MgMg′ . Such an assignment is called an Artin representation, and the claims above work for the corresponding
sequences (Nn) as well.

335 In other words, they have a common eigenvector (with the common eigenvalue 1).

https://en.wikipedia.org/wiki/Galois_module#Artin_representations
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Recall that according to the section on p. 117 we assign to p the permutation Mp of roots with
cycles of lengths d1, . . . , dR where dr are degrees of the irreducible components of P mod p. What
remains to be shown is the Taylor coefficients of 1/ det(1− uMp) coinciding with N [P ]

pk .
Since det(1− uMp) does not change when we reorder the columns and rows of Mp in the same

way, we can assume that points in any cycle of the corresponding permutation are next to each other,
hence Mp is a block matrix. Then 1/ det(1− uMp) is a product with each factor corresponding to
one cycle.

On the other hand, [P ]ÑGal
pk is a sum of [P [l]]ÑGal

pk if P mod p = P [1] . . . P [L]. Since going from
ÑGal to N involves exp, this implies that N [P ]

pk is a product of N [P [l]]
pk . Comparing with the preceding

paragraph, it is enough to consider the case when P mod p is irreducible (hence Mp corresponds to a
cyclic permutation).

If degP = d, then Mp corresponds to a cyclic permutation of d points, so336 det(1−uMp) = 1−ud.
This reduces our proof to showing that in this case N [P ]

pk is 1 when d divides k and is 0 otherwise—
which is equivalent to [P ]ÑGal

pk being d when d divides k and being 0 otherwise. This means that P has
no roots in the Galois field with pk elements unless d|k, otherwise P has all its d roots in this field.

Since it is out of scope of these notes, all we will say about the last statement is that it is the most
elementary fact in the theory of Galois fields. (Note that it implies that for a fixed pk the counts
[P ]ÑGal

pk of solutions are the same for all irreducible polynomials P of degree d with coefficients mod p.)

Finally, we want to cover other recipes of ours for finding the sequence Nn.
Recall that in the discussion after the table in the section on p. 115 we already matched the

sequences of Step (b) on p. 60 and of the section on p. 62 to suitable collections of numbers dl.
Moreover, we have shown that such a collection coincides with the degrees of irreducible components
of P mod p, and the numbers Npk coincide with Taylor coefficients of (1− u)/∏l(1− udl).

Comparing to the preceding discussion, one can see that our recipes for the cases degP ≤ 3 give
the same result as the recipe from Footnote 179 on p. 74. (However, recall that the former recipes are
less specific than the latter in the case of exceptional primes.)

Remark 67: The 1×1 and (d− 1)×(d− 1) blocks considered above “work” with every permutation
of the roots. Moreover, it is easy to see that this is the only decomposition into blocks337 which is
compatible with every permutation matrix.

In particular, for polynomials P of Galois type Sd (with degP = d)— for which by definition338
every permutation appears as one of the permutations Mp—no further splitting into blocks is

336 This follows since Mp diagonalizes in the basis (1, ζ, ζ2, ζ3, . . .) with ζd = 1 with eigenvalues ζ.
337 Recall that to specify blocks, we need to specify a basis and say which elements of the basis “go into” which

block. However, here we mean not the uniqueness of the basis, but the uniqueness of the span of the basis vectors
going into a particular block.

338 . . . together with Chebotaryev’s Density Theorem.

https://en.wikipedia.org/wiki/Finite_field#Irreducible_polynomials_of_a_given_degree
https://en.wikipedia.org/wiki/Chebotarev%27s_density_theorem
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possible. For these polynomials,339 340 no “extra distillation” is possible, so the complexity=rank of
the corresponding “hidden symmetries” cannot be decreased below d− 1.
Remark 68: In fact, the permutations of the roots which appear as Mp always act transitively on
the roots. Moreover, an “extra” distillation is possible iff they do not act 2-transitively.

For example, for n = 4 only the abelian polynomials and polynomials of type D4 allow “extra
distillations”.

The “extra” distillation: the case D4

The preceding section shows what happens when every permutation of roots may appear as
the permutations Mp for some (non-exceptional) prime p. While this is “the general case” (see
Footnote 340 on p. 122), some polynomials P are exceptions. This is due to “asymmetries” between
pairs of roots: some pairs (xk, xl) of roots are “in special position” comparing to the other pairs (see
also Remark 68 on p. 122). Since the permutations in question are Galois symmetries, they must send
any “special pair” to a “special pair”.

For example, for Pm = m4 −m3 −m2 + m + 1 from the section on p. 68, given a root x define
x′ := −1/x = (x − 1)(x2 − 1)—which turns out to also be a root. Moreover, (x′)′ = x. Call x′ the
opposite root to x; this breaks 4 roots into 2 pairs of “opposite roots”.341

One can immediately see that any permutation which sends “an opposite pair” to an opposite
pair acts on 4 roots in exactly the same way as the symmetries of a square act on its vertices. This
means that possible “symmetries of the roots” form either an abelian group, or the group D4 (as P
above does342). (In the other direction, in any abelian/D4 case one can write a polynomial x′(x) with
rational coefficients which works as above.) Moreover:

All such permutation matrices taken together may be split into blocks of sizes 1, 1, and 2.
Indeed, the preceding section shows how to split into blocks of sizes 1 and 3. To further split the

“distributions of weights” with the total weight 0, consider assignments of weights to 4 vertices of
a square such that the total weight of every diagonal is 0. This is complemented by the vector v
assigning weights 1 to “one diagonal”, and weights −1 to the other.

Conclusion: to get the sequence Ndist
n for P one needs to cancel the contribution of v into

the 3×3 block considered above. Note that a permutation matrix which “preserves oppositeness”
either multiplies v by −1 (when the permutation exchanges the diagonals) or preserves v (when the
permutation “leaves every diagonal “in place”). Hence the corresponding ∆[l]

p (u) is 1 ± u in these
cases.343 344

339 As van den Warden proved in 1931, a random polynomial (with integer coefficients) is of this type with
probability 100%. In other words, if one randomly chooses a polynomial P with integer coefficients less than N in
magnitude, the probability gets closer and closer to 100% as N grows.

(However, there are other “very reasonable” ways to choose a random polynomial, and these ways break the
result above. For example, instead of restricting the magnitude of coefficients, one can restrict the magnitude of the
discriminant of P ; then this probability above is less than 100%.)

340 N.B. (???) Ref? Do not we need field discriminant? Malle’s conjectures?
(Heuristically, to “explain” why in degree 3 the abelian case is much more rare than the non-abelian

one, note that it happens when the discriminant is a square.—And the larger “a random number” is,
the less probable that it is a square.)

For more detailed info, see Melanie Wood’s notes of 2014: (§11 for the results in the cubic case; it
also contains many conjectures).

341 Moreover, if x3 = x′1, then x2,4 satisfy X2 + x2
1(x1 − 1)X − 1 = 0.

342 This happens when the roots of P can be expressed in terms of
√
a+ b

√
L+ c

√
M + d

√
LM when at least 2 of

b, c, d are 6= 0 and the external square root cannot be avoided.
343 It turns out that for exceptional p one should add a possibility ∆[l]

p (u) ≡ 1.
344 Note that this is the first place where we need more info about Mp than the lengths of its cycles.

https://en.wikipedia.org/wiki/2-transitive_group
http://people.math.harvard.edu/~mmwood/Publications/ArithStats.pdf
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When one “cancels” ∆[l]
p (u), it is the same as to put it into the corresponding numerator. Hence,

identifying every Galois symmetries by the corresponding symmetry of a square, one enhances345 the
table from the section on p. 115:

Symmetry
of a square Denominator First

distillation
“Extra”

distillation
What
remains Ndist

pk , k = 1, 2, . . .

Rotation by 0° (1− u)4 1− u 1− u (1− u)2 2, 3, 4, 5, . . .
Rotations by ±90° 1− u4 1− u 1 + u 1 + u2 0,−1, 0, 1, 0,−1, . . .
Rotation by 180° (1− u2)2 1− u 1− u (1 + u)2 −2, 3,−4, 5, . . .

Mirror-through-a-midpoint (1− u2)2 1− u 1 + u 1− u2 0, 1, 0, 1, 0, 1, . . .
Mirror-through-a-vertex (1− u)2(1− u2) 1− u 1− u 1− u2 0, 1, 0, 1, 0, 1, . . .

Here the first two columns follow the recipe of the section on p. 117 literally: d s in factors 1− ud of
the “denominator” are the sizes of the orbits of the symmetry acting on 4 vertices of the square346
(as in the section on p. 117). Likewise for the last two columns: the sequence Ndist

pk is the Taylor
coefficients at u = 0 of 1/(What remains).347 (In other words, the coefficients of the polynomial in “What
remains” give the recursion relation for Ndist

pk .) The only difference with what we did in the section
on p. 115 is that “What remains” is the result of dividing the “denominator” by both the “distillation”
factors (while before, getting Npk , we only divided by the first distillation factor).

As in the section on p. 115, given a non-exceptional prime p one consider the corresponding
permutation of the roots. We did not explain it before, but this “Frobenius element” is actually “a
Galois symmetry”—and for us this means that it must preserve “the oppositeness”. Hence it matches
one of the rows of the table above348 —hence the last column gives the corresponding sequence Ndist

pk .
Knowing Ndist

pk for every p, multiplicativity describes349 the sequence Ndist
n , hence its Fourier

transform Fdist(t).
Remark 69: To compare with what we did in the section on p. 68, we need a more explicit description
of the “extra distillation factor350” 1 ± u. “Combine” the roots using the weights in v; this gives
v := x1 − x2 + x3 − x4 (assuming x′1 = x3 and x′2 = x4). Since any Galois symmetry of P sends v to
±v, the same holds for v. Hence any such symmetry preserves v2. Conclusion: by Galois theory,
Ξ := v2 is a rational number.

Putting Qm := m2 − Ξ, any Galois symmetry of P either exchanges the roots ±v of Q, or keeps
them in place. Moreover, the sign in the extra distillation factor 1 ± u for a particular prime p
matches these two possibilies for Mp. What allows to use this observation to find the sign in ±v is

345 Although the new table covers only the cases of non-exceptional p.
346 . . . in other words, one looks where the powers of the symmetry send a particular vertex.
For example, if the mirror passes through a vertex, then the reflection keeps two vertices in place (giving two orbits

of length 1, each contributing the factor 1− u), and join the other two vertices into an orbit of length 2 (this orbit
contributes the factor 1− u2). In terms of permutation matrices (as in the section on p. 117) these denominators are
the characteristic polynomials of the matrix (by the same reason as in the preceding section).

347 Since we consider k ≥ 1, the leading coefficient 1 is omitted.
348 Moreover, for an exceptional p, instead of one of the entries in the “What remains” column, one should choose a

certain divisor of one of these entries. This describes “exceptional” sequences Ndist
pk up to a finite number of choices:

they may be as in the table, or 1, 1, 1, 1, . . . (for the divisor 1− u), or −1, 1,−1, 1, . . . (for 1 + u), or 0, 0, 0, . . . (for the
divisor 1).

Note that the explicit recipe which divisor of which entry to choose is quite convoluted. Compare with Footnote 408
on p. 134.

349 . . . up to a finite number of choices due to our lack of precise description of what to do for exceptional primes.
Note that this is exactly the same ambiguity as in Step d on p. 60.

350 This polynomial is always a factor of what is in the “Denominator” column.
This desciption is really needed because of the 3rd and 4th rows of the table. They show that this factor is not

determined by the “Denominator” column.
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the astonishing property of the Frobenius permutations; we illustrate this property by the “motto”:
”The permutation of the roots of P associated to a prime number p does not depend on P .”

This motto needs to be “decoded”; below, we apply it to two polynomials P and Q. For example,
this statement is void if the roots of P and Q are “independent”; however, if the roots of Q can be
expressed as polynomial expressions in terms of roots of P , then the above property ensures that the
roots of Q are permuted in exactly the same way351 as these expressions in terms of the (permutated)
roots of P .

Conclusion: the permutation matrix Mp sends v 7→ −v iff the permutation of two roots of
Q associated with p is non-trivial. On the other hand, we know the cycle structure of the latter
permutation; hence it is non-trivial iff Q mod p is irreducible. Hence

Mpv =
(

Ξ
p

)
v and The “extra distillation numerator” is 1−

(
Ξ
p

)
u.

(In fact, the second statement works352 even for exceptional p.) For Pm = m4 −m3 −m2 +m+ 1 we
already know that x2 + x4 = −x2

1(x1 − 1) =: −t and x1 + x3 = t+ 1, hence Ξ = (2t+ 1)2 = −3. Since(
−3
p

)
=
(
p
3

)
which coincides with p modulo 3, one reconstructs the rules of the section on p. 68.

Conclusion: the double-framed statement on p. 119 implies exact fractality of the plots in the
section on p. 68.
Remark 70: The arguments of the preceding remark work with any polynomial of type D4. Moreover,
recall that the motto from Remark 45 on p. 75 “explained” distillation as “remove from the counts
ÑGal
n all traces of simpler polynomials”. The context of that remark was about “the naive distillation”,

when we remove “the traces of the equation x = 0”. However, the argument above also follows this
motto: essentially, the preceding remark shows that two 1×1 blocks of M [P ]

p taken together coincide
with two blocks forming the matrix M [Q]

p —hence what we did was “removing the traces of the
polynomial Q”.

Moreover, one can immediately see that “blocks of M [Q]
p appear as blocks of M [P ]

p ” happens when
roots of Q can be written as353 linear combinations with rational coefficients of 1 and of roots of P .

Fdist(t) and how to recover the sequence of colors

Recall that the initial motivation of these notes was the question: Given a polynomial sequence
Pm, which primes p are “green”, and which “red”:

Which primes appear as factors of numbers Pm, and which not?
In the chapter on p. 33, to describe the “hidden symmetries” of this question when P is non-abelian
of degree 3, we encoded these answers into numbers Nn and visualized the Fourier transform F (t) of
this sequence. Moreover, by definition the “color” can be recovered given Np: it is red if Np < 0, and
green otherwise.354 355

As the table above and Remark 69 on p. 123 shows, the case degP = 4 of type D4 behaves
very similarly: knowing Ndist

p and p mod 3, we can find whether p divides one of numbers Pm :=
m4 −m3 −m2 + m + 1. (For general P of degP = 4 and type D4, instead of p mod 3 one should

351 We already used this argument in Footnote 321 on p. 117.
352 The case

(Ξ
p

)
= 0 is not in the table above, since it appears only for exceptional primes.

353 N.B. (???) Can one use Chebotarev’s to show that if one characteristic polynomial divides the
other, then such an inclusion holds?

354 Indeed, recall that “the naive” distillation leads to Ñ res
p = ÑGal

p = Np + 1.
355 Moreover, in the section on p. 72 we saw that when degP = 3, one can go in the opposite direction as well: the

numbers Np may be found if we know the “color” of p, and one more bit of information
(
c
p

)
for a certain number c (the

conductor). (The latter bit is a periodic function of p: it depends only on p mod 4|c|.)
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know p mod 4|Ξ|—which, by Quadratic Reciprocity, determines whether Ξ is a quadratic residue
mod p. Here Ξ is defined in Remark 69 on p. 123.)

Indeed, for a prime p it is easy to see that Np = Ndist
p +

(
Ξ
p

)
; hence Ñ res

p = Ndist
p +

(
Ξ
p

)
+ 1 are

given by this table:
↓p mod 3 Ndist

p → −2 −1 0 1 2
−1 × × 0 1 2
0 × 0 1 2 3
1 0 1 2 3 4

(Here p mod 3 should be replaced by
(

Ξ
p

)
for a general P of degree 4 and type D4). Recall that each

colored number Ñ res
p = Np + 1 counts elements divisible by p among any p consecutive elements of

the sequence (hence determines the color!); moreover,× marks impossible combinations.356

In particular, the analogue of Remark 15 on p. 35 holds in the case D4 as well: we can find whether
a given prime number p may be a divisor of numbers Pm by inspecting p mod 4|Ξ| and a certain
definite integral involving p and the function Fdist(t). (Moreover, one can replace this generalized
function by its antiderivative F (−1)

dist (t) which “makes perfect sense” as a function.)

Cubic reciprocity: Class Field Theory in degree 3

When we have been handling the non-abelian case of degree 3 and the case D4 (pp. 59,68), we
introduced “black box” treatments which encapsilated powerful theories (which we—more or less—
explained in this chapter) into an easy-to-formulate format. Moreover, in the quadratic case (p. 62)
we could explain all the details (except proofs!) of Quadratic Reciprocity—which allows a complete
description of numbers Nn.

One can introduce a similar “black box” in any abelian cubic case (as in the preceding section357)
as well. In fact, it is going to be much closer to the quadratic case: it wouild give a formula for Np

for a prime p. Due to this similarity, this is sometimes called Cubic Reciprocity.358
It starts with the anzatz359 Np = ξp + ξp with number ξp for prime p satisfying ξ(ξ3 − 1) = 0.

This formula determines each ξp uniquely up to complex conjugation. The principal result of Class
Field Theory is

There is a periodic totally multiplicative sequence ζn which works as ξn.

In other words: there is a choice of the sign of the imaginary part of numbers ξp which makes this
sequence periodic and totally multiplicative. (Note that the sequence ζn is uniquely defined up to
simultaneous complex conjugation of all numbers ζn.)

356 This assumes that P has integer coefficients. The general case works too if one excludes p s dividing the
denominators of the coefficients (and the leading coefficient).

357 N.B. (???) Check “preceding section” throughout this one: should be “the section on p. 67”
instead.

358 . . . although this seems like a misnomer, since it focuses only on “hidden symmetries of rank 1”. The “real”
cubic counterpart of the Quadratic Reciprocity should better cover both the case of rank 1 and rank 2.— (And this is
what we are doing in these notes!)

359 . . . in other words, with a trick which is going to be explained at the end, by the result of calculations.
Since 0 ≤ Ñ res

p ≤ 3 and Np = Ñ res
p − 1, the possibility of this anzatz is equivalent to the number Ñ res

p = ÑGal
p of

roots of P mod p cannot be360 2. (Indeed, ξ = 0, 1, (±
√
−3− 1)/2 give Np = 0, 2,−1.)

360 In turn, this follows from the most elementary facts of number field theory: if P gives an abelian (or normal)
field extension over Q, then for P mod p the multiplicities of all the roots are the same. This implies that ÑGal

pk divides
the degree or is 0.

https://en.wikipedia.org/wiki/Algebraic_number_field#Ramification
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First, observe how close this statement is to Euler’s formulation of quadratic reciprocity (p. 16);
the only differences are:

• In the Euler case, one uses ξp instead of361 ξp + ξp.
• In the Euler case, the equation is362 ξ(ξ2 − 1) = 0 instead of ξ(ξ3 − 1) = 0.
• What Euler required was multiplicativity w.r.t. multiplication by −1 (but it implies the
general case, see p. 210).

(In fact, we show in Remarks 71, 73 on p. 126 that these conditions completely determine the sequence
Nn from the preceding section.)

Consider the same issues from the “Artinian point of view”: the permutation matrices Mp in
the abelian case of degree 3 are necessarily cyclic: they are either identity, or matrices of the cyclic
permutations (123) or (132). Since these 3 matrices are powers of the matrix for (123), they may
be simultaneously diagonalized in the eigenvector basis of this matrix. This is the “discrete Fourier
transform” basis (1, ζm, ζ2m) with a fixed non-trivial cubic root363 ζ of 1 and m = 0, 1, 2.

Conclusion:
• The motive of solutions of an abelian cubic equation splits into a motive of a point, and two
complexly-conjugate motives of rank 1.
• These motives match decomposition of matrices Mp into three 1×1 blocks.
• (By Remark 73 on p. 127,) the sequences N [l]

n (with l indexing the non-trivial blocks) identify
with the periodic totally-multiplicative sequences ζn, ζn.

This demonstrates that this splitting uncovers the “hidden symmetries of rank 1”— indeed, these
blocks behave exactly as required in the beginning of this chapter.
Remark 71: Moreover, same as what we saw for Quadratic Reciprocity (p. 209), if we know the
conductor c (which is the shortest period of ζn) at least sometimes the rest follows:

The framed condition above and c uniquely determines the numbers Np if c is a power of prime.364

Let us show how this works when c = 9 (as it happens for P from the preceding section).365
Indeed, let ζ be any non-trivial cubic root of 1. Assume that p - c (one can show that otherwise

Np = 0). Then Np = ζm + ζ−m if ±p ≡c 2m, with m = 0, 1, 2. Indeed, 2 is the primitive root mod 9
(since 23 ≡9 −1 and 2 /≡9 −1). The total multiplicativity and 9-periodicity imply that Np = ζm2 + ζ−m2 ,
hence all we need to show is that ζ2 /≡9 0, 1.

On the other hand, if ζ2 ≡9 0, 1, then Np would not depend on p - c. Finally, this would contradict
Chebotarev’s Density Theorem.

361 For general abelian P , one needs to replace ξp + ξp by a longer sum over degP − 1 algebraic conjugates of ξp.
(In particular, the largest possible value of this sum is degP − 1—matching the maximal possible value of Np.)

362 In general, the conditions on ξp can be replaced by “ξ is 0 or a root of 1”. The sequences ζn which appear in
Quadratic Reciprocity can be characterized by ζn ∈ R.

363 This gives an example where one must use complex coefficients to block-subdivide a collection of matrices Mp.
364 In general, varying Q among abelian polynomials of degree 3, there are 2m−1 possible sequences (N [Q]

n ) with
the given c; here m is the number of distinct prime factors of c. This is equivalent to the 3-part of (Z/c)× being
a product of m cyclic groups. (And this follows from c being a product of distinct factors which are either 9 or a
prime p ≡3 1. See Hasse’s Arithmetische Theorie der kubischen Zahlkorper auf klassenkorpertheoretischer Grundlage,
Mathematische Zeitschrift 31 (1930) pp. 565-582.)

(Indeed, it is easy to show that total multiplicativity implies ζn = 0 if (n, c) > 1; this reduces the question to
mappings (Z/c)× → Z/3.)

365 The discriminant of this polynomial is 81, hence the preceding footnote implies that c is 1 or 9. In fact, the
conductor cannot be 1 since due to the “Conductor-Discriminant Formula”, the field discriminant is c2, hence c2 > 1
due to the Minkowski’s theorem.

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Chebotarev%27s_density_theorem
https://gdz.sub.uni-goettingen.de/id/PPN266833020_0031?tify=%7B%22view%22:%22info%22,%22pages%22:%5B571%5D%7D
https://en.wikipedia.org/wiki/Conductor-discriminant_formula
https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field#Basic_results
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Remark 72: By multiplicativity of Nn, to find this sentence all we need to know is Npk . In this
section we already covered the case k = 1. However, for abelian cubic P the general case follows
immediately from the description of embeddings of Galois fields366:

If P mod p has ζ + ζ + 1 roots in Z/p, then ÑGal
pk = ζk + ζk + 1.

Indeed, this is clear if all 3 roots (counting multiplicity) are in Z/p (i.e., ζ = 0, 1). Otherwise all 3
roots are in the cubic extension of Z/p, hence ÑGal

pk = 0, 3 depending on 3|k—which coincides with
the formula above.
Remark 73: Together with what we know about ζp, the formula of the preceding remark represents
ÑGal
pk as a sum of 3 periodic totally multiplicative sequences. (Indeed, ζkp = ζpk .)
However, exp∑k≥1 a

kuk/k = ∑
k≥0 a

kuk (compare with Footnote 179 on p. 74). Conclusion: Nn

is completely determined by the numbers ζp and is a fusion of 3 periodic totally multiplicative367
sequences (ζmn ) for m = 0, 1, 2. (Here 00 =: 1.)

366 We already discussed this before Remark 44 on p. 75.
367 The total multiplicativity of (ζn) does not extend to (Nn): it is ruined by the addition “inside” the fusion rules.
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In construction! (Lousy—and quite incomplete—exposition.)

More on the fractality laws in a reducible case

This continues368 the discussion of the plots shown in the section on p. 63.369

In the language of the section on p. 75 and of Remark 65 on p. 119 “the corresponding motive
is not fully distilled”—and the patterns corresponding to the factors are “overlayed on top of each
other”, contaminating these patterns.

In short: for a reducible polynomial the sequence of red/green colors is a “mix” of colors for the
factors of this polynomial. Likewise for numbers Nk from the section on p. 59: they are determined
by the corresponding numbers Nquadr

k for 4m2 + 2m− 3 = 0.

Recall that in the sections on p. 114 and p. 118, we introduced the reducible case Reduc as one
of the motivations of the notion of distillation. We claimed that distillation (or, in this particular case,
factorization) simplifies the “hidden symmetries” a lot—but we did not provide the examples. Now
we can give the example: factoring out 2m− 1 changes the plots above to the plots for 4m2 + 2m− 3,
—which we considered in the section on p. 62.

Conclusion: to see the results of factorization on the plots in the case of degrees of the factors
1 + 2, compare the plots here to the plot in that section: fractality of Fourier transform is replaced by
the periodicity of coefficients.
Remark 74: In fact, it can be shown that the values of F (−1)(t) “change only due to jumps”. (In
other words, F (t) is a sum of δ-functions; or one can say that F (t) is “an Eisenstein series”.)370 More
precisely, F (−1)(t− 0)− F (−1)(t0 + 0) equals the sum of jumps of F (−1) between t and t0 (if t > t0).

However (as we said in Footnote 159 on p. 65), while the statement above is true, it is true in a
very non-expected way: the sum should be taken not over all the jumps, but over any one of “two
halves” of the set of jumps. Together with our description of the positions and heights of jumps, this
leads to a very explicit formula371 for F (−1)(t).

Remark 75: While reducible polynomials are (usually?) not covered by Langlands’ approach,373 it
looks like the graph above is still an exact fractal. And in fact, the transformation T 7→ −1/13T (here
T := t/2π) exchanges jumps of the first and the second type (two “halves” of the preceding remark);
moreover, after multiplication by

√
13 (and taking into account the law for how δ-functions change

368 N.B. (???) Fix “the plots above” etc. to proper references.
369 N.B. (???) The next four paragraphs duplicate what is at the end of that section.
370 As we said, the graphs suggest this. On the other hand, it is probably too naive to rely on visual appearance in

detection of Eisenstein series. Observe that adding a term with a continuous F (−1)(t) would not influence “the general
visual appearence” of the graph: the contribution of this term would be lost in all the “fractal noise” of the jumps in
the graph.

371 To do this, one needs to rearrange this sum smartly, since it is obviously not absolutely convergent; we discuss
this in the section on p. 135. After this, we can describe F (−1)(t) as a certain infinite summation over jumps which:

• Converges “as a generalized function”.
• Converges absolutely for all t except for “very rare pathological values” of t.372

Mathematically, such objects are described using modular symbols.
372 We do not know what happens in these “pathological values”.
373 The functions F (t) predicted by the Langlands program are “cusp form”—which are, in a certain very precise

sense, “functions ‘opposite’ to Eisenstein series”.
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under coordinate transform) one can see that the formulas for jumps at the points of the first and
the second type are also exchanged by this transformation.374

Together with Remark 74 on p. 128 (and 77 on p. 129), this explains the fractality law “on any
one particular side” of t = 0. Moreover, the transformations T 7→ (aT + b)/(13cT + d) with ad− 13bc = 1
send points 2πR

S
to points of the same type, and again, they are “compatible” (in the same sense

as above) with the jumps of F (−1) (up to the sign
(
a
13

)
). This shows that the corresponding fractal

transformations do not change the graph!
Conclusion: there are two descriptions of F (−1)(t) as a sum over jumps. The transformations

T 7→ (aT + b)/(13cT + d) with ad − 13bc = 1 are compatible with each one of these descriptions. The
transformation T 7→ −1/13T exchanges these two descriptions. Together, this shows that all points are
“one-sided horizon-similar”.

Remark 76: Note that Eisenstein series are direct generalizations of Euler’s formulation of Quadratic
Reciprocity. Indeed, essentially Euler’s formulation claims that the corresponding numbers Nquadr

k

form a periodic sequence.375 In terms of F (t), this means that376 it is a sum of δ-functions, and in
terms of F (−1)(t), this means that it is a locally-constant function. In other words: the variation of
F (−1)(t) is described as a sum of (a finite number of) jumps (at points 2πR/S with certain denominators
S—and, in fact, the magnitude of the jumps is proportional to the Legendre symbol

(
R
c

)
. Compare

with the graph on p. 62).
For the Eisenstein series for (2m− 1)(4m2 + 2m− 3) above, the only thing which changes is that

we allow jumps with any denominator S with 13|S (instead of S = 13 for 4m2 + 2m− 3).

Remark 77: To have an honest exact fractality we need F (−1)(t) to match near 0 what “F (−1)(t) is
near infinity”—but F (−1)(t) has a jump at 0. In other words, F (t) has a δ-function singularity at
t = 0. One can see that to preserve “the spirit and letter of the fractality law”, we must ensure that
F (t) also has “a δ-function singularity at t = ∞”. Since a Fourier series ∑nNn cosnt is a periodic
function, and periodic functions do not behave like this, we need to add another term into our
definition of F (t):

F (t) = N∞δ∞(t) +
∑
n

Nn cosnt

for a certain value of N∞. Unfortunately, δ∞(t) makes no immediate sense in math.
To explain what δ∞ may mean, recall the pictures of the absolute of Lobachevsky geometry from

Remark 23 on p. 38. There the t-axis “bends” around the disk so that t = −∞ comes next to t = +∞.
This way, the t-axis becomes a circle with 1 point removed from it (essentially, an arc of 360◦). On
one side of the removed point is the t = −∞ end of the arc, on the other side is t = +∞.

In other words:

the t-axis with the added point t =∞ becomes a circle (usually named RP1).

Moreover, it makes sense to restrict a (generalized) function on the circle RP1 to a function on R—
but the δ-function with support at the added point vanishes after such a restriction. Hence while
“extending” a (generalized) function from R to the circle above, we may add an arbitrary multiple of
δ∞(t)—as we needed to do above.

374 However, in the transformation, one should take the absolute value of the factor T (or 1/T ) of the fractality law,
same as we did in Remark 27 on p. 42. (This is the Maass case!)

375 Compare with the section on p. 62.
376 . . . with the fine print from Footnote 150 on p. 63.

https://en.wikipedia.org/wiki/Dirac_delta_function#Composition_with_a_function
https://en.wikipedia.org/wiki/Dirac_delta_function#Composition_with_a_function
https://en.wikipedia.org/wiki/Dirac_delta_function#Composition_with_a_function


130 Appendix: Getting closer to the Langlands Program

With thus modified function F (t), the fractality law we established to work separately “on each of
two sides of every point 2πR/S” now works also “in a certain interval containing every given point
2πR/S”. In particular, this includes the jumps at rational multiples of 2π.377 378

Remark 78: The problem with the plots above is that (usually?) the Langlands program focuses
on the behaviour of “distilled” motives. This is why we needed to “distill” our sequence Nm for its
Fourier transform to have379 the “expected” fractal properties. For an irreducible polynomial P , the
motive for P (m) = 0 is a mixture of a motive380 of a point (recall that a point is a solution to381

m = const; the corresponding Nm are all 1) with “what remains”; however, if P = P1P2, then this
motive is a mixture of motives for P1,2; if degP1 = 1 and degP2 = 2, then it is a mix of two copies of
a motive of a point, and the “what remains” motive for P2.

Our procedure of “distillation” would remove one copy of the point-motive; what remains is “a
point” fused with “what remains” for P2 —which is exactly the “undistilled motive for P2”! So in
addition to showing what happens for reducible P , the pictures above also show the result of our
procedure applied to a quadratic polynomial 4m2 + 2m− 3, but without the step of “distillation”.

Remark 79: Compare with the plot of the abelian case in degree 3 (on p. 67).
Above we mixed a motive of a point (zero equations with zero unknowns!) with a motive for a

quadratic equation. They corresponded to two functions Ñ res
p ≡ 1 and F (−1)

p ≡ Nperiodic
p (for prime p).

In the abelian case we were mixing two motives which are both periodic.382

Remark 80: As explained above, for Pm = (2m−1)(4m2 +2m−3) we saw in the section on p. 135,383

the corresponding “undistilled” denominator ∆(u) is a product ∆[2m−1](u)∆[4m2+2m−3](u); the former
factor is (as for any linear polynomial) 1− u, and the latter is (1− u)∆[4m2+2m−3](u). (This follows
immediately from the definition of our “naive” distillation; compare with the section on p. 120. Recall
that 1− u appears here as the characteristic polynomial of 1×1 matrix 1.)

Conclusion: ∆[P ](u) coincides with ∆[4m2+2m−3](u), hence the plots above coincide with the plots
of the antiderivative of the Fourier transform F 4m2+2m−3(t) of the “undistilled” sequence Nn for the
quadratic polynomial 4m2 + 2m− 3. So in addition to showing what happens for a reducible P , these

377 Due to the need for this modification, the fractality law for this function is different from what we considered
before. This is why we needed to consider first the example with larger conductor.

Moreover, strictly speaking, the Langlands program does not cover reducible cases.
378 We needed to cheat in this discussion. As stated, the term δ∞(−1/t) would be killed by the factor |t|, and/or

one won’t be able to divide it by |t|.
We are saved by the fact that in 1-dimensional case covariant k-tensors have 1 component for any k—so in this

regard they do not differ from scalars. What does differ is how they change under coordinate transform. With the
transform t 7→ −1/t they are divided by |t|2k. So if we assume that k = 1

2 for F (t), then the factor in our transform is
not needed anymore— it is “absorbed into the geometric nature” of F (t)—which becomes a ½-density. In this context,
the discussion of δ-functions above makes perfect sense.

(Note that the fact that k may be fractional is also a special feature of the 1-dimensional case.)
379 . . . with the fine print from Footnote 150 on p. 63.
380 Here “a mixture of motives” is a geometric counterpart of a fusion of sequences N [l]

n . Compare with Remark 66
on p. 120.

381 It also can be thought of as corresponding to 0 equations with 0 unknowns.
382 Compare with our discussion of a quartic polynomial with field discriminant 117 on p. 104. The corresponding

motive is also a mix of two distilled motives. That time it is a “periodic” motive mixed with a “modular form” motive.
A similar “mixing” may happen for cubic equations with two unknowns (elliptic curves). Some of these curves have

“extra” symmetries called “complex multiplication”—and then their motive splits in way very similar to examples
above. (This is a very classical topic in math.)

383 N.B. (???) Check the order of sections!

https://en.wikipedia.org/wiki/Density_on_a_manifold#s-densities_on_a_vector_space
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Complex_multiplication
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plots also show384 the result of our procedure applied to a quadratic polynomial 4m2 + 2m− 3, but
without “the step of distillation”.

Recall that since Nn for a quadratic polynomial is periodic (even or odd), its Fourier transform is
a sum of δ-functions, hence F (−1) is a locally constant function.385 This illustrates what kind of a
major simplification is obtained by our step of (“naive”) distillation: it replaces very complicated
fractality pattern for F 4m2+2m−3(t) (so for Nn) to “just periodicity” for Nn.

In other words: without our “naive distillation”, for Pm := 4m2 + 2m− 3, the complexity would
jump from the “rank=1” case to the much more involved “rank=2” case. Likewise, for the generic
cubic polynomials, the complexity would jump from “easy-to-visualize” explicit fractality of the
“rank=2” case to the (enormously more complicated) ”rank=3” case.

Frobenius

In the section on p. 115 we gave a (partial) description of how the different variants of the sequences
Npk correspond to “Galois” symmetries of the complex roots of the polynomial P . In short, the
assignment above can be broken into two steps:

A prime number p 7→ “Its Frobenius symmetries” and “A symmetry” 7→ A recursion relation .

We are not going to discuss the first step, except for noting that for a non-exceptional p, all
the corresponding Frobenius symmetries lead to the same recursion relation. (The Footnote 408
on p. 134 discusses exceptional primes.) The significance of this step is that instead of infinitely many
(non-exceptional) primes, we can consider the finite set of symmetries (or: certain permutations) of
the complex roots.

For “abelian” polynomials P , these symmetries commute, and there are as many of them as the
degree of the polynomial. For our sequences Npk , this means that, after suitable distillations (which
decreases the “rank” from degP to 1) Npk = Nk

p (compare with Footnote 405 on p. 133). Every
corresponding—generalized— function F (t) is a finite sum of shifts of δ-functions.386 387

Artin representations
388

People who have heard of Artin L-function can immediately recognize389 that our numbers Nm

are exactly the coefficients of this function (for our assignment of 2×2 matrices).390
Finally, recall that in the simplest cases this part of Langlands program is already known:

F (t) has required fractal properties when Nm are coefficients of an “uncomplicated” Artin L-function.

384 N.B. (???) Rewrite in terms of flavors of “hidden symmetries”. Similar to what we do after
plotting deg=2.

385 In fact, this is correct only for one of the real/imaginary part of FC(t). See Footnote 151 on p. 63.
386 Or at least this holds for either real or imaginary part of FC(t). (See Footnote 151 on p. 63.)
387 We discussed such distillations in the section on p. 67.
388 N.B. (???) This is a duplicate of the notes on p. 171.
389 In addition to what we did in the section on p. 115, one needs to check that the standard definition of

the Frobenius permutation gives a 3-cycle if there are no roots mod p (the “red” primes), a transposition in the case of
1 root, and the trivial permutation in the case of 3 roots.

390 Since our language is not good enough for a general description of what happens in exceptional primes, this
does not verify the match if m is divisible by an exceptional prime. Still, in our particular case one can check such
matches as well.

https://en.wikipedia.org/wiki/Artin_L-function
https://en.wikipedia.org/wiki/Frobenius_endomorphism#Frobenius_for_global_fields
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According to Langlands–Tunnell results (of ≈ 1980)391 a case is “uncomplicated” if the matrices
are 2×2, and it is not the “icosahedral” case: products of these 2 × 2 matrices do not match the
composition laws of the symmetries of an icosahedron.392

In terms of matrices, this means that in a certain basis these 4×4 matrices not only split into
1×1 and 3×3 blocks,393 but also the 3×3 block may be split again into another 1×1 block and a 2×2
block.394

It turns out that the proper numerator is (1− u)2 for odd rows of this table, and 1− u2 for even
rows.

Random yet-unincorported bits and pieces

Remark 81: As usual with distilled components, for prime indices “mixing the components” is just
addition: Np = ζp+ζp. For composite indices the relations become more involved: for powers of primes
one requires Npk = ζkp +ζk−1

p ζp+ . . .+ζ
k

p (unless ζp = 0, this may be rewritten as ζkp +ζk−2
p + . . .+ζ−kp ),

and for more complicated indices this quickly goes out of hand.395

Remark 82: This is very similar to many problems of Linear Algebra simplifying a lot by diagonal-
ization of a matrix (when applicable). Indeed, the “permutation matrices” we associated to every
Galois symmetry in the section on p. 115 can be all diagonalized in the same basis iff the polynomial
P is abelian. Selecting a particular vector of the basis chooses a particular linear factor 1− Zpu of
the characteristic polynomial ∆p(u) of the permutation associated to any non-exceptional396 397 prime
p. It is easy to see that Zp = ζp or Zp = ζp (hence Zp can be used as ζp described above)—and Class
Field Theory shows that any sequence Zp obtained this way is periodic!398

Remark 83: When dealing with several matrices, it is very rare that one can diagonalize them
all in the same basis—and this is why abelian polynomials are so rare. However, even if the full
diagonalization is not possible, sometimes a “partial” diagonalization may be achived. Then there is
a basis in which all the matrices allow the same “block-diagonal” decomposition, as in

( )
(with 0s

outside of the blocks).
Recall that for the “non-trivial part” of Class Field Theory399 to hold, one needs a particular way

to choose one of ζp and ζp simultaneously for all p. It turns out that after splitting into 1×1-blocks,
each such way to choose may be identified with a particular block (=eigenvector) via considering the
characteristic determinant 1− Zpu of this block. In general, choosing the l th block (out of L blocks)
chooses a particular factor ∆[l]

p (u) of the characteristic polynomial ∆p(u) for every non-exceptional p.

391 In Knapp’s notes in the Edinburgh Proceedings Representation Theory and Automorphic Forms, 1997, this is
Theorem 8.9 (together with the paragraph after Theorem 8.7).

392 The icosahedral case is also known, but only in the “even” case (for polynomials of degree 5, this means that
they have 1 real root) since 2009. See Khare–Wintenberger paper Serre’s modularity conjecture. I .

393 These blocks correspond to the “total weight” of a weight distribution on roots, and the distributions with total
weight 0.

394 The second 1×1 block consists of weight distributions proportional to 1,−1, 1,−1, and the last one to the odd
weight distributions, for which the weights at opposite vertices are opposite.

395 To avoid these complications, mathematicians use “a black box” encapsulation of the Dirichlet series. This way,
the formulas for Nn given above are just particular cases of the statement that one Dirichlet series is a product of two
others.

396 If P is abelian, one can just force Zp=0 for any exceptional prime.
397 N.B. (???) For degree 3 (or prime) only???
398 This is an amplification of the statement above about a possibility to choose a periodic ζp.
399 N.B. (???) The framed statement of periodicity.

https://pdfs.semanticscholar.org/cef1/cd21bca1217aad76408af7b49229b5f195d4.pdf
http://abel.harvard.edu/ev/docs/khare1.pdf
https://en.wikipedia.org/wiki/Dirichlet_series
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For prime p, the relation between these is immediate:400 Np = ∑L
l=1N

[l]
p .

Remark 84: For rank above 2, the description of the corresponding symmetric function is much
harder than our explicit construction of F (t) “by taking the Fourier transform” of Nn.401

Remark 85: (In terms of numbers Nn, a prime p appears as a divisor iff402 403 Np ≥ 0.)
Remark 86: (In fact, according to Class Field Theory abelian polynomials exist in any degree, and
the description above still works if we replace the conditions on ζn to be roots of 1 of degree degP ,
and instead of complex conjugation, consider all Galois symmetries of the roots. Note that with this
formulation Quadratic Reciprocity becomes the case n = 2.)
Remark 87: The symmetry is the “periodicity”.404

Remark 88: This “denominator” is a polynomial in an “ancillary” variable u.
Remark 89: • The sequence Npk (for k ≥ 0) is encoded as a Taylor series at u = 0 of a certain

rational function.
• The denominator of this function is a product of the terms 1− ud with certain numbers d.
• The numbers d which appear are the degrees of the factors of the polynomial P reduced

mod p. (Here one should ignore the multiplicity of every factor: (m − 1)3(m4 + 3m − 5)2

gives two numbers d = 1, 4. This gives (1− u)(1− u4).)
• The numerator is 1− u. (In fact, it is a common factor of all factors 1− ud.)

Remark 90: On the other hand, this “extra distillation” was not following the motto “a contribution
of simpler polynomials” above. The distilled “parts” are very simple, but they do not “match” any
simpler polynomial.
Remark 91: (According to the Class Field Theory) the resulting sequence Nn (of rank 2) can be
further distilled into two components (of rank 1 each).405

Remark 92: In the section on p. 102 we covered the flavors of non-abelian polynomials of degree 4;
the principal difference is how large is the group of Galois symmetries: size 8 for D4; size 12 for A4;
and size 24 for S4.

400 In general, one can express Nn in terms of N [l]
m with m|n and 1 ≤ l ≤ L. However, if n has many prime factors,

this description becomes more and more cumbersome. In practice, it is much easier to work with Dirichlet series—see
Footnote 395 on p. 132.

401 For these descriptions to work, our collection of matrices should be related to a certain system of polynomial
equations. In our examples, the matrices are permutation matrices of Galois symmetries of complex roots of a polynomial
in one variable—or common blocks of such matrices after an appropriate change of basis.

Yet more generally, instead of considering blocks of permutation matrices, we may assign any invertible matrix
Mg to any Galois symmetry g provided that this assignment is compatible with the composition of symmetries:
Mgg′ = MgMg′ . Such an assignment is called an Artin representation, and the claims above work for the corresponding
sequences (Nn) as well.

402 . . . if Pm is a polynomial with integer coefficients and the leading coefficient 1. In general, to get from “integer
values” to “integer coefficients” one needs to consider αP with α ∈ N and α|(degP )!. This means that the equivalence
works only when p - α.

Likewise, if the leading coefficient is not 1, then one gets another finite set of exceptional p s.
403 Moreover, with a finite number of exceptions (when Np = 0), Np takes only values ±1. Hence up to these

exceptions, finding Np is equivalent to answering the framed question.
404 N.B. (???) Multiplicativity as rescaling?
405 Each of these degP − 1 components has an extremely simple form: the corresponding rational function is

1/(1 − C(p)u) with C(m) a certain periodic function of m. Moreover, the sequence (N [l]
n ) corresponding to this

component coincides with C(n) for all n.
For degP = 2, there is only such component, hence the “whole” Nn is of this form (“Quadratic Reciprocity”).406

The corresponding C takes values in 0,±1. (In general, C(n) is 0 or a root of 1.)
406 N.B. (???) Ref!

https://en.wikipedia.org/wiki/Galois_module#Artin_representations
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Remark 93: The numbers d which appear are the lengths of cycles of a certain permutation
(“Frobenius symmetry”) of the roots “associated with a prime number p”.407

Remark 94: Up to (“conjugation by”) a symmetry of a square, all the symmetries of the square
break into 5 flavors.

The Frobenius symmetry associated to p is in fact only a flavor : the built-in ambiguity of the
construction of this symmetry allows every symmetry in a conjugacy class “to work as” Frobenius
symmetry. Fortunately, in these notes we care only about properties of these symmetries which are
shared by all the symmetries of the same flavor.408

Remark 95: To distill further, notice that out of the expected 4! = 24 permutations only |D4| = 8
are Galois permutations; what decreases the number of “symmetries” may be thought of as “a certain
structure” on the set of 4 roots.410

Remark 96:
The matrix assigned to the composition of permutations is a product of matrices assigned to two factors.

Summarizing:412
• To every non-exceptional prime number p we assign a particular Frobenious permutation.413
• The coefficients of this characteristic polynomial can be considered as coefficients of the
recurrence relation.414
• Our numbers415 Npk =: ak are defined by this recurrence relation. (We start with a0 = 1, and
ak = 0 for k < 0.)

407 This is literally true for non-exceptional primes p only (up to remarks in Footnote 322 on p. 118). The
Footnote 408 on p. 134 discusses exceptional primes.

408 As explained, this is applicable only to non-exceptional primes! In general, one should “average this property”
over the ambiguity in the definition of the Frobenius symmetry.409 For non-exceptional primes the ambiguity allows
this symmetry to be any element of one particular flavor (in other words: of a certain conjugacy class). Then averaging
“does not do anything”, since the properties we consider are constant over a flavor. However, in exceptional cases this
ambiguity gives a union of several flavors.

Surprisingly, an average as above is always the same kind of product as ∆(u). For example, in the case of a “most
exceptional” p, when P mod p is a power of a linear function, any symmetry can be Frobenius. Then averaging “our
property” ∆(u) (described above), and taking into account which flavors contain one symmetry, and which two, one
gets 1/8((1− u)4 + 2(1− u4) + (1− u2)2 + 2(1− u)2(1− u2)) + 2(1− u2)2 = 1− u. So the denominator associated to
such p is 1− u. (In turn, this denominator is going to be cancelled by the numerator 1− u of the first distillation.)

409 The standard description is much more complicated. Nevertheless, it is equivalent to our description.
The major advantage of “the standard description” is that it explains the mystery in the last paragraph of the

preceding footnote.
410 N.B. (???) Need to add: the permutation (12)(3)(4) of vertices is not induced by a symmetry of

a square. Which are?
Given any root x1 of a polynomial P (x), the long division algorithm shows that one can factor P as

P (x) = (x− x1)Q(x) with the coefficients of the polynomial Q being rational expressions of x1. Likewise,
one can distinguish different Galois types of irreducible polynomials (with rational coefficients) by
investigating their factors whose coefficients are allowed “to depend on” x1.

For example, P is abelian iff Q (hence P ) can be factored into linear factors with such coefficients.
(This trivially holds if degP = 2.) Moreover, for polynomials of degree 4, one can distinguish all the
non-abelian types411 using similar recipes. For example, Q factors as “linear×quadratic” iff the type is
D4. To tell the remaining types A4 and S4 apart, one should allow rational expressions involving two
different roots x1 and x2. The type is A4 iff x3,4 may be written as such expressions.

411 To distinguish 2 different abelian types, one needs another approach. Look how many square-free numbers
d ∈ Z can be represented as d = R(x1)2; here R(x1) is a rational expression of x1. For the type Z/(4) there is one such
d (the square-free part of the square root of discriminant); for the type Z/(2)× Z/(2) there are three.

412 N.B. (???) We keep only the items which mention the relevant footnotes.
413 Well, only a conjugacy class—but all permutations in a class have the same characteristic polynomial.
414 For example, a polynomial 1− 3u+ 2u2 gives a recursion relation ak − 3ak−1 + 2ak−2 = 0.
415 . . . from the section on p. 59.

https://en.wikipedia.org/wiki/Conjugacy_class
https://en.wikipedia.org/wiki/Hasse%E2%80%93Weil_zeta_function#Definition
https://en.wikipedia.org/wiki/Conjugacy_class
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In construction! (Lousy—but complete—exposition.)

This part of the notes has very little to do with our principal aims. However, the situation
uncovered in Remark 74 on p. 128 is so mind-boggling that I could not leave it alone, and was forced
to write explanations which are somewhat more detailed (and way more complicated) than what is
done in the rest of these notes.

Note that this part is in extremely preliminary stage, and was not optimized for reading in any
way. So unless one is really interested in why sums of δ-functions behave in the way we claim in
Remark 74 on p. 128, this “appendix to appendix” should better be skipped in the first few readings.

However, we want to stress that as calculations in Analytic Number Theory go, what we do below
is completely pedestrian, and is very close to 0 on the “0 to 10” difficulty scale. What is really
surprising is the result, and not the calculations themselves.

(This appendix is in a very early stage. It was not massaged yet in any way to simplify reading!)

Examples of dealing with Eisenstein series

Example of Eisenstein calculation:
The case M = 16 of M ×Tetrahedral number+ 1 is proportional to the polynomial (2n− 1)(4n2 +

2n− 3), which can be rewritten after the substitution k := 2n− 1 as k(k2 + 3k − 1). Applying our
recipes above for the numbers Nm (see the section on p. 115) literally to this decomposable polynomial,
one gets numbers Npk , k ≥ 1, which are 2,3,4,5,. . . when

(
p
13

)
= 1, or 0,1,0,1,. . . when

(
p
13

)
= −1, or

1,1,1,1,. . . when p = 13 (here we use Legendre symbol from p. 208). (The latter case may requires the
rule from the section on p. 115.) One can immediately see that Nm = ∑

d|m

(
d
13

)
when m = pk; since

both sides are “multiplicative”416 the same identity holds for arbitrary m. Consider a more general
sequence σm := σm(s) := ∑

d|m

(
d
13

)
ds; here s is a real (or complex) parameter. With s = 0, one gets

Nm; we are going to consider negative s, then take lims→−0.
Our aim is417 to calculate the Fourier transform of the sequence σm. Start with rewriting the

condition d|m as ∑r mod d e(m · r/d) = d; otherwise the sum is 0. Here e(t) := exp 2πit. Hence one can
rewrite

σm =
∑
d>0

(
d

13

)
ds−1 ∑

r mod d
e(m · r/d)

(note that the combined summation is absolutely convergent iff s < −1).
Grouping together terms with ±r mod d, the Fourier transform is

½
∑
d>0

(
d

13

)
ds−1 ∑

r mod d

∑
m>0

(eim(t+2πr/d) + eim(t−2πr/d)).

In this form, the complex conjugation replaces summation over m > 0 by m < 0; hence taking the
real part gives (on [0, 2π])

¼
∑
d>0

(
d

13

)
ds−1 ∑

r mod d

(∑
m

(eim(t+2πr/d) + eim(t−2πr/d))− 2
)

=
∑
d>0

(
d

13

)
ds−1 ∑

0≤r<d
(πδ(t− 2πr/d)−½) .

416 As in Step (e) on p. 60. See Footnote 149 on p. 62.
417 In fact, we came to this calculation “going backwards”: we took the conjectured formula for jumps in the

function F (−1)(t) from p. 65, then calculated the Fourier transform of the derivative of a periodic function with such
jumps, then (after we saw a match with Nm) inverted this process.
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or, putting `s := ∑
u

(
u
13

)
us (absolutely convergent for s < −1)

π
∑
d>0

(
d

13

)
ds−1 ∑

0≤r<d
δ(t− 2πr/d)−½`s.

Writing d = Du, r = Ru with u = (d, r), this becomes

π`s−1
∑
D>0

(
D

13

)
Ds−1 ∑

0≤R<D, (R,D)=1
δ(t− 2πR/D)−½`s.

Periodic extention from [0, 2π] gives

π`s−1
∑

D>0, R, (R,D)=1

(
D

13

)
Ds−1δ(t− 2πR/D)−½`s.

For s < −1, everything was absolutely convergent, hence our calculations make perfect sense:
the latter sum is the real part of the Fourier transform of the sequence σn.418 Moreover, later we
are going to show that `s and

∑
D>0, R, (R,D)=1

(
D
13

)
Ds−1δ(t− 2πR/D) extend as analytic functions to

Re s < 1, and that this implies that our formula for Fourier transform is valid for such values of s (if
one reorders the summation above as described below). Moreover, since `0 = 0, for s = 0 the last
term disappears.

Conclusion: the real part of the Fourier transform of σm (in other words, the sum of the Fourier
series) is the sum of δ-functions with non-0 coefficients concentrated in all rational multiples of π
with denominators prime to 13. From this, it is very natural to expect that the antiderivative has
jumps at these numbers, and the height of such a jump is equal to the coefficient at the corresponding
δ-function. (Note that this predicts the correct jump π`−1 ≈ 2.08 at 0.) In particular, the jump at
2π/13 would be 0.

However, on the graph on p. 65 we saw that at 2π/13 there is a jump!
Note that for s < −1 our series converge absolutely, hence manipulations make perfect sense.

One might have assumed that since σm and the coefficients at δ-functions in the final answer depend
analytically on s, they should match for any s. However, this is not how analysis works; fine print419
in theorems on analytic dependence on paramaters breaks the match.

Indeed, if one believes the calculation above gives a correct answer for s = 0, then the coefficient
at δ-function at t = 2π/13 should be 0; however, the graph of antiderivative on p. 65 has a non-trivial
jump there.

There is a lot to say about s ≥ −1.
To show that the heuristic argument above must break, consider a different approach to the same

Fourier transform. The explicit description of Npk for this polynomial implies that Npk = 0 if p 6= 13
and

(
pk

13

)
=
(
p
13

)k
is not 1. Therefore Nm =

(
m′

13

)
Nm; here we write m = m′13k with (m′, 13) = 1.

This leads to a different sequence σ̃m := σ̃m(s) :=
(
m′

13

)∑
d|m

(
d
13

)
ds with the same limit420 Nm when

s→ −0.
To calculate the Fourier transform, rewrite the factor

(
m′

13

)
. Let ρl(m) := ∑

v mod 13l
(
v
13

)
e(m · v/13l)

for l ≥ 1. We claim that
(
m′

13

)
=
√

13
13l ρl(m) when l = k + 1, and that the RHS is 0 otherwise.

418 (In fact, one can consider our summation of δ-functions even in the space of measures, and not generalized
functions.—Recall that summation—or taking limits— in generalized functions is much “more forgiving” than in
measures. (For example, consider limn(δ(t− 1/n)− δ(t)).)

419 Which one???!!!
420 Another way to see this is to note that

∑
d|m
(
d
13
)

=
∑
d|m′

(
d
13
)

=
∑
d|m′

(m′/d
13
)

=
(
m′

13
)∑

d|m
(
d
13
)
.

Compare this with
∑
dd′=m′

(
d
13
)
db = m′b

(
m′

13
)∑

dd′=m′
(
d′

13
)
d′−b. Hence σm(s) = m′sσ̃m(−s).

https://en.wikipedia.org/wiki/Eisenstein_series
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Indeed, write residues mod 13l with l ≥ 1 as v = v′ + 13v′′; here v′ runs through a particular
collection of 13 lifts of 13 residues mod 13, and v′′ runs through residues mod 13l−1. Then ρl may be
rewritten as ∑v′ mod 13

(
v′

13

)
e(m · v′/13l)∑v′′ mod 13l−1 e(m · v′′/13l−1). Note that the latter sum vanishes if

l−1 > k, and the former is ∑v′ mod 13
(
v′

13

)
e(m′13k−lv′), hence vanishes if l ≤ k. Otherwise, if l = k+ 1,

this leads to
13l−1 ∑

v′ mod 13

(
v′

13

)
e(m′v′/13) = 13l−1

(
m′

13

) ∑
v′ mod 13

(
m′v′

13

)
e(m′v′/13),

and m′v′ runs through all residue mod 13. Therefore the latter sum does not depend on m′ (for
13 - m′). By properties of quadratic Gauss sums, it is

√
13, proving the claim above. This leads to

δl k+1σ̃m =
√

13
13l

∑
v mod 13l

(
v

13

)
e(m · v/13l)

∑
d|m

(
d

13

)
ds;

moreover, one may assume that d|m′. As above, we may rewrite the condition d|m′, getting

δl k+1σ̃m =
√

13
13l

∑
v mod 13l

(
v

13

)
e(m · v/13l)

∑
d

(
d

13

)
ds−1 ∑

r mod d
e(m′ · r/d);

additionally, e(m′ · r/d) = e(m · r/13kd). Hence one can rewrite this as

δl k+1σ̃m =
√

13
13l

∑
13-d

ds−1 ∑
v mod 13l

(
vd

13

)
e(m · vd/13ld)

∑
r mod d

e(m · 13r/13k+1d).

Additionally, the residues of 13kr mod d are all distinct, so one can replace 13r by 13k+1r. Hence,

δl k+1σ̃m =
√

13
13l

∑
13-d

ds−1 ∑
v mod 13l

(
vd

13

) ∑
r mod d

e(m · (vd+ 13lr)/13ld).

Obviously, using R = vd+ 13lr the last two sums may be replaced by ∑R modD
(
R
13

)
e(m · R/D); here

D := 13ld; denote D13 := 13l. Hence, summing over l ≥ 1:

σ̃m =
√

13
∑
13|D

D−s13 D
s−1 ∑

R modD

(
R

13

)
e(m · R/D).

Calculating the real part of Fourier transform as above, we get (on [0, 2π])
√

13
∑
13|D

D−s13 D
s−1 ∑

0≤R<D

(
R

13

)
(πδ(t− 2πR/D)−½) = π

√
13
∑
13|D

D−s13 D
s−1 ∑

0≤R<D

(
R

13

)
δ(t− 2πR/D).

Extending to t ∈ R, and collecting the terms with the same R/D (as above), this becomes

π`s−1
√

13
∑

13|D, D>0
D−s13 D

s−1 ∑
R, (R,D)=1

(
R

13

)
δ(t− 2πR/D).

here we used the equality `s−1 = ∑
u

(
u
13

)
u−s13 u

s−1.
One concludes that the real part of the Fourier transform of σ̃m is the sum of δ-functions (with

non-0 coefficients) concentrated in rational numbers with denominators divisible by 13. (At least for
s < −1, when our series converge absolutely, hence manipulations make perfect sense.)

Note that this set of points where δ-functions are concentrated is exactly complementary to what
we got in the previous calculation (for σm). Moreover, for s = 0 this answer predicts coefficient 0 at
t = 0—but the graph of antiderivative on p. 65 has a non-trivial jump there.

Summation of homogeneous functions on a lattice:

https://en.wikipedia.org/wiki/Quadratic_Gauss_sum#Properties
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Consider homogeneous functions Ψ(τ) of degree d on Rn; in other words, Ψ(aτ) = adΨ(τ) for
a > 0. Restriction identifies these functions with functions ψ on the sphere |τ | = 1. Assume that
ψ, its derivatives and second derivatives421 are bounded by M . Then the second derivatives of Ψ
are bounded as CM |τ |d−2 with a certain constant C. Therefore 2Ψ(τ) − Ψ(τ − τ0) − Ψ(τ + τ0) is
bounded as CM |τ |d−2|τ0|2. Hence the same estimate holds for Ψ(τ)−

∫
l Ψ(τ + τ ′) dτ ′/|l|; here l

is a paralellipiped centered at 0 with the largest diagonal |τ0|, and |l| is its volume; we require
2|τ | > (1 + ε)|τ0| with ε > 0.

Conclusion: given a lattice L in Rn and a bounded function α on L , the sum ∑◦
τ∈L α(τ)(Ψ(τ)−∫

l Ψ(τ + τ ′) dτ ′/|l|) converges absolutely for d− 2 < −n; here ∑◦ means skipping422 τ with |τ | ≤ |τ0|.
Since in this context it is much easier to estimate integrals than sums, this observation is the principal
tool in summation of values of homogeneous functions—however, we need a slightly different approach.

Assume that α is even L ′-periodic (here L ′ is a sublattice of L ) with average 0. Take a centrally-
symmetric collection U of representatives of all translations τ + L ′ of L ′ inside L ; assume that U is
finite and contains 0. Then ∑τ0∈U α(τ + τ0)Ψ(τ + τ0) can be also bounded as above, CM |τ |d−2|τ0|2,
with τ0 the “diameter” of U . Hence the external sum in ∑′τ∈L ′

∑
τ0∈U α(τ + τ0)Ψ(τ + τ0) is absolutely

convergent for d − 2 < −n; here prime means that we omit τ = 0. (Note that the internal sum
is finite.) If d < −n, then this sum coincides with ∑τ∈LrU α(τ)Ψ(τ) (which converges absolutely).
Conclusion: the former summation method (with added ∑′τ∈U α(τ)Ψ(τ)) gives a generalization of
summing ∑′τ∈L α(τ)Ψ(τ): it gives correct answers for d < −n, and makes sense on a larger set
d− 2 < −n of degrees d.423 424

Remark 97: An important related question is the possibility of analytic continuation when the
sum is restricted to points τ ∈ L ∩ C; here C is a cone with the vertex at 0.425 When one restricts
summation to shifts τ + U of U with τ ∈ L ′ which are completely contained inside C, the same
arguments as above show that the corresponding sum over τ absolutely converges for d < 2− n, and
for a fixed d < 2− n the obtained function of C is uniformly O(α); here α is the “solid angle” of the
cone.

The points of C not involved in the summation above are in a narrow strip near ∂C; one can
immediately see that for cones with boundary of dimension n− 1 this summation absolutely converges

421 In fact, the arguments below work also when the first derivative is Lipschitz with the constant M , and the
function is bounded by M .

422 We need to skip such values since Ψ is not defined at the origin (at least when d is negative). In what follows,
skipping 0 ∈ L leads to a lot of clumsiness in the formulas below.

One could avoid this clumsiness completely if we would require that Ψ is homogeneous only for |τ | > 1, and is
sufficiently smooth near 0.

423 One can also consider complex d. Then the conditions are Re d < −n and Re d− 2 < −n.
424 Likewise, if α is odd, a similar argument (with the first derivatives instead of the second ones) shows convergence

for d − 1 < −n. In fact, in both cases more cancellations are possible, and it turns out that one can analytically
continue to any d.

425 The property of analytic continuation in s is important since it, in a certain sense, cancels “being only
conditionally convergent”. Note that the latter condition shows than one needs some additional information to define
the sum of numbers in a set (one needs to specify the “order” of summation: the method to rearrange the given infinite
sum into a sum of sums of sums etc.). On the other hand, the depence on this “method” disappeares if we require that
the “method” satisfies these additional conditions:

• Every “intermediate” infinite sums of the method is absolutely convergent when s is in a certain set Σ;
• The set Σ is connected and contains the given value s0;
• On an open part of Σ the series converges absolutely;
• We are intersted in the sum when s = s0;

provided that the sum (well defined for values of s where it converges absolutely) has an analytic extension.426
426 Indeed, absolutely convergent sums preserve analyticity.
Because of this if Σ is open, then the analyticity condition above follows from other conditions: two methods with

the same open connected set Σ must give the same results for every s ∈ Σ if they coincide on an open part of Σ.

https://en.wikipedia.org/wiki/Conditional_convergence
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for d < 1− n. Moreover, if the function ψ vanishes on ∂C, it absolutely converges for d < 2− n. This
restricts the question of the behaviour of analytic continuation to calculations on ∂C.

The situation becomes particularly simple for n = 2, when C is an angle (so ∂C is automatically
of dimension 1), and C is controlled by two numbers: the angles b′, b of bounding rays. The
“completely contained” part of the sum gives a function ϕ(b′, b) which such that |ϕ(b′, b2)−ϕ(b′, b1)| ≤
O(b2 − b1) +O(Dd−1), here D is the minimal denominator of rational numbers between b1 and b2.427

However, consideration of the ”remaining” terms is more delicate.
Remark 98: Here we examine only the case when the cone C is polyhedral. One can immediately
see that the summation over parts near “edges” of this cone absolutely converges for d < 2− n; hence
the question of analytic continuation is reduced to what happens near highest-dimensional faces of
∂C. Essentially, we need to investigate what happens near a (part of a) hyperplane.

Consider values of τ ∈ L ′ such that the region τ + U considered above is bisected by the given
hyperplane Π. Assume that these values “form a staircase”: for a certain projection to Π there is at
most one such τ with the given projection.428 Assume that the kernel of Π is spanned by a vector l0
in the lattice L ′. Then the image L ◦ of L ′ under this projection may be lifted back to L ′, consider
a linear functional β which vanishes on this lifting, and takes value 1 on l0.

It is not hard to see that the way τ +U is bisected by Π depends only on β(Π(τ)) modZ, and that
this value does not depend on the choice of β (for fixed l0). Denote by Uτ the part of such “bisected”
τ + U which is “above Π”. Hence if we want to sum values of a certain function over points in all
sets Uτ , the essential component is the behaviour of the fractional part of a linear function β on the
lattice L ◦.

In particular, if we sum αΨ where Ψ is changing slowly for |τ | � 0, then one can rewrite
α(τ + τ0)Ψ(τ + τ0) = α(τ + τ0)Ψ(τ) + α(τ + τ0)(Ψ(τ + τ0)−Ψ(τ)). Under our assumptions on Ψ, the
difference Ψ(τ + τ0)−Ψ(τ) is O(|τ |d−1) for large τ . This immediately implies that these difference
terms contribute an absolutely convergent part into summation over Uτ . On the other hand, the first
term contributes Ψ(τ)∑τ0∈Uτ α(τ0), and the sum depends only on β(Π(τ)). In fact, the sum may be
written as ξ(β(Π(τ))) with a 1-periodic locally constant function ξ.

We conclude that the question of analytic continuation of a sum over C ⊂ Rn is reduced to
investigating ∑τ∈L ◦ ξ(β(τ))Ψ(τ) (or similar sums over polyhedral cones in L ◦ ⊂ Rn−1); here β is a
linear function on L ◦, and ξ is a 1-periodic piecewise-constant function. Under our assumptions ξ is
odd. Note that for questions above, we are interested in cases when the degree d of homogeneity of Ψ
and the dimension n′ = n− 1 of L ◦ satisfy d < 1− n′.

Note that when ξ ◦ β is periodic (and automatically odd) on L ◦, the argument in Footnote 424
on p. 138 implies the required analytic dependence. This happens when the hyperplane has a normal
in the dual lattice to L . (For n = 2 this happens when the slopes of ∂C are rational.)

Apply this to the functions Ψ(R,D) = Ψ0(R,D)|D|s−1; here n = 2, τ = (R,D), and Ψ0 is of
homogeneity degree 0. Let L be the integer lattice. Suppose that Ψ0 is smooth away from 0, and
Ψ0(R,D)|D|s−1 has bounded second derivatives on |τ | = 1 for a certain range of s s with Re s < 1.
(For example, this happens when Ψ0 has a zero of sufficiently large order on D = 0.) Under the
above assumptions on α, one concludes that using the summation method above, one can extend the
function ∑′τ∈L α(τ)Ψ(τ) of s from the region Re s < −1 to Re s < 1 as an analytic function of s.

Moreover, one can see that the conditions on Ψ0 hold if the function Ψ0(R, 1) and its first two deriva-
tives vanish suffiently quickly when R→∞. This immediately implies that ∑′(R,D) α(R,D)Ds−1δ(t−

427 If one of b1,2 is rational with denominator D′, then 1/D is bounded by D′|b2 − b1|. So in this case the second
term is also similar to the Lipschitz estimate if d ≤ 0. In the case we are most interested in, when d = −1, the
Lipschitz estimate holds for “not badly approximable” numbers (which can be approximated by rationals with more
than quadratic precision).

428 In general, one can assume that the number of such preimages is bounded. The method below work with this
general case as well, so the assumption above is needed only to simplify notations.

https://en.wikipedia.org/wiki/Diophantine_approximation#Badly_approximable_numbers
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R/D) (which is a well-defined generalized function if s < −1) extends as an analytic function of s
(with values in generalized functions!) to the region s < 1.

In particular, every Fourier coefficient of the latter generalized function depends analytically on s
when s < 1. In particular, if we know Fourier coefficients for s < −1, we can extend them analytically
to s < 1, and the extended value is the Fourier coefficient of the extended generalized function.

Moreover, one can go in different direction: start with a sequence depending on parameter s;
suppose that for s < −1 the corresponding Fourier series converges to ∑′(R,D) α(R,D)Ds−1δ(t− R/D),
with α satisfying the conditions above. Then we know that for s < 1 the Fourier series converges (in
the sense of generalized functions) to∑′

(R,D)∈U
α(R,D)Ds−1δ(t− R/D) +

∑′

(R′,D′)∈L ′

∑
(R,D)∈U

α(R′ +R,D′ +D)(D′ +D)s−1δ

(
t− R′ +R

D′ +D

)
.

Moreover, the estimates above (with the second derivatives) show that the second antiderivative
of this generalized function is a function on R of class L1. In particular, the third antiderivative is a
well-defined absolutely continuous function.

The case n = 2
For n = 2 the situation of the preceding remark is reduced to analytic continuation of the sum∑

m Ξ(mγ)/ms; here Ξ is an odd 1-periodic piecewise-constant function. Instead of such Ξ, it is enough
to consider the case when Ξ = ξβ, here ξ = ξβ is 1-periodic and is 1− β on [0, β] and −β on [β, 1] (so
that the average value429 of ξ is 0). One way to estimate such sums is the Abel’s summation formula:
if we can show that ∑m ξ(mγ) grows sufficiently slow, then ∑m ξ(mγ)/ms converges. For example,
if
∣∣∣∑m≤M ξ(mγ)

∣∣∣ grows not quickier than M/ log2M , then ∑m ξ(mγ)/ms converges for s ≥ 1. In
fact, for the aim of analytic continuation, it is enough if the “M -summation” ∑M

1/M2
∑
m≤M ξ(mγ)

converges absolutely, and that 1/M
∑
m≤M ξ(mγ) → 0. Since the second property is much easier to

show, and does not need any new method, we cover only the first one.
To estimate such sums, assume431 |γ − A/B| < 1/B2, take any B consecutive numbers mγ and

consider the set of their fractional parts. One can see that the elements of this set differ no more
than by 1/B from numbers k/B with k = 0, . . . , B − 1 (when considered modZ, so we glue 0 and 1
together). In particular, the count of these fractional parts which are in [0, β] may be estimated,
and one can see that |∑m ξ(mγ)| over this range of m is bounded by 3. Hence one can estimate432∣∣∣∑m≤M ξ(mγ)

∣∣∣ ≤ 3KM if M may be represented as a sum of KM denominators of continued fractions
for γ. (Indeed, each of these denominators works as the number B above.)

For example, if M is between such denominators Ql and Ql+1, then KM ≤
∑
k≤l+1 ak; here ak are

coefficients of the continued fraction of γ. This may be improved to KM ≤
∑
k≤l ak +M/Ql.

Typically, the sequence Ql grows much quickier than al. Let Al = ∑
k≤l ak; note that Ql+1 =

al+1Ql +Ql−1. Running the M -summation above for numbers between Ql and Ql+1 gives an estimate∑
Ql≤M<Ql+1

(Al +M/Ql)/M2. The term Al contributes at most Al/Ql = ∑
k≤l ak/Ql; summing such terms

over l, the number ak comes with a coefficient ∑l≥k 1/Ql; since Qk+2 > 2Qk, this coefficient is bounded
429 For irrational γ the value of Ξ or ξ at a point of jump does not matter for analytic continuation. For rational γ

one approach is to follow the standard convention: average values below/above the jump. This gives the average of two
sums: for a closed cone and for an open cone.430

These two sums correspond to taking value either above or below the jump (depending on whether the cone is
closed or open, and on whether the hyperplane is “top” or “bottom” boundary). These sums may have a pole in analitic
continuation; to avoid a pole, we need an additional condition: the average value of α on the hyperplane should be 0.

430 N.B. Is it???
431 As in Dirichlet’s approximation theorem.
432 For rational γ the estimate may be replaced by the “last” Ak (defined below), which in turn is bounded by the

denominator of γ.

https://en.wikipedia.org/wiki/Absolutely_continuous
https://en.wikipedia.org/wiki/Abel%27s_summation_formula
https://en.wikipedia.org/wiki/Dirichlet%27s_approximation_theorem
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as 4/Qk. Now summing over k gives 4∑k
ak/Qk; however, al/Ql ∼ 1/Ql−1, hence this part of summation

converges absolutely.
The remaining term M/Ql contributes at most

∫ al+1+1
1 1/Q2

l κQl dκ = log(al+1 + 1)/Ql. Conclusion:
if ∑l

log al+1/Ql converges, then M -summation converges absolutely, hence the analytic continuation
works for s ≤ 0, and coincides with the sum of the series for s = 0. Since one can replace log al+1
by logQl+1 without changing convergence, this condition is the Bruno condition; in a certain precise
sense, only “extremely pathological” numbers fail this condition.

This shows that if an angle C has non-pathological directions of the bounding rays, the sum over
τ ∈ L ∩ C “makes sense” for s = 0. Moreover, one can find it by

• For every τ ′ ∈ L ′ add together the terms corresponding to points of L ∩ C inside the
translation τ ′ + U of U ;
• Sum up (in any order) the obtained totals for translations τ ′ + U fully contained inside C;
• Add the sum of the totals for the remaining translations τ ′ + U (in the order of the distance
from the origin).

Additionally, it shows that this method of summation is compatible with subdivision of an angle into
several smaller angles: when it is compatible433 for s < −d, the analytic continuation must also be
compatible.

On the other hand, we already saw that for directions of ∂C with rational slope p/q we can do
much more: the M -summation converges quickly enough (the remainder is bounded by q/M1−d

0 with
M0 being the cut-off) iff the average of α on the boundary ray is 0. In fact, for “typical” numbers,
coefficients of the continued fraction satisfy ak < λ(k) for all but a finite number of k provided∑
k

1/λ(k) converges (Khinchin’s estimate in “Th. 30”). Hence ak = o(k log2 k) and Ak = o(k2 log2 k).
Compare this with Qk, which grow at least as a geometric progression. This shows that for such
numbers KM = O(log3M). Essentially, this adds “only logarithmic terms” to our estimate of the
remainder of M -summation valid for rational slopes. (Moreover, analytic continuation works up to
s < 1.)

The last considerations become important when we consider how the sum changes when one
replaces the cone C with another one C ′ which differs by a small rotation of one of the boundary
rays. By compatibility with subdivision, we can consider the case of an open and very sharp angle C
instead (of magnitude |C|). First434 restrict attention to the rational slopes of the boundary rays. To
avoid poles of analytic continuation (see Footnote 429 on p. 140), assume that the average value of α
on any hyperplane in L is 0.435

One can break the sum into 4 parts (below U τ is the translation τ +U of U with τ ∈ L ′) running
over:

• The U τ s fully contained inside C.
• The U τ s which are bisected by the second ray, but not the first one.436
• The U τ r C s with U τ bisected by the second ray. (Sum taken with opposite sign.)
• The U τ ∩ C s with U τ bisected by the first ray.

Above, we estimated the first sum as O(|C|+Nd−1
C ) with NC the smallest magnitude of a point of a

lattice strictly inside C (note that |C| = O(1/NC)). Note that in the remaining parts we can omit
U τ if it has no points with magnitude < NC . Then (similarly to the first one) the second term is
bounded as O(Nd−1

C ). For rational slopes one gets an estimate O(q ·Nd−1
C ) for the other two terms;

here q is the maximum of denominators of slopes of boundary rays.
433 Of course, the ray separating the angles should be included in one of the angles only.
434 N.B. Check???
435 Note that this is not very restrictive. For example, if L ′ is of a prime index in L , this adds the condition

α(0) = 0.
436 Here we sum over the “whole” Uτ —as opposed to Uτ ∩ C.

https://en.wikipedia.org/wiki/Brjuno_number
https://www.google.com/search?q=book+Khinchin+continued+fractions&ie=utf-8&oe=utf-8&hl=en&num=10&pws=0
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However, the latter estimate does not ensure continuty, since (in the case of rational slopes)
NC and q are of the same order of magnitude. So to examine discontinuities for d = −1, we need
to investigate the behaviour of maxM

∣∣∣∑m≤M Ξ(mγ)
∣∣∣ /Q, here Q is the length of the period (the

denominator of γ)437. To simplify bookkeeping, assume that |Ξ| and jumps of Ξ are bounded by 1.
Proceed as above: assume that |γ − r/q| < 1/Nq; then the sum sn := ∑

m Ξ(mγ) over n ≤ N
consecutive values of m differs from the corresponding sum ∑

m Ξ(mγ0 + δ) (with γ0 := r/q, and an
approriate δ) by no more than the total variation v of Ξ. Note that the latter sum vanishes for n = q

and δ = 0; when it vanishes for every δ we get an estimate v + 2 maxM
∣∣∣∑m≤M Ξ(m · r/q)

∣∣∣ for sN, and
the estimate (1/N + 1/Q) ·

(
v + 2 maxM

∣∣∣∑m≤M Ξ(m · r/q)
∣∣∣) for maxM

∣∣∣∑m≤M Ξ(mγ)
∣∣∣ /Q. (Indeed, we

need about Q/N + 1 such runs to cover the whole period.)
Moreover, when γ 6= γ0, one has 1/N + 1/Q < 2q∆ with ∆ := |γ − r/q|. Hence when there is no

dependence on δ, and one ray of the angle (with rational slopes!) is fixed, the sum is bounded by a
multiple of ∆.

Conclusion: consider our regularized sum ∑
τ α(τ)Ψ(τ) (with Ψ of homogeneity degree −1) taken

over τ ∈ L in an open angle C. Fix α and Ψ; then the sum can be bounded (in magnitude) by
const ·q2

1|C| (with q1 being the denominator of the slope γ1 of one of the boundary rays of C in a
particular basis of L ) provided:

• the boundary rays of C go in “rational” directions w.r.t. C;
• the function Ψ is smooth away from 0;
• the function α is double-periodic with average 0;
• the function α has average 0 on both boundary rays;
• the function α has average 0 on any line in L going in the direction γ1.

Together with additivity, this gives a partial description of the behaviour of the sum in an open angle
C when one varies one of the rays R of the angle. Call an L -rational direction admissible if the
average of α on the line of this direction through 0 vanishes; call it strongly admissible if the same
holds for all translations of this line. Restrict attention to angles with admissible direction of R;
then near a strongly admissible direction, there is a jump of ∑τ∈R α(τ)Ψ(τ), and there are one-sided
Lipschitz estimates on any side of the jump.

For α(p, q) =
(
q
13

)
on Z2 any rational directions is admissible; it is strongly admissible iff the slope

γ1 = p1/q1 has denominator prime to 13. Likewise, for α(p, q) =
(
p
13

)
on the sublattice L ⊂ Z2 given

by 13|q, strongly admissible directions have 13|q1.
0.34917

0
0 0.040.005 0.01 0.015 0.02 0.025 0.03 0.035

As we already saw, these two cases lead to
the same sums over angles; since any rational
direction is strongly admissible for one of these
cases, this explains the observed properties of
the graph on p. 63. (Note that this explanation
works for rational directions only; to include—
typical?— irrational values would require addi-
tional arguments.)

What we proved above is that any one of
two sums above has the “expected” jumps at the
points where the terms we sum have jumps, how-
ever, it also has “spurious” jumps; they happen
where the other sum has “expected jumps“, and

437 Note that the position of jumps of Ξ depends on γ. Moreover, at some values of γ the jumps may “collide”.
However, this dependence turns out to contribute only negligible terms into the estimates we need, so we are going to
ignore it.
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are of the same height as these jumps. However, having a proof does not make an explanation. How
come these spurious jumps appear?

As a partial explanation, observe what happens when we “deform” the sum, changing s from 0 to
negative values. The plot above shows what happens near t = 0 when s = −1/3, together with the
graph of y = C · t1/3. This plot has only the “expected” jumps at points p/q with 13 - p, of magnitude
√

13/qs13q
1+s
(
p
13

)
. In general, the curve to fit when t→ +0 is438 Cs · t−s. When s→ 0, the coefficient Cs

goes to ½, and y goes to ½ for positive t. Since the function is odd, with s = 0 we get a jump of 1 at
t = 0.

Conclusion: the spurious jumps appear only when s = 0. For other values of s, one gets “less
confusing” power-law singularities at the positions of spurious jumps.

2.5

-2.5
-0.1 71 2 3 4 5 61 2 3 4 5 6

Remark 99: For the case of negative discrimi-
nant, the corresponding Eisenstein series do not
behave as nice, so the surprise factor of “spu-
rious” jumps coming from clear blue sky disap-
pears. Indeed, in this case the toy transform
mixes together the real and the imaginary parts.
As the graphs on p. 63 show, when the real part
has jumps, the imaginary part must have a log-
singularity; hence if one expects jumps, then the
real part has both jumps and log-singularities.
This breaks the symmetry between “expected”
and “spurious” features.

Indeed, this is what happens in reality. On
the right is the example plot for a decompos-
able polynomial x3 + x with discriminant −4. The only special prime is 2, and one could use
LST = [[2,[1,0,3]]] for PN_nINIT() (see Footnote 704 on p. 217). Moreover, it looks like there is
no jump at π—so the situation is not as clear-cut as in the case of positive discriminant.

A final (and probably most important) remark: the presence of log-singularities on a dense subset
shows that both “real” graphs439 are going to fill the plane. This suggests that the approach we
used would probably make little sense for odd functions α (compare with even/odd cases of Euler
formulation on p. 16).

In other words: in this context, the Maass case is much more interesting than the “case of modular
forms”.

438 Heuristically, this may be explained by the last identity of Footnote 420. If we could replace m′s by ms in this
identity, then the Fourier transforms of σ(s) would be “the fractional derivative of order s” of the Fourier transform
of σ̃(−s). Since “taking a derivative” is “a convolution with the function δ′”, and “taking derivative of order s” is a
convolution with t−1−s/Γ(−s), under “the heuristic assumption above” if one expects δ(t− t0) to appear in the Fourier
transform of σ̃(−s), one should also expect a singularity of type (t− t0)−1−s/Γ(−s) to appear in the Fourier transform
of σ(s) (and the same with σ and σ̃ exchanged).

Taking antiderivative of this produces a singularity of type (t− t0)−s/Γ(1− s). This is almost exactly what we saw
above. However, this heuristic does not work ideally: we needed an extra factor 0.815 to make a match in the plot
above. (Naive approach taking into account only the jump of σ at 0 would lead to the coefficient 12/(13− 13s) ≈ 0.9543.)

439 As opposed to simulations made by interpolating from a small collection of values of t.

https://en.wikipedia.org/wiki/Fractional_calculus#Heuristics
https://en.wikipedia.org/wiki/Fractional_calculus#Heuristics
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In construction! (Lousy—but more or less complete—exposition (except for ζ-function).)

The overwhelming consideration governing the design of these notes is to simplify the exposition as
much as I could. For this, a lot of interconnections were ignored and (sometimes) a deus ex machina
has been invoked—without sufficient explanations.

Here we treat such dust which we put under the carpet before. It is quite probable that these
omissions have very little to do with the Langlands program, but are only related to the particular
shortcuts we use in these notes.

More details on the M-family

On p. 18, we introduced the M -family of polynomials “M · tetrahedral numbers+N” (considering
rational coefficients allows us to fix N = 1) and announced that it contains a very large pool of
“interesting” cases. Here we explain why the “simpler” a cubic polynomial is, the better is the chance
that it produces the same function F (t) as some polynomial from the M -family.440

First, note that changing variable by substituting x = an+ b with suitable a, b into a polynomial
P (x) would change the list of prime divisors of the values of the polynomial in only a finite number of
positions. Since we may ignore “exceptional” primes anyway, we can use this substitution to consider
only the polynomial x3 +N ′x+N ′′ with two suitable parameters N ′, N ′′ ∈ Z. (The discriminant of
this polynomial is D = −4N ′3 − 27N ′′2.)

In fact, a more involved analysis shows that the same happens not only for linear substitutions,
but for quadratic “Tschirnhausen transforms”441 as well. Essentially, this means that the function
F (t) depends not on the polynomial, but on the cubic extension of Q defined by this polynomial.

Our family corresponds to N ′ = −1, N ′′ = N/M ∈ Q, and D = 4− 27N ′′2. To find N ′′ matching
the given square-free part d of D, one needs to solve x2 − 3y2 = d. Proceeding as in Footnote 280
on p. 100 leads to the conditions

• d 6≡8 2, 3, 7—automatically satisfied for cubic discriminants, and
• d ≡9 0, 1, 4, 6, 7, and
• 3 must be a quadratic residue mod prime divisors p of d—equivalent to p ≡12 ±1.

Essentially, if d has K prime divisors larger than 3, the fraction of such numbers d such that the
equation above has solutions is about 2/3 · 2K. Since K is usually very small unless d is very large, this
explains why a lot of cases of small discriminants can be represented by our family. Conclusion:

While most cubic polynomials do not give F (t) from an M -family, many “simple” ones do.

(In fact, the M -family contains 30% of the possible field discriminants below 1,500 in magnitude, and
25% for the cut-off at 25,000. On the other hand, when one considers the suitable modular forms with
small conductors, it seems that M -family may miss a significant number of them; see Footnote 445
on p. 145.)
Remark 100: Above, we ignored existence of different cubic extensions whose discriminants coincide.
One can check that for small |D|, such coincidences happen rarely: the smallest positive/negative
cases are 34 × 72 = 3,969 (cyclic), 22 × 35 × 23 = 22,356 (non-cyclic) and 4× 3× 2351 = 28,212 (a
fundamental discriminant), and −1,228.

440 Here one can use the magnitude of the coefficients as a measure of simplicity. (However, the more precise
measure is the magnitude of “the field discriminant”; we use a similar measure below.)

441 Given a quadratic polynomial Π(x), this transform is another cubic polynomial PΠ(x) such that PΠ(Π(x0)) = 0
for every root x0 of P (x). (The paper of Buhler and Reichstein is a very good introduction.)

144

https://en.wikipedia.org/wiki/Tschirnhaus_transformation
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https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field
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To analyse this, note that cyclicity is determined by d = 1, hence there may be no coincidence of
discriminants between cyclic and non-cyclic cases. In cyclic cases such coincidences happen when D
is a products of more than one number from the list 92, 72, 132, 192 etc.442

The simplest coincidences of non-cyclic extensions are related,443 by Class Field Theory, to having
more than one subgroup of index 3 in the Class Group Cl(Q[

√
d]). (This is the same as having more

than 2 elements of order 3 in this group.) So the rarity of this situation is related to the class number
being typically not very large. (Unfortunately, there is very little proven about the related statistical
properties of these groups. . . )
Remark 101: One can check that although the examples above produce the same discriminant (hence
conductor), still they result in different functions F (t). Moreover, this is a general situation: if two
polynomials result in the same function F (t), then they are related by a Tschirnhausen transforms.444

3 smallest conductors

Remark 102: Using mfeigensearch as described on p. 218, one can see that our function F investi-
gated in the section on p. 68 matches a modular form with the conductor445 c = 39. One can find the cor-
responding L-function by lf=lfunartin(NF=nfinit(nfsplitting(P)),gal=galoisinit(NF),[[0,1;-1,0],[1,0;0,-1]],1);
to check the coincidence with the initial coeffients calculated by our rules, use lfunan(lf,#N_n)==N_n.

Compare this with a direct match of the graphs: a peak on the graph of F (−1)(t) near t = 0.228
matches a peak near t = 4.44 on the purple graph in the beginning of that section (for ImF

(−1)
C (t)).

This leads to c ≈ 4π2/4.44 · 0.228 ≈ 38.998.

The flattened parts of the graphs

It is not hard to explain why such parts appear on graphs of partial sums of Fourier series for
functions H(t) := tG(−1/t) (or |t|G(−1/t)) with a periodic function G. Answer: When the average of

442 Indeed, by Class Field Theory one should start with subgroups of index 3 in (Z/m)×; exclude subgroups induced
by surjections (Z/m′)× → Z/3 with m′|m and m′ < m. The remaining subgroups match cyclic cubic extensions of
discriminant m2 (by the “Conductor-Discriminant Formula”). Obviously, the number of such subgroups is the number
of points in Pk−1(Z/3) which are not in the coordinate cross, here k is the number of divisors of m which are either 9,
or prime p with 3|p− 1. So what is needed to allow several choices is k > 1—leading to the answer above.

443 Unfortunately, this relation does not lead to a complete answer. As the example above with a non-fundamental
discriminant D = 22,356 shows, it is not possible to avoid consideration of (more complicated) “ray class groups”. (One
can recognize (Z/m)× from the preceding footnote as the simplest example of a ray class group.)

444 Indeed, coincidence of functions F (t) is analysed in Exercise 6.4 of the collection edited by Cassels and Fröhlich.
It may happen non-trivially only in the non-abelian case, and the corresponding field extensions should have the same
discriminant (=conductor). The exercise concludes that the corresponding Galois subgroups of the compositum field
must be “conjugation numerically-equivalent”: any conjugacy class should intersect these two subgroups in the same
number of elements. Conclusion: this situation is not possible for cubic extensions: the subgroups are going to be
conjugate (hence the fields are isomorphic)!

(Indeed, since discriminants coincide, we get two abelian cubic extensions of the same quadratic extension. Hence
the combined compositum of these cubic fields and the quadratic field is Galois. Moreover, the Galois group must be
the external product of Z/2 acting on Z/3× Z/3 as multiplication by −1. We need to show that any two conjugation
numerically-equivalent subgroups of index 3 are conjugate.

However, this group is isomorphic to the group of translations and central reflections on the plane over the field
Z/3. Hence any subgroups of index 3 must consist of reflections in points on a line, and translations along this line.
Looking at conjugacy classes of translations shows that two lines corresponding to two subgroups must be parallel. But
then they are conjugated by a reflection in any point not on these lines.)

445 This is the second smallest conductor of a modular form appearing in these notes. We already saw the smallest
possible conductor 23 in “the case M = 6 in the M -family” considered in the section on p. 51.

In fact, as mf=mfeigensearch([[1..40],1], []) in GP/PARI shows, 39 is the third smallest possible conductor
for a modular form (of weight 1). The second one is 31—and it corresponds to the cubic polynomial P = x3 + x− 1.
(This conductor does not seem to appear in the M -family—at least with M = R/S and |M |, |M | ≤ 3,000. It appears in
Exercise D7 on p. 28.)

https://en.wikipedia.org/wiki/Class_field_theory#History
https://en.wikipedia.org/wiki/Ideal_class_group
https://en.wikipedia.org/wiki/Ideal_class_group#Properties
https://arxiv.org/pdf/math/0411484
https://en.wikipedia.org/wiki/Class_field_theory#History
https://math.stackexchange.com/a/1104946/595145
https://math.stackexchange.com/a/1104946/595145
https://en.wikipedia.org/wiki/Conductor-discriminant_formula
https://en.wikipedia.org/wiki/Ray_class_field
https://www.google.com/search?q=book+Cassels+Froehlich&ie=utf-8&oe=utf-8&hl=en&pws=0
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G is 0, and the antiderivative of G decays cubically near 0, the partial sum of the Fourier series for
H(t) is going to have a flattened zone near 0. To explain this, we use the saddle-point method.

First of all, to have a Fourier series to sum, we would need H to be periodic. Note that the
conditions of periodicity of G and H are too severe, and restrict our flexibility too much. On the
other hand, if we do not require that H is periodic, we can just cut off its Fourier transform446 at
some particular frequency—this would give the same result as cutting off the Fourier series. (In other
words, instead of taking the inverse Fourier transform, we restrict integration to a particular interval.)

The crucial observation is that the combination of
• Take Fourier transform Ĥ(τ) of H;
• Cut it off to a certain interval of τ ;
• Take the inverse Fourier transform;

is equivalent to taking a convolution with a certain function.447 One can immediately see that this
function is proportional to sinc t := sin t/t (with appropriately rescaled t).

Above, we were considering the Fourier series for H; now consider the Fourier series for G. Now,
when we do not require that H is periodic, one can take G to be a Fourier monomial (essentially, a
trigonometric function!). If we can show that a flat region appears for any such G, then summing up
the Fourier series for a general G would prove449 the general fact about appearence of flat regions.
This leads to

The convolution t cos 1/t ? sinc kt has a flattened region near t = 0. Same for sin instead of cos.

In fact, in calculations it is easier to replace cosx by exp ix (and then take the real part, if needed).450

t0

Now the problem boils down to giving a ballpark estimate for
1/π
∫
t/(t− t0) exp i/t sin k(t − t0) dt for large k > 0 and small t0. Note that

the integral is over R r 0, but since exp i/t is bounded on Im t ≤ 0, we can
“add a tiny half-circle below t = 0” (as on the right) and replace the path of
integration by any deformation of R passing below t = 0; otherwise, we can
deform the contour of integration arbitrarily in the plane C.

Moreover, we can replace sin by two exponents—and for exp i(1/t± k(t− t0)) the regularization
of Footnote 450 on p. 146 is equivalent to deforming the contour so that it goes into upper half-plane
when |t| → ∞ for sign “+”, likewise into lower half-plane for sign “−” (the red and blue contours
above).

446 . . . which, for a periodic function H, is going to be a sum of δ-functions on Z with coefficients equal to the
Fourier coefficients. In other words, with this approach we are forced to consider generalized functions.

447 Indeed, it is enough to check that changing H(t) to its shift H(t+ t0) would shift the result of this operation.
This happens because (up to questions of convergence448 ) any linear operator on functions which commutes with shifts
is a convolution with a certain function C. (To find this function, apply the operator to the δ-function.)

448 Note that above we already skipped certain questions of convergence. Indeed, when cutting-off a δ-function to
an interval [τ0, τ1], what if the δ-function is at τ1?

While switching to the language of generalized functions avoids a lot of questions of convergence, some of these
questions remain (“they are inavoidable”). To fight these, the standard approach is to apply suitable “mollifications”
or “regularizations” —which change the results of the operations.

In this notes, we are consistently ignoring these questions—and we continue to do it here. Just note that in the
final result, when H is periodic, and Ĥ(τ) a sum of δ-functions on Z, a cut-off does not cause any problem as far as the
ends of the interval [τ0, τ1] are not integer. This essentially shows that for such an interval the “changes” mentioned
above are going to cancel each other!

449 Here we again are going to ignore questions of convergence. . .
450 Note that when computing the convolution, the integral is improper, behaving as

∫
t(1+i/t+. . .) sin(t− t0)/(t− t0) dt

(after replacing cos t by exp it, as we do below). Essentially, we integrate sin(t− t0) + B/t sin(t− t0) + . . .; all the terms
except the first one converge (though not absolutely), and the first term has an average 0 over period—so can be dealt
with any sane “regularization”. (For example, one can subtract sin(t− t0) from the expression we integrate. This is
equivalent to the particular way to bend the paths of integration we use below.)

https://en.wikipedia.org/wiki/Method_of_steepest_descent
https://en.wikipedia.org/wiki/Sinc_function
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Sinc_function
https://en.wikipedia.org/wiki/Generalized_function
https://en.wikipedia.org/wiki/Commutator#Ring_theory
https://en.wikipedia.org/wiki/Mollifier
https://en.wikipedia.org/wiki/Regularization_(physics)
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However, splitting sin into exponents leads to both terms having a pole at t = t0, so before
deformation, we need to choose on which side of this pole our contour is going to pass. Choosing
circling t0 from below (as on the picture), the integral with the −-sign vanishes (since the expression
under the integral decreases when we deform the blue contour down451 ).

Conclusion: We need to estimate 1/2πi exp−ikt0
∫
t/(t− t0) exp i(1/t+kt) dt over the red deformation

of the black contour above. Alternatively, we can pass above t0 (the dotted gray line)—and then the
integral gives the difference between the remainder term of the Fourier series (with opposite sign).

The saddle points (the critical points of 1/t + kt) are at t = ±t+ := ±1/
√
k; so the geometry of the

magnitude of the function we integrate along the contour depends significantly at whether 1/
√
k < |t0|

or 1/
√
k ≥ |t0|. This is the reason for the change of behavior for small |t0|.

−t+ +t+

On the right, we show (in red) the regions where the magnitude of
exp i(1/t+ kt) is small, as well as the sectors near ±t+ where the magnitude is
smaller than in the other two sectors. (To see how these sectors are positioned,
it is enough to note that the second derivatives of i(1/t+kt) at ±t+ are ±2i/t3+.)

According to the saddle-point method,452 to approximate the integral one
should consider the contour passing through the red zones.453 454 To get the principal term of the
approximation, one should replace the argument of exp i(1/t + kt) by its quadratic approximations at
±t+, and replace the contour by straight lines passing through ±t+ (inside the red sectors). So the
main term is mostly contributed by the zones of size t

3/2
+ about ±t+.

Note that for |t0| < t+ the contour of integration for the saddle point method is compatible with
the red contour above (hence the integral is the partial sum of the Fourier series), otherwise it passes
above t0 (hence the integral is the remainder of the Fourier series—with opposite sign).

It is not very hard to see that for k � 1 the remainder term of the approximation is negligible.
Likewise, the contribution of the non-constant part of the factor t/(t− t0) is neglible for k � 1 unless
|t0 ∓ t+| = O(t3/2

+ ). In particular, for k � 1 this factor gives a practically constant contribution in at
least one of two integrals about ±t+.

Conclusion: the principal term in the approximation of the integral
∫
R
t/(t− t0) exp i(1/t + kt) dt is

exp(2i
√
k)
∫
R

t

t− t0
exp i(t− t+)2

t3+
dt+ exp(−2i

√
k)
∫
R

t

t− t0
exp−i(t+ t+)2

t3+
dt

(above, this integral had an extra factor 1/2πi exp−ikt0; in this formula, 2
√
k is 1/t+ + kt+). If the

contour of integrations is the contour of the saddle-point method (essentially, this means that it goes
through the red zones), one can use the formula∫

R

1
(t− t1i)

exp−t
2

2 dt = 2πi(1− Erf t1) exp t
2
1
2 ;

451 For the Maass case, we need to consider the corresponding integral over R+ instead of R, so this argument does
not work. Instead, we can proceed as below: the saddle-point method would deform this contour into −iR+ with the
saddle point −it+. Hence the integral has the order of magnitude of t3/2

+ exp−2
√
k.

For our plots,
√
k is typically about 100, so in the Maass case this term—while non-0— is still completely negligible.

452 Recall that this method has two faces: first, it gives a certain approximation to the integral in question. The
second part comes in two flavors: on one hand, one can use some ready-to-use estimates of the error of the approximation
above; alternatively, one may look for an “ad hoc” estimate of this error—and it is usually even simpler than finding a
pre-cooked estimate.

Here we ignore the question of estimating the error term.
453 N.B. (???) −1/t and lower half-plane!
454 The function is very rapidly decreasing near the top of the red circle. This means that the considerations above

are applicable not only to the integral over R, but also to the integrals over R+ and R− (for them, one needs to restrict
attention to one saddle point).

This is what makes the conclusion of this section applicable to the Maass case (when the factor at G(1/t) is |t|, and
not t) as well.

https://en.wikipedia.org/wiki/Method_of_steepest_descent
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here
√

2π Erf t is the antiderivative of exp−t2/2 vanishing at t = −∞. (This formula holds as far as
t1i is above the contour of integration. It is easy to establish using the Fourier transform.) Therefore∫

R

1
(t− t1) exp−t

2

β
dt = 2πi

1− Erf
−i t1√

β/2

 exp−t
2
1
β

;

as far as t1 is above the contour of integration (and Re β ≥ 0). If t1 is below the contour of integration,
then one needs to subtract 2πi exp−t21/β. (In other words: omit 1 in the formula.)

Introducing Em(t) := 2πi
(
m− Erf

(
−
√
it
))

exp it2/2 and E+ := E1, E− := E0 leads to∫
R

1
t− t1

exp it
2

2 dt = E±(t1)

with + or − chosen depending on whether t1 is above or below the contour of integration. When we
integrate over (1 + εi)R (with ε > 0, to make the integral quickly converging) and t ∈ R, then the
sign is − sign t.

Note that E(t) := E− sign tt is odd, behaves asymptotically as ∼−√2πi/t for large |t|, and jumps
from πi to −πi when t crosses from −0 to +0. Let Ẽ•(t) := tE•(t) +

√
2πi. Then Ẽ is a bounded even

continuous function behaving as O(1/t2) for large t. (Both E and Ẽ are smooth when the argument is
positive.) Then ∫

σR

1
t− t1

exp it
2

β
dt = E±

 t1√
β/2

 if 0 ≤ Arg σ2/β ≤ π.

(Here the ± sign must match Im t1/σ.) Moreover,∫
R

t− t2
t− t1

exp it
2

β
dt = (t1 − t2)E±

 t1√
β/2

+
√
βπi =

√
β/2Ẽ±

 t1√
β/2

− t2E±
 t1√

β/2

 .
For β > 0 the contour of integration may be R (or (1 + εi)R with ε ≥ 0); for β < 0 it may be −R

(or (−1 + εi)R with ε ≥ 0). With ε > 0 and t1 ∈ R this sign is − sign t in both cases.
Combining all this together, the saddle-point method replaces the integral

∫
R
t/(t− t0) exp i(1/t+kt) dt

by

exp(2i
√
k)
t+E

t0 − t+√
t3+/2

+
√
t3+/2Ẽ

t0 − t+√
t3+/2

+ exp(−2i
√
k)
t+E

t0 + t+√
t3+/2

−√t3+/2Ẽ
t0 + t+√

t3+/2

 .
Recall that for |t0| < t+ this approximates the partial sum of the Fourier series, otherwise it
approximates the remainder of the Fourier series (with the opposite sign).

The next term in the saddle-point approximation would involve the next term of Taylor series of
i/t + ikt at ±t+. For this term, we can use∫

R

1
(t− t1i)

t3 exp−t
2

2 dt =
√

2π(1− t21) + 2πt31(1− Erf t1) exp t
2
1
2

which decreases as O(1/t21) for t1 � 0. Hence, as above∫
R

1
t− t1

t3 exp−t
2

β
dt =

√
πβ

(
β

2 + t21

)
+ 2πit31

1− Erf
−i t1√

β/2

 exp−t
2
1
β
,

∫
R

1
t− t1

t3 exp it
2

β
dt =

√
iπβ

(
iβ
2 + t21

)
+ 2πit31

1− Erf
−i t1√

iβ/2

 exp it
2
1
β
.
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Introducing Ym(t) :=
√

2πi (i + t2) + 2πit3
(
m− Erf

(
−
√
it
))

exp it2/2 and Y±, Y the same way as for
Em, the last integral is455 (β/2)3/2Y (t1/√β/2) when t1 ∈ R and the integral is over (1 + εi)R with ε > 0.
Moreover, Y (t) is even continuous and decreases as O(1/t2) for large t ∈ R. Likewise

∫
R

t− t2
t− t1

t3 exp it
2

β
dt = (t1 − t2)

(
β

2

)3/2

Y

 t1√
β/2

 .
Therefore the cubic terms in Taylor series for i/t at t = ±t+ contribute

−it0
√
t+/8

exp(2i
√
k)Y

t0 − t+√
t3+/2

− exp(−2i
√
k)Y

t0 + t+√
t3+/2

 ,
to the remainder, and one should expect456 that the whole remainder has the same order of magnitude.
Note that for |t0| . t+ these terms have similar magnitude to the terms with Ẽ in the formula for the
main saddle-point expression. Moreover, all these terms are majorated by the term with E provided
|t0| . t+ � 1.

Conclusion: the principal term in the saddle-point integral when |t+|, |t+t20| � 1 is

t+
2πi exp(−ikt0)

exp(2i
√
k)E

t0 − t+√
t3+/2

+ exp(−2i
√
k)E

t0 + t+√
t3+/2

 ,
and for |t0| < t+ this approximates the partial sum of the Fourier series, otherwise it approximates
the remainder of the Fourier series (with opposite sign). The error has relative magnitude √t+.

The jump in E matches the total sum of the Fourier series for t0 ≈ t±; replacing E by E+
(which has no jump) provides a good estimate on the right of t+ if t0 ≈ t+. For larger values of t0,
one should take into account that the contour going across t0 subtracts the value of t0ei/t0 in the
integral for the partial sum of the Fourier series, but subtracts a similar value of with the quadratic
approximation to the exponent above in the saddle point integral. This quadratic approximation457
differs by (t+ − t0)3/t0t3+.

To compensate for this, one needs to add t0ei/t0 and subtract t0ei/t0+i(t+ − t0)3/t0t
3
+ if t0 > t+. Moreover,

taking an asymptotic expression for the second E-term above does not worsen the order of magnitude
of the error:

t+
2πi exp(ik(2t+ − t0))

E+

t0 − t+√
t3+/2

− exp(−4i
√
k)

√
πit3+

t0 + t+

 , −t+/2 . t0 .
(
1 +O

(√
t+
))
t+.

The error is of the relative magnitude √t+ of the terms above. For larger t0, to keep such precision
one needs to add t0ei/t0(1− ei(t+ − t0)3/t0t

3
+).)

Let τ := (t − t+)/
√
t3+. When |τ | . 1, the principal part of the expression above is one with

E+(τ
√

2). Therefore, up to a phase factor, the partial sums of the Fourier series of ei/t have a “universal

455 N.B. (???) It looks like this should be easily generalizable?!
456 N.B. (???) Check!
457 If |t0| is large, then for the saddle-point to work, the contour should go above t0. In this case we need the

formula without 1 s, and it approximates not the integral over the red contour, but its modifiction passing above t0.
This means, essentially, that the formula above should be corrected by a difference in value between t0 exp i(1/t0 + kt0)
and the corresponding “saddle-point approximation”, where we replace i(1/t + kt) by its quadratic approximation at
±t+ (one which is closer to t0).
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behaviour” near the point t+ where the phase transform happens:
7.3555
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On the left plot, we show the real/imaginary parts of this universal behaviour (ignoring the phase
factor), as well as its ±magnitude.458 The contribution of the phase factor depends459 on k. On the
right plot, the graphs of the same colors show (using the same colors) how the universal behavior
combines with the phase factor when k = 10,000 (note that our graphs of fractally-symmetric functions
correspond to k . 10,000).

It is easy to identify the red or blue graphs on the right picture with what one can see after
zooming (a lot!) into the flattened zones of our plots of fractally-symmetric functions. However, there
is a small, but clearly visible mismatch: in our plots, there is a definite growth of the amplitude of
oscillations on the right of τ = 0 (in other words, on the right of t0 = t+). The reason for this is that
on the graph above τ ∈ [−5, 5], or t0 ∈ [t+(1 − 5√t+), t+(1 + 5√t+)]; recall that t+ = 1/

√
k. With

(relatively!) small values of k we have on our graphs, 4
√
k . 10 which is very small (and comparable

with the width of the domain of the plots above). Because of this, the magnitude of t0 changes a lot
on the interval in question—and the oscillations have a magnitude close to |t0|.

Since this relative change of magnitude of oscillation is about 1/ 4
√
k, it is “negligible”, and is

described by the term Ẽ we discarded above. This term is plotted above in light blue and green460 461

(for the same value 4
√
k = 10).

Alternatively to using E+, we can use E and add the residue

t0 exp i
t0

= t+ exp i
t+

exp
(
− iτ√

t+

)
·
(
1 +

√
t+τ

)
exp iτ 2

1 +√t+τ
when t0 = t+(1 +

√
t+τ).

The factors before · match the factors in our formulas above. So define Efull(τ, α) as 1/2πiE+(τ
√

2) if
τ ≤ 0, and 1/2πiE−(τ

√
2) + (1 + αt) exp iτ2

1+ατ otherwise. Then the saddle-point approximation to our
convolution is

t+ exp i
t+

exp
(
− iτ√

t+

)
Efull(τ,

√
t+).

458 Modulations appear since E+(t) for t� 0 is a sum of an oscillating term of constant magnitude and a decaying
non-oscillating term. Therefore |E+| behaves as |Aeif(t) + B/t| = |A+Be-if(t)/t|, hence oscillates with the magnitude
B.

459 Since kt2+ = 1, the extra phase term oscillates as exp−iτ/
√
t+, so in the scale of the plot above it is a very quick

oscillation, with the frequency about 4
√
k.

460 We also plot the magnitude of terms containing E and Ẽ. One can see that the latter magnitude also has an
oscillating term, but amplitude of these oscillations is microscopic.

461 The “apparent” switch in the direction of oscillation on the right of the graphs is an artefact of our quadratic
approximation to i/t. The more terms of Taylor series we keep, the further to the right this artefact would appear.
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Two plots below are for Efull, as well as it combined with the phase factor exp (−iτ/√t+) (both with
α = 1/10).

1.5309

-1.5247
-5 5-4 -3 -2 -1 0 1 2 3 4

1.5309

-1.5111
-5 5-4 -3 -2 -1 0 1 2 3 4

Note that Efull(τ, 0) = 1/2πiE+(τ
√

2). Moreover, the first term in Taylor expansion of Efull(τ, α) in α
is similar to Ẽ+(τ) together with the contribution of the cubic term considered above.

Unfortunately, combining the factor exp−iτ/√t+ above with Efull(τ, α) when α := √t+ leads to
counterintuitive results when one takes the Taylor approximation at α = 0. The errors in the derivative
of the phase become so large when ατ ∼ 1 that the finite sum has phase reversal: the phase of the
approximation changes the direction of rotation.462

Consider now a more general convolution T exp iL/T ? sincKT in the variable T (above L = 1
and K = k). A coordinate change t = T/L reduces this to the case L = 1, k = KL. Therefore the
phase transition happens when t = t+ := 1/

√
KL, or T = T+ :=

√
L/K. The width of the zone of phase

transition around T+ is T+
√
t+ = 4

√
L/K3. The analysis above makes sense when k � 1, hence if it

makes sense for L = L0, it also makes sense for L ≥ L0.
Note also that the zone between the “±”-phase transitions for L0 is deep inside the flattened

zone for L � L0. Conclusion: for a sum of a series in L, only the term which has the smallest
L = L0 would contribute significantly into the convolution when |T | .

√
L0/K. If the Fourier series

(with period 2πL0) for G(t) has coefficients an, then in this zone for L0, the contributions of a1 is
a1
√
L0/K near the ends, and a1

4
√
L3

0/K5 near 0. The contribution of other Fourier terms has the order
of magnitude an 4

√
L3

0n
3/K5.

Hence the contributions of n > 1 are products of
• a coefficient of magnitude an 4

√
L3

0n
3/K5;

• a quickly oscillating in T phase factor exp(−iKT ) (independent of n);
• an oscillating in n phase factor exp 2i 4

√
nL0K, and

• a slowly changing on [−(1 + β)T+, (1 + β)T+] (here T+ is taken for n = 1, and 0 < β � 1)
factor which is 1/(1− ξ/

√
n) asymptotically in n; here T = ξT+.

Recall that in our fractally-symmetric cases G(t) is an antiderivative of the Fourier transform of
the sequence (Nn) which grows very slowly (recall that this sequence is related to modular solutions
to a polynomial equation). Hence an = Nn/n.

Note that the variation of the slowly-changing factor is ξ/√n plus a remainder of magnitude 1/n.
Hence this remainder is given by an absolutely converging series, so it may be considered “small”. We
are going to ignore it in what follows.

462 In the non-asymptotic formula for Efull the phase of exp iτ2

1+ατ changes slower when ατ grows to become ∼ 1.—
Compare this with the phase reversal in the first-order Taylor approximation in α.
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Conclusion: in the flattened region the behaviour of convolution is controlled by two coefficients

4
√
L3

0/K5
∑
n exp

(
2i 4
√
nL0K

)
Nn

4√nm , m = 1, 3.

at powers 1, ξ of ξ. If we can show that these coefficients are bounded in K, this would explain the
appearence of flattened regions in the convolution TG(1/T) ? sincKT near T = 0 (as well as why these
regions look very similar to the contribution of the first terms in the Fourier series for G).

These coefficients are, essentially, the Fourier transforms of ∑n
Nn/ 4
√
nm δ 4√n. As η := 4

√
n grows,

the density of the points 4
√
n grows as η3. Hence “smoothing” this generalized function leads to η3−m

times “the average value of Nn near n = η4”. Since the sign of Nn changes “chaotically”, it is not
surprising that the average value of Nn is small; however, to show that the latter Fourier transform
is bounded, one needs to estimate this average value to be quite small (for example, for m = 1 it is
enough to show it to decay463 quicker than n−¾ when averaging464 over a region of size n¾).

Recall that what is known (for almost a century now) is the behaviour of the ζ-function, which is,
essentially, the Fourier transform of ∑nNn δlogn; this Fourier transform is an entire function. Note
that taking log n “compresses” the points n ∈ N “much stronger” than taking 4

√
n. In particular, the

latter Fourier transform being smooth implies that averages of Nn over regions of size βn are rapidly
decreasing in n. However, these regions are too large: their size is way larger than n¾ considered
above!

On the other hand, we can use the properties of the Fourier transform G(t) of the sequence Nn/n to
estimate the required averages. It turns out that this is related to the rate of decay of the antiderivative
of G(t) near 0. Indeed, G(t) is the Fourier transform of the generalized function Ĝ := ∑

n
Nn/nδn, and

the averaged values of Nn on big regions are related to convolutions of Ĝ with cut-off functions with
big support; in turn, these are related to products of G(t) with functions concentrated on a small
region near 0. Conclusion: the convergence of framed series above is related465 to the behaviour of
G(t) near 0.466

To handle the averaging described above, we essentially need to restrict G to a region of size
ε := 1/n¾ near 0, and show that the n th Fourier coefficient of the restriction is less than 1/n1¾. However,
near 0 we can use the fact that G(t) = tH(1/t) with a periodic function H with the average value 0.
The image of a period of H under t 7→ 1/t has a length which decreases quadratically when we get
closer to 0; so these images inside [−ε, ε] are shorter than ε2 � 1/n.

Hence every period of sinnt in [−ε, ε] is covered by many images of periods of H (hence zones
over which the average of G is very close to 0). This is the reason why the scalar product with sinnt
is small! Indeed, since on the image of any period of H the function t sinnt is almost constant, the
integral of H(1/t) · t sinnt is approximately proportional to the average value of H(1/t) on this interval,
which is approximately the average value 0 of H on any period.

The formal way to treat this argument is to work with “averages of G”—which is essentially
determined by the antiderivative of G—and plug this into the formula of integration by parts. As
a change of variable t 7→ 1/t shows, this antiderivative may be written as t3G1(t) with a bounded
function G1. Hence instead of

∫ ε
−ε(t3G1(t))′ sinnt dt we may consider n

∫ ε
−ε t

3G1(t) cosnt dt which
decays at least as nε4 = 1/n2 indeed.467

463 Note that this is equivalent to the corresponding average value of Nn/n decaying quicker than n−1¾.
464 . . . with weight smoothly decaying to become 0 near the ends of the region.
465 Recall that the shape of the flattened region (and nearby zones of the graph) is related to periodicity of G,

hence to its behaviour near ∞.
466 This property is automatically satisfied if tG(1/t) is periodic with the average value 0.
467 In fact, one can continue integrating by parts; this would show that Nn/n averaged over regions of width nβ

with β > ½ would rapidly decrease. Hence the same holds for Nn.

https://en.wikipedia.org/wiki/Dedekind_zeta_function#Analytic_continuation_and_functional_equation
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This finishes our considerations of flattened zones of TG(1/T) ? sincKT when G is periodic and
its Fourier coefficients decay sufficiently quick when averaged appropriately. (Recall468 that in our
examples L0 = 4π2/c where c is the conductor, and K is at most 16 millions; this is why k = K/L is
often of order of tens of thousands.) 8.7845e-005

-0.00010163
0 0.0010.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

Remark 103: 469 Note that this explanation works for some non-
periodic functions G too; to have a flattened region in |T | ≤ T+ with
K terms of the Fourier series, all we need470 is the Fourier transform
Ĝ(L) of G vanishing up to |L| ≈ T 2

+K. This may be relevant for the
graphs below related to counts of modular roots of polynomials of
degree 4; we obtain graphs visually similar to TG(T/t) with a non-
periodic—but very slowly growing—oscillating function G. Since
these graphs have clearly visible flattened parts, this suggests that Ĝ(τ) may vanish for τ close to 0.
This leads to the question:

What can we deduce about Ĝ knowing that flattened parts exist for K � 0?

In this remark we provide a failed attempt to do so (kind of fixed in the next remark, which shows
that the information about the non-descrete spectrum is actually lost in this approach!).

So we omit the assumption that G in H(T ) = TG(1/T) is periodic; now its Fourier transform Ĝ
(which is a generalized function) is not necessarily a sum of δ-functions δnL0 at points of L0N; still, it
may be considered as an integral of such δ-functions with a certain weight. The asymptotics above
describe very well a contribution of one of these δ-functions δL in the region T ∈ [−(1+∆)T+, (1+∆)T+]
with ∆ > 0, however, before, for a detailed consideration we were focussing only on a zone of width
about T 3/2

+ /
√
L around ±T+. Since T+ =

√
L/K depends on L, to consider an integral in L, we need

to consider the whole zone T ∈ [−(1 + ∆)Tmax
+ , (1 + ∆)Tmax

+ ].
Moreover, to make the description more transparent, we simplify T+ =

√
L/K by a substitution

L = λ2. So our goal is to re-analyze our asymptotics for a contribution of one δ-function δλ2 in an
interval of T around 0. Furthermore, the asymptotic series we discussed was in variable √t+ with
1/t+ =

√
KL; so write K = 1/ε4. Now ε� 1. Recall that our asymptotics work for t+ � 1, or ε2 � λ.

Hence we need to study the convolution471 G̃ε := TG(1/T)? sinc T/ε4 with G(T ) = exp iλ2T . In fact,
our asymptotic expressions for this convolution all contain a very quickly oscillating factor exp(−iT/ε4);
so it seems better to investigate G̃ε exp iT/ε4, where this factor is cancelled; we start with investigating
this approach. Moreover, we saw that for periodic G the width of the flattened zone decreases with ε
as Cε2; the corresponding rescaling T = ε2x leads to consideration of

≈
Gε(x) := G̃ε(ε2x) exp ix/ε2.

It turns out that in this context one of the simplest term of our asymptotics is the “remainder”
term (due to non-quadratic Taylor terms under the exponent). Recall that it was472

−it0
√
t+/8Y

t0 − t+√
t3+/2

 exp(2i
√
k − iKT ) = − i√

8
ε3xY

 x− λ
ε
√
λ/2

 exp i(2λ− x)
ε2

(However, an honest proof would need to also consider what happens outside [−ε, ε]: the cut-off function is small
there, but one needs to estimate how small we can make it while keeping its Fourier transform supported between
±n¾.)

468 N.B. (???) Move?
469 N.B. (???) The plots should be moved 1 page later—but wrapfig does not work inside remarks.
470 . . . in addition to decay of the antiderivative of G near 0. . .
471 N.B. (???) In fact, below we consider only the integral over a half-line!
472 N.B. (???) Coefficient 2π?



154 Supplementary Musings: closing the gaping holes

for k � 1, with t+ = ε2/λ, t0 = T/λ2 and k = 1/t2+. For L 6= 1 one needs an extra factor L−¼ = 1/
√
λ.

Removing the oscillating in T factor, we obtain the contribution const · ε3xY ((x− λ)/ε
√
λ/2) exp 2iλ/ε2

into
≈
Gε(x).

For any function y(t) with integral y0 and the asymptotic C/t2 at infinity, the family ym(t) := my(mt)
has the asymptotic expansion (y0−C/m)δ0 +C/m · 1/t2 +O(1/m2) as m→∞ (in the space of generalized
functions473). In the formulas above, the denominator inside Y (. . .) goes to 0 when ε decreases, so
the main term in ε in this formula is const · ε4

√
λ exp(2iλ/ε2)xδλ.

Since this was the contribution of δλ2 in the Fourier transform Ĝ of G, one may have tried to
restate it as

≈
Gcubic
ε (x) ?= const · ε4 exp(2ix/ε2)x3/2Ĝ(x2) +O(ε5)

as a generalized function. Unfortunately, multiplication by a quickly oscillating factor (depending on
parameter) is not continuous in the topology of generalized functions. (For example, ϕε(x) := exp ix/ε
converges to 0 when ε→ 0, but multiplying this by exp−ix/ε gives 1.) Hence we need to compensate
the factor exp(2ix/ε2) before we take the limit.

Note that the removal of the oscillating term leads to oscillations starting to appear above
t0 ∼ t+ +√t+. Hence if we can kill oscillations by an appropriate smoothing of our function, the
smoothing is going to decay on the right of t+ as well as it decays on the left of it (here even without
smoothing!).

For example, above, at the beginning of this remark, we plotted the case of the smallest (in
magnitude) cubic conductor 23 (for M = 6) with a cancellation of the phase factor as above, and a
weakest possible smoothing to kill the oscillations (the real and imaginary parts, the dashed lines for
8 and solid for 16 million Fourier terms).474 475

The graphs have maxima for const ·
√
n for n ∈ N such that Nn 6= 0. For the cubic conductor 23,

up to n = 12 these are 1, 2, 3, 6, and 8. When we have two graphs with K differing 2 times, the
positions of the maxima (denoted as T+ above) for n and the larger K is the same as for 2n and the
smaller K.

Conclusion: one can observe the discrete spectrum of the function G(t) when one
• Cuts off the high frequencies from tG(1/t);
• Cancels the oscillations near 0 (by multiplying by an appropriate oscillating function);
• Cuts off high frequencies again. (With cut-off frequency tens times smaller than one on the
first step.)476

(Below we show that the continuous spectrum of G(t) gives only a vanishingly small contribution.—
And the smoother it is, the smaller the contribution—provided the cut-off frequency is high.)

473 Recall that the generalized function 1/t2 is normalized by
∫ 1
−1

dt/t2 = 0.
474 We convolve with the Gaussian kernel with half-width 35/π of the period of the cut-off oscillation. So for 16

million terms, the half-width is 4.4e-6.
This smoothing is the minimal possible to get at least one maximum on the graph without spikes. (This is the

first maximum on the dashed lines.) The other maxima have very visible spikes; the further we go from 0, the more
pronounced are the spikes. (To avoid the spikes, the smoothing should depend on the cut-off, and be stronger further
away from 0.)

475 N.B. (???) Estimate the necessary smoothing! Note that k for these graphs has an unusually
high value: 27.5 millions for the higher value of the cut-off frequency.

476 The final result of this process is that if Fourier coefficients were an, we sum up
∑
n = 0n0an0−nσ(n/n1)e−nt,

with σ(x) ∼ e−x2 , and 1� n1 � n0. When one replaces this σ by a step cut-off function, this still results in a certain
“smoothing” of “the sum without the factor σ”. However, such a σ results (up to an oscillating factor) in the difference
between partial sums of the intial Fourier series for cut-off frequencies n0 and n0 − n1.

Conclusion: this difference should behave similarly to the graph above. (Recall that the graphs in the main part of
these notes combine two partial sums, one drawn in blue, another in red, so the places where the difference is significant
are visible as blue specles on the graph.) In particular, this explains why the blue specles tend to appear in groups.



THE FLATTENED PARTS OF THE GRAPHS 155

Therefore we define Gε(x) := G̃ε(ε2x) exp(−ix/ε2). Now the contribution of the “cubic” term is

const · ε3xY

 x− λ
ε
√
λ/2

 exp
(

2i(λ− x)
ε2

)
.

Now for ε� 1 the oscillating term has period much smaller than ε
√
λ3/2, hence the limit when ε→ 0

is described very differently than before. Consider the limit of my(mt)eimnt when m,n→∞. If the
Fourier transform of y(t) is ŷ(τ), then the Fourier transform of y(t)eint is ŷ(τ + n), and the Fourier
transform of my(mt)eimnt is ŷ(τ/m + n). Conclusion: this Fourier transform becomes477 “more and
more constant” as m,n→∞, hence limmy(mt)eimnt/ŷ(n) = δ(t).

Since the asymptotic of ŷ depends on the singularities of y, what is important about Y is that
it has a jump of the third derivative at 0; hence its Fourier transform Ŷ (τ) decays as const · τ−4.
Therefore the expression above has the limit const · ε8/

√
λδλ.

Likewise, Efull(t, 0) has a jump of the third derivative at 0, and Efull(t, α) for α 6= 0 has a jump of
the first derivative proportional to α. Hence the expression for the main term of the convolution

t+ exp i
t+

exp
(
− iτ√

t+

)
Efull(τ,

√
t+) = ε2

λ
Efull

 x− λ
ε
√
λ/2

,
ε√
λ

 exp i(2λ− x)
ε2

after multiplication by the correcting phase factor exp−ix/ε2 has a limit const · ε6/λ2δλ.
Conclusion: the main term478 of asymptotic of Gε(x) exp−ix/ε2 in ε→ 0 as a generalized function

is const · ε6/x2Ĝ(x2). Hence calculating the “averaged”479 behaviour of the phase-corrected convolution
(TG(1/T)? sincKT ) exp(−iKT ) with precision much better than K−3/2L−2 in a region of width 2

√
L/K

about 0 gives information about the Fourier transform Ĝ(τ) of G for480 τ ∈ [0, L].
In particular, the argument above shows481 that this function of T is o(K−3/2) for |T | <

√
L/K

when the cut-off frequency K →∞ if and only if Ĝ(τ) vanishes for τ < L.
Remark 104: In fact, the calculations above were tacitly exchanging the order of two limits—which
is a no-no-no in analysis (as far as one can do it honestly—otherwise the answer may still have some
heuristical value!). To proceed honestly, note that

∫∞
0 xe−A(1/x+x)dx is transformed by a coordinate

change 1/x + x = 2y to482
∫∞

1 (4
√
y2 − 1 + 2/

√
y2 − 1)e−2Aydy = 2K0(2A) + 2K1(2A)/A. Hence the

Fourier transform of the function te−B/t with support on the positive semiaxis is 2Bi/τ(K0(2
√
−iBτ) +

K1(2
√
−iBτ)/2

√
−iBτ). For B = −i this is 2/τ(K0(−2i

√
τ) + iK1(−2i

√
τ)/2
√
τ) with Im

√
τ ≥ 0.

Denote by Gλ,ε(t) the function Gε(t) for G(t) = exp iλ2t. The asymptotics above show that to
analyse dependence of Gε on the continuous part of the Fourier transform of G, it makes sense to
consider the limit of Gλ,ε(xε2)ex/ε2 as a generalized function483 of λ.

Recall that often a limit lim fn in the topology of generalized functions corresponds to a pointwise
limit of the Fourier transforms.484 This leads to investigating the asymptotic in ε of the Fourier

477 . . . unless log ŷ changes pathologically quick near ∞.
478 N.B. (???) Check the term for −T+.
479 N.B. (???) Explain!
480 N.B. (???) Prohibit negative τ?
481 N.B. (???) Heuristically only, since we tacitly exchange the order of limits!
482 Here K0, K1 are the Bessel functions.
483 Then if this limit exists in a certain Banach topology (of the scale of Banach topologies on the space of

generalized functions), then we can predict the point-wise behaviour of Gε(xε2) when the Fourier transform of G is in
the dual Banach space.

(Note that when δ-functions are not in the dual space, the formulas may look very different in the case of periodic
G and the case of the preceding paragraph!)

484 Since the operator of Fourier transform is continuous on the space of (tempered) generalized functions, the limit
above would lead to a limit of the Fourier transforms in the sense of generalized functions. However, if the functions fn

https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1
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transform of Gλ,εex/ε
2 in λ (with t, x > 0):∫ t

t− xε2 exp i
(
λ2

t
+ t

ε4 + λµ

)
dt dλ = ε2

∫ T

T − x
exp i

ε2

(
λ2

T
+ T + ε2λµ

)
dT dλ

(with the paths of integration in t and T going below the poles at t = xε2 and T = x). The integral
in λ gives

√
iπε3

∫ ∞
0

T
3/2

T − x
exp iT

( 1
ε2 −¼ε2µ2

)
dT =

√
iπε3x

3/2
∫ ∞

0

τ
3/2

τ − 1 exp iτx
( 1
ε2 −¼ε2µ2

)
dτ.

Recall that485
∫∞

0 tA/(t+B) e−ptdt = Γ(A + 1)BAΓ(−A,Bp)eBp if B /∈ R≤0 with Γ(k, z) being
the incomplete Γ-function

∫∞
z tk−1e−tdt. We should take the limit value when B = −1 − 0i, giving

−¾
√
iπΓ(−3/2,−p)e−p.

Considering u(z) := Γ(−3/2, z)ez, this leads to

−¾iπε3x
3/2u

(
ix(1−¼ε4µ2)

ε2

)
.

Recall that u(z) has the main terms of asymptotic486 3/2 · z−3/2 for z ≈ 0 and z−5/2 for |z| � 0, and
has the corresponding asymptotic series expansion. In particular, all terms in Taylor expansion in ε
are polynomials in µ.

Conclusion: For a fixed x, Gλ,ε(xε2)ex/ε2 has a Taylor expanstion in ε as a generalized function in λ.
The Taylor coefficients are polynomials in x with coefficients being (even) derivatives of δ-functions487
at 0 in488 λ. Hence the contribution of continuous parts of the Fourier transform of G into Gε (away
from the 0 in the frequency region) decay quickier than any power of ε. In other words: observing Gε(t)
for small t gives immediate489 information about the discrete spectrum of G, but not the continuous
spectrum.

ζ-functions

So far, we mentioned several times (but completely ignored all the details) one of the major players
on the scene of investigation of “arithmetic sequences” (such as our numbers Ñ res

n , or better, ÑGal
n ):

the ζ-functions. (Sometimes these functions are called L-functions.) Our approach was to encode the
sequence using its Fourier transform F (t); however, some of the properties of the sequence become
much more accessible if one uses a different way to encode this sequence into a function.

Start with returning to the context of Remark 38 on p. 61, where we began investigating the
statistical properties of the numbers Ñ res

n for the polynomial “tetrahedral numbers + 2”. (These
numbers are related to the sequence of colors,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 . . .
have nice asymptotics at ∞, the Fourier transforms are going to be continuous (outside of a few points); moreover, if
the asymptotics are uniform, then the limit is going to exist locally in C0 (outside of the exceptional points).

This is why the limit of Fourier transform is going to exist pointwise so often!
485 Formula 9.162 in Ditkin–Prudnikov’s Integral transforms and operational calculus.
486 In fact, u(z) = U(5/2, 5/2, z) with U the Tricomi’s confluent hypergeometric function.
487 N.B. (???) Is it possible to compare this with our asymptotics in the case of periodic G?!
488 Paired with Ĝ(λ2), they give the derivatives of Ĝ(L) at 0, which are (regularized!) pairings of G(t) with powers

of t. In turn, these are regularized integrals
∫
tG(1/t)t−kdt for k ≥ 3. If tG(1/t) is periodic, these integrals can be

expressed as sums involving the Fourier coefficients—and these sum is easy to recognize as values of the corresponding
ζ-function at −k.

Moreover, the Hecke functional equation shows that in the “modular form” case these values vanish; in the Maass
case, they vanish for even k. N.B. Maybe the contributions of two saddle points in the Maass case cancel
each other?! Check! ???

489 N.B. (???) Discuss smoothed “reversed” graphs we made?

https://en.wikipedia.org/wiki/Incomplete_gamma_function
https://books.google.com/books/about/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D0%BF%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0.html?id=n-zzAAAAMAAJ
https://en.wikipedia.org/wiki/Confluent_hypergeometric_function
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on p. 19.)
With the discriminant being −4× 971, for all prime numbers except 2 and 971 the count Ñ res

n is
one of 0, 1 or 3 (with 0 related to the “red” color above).490 It turns out that the count 3 appears less
often than the others; in the part of the colored sequence shown above (on p. 19), it appears only for
the prime 3. The first few other occurrences are for the primes 37, 61, 83, . . . .

Remark 105: As we mentioned in Remark 48 on p. 77, the Chebotaryov’s density theorem predicts
that asymptotically, exactly 1⁄3 of the primes are going to be red, half of the primes is assigned the
count 1, and the remaining 1⁄6 is assigned the count 3. Hence asymptotically, one of four green primes
is assigned the count 3.

On the other hand, 3 is the second of the green primes, 37 is the 6th, 61 is the 10th, and 83 is the
15th. For the “1 out of 4” law, the “expected” positions are 2½, 6½, 10½, 14½ etc. Conclusion: the
observed prime numbers with count 3 follow the expected law 4n− 1½—however, from the statistical
point of view, it is suspicious that they follow this law “too close”!

Well, I know no nice explanation for this, however, the plot thickens yet more for larger primes—
and that has an explanation! Observe the following table (for p < 600):

Prime with count=3 3 37 61 83 151 167 257 263 281 353 389 409 433 457 461 563 . . .
Position among green primes 2 6 10 15 23 26 37 38 41 46 51 53 56 59 60 67 . . .

“Expected” position 2½ 6½ 10½ 14½ 18½ 22½ 26½ 30½ 34½ 38½ 42½ 46½ 50½ 54½ 58½ 62½ . . .

For primes p ≥ 83, the mismatch is always in the same direction: the primes with count 3 are
consistently rarer than expected from Chebotaryov density theorem! Moreover, typically the mismatch
is quite large. . .

Conclusion: from this data, it seems that for primes up to 300, the fraction is closer to 1 in 45⁄9;
up to 600, it is 1 in 4.375. For primes up to 1,000, this decays again to less than 1 in 4½. Going up
to 10,000, this proportion is still above 41⁄8. Only when going to 100,000 the proportion starts goes
down almost to 4: 1 in 4.038.

Such an effect is well-known as “a large bias for small primes”.491 The larger are the prime numbers,
the smaller the bias. However, there is another effect which is independent of the magnitude of primes!

Observe for which numbers p0 the proportion above taken for the primes p ≤ p0 is larger than the
average value ¼, and for which it is smaller. It turns out that the first situation appears much more
frequently than the second one—and that such numbers p0 appear in long groups (“runs”) separated
by relatively narrow intervals.

A calculation shows the runs 83 ≤ p0 ≤ 4,877 and 5,669 ≤ p0 ≤ 30,029, then 73,243 ≤ p0 ≤ 748,597
and 811,387 ≤ p0 ≤ 5,371,783, 5,384,887 ≤ p0 ≤ 15,954,779 and 17,588,033 ≤ p0 ≤ 24,622,691, then
28,655,951 ≤ p0 ≤ 581,827,369, then 729,069,533 ≤ p0 ≤ 1,045,122,007 and p = 2,341,051,859 ≤ p0 ≤
9,447,449,639, etc.492 The simplest incarnation of this effect is known as “prime races”. In these races
one compares count of primes p ≤ p0 which are a modD to a similar count for b modD for chosen a,
b and D. Same as in our case, the effect does not decay as p0 grows: for some triples (D, a, b) one of
the classes “wins” (has more elements) for much longer runs of p0 than the “intervening intervals”.

490 A more detailed analysis shows that 2 is not exceptional. To see this, one needs to consider the “field discriminant”
instead of the discriminant of the polynomial— it turns out to be −971. Compare with Footnote 440 on p. 144.

Moreover, Ñ res
971 = 2, so it is truly “exceptional”. Since 971 is so large, treating 971 as “non-exceptional” (as we do

in this section) does not affect the statistical properties described below.
491 In a situation very close to one we consider in these notes, when Kevin Buzzard notices that “Non-zero ap are

rather sporadic and take a while to start”, he just comments that this happens “for the usual reasons”.
492 There is another run starting at 13,103,095,877 and going at least to 2 · 1010. (These calculations take about 5

hours on an old slow notebook using the code at the end of these notes.)
Note that most of the intervening intervals are quite short (“relatively”,—or in log-scale). Two notable exceptions

are the intervals after 30,029 and after 1,045,122,007.
Anyway, on average the “runs” are (relatively) much wider than the intervening intervals.

https://en.wikipedia.org/wiki/Chebotarev%27s_density_theorem
https://mathworld.wolfram.com/ChebyshevBias.html
http://wwwf.imperial.ac.uk/~buzzard/maths/research/notes/explicit_maass_forms.pdf#page=6
http://wwwf.imperial.ac.uk/~buzzard/maths/research/notes/explicit_maass_forms.pdf#page=6


158 Supplementary Musings: closing the gaping holes

While the “inequality” in prime races mod 4 (which is the simplest precursor of the effect we
observed above) was first noticed in 1853 by Chebyshyov, the appearence of “very long runs” (as above)
in prime races were first quantitatively explained by Sarnak and Rubinstein in 1994). Moreover, it
turns out that the prime races are directly connected to sequences Ñ res

n related to modular roots of
abelian polynomials.493 The generalization good enough for our sequences Ñ res

n was investigated in
the Ph.D. thesis of Nathan Ng in 2000.

The simplest way to formulate these results is to select two types of prime numbers: in Chebyshyov
case, these are primes which are 1 mod 4, and −1 mod 4; in our case, it is primes p with Ñ res

p = 3,
and Ñ res

p = 1. These types should be related to the Chebotaryov’s density theorem. (In other words,
the type should be determined by a certain cycle decomposition of the permutation we associated to
a prime number in Footnote 322 on p. 118.494) Then one compares “the relative size” of these classes:
calculate how many prime numbers up to p0 are in these classes, as a function of p0, and take a
quotient of these functions.

As Riemann–Weil explicit summation formula shows495 (in the context of Artin L-functions), the
relative size is asymptotically C0 − (C1 + C2 + C3(log p0) + O(1/log p))p−½

0 . Here C0, C1 and C2 are
constants, while C3 is an oscillating function with average 0.496

The Chebotaryov theorem describes C0: in the main term, the relative size of a type is proportional
to the size of the corresponding conjugacy class in the Galois group.498 In addition to this, Ng described
the term C1 as the size of the preimage of the conjugacy class under the map g 7→ g2 of the Galois
group.

In the plot below, we cancel the term C0 by taking ngreen − 4n3, with ngreen(p0) the count of green
primes up to p0, and n3(p0) the similar count of primes p with Np = 3. We also rescale appropriately
to In this case, C2 = 0 for both types of primes, and C1 are ???499

493 For example, the race discovered by Chebyshyov is related to possible divisors of numbers n2 + 1.
494 This description assumes that the corresponding Galois group is the full group Sd of permutations of the roots

of a certain polynomials of degree d. In general, one considers the conjugacy classes in the Galois group.—One can
also consider unions of such classes.

495 N.B. (???) More details!
496 Moreover, C3 is not only oscillating, but is in a fact a precisely described almost periodic function.497 It is the

description of terms C2 and C3(τ) where the discussion of ζ-functions is not avoidable.
In turn, C2 is easy to calculate in terms of the ζ-function (the multiplicity of the root at ½)—and for most of

polynomial equations, C2 is expected to be 0. On the other hand, the properties of C3(τ) are controlled by the other
roots of ζ, hence by the Grand Riemann Hypothesis.

497 Almost periodicity is conditional (and in fact equivalent!) on the Grand Riemann Hypothesis.
Moreover, one should keep in mind that oftentimes, in their definitions of almost periodic functions, people require

that the coefficients are in `1. (This ensures that the function is continuous and bounded.)
However, the class of almost periodic functions we need is much larger: the coefficients are in `2. (For example,

these functions have a jump at log p for many prime numbers p, so cannot be continuous.)
498 For example, in S3 there are 3 conjugacy classes: {id} (of relative size 1⁄6), “transpositions” (of relative size ½),

and “3-cycles” (of relative size 1⁄3). These matches the values of Ñ res
p of 3, 1 and 0 (as the numbers of fixed points).

499 N.B. (???) More details: zeros of L-function, Dyson’s quasi-crystals, log-scale-Fourier=Dirichlet.
The observed average is closer to 7⁄3, not 8⁄3? Almost-periodicity?

https://projecteuclid.org/euclid.em/1048515870
https://pdfs.semanticscholar.org/6fab/e24fc2d10d5830ea53ffec59bbe4ff729b30.pdf
https://en.wikipedia.org/wiki/Almost_periodic_function
https://en.wikipedia.org/wiki/Grand_Riemann_hypothesis
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Appendix: On verification,—and the future

In construction! (Lousy—and not fully complete [see N.B.]—exposition.)

The adelic completion

As we saw in Remark 30 on p. 47, combining 2π-periodicity of F (t) with its fractal symmetry
at t = 0, we can get a big collections of fractal symmetries of F (t) which give a huge “hyper-
family” of horizon-self-similar points. Since the fractal symmetry at t = 0 is a corollary of Hecke’s
functional equation, which was known decades before the Langlands program, we can treat these
horizon-self-similar points as “the trivial cases” of Langlands program.

For cubic equations, what the Langlands program claims is that every rational multiple of π is a
horizon-similar point, and that “a big fraction” of the set of these points is horizon-self-similar. A
significant part of this statement is the claim that the tensor field F (t)(dt)½ is preserved by strongly-
congruence fractional-linear transformation.500 In other words, if c is the conductor, A,B,C,D ∈ Z
and A − 1, C,D − 1 are divisible by c, then the transformation T 7→ (AT +B)/(CT +D) preserves
F (t)(dt)½; here T = 2πt.

Note that t = 0 being horizon-similar is, essentially, equivalent the coordinate change T ϕ7→ −1/cT in
F (T ) leading to a periodic function. In other words, F is preserved by the transformation 1/T 7→ 1/T+c.
Together with the periodicity of F , these two symmetries, when combined, lead to a giant group
of “trivial symmetries”. All these symmetries are strongly congruence; however, as we saw (say, in
Remark 30 on p. 47, and in Footnote 202 on p. 78), for c > 4 the strong congruence group is much
larger than this group of “trivial” symmetries.

In other words: it is easy to show that any combination of the “trivial symmetries” T ϕ7→ −1/cT
and T 7→ T + 1 can be written either as Ψ or as ϕ ◦Ψ with Ψ in a subgroup generated by T 7→ T + 1
and 1/T 7→ 1/T + c. Since the latter one may be written as T 7→ T/(cT + 1), it is clear that all these
transforms Ψ are strongly-congruence transforms.501

Here we investigate how many symmetries should be added to the “trivial symmetries” discussed
in the beginning of this section to get the whole collection of strongly-congruence symmetries.

Start with the basics of adelic approach: we say that two numbers n and n′ are adelically close to
each other if n− n′ is divisible by many integers. (For example, we may say that they are N -close if
N !|(n− n′).) Likewise, two matrices with integer coefficients are close to each other if their matrix
coefficients (at corresponding positions) are close to each other.

The same language is applicable to fractional-linear transforms: we say that two such transforms
are close to each other if they may be both written as T 7→ (AT +B)/(CT +D) with integer A,B,C,D
so that the corresponding coefficients are adelically close to each other.502 Now we can formulate
which “extra condition” is needed:

If a fractional-linear transform is sufficiently close to identity, it preserves F (t)(dt)½.

500 Above, we saw how this claim may be generalized: in addition to strongly-congruence transforms, all congruence
transforms act likewise, with a possible “extra” factor ±1 equal to

(
A
c

)
=
(
D
c

)
. So one drop the (equivalent) conditions

c|(A− 1), c|(D − 1).
501 Another way to say this is that ϕ normalizes the strong congruence group.
502 Note a certain similarity to being strongly-congruence: in the same sense as “the adelic distance” is related

to divisibility by N ! for N � 0, for strongly-congruence transforms we require that A,C,D are near the coefficients
A = 1, C = 0, D = 1 of the identity transform ”in the sense of divisibility by c”. However, we do not require anything
about B, and we do not care about divisibility by prime numbers which are not divisors of c.
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(Here “closeness” is understood adelically.)
First of all, if we know the property stated above, of preservation by strongly-congruence transforms,

then the framed statement holds trivially. Indeed, the defining property of the adelic closeness is that
given an integer c,

Any integer sufficiently close to 0 (adelically!) is divible by c.

In particular, any transform c-close to identity is strongly congruence.
In the other direction, given a strongly-congruence transform Φ, it is enough to show that

One can find Ψ as above which is arbitrarily adelically close to Φ.

(Recall that Ψ is in the subgroup generated by ( 1 1
0 1 ) and ( 1 0

c 1 ).)
First, note that if c ≤ 4, then one can achieve Φ = Ψ. We will use this fact only for c = 1, when

it503 follows from the Gauss elimination process: essentially, (together with the Euclid process) this
process shows that multiplying by matrices ( 1 1

0 1 ) and ( 1 0
1 1 ) (and their inverse matrices) on the right

and on the left, one can reduce any matrix with integer coefficients and determinant 1 to either
identity, or to the “exchange-rows/columns” matrix ( 0 1

−1 0 ). On the other hand, the latter matrix is
also a similar product: (

0 1
−1 0

)
=
(

1 0
−1 1

)(
1 1
0 1

)(
1 0
−1 1

)
.

Reducing this statement modM , we can see that if α, β are mutually prime withM , then matrices
( 1 α

0 1 ) and ( 1 0
β 1 ) generate SL2(Z/MZ). (Indeed, suitable powers of these matrices coincide with ( 1 1

0 1 )
and ( 1 0

1 1 ) modulo M .)
Using Gauss elimination mod ck, it is easy to see that ( 1 1

0 1 ) and ( 1 0
c 1 ) generate a subgroup of

SL2(Z/ckZ) consisting of matrices ( A B
C D ) with c dividing A− 1, C and D− 1. Indeed, since A mod ck

is invertible, we can kill B by Gauss column-transforms, then kill C by row-transforms; this leaves a
diagonal matrix with determinant 1. To finish, use the “Whitehead lemma” identity:(

u 0
0 v

)
=
(

1 1
0 1

)v (1 0
1 1

)1−u (1 1
0 1

)−1 (1 0
1 1

)1−v

if uv = 1.

If 1 − u = cU and 1 − v = cV , then ( 1 0
1 1 )1−u = ( 1 0

c 1 )U , likewise for V , so the expression on the
right-hand side is a combination of the required form.

Combining two last results and with the Chinese remainder theorem, it follows that in the last
framed statement we can approximate Φ by Ψ modulo ckM with (c,M) = 1, hence modulo any
number. This finishes the proof of the double-framed statement.

Conclusion: Strongly-congruence matrices are the adelic closure of matrices generated by ( 1 1
0 1 ) and

( 1 0
c 1 ). “The strongly-adelic part” of the Langlands program would follow from the adelic continuity
and the functional equation.

Essentially, this approach allows to break the investigation of fractal symmetries of F (t) into two
completely independent parts. First, we may ask whether F satisfies the double-framed condition
above.504 Second, we may ask whether F is horizon-similar at t = 0. Assuming that the transformation

503 It (or very similar statements) has many names: the Smith normal form, or the fundamental theorem of finite
abelian groups, or the “basic calculation of K1Z in algebraic K-theory.

504 Such functions (or tensor fields) F may be called adelically analytic. Here “analyticity” is understood in slightly
different way than in real analysis. The adelic approach defines a topology on the set of fraction-linear transforms.
However, this topology happens to be totally disconnected (as one on the Cantor sets). In these settings, being
“locally constant” (as in the double-framed condition) turns out to be the best subtitute for analyticity (at least for
complex-valued functions).

However, the most often used name for such F is automorphic. (While technically it is more correct to call such an
F an automorphic form, we are going to abuse notations, and call F an automorphic function.)

https://en.wikipedia.org/wiki/Whitehead%27s_lemma
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Smith_normal_form
https://en.wikipedia.org/wiki/Abelian_group#Classification
https://en.wikipedia.org/wiki/Abelian_group#Classification
https://en.wikipedia.org/wiki/Algebraic_K-theory
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Totally_disconnected_space
https://en.wikipedia.org/wiki/Cantor_set
https://en.wikipedia.org/wiki/Automorphic_function
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T 7→ 1/T in F (T ) leads to a function with an integer period c, the arguments above show that if F is
adelic, the strongly-congruence transforms (for that value of c) preserve F .

As these notes show, for cubic polynomials this approach may look as an obfuscation only— in the
preceding chapters we treated F (t) without using any trace of the adelic language. However, for more
general cases it turns out that it is much easier to work separately with the “automorphic” properties
of F , and with “the ‘trivial’ fractal symmetry at t = 0”.
Remark 106: Note that any automorphic function is k-periodic for an appropriate value of k ∈
Z. Moreover, for any rational numbers A,B,C,D with AD 6= CD the coordinate change T 7→
(AT +B)/(CT +D) sends an automorphic function to an automorphic function. Applying this to −1/T ,
it shows that any automorphic function is horizon-similar near T = 0.

The same argument shows that any automorphic function is fractally-symmetrical: the horizon-
similar points are dense.

In the following section, we consider the analytic details of having “the ‘trivial’ fractal symmetry”.

The behavior near t = 0 and the relation to θ-factors

To begin, note that the most visual feature of the graphs is the horizon-similarity at t = 0. Indeed,
the horizon-similarity at other rational multiples of π requires more zooming to be seen, so may be
considered as “visual features of the second order”.

We saw that this horizon-similarity is the geometric counterpart of Hecke’s functional equation
for the ζ-function (see p. 82). To have this counterpart, we need to choose a suitable “geometry
corresponding to the functional equation”, and this choice is governed by Hecke’s θ-factors. Recall
that the θ-factors depend on two parameters: the degree of the polynomial equation we solve, and
the number of the real roots of the polynomials. For degree 3, two possible forms of θ-factors lead to
two simple symmetries (one with absolute value, one without) of tensor fields on RP1 (in other words,
they lead to 1-dimentional projective geometry), producing the required horizon-similarity near t = 0.

However, we saw that for degree larger than 3, the corresponding θ-factors do not seem to allow
a similar translation of Hecke’s functional equation to symmetries of F (t) (or similar functions of
one variable) near t = 0. Moreover, while the scoop of the Langlands program is the existence of
“a certain fractally-symmetric function F geom(t1, . . .) corresponding to our polynomial equation”, to
actually provide F geom(t1, . . .) seems, in general, much less straightforward than for cubic equations.

On one hand, F geom(t1, . . .) should be a function of several variables. On the other hand, in
general, the relation of this function to our “counting sequence” Nn is quite indirect: instead of Fourier
transform it seems unavoidable to consider “the Hecke eigenvalue problem” of the preceding section.
(In other words: for degree 3 we were very lucky that the eigenvalue problem could be explicitly solved
through a shortcut of Fourier transform.)

On γ-factors and ϑ-terms

For these notes, we used the simplest possible examples in which “both sides” of Langlands
correspondence allow “an elementary exposition”. In fact, it may be that these are the only such cases,
and any further progress into understanding the Langlands program may require studying much more
esoteric topics.

Why the cases we consider here are so special? The corresponding Langlands symmetries were
directly applicable to the Fourier transform F (t) of the sequence Nn. Recall that this sequence was,
more or less, a slightly “massaged” point-counting function Ñ res

n (or better, ÑGal
n which needs very

little massaging; see p. 60). However, the reason why this Fourier transform was so special turns out
to be very delicate.

Since I do not qualify to discuss gory details of Langlands program, let us focus on something
much simpler: the symmetry which we considered before as “almost trivial”, one due to a precursor
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of Langlands program: Hecke’s functional equation (see p. 82). This symmetry sends G(T ) to
G(−1/cT)/T . We saw that when t = 2πT , these symmetries multiply FC by a constant. Question:
how come this transformation is a symmetry of FC?

What the functional equation claims about the counting functions ÑGal
n of a polynomial equation

in 1 variable is505

• There is a function κ = κd,r1(σ) defined for σ > 0 and depending only on the degree d and
the number of real roots r1 of the equation;
• There are numbers c ∈ N, α and C such that506 the sum K(σ) := ∑

n Ñ
Gal
n κ(nσ) is symmetric:

K(−1/cσ) = C/σα ·K(σ). (In our cases, α = 1.)
With distillation (see p. 75), we replace ÑGal

n by the sequence Nn. For the new sequence a very
similar statement continues to hold, only with a different507 function κ(σ).

Additionally, the way the function κ is constructed implies that Π(σ∂σ)κ(σ) = B · σ2κ(σ) for
a certain polynomial Π of degree d and508 a constant B. Moreover, for d = 2, r1 = 0 this may be
simplified509 to ∂σκ = −2πκ. (Likewise, there is a similar equation on κ(σ)σα0 which differs by a
shift in the polynomial Π.)

Note that these ordinary differential equations (ODEs) are preserved by coordinate changes
σ 7→ c · σ up to a change in the constant B.

This ends the “functional equation” part of our story. On the other hand, note that even “the
trivial symmetries” we were considering, say, in the section on p. 43, were obtained by combining the
symmetry t 7→ −1/Ct with periodicity in t. The symmetry σ 7→ 1/cσ above is very similar to t 7→ −1/Ct,
but there is no trace of periodicity in the examples above. Conclusion: even the “trivial” symmetries
are not only due to the functional equation, but require extra arguments.

The main ingredient of this “additional argument” is that instead of κ(σ), one can consider the
function κ(σ)σα0e2πiT of σ, T with a certain constant α0 (in most examples, α0 = 0). It turns out

505 The Langlands program predicts that a similar statement works for any system of polynomial equations—at
least after a suitable distillation (which may be much less trivial than what we did above).

506 Note that defining κd,r1,c(σ) := κd,r1(σ/√c) and likewise Kc(σ) := K(σ/√c)σα/2 would lead to a simpler equation:
Kc(1/σ) = ±Kc(σ). However, it is easier to keep c outside of the function K (we already saw this in the rest of these
notes, and would see it down below too).

507 For example, if distillation corresponds to “removing a ‘trace’ of an equation” of degree d′ with r′1 real roots,
then one replaces κd,r1 by κd−d′,r1−r′1 . (Sometimes this may result in negative r′1 − r1 —however, the formulas for κ•,•
allow this.)

In the examples we considered in these notes, d′ = r′1 = 1. (Remark 78 on p. 130 may be considered as an exception
—but we did not investigate the completely distilled cases of this remark in any detail.)

508 We could merge B into Π, but it is more convenient to keep it separate.
509 The function κ(σ) is defined by the condition that the Fourier transform of κ(ex) is γ(iξ) (hidden inside

this description is the notion of the Mellin transform). Here γ(z) := Γr1
R (z)Γr2

C (z) is the gamma-factor , r2 is defined
by d = r1 + 2r2, and ΓR(z) = π−

z/2Γ(z/2), while ΓC(z) := ΓR(z)ΓR(z + 1) = 2(2π)−sΓ(z). (See also the article on
LMFDB.org.)

One can immediately see that ΓR satisfies the equation510 zΓR(z) = 2πΓR(z + 2), hence zr1+r2(z + 1)r2γ(z) =
(2π)dγ(z + 2), and that for r1 = 0 one can simplify this to zr2γ(z) = (2π)r2γ(z + 1). Since z = iξ corresponds to
−∂x = −σ∂σ, this leads to the relations (−σ∂σ)r2κ(σ) = (2π)r2σκ(σ) if r1 = 0, otherwise to (−σ∂σ)r1+r2(−σ∂σ +
1)r2κ(σ) = (2π)dσ2κ(σ).

510 In the standard expositions, the principal “reason for existence” of γ-factors is ”to make the functional equation
work”. However, all the condition above would obviously be satisfied if one changes γ(z) to γ(z)γ̃(z)γ̃(1− z) for an
arbitrary entire function γ̃. On the other hand, the discussed equations mark the “classical” choices of γ-factors as
“those satisfying the simplest possible equations”.

(For another reason why the “classical” choices are the best possible, see Keith Conrad’s answer to the question
Why does the Gamma-function complete the Riemann Zeta function? on MathOverflow—as well as the resulting
discussion.)

https://en.wikipedia.org/wiki/Mellin_transform
https://en.wikipedia.org/wiki/Dedekind_zeta_function#Analytic_continuation_and_functional_equation
https://www.lmfdb.org/knowledge/show/lfunction.functional_equation
https://mathoverflow.net/a/328288/116825
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that in the simplest examples we considered above (and in a few additional examples!), this function
satisfies remarkable conditions. Below, we use a “weight function“ W (σ) := σα with511 α = 1.

• In the ODE for κ(σ)σα0 , one can substitute certain constants 2π by the operator −i∂T
to obtain a partial differential equation (PDE) in coordinates (σ, T ) with a large group of
symmetries.
• In particular, this equation is preserved by the “n-rescaling” coordinate changes: σ′ = nσ,
T ′ = nβT , for an appropriate β.
• Moreover, this equation is preserved by a coordinate change M which sends the subset T = 0
to itself, inducing on it the transformation σ′ = 1/σ, and the transformation of dependent
variable512 κ′ = w(σ, T )κ with w(σ, 0) = W (σ).
• Composing the last two shows that one can do the same for σ′ = 1/cσ.

One can immediately see that this means:
• If the degree of this PDE is not too large, one can consider κ(σ)σα0e2πiT (or maybe
κ(σ)σα0 cos 2πT ) as a “natural extension” of κ(σ)σα0 . This extension is similar to finding a so-
lution of PDE given “a boundary condition on T = 0”. (Compare to the Cauchy–Kovalevskaya
theorem.)
• Likewise, k(T, σ) := ∑

nNnκ(nσ)σα0e2πinβT (or a similar sum with cosϕ instead of exp iϕ) is
“a natural extension” of “the boundary value” K(σ)σα0 = ∑

nNnκ(nσ)σα0 .
• Since “the boundary value” K(σ)σα0 “is preserved” by σ 7→ 1/cσ (the quotes mean “up to
multiplication by C ·W (σ)σ−2α0”), and this transformation extends to (σ, T ) while preserving
the PDE, the “extension” k(T, σ) of this function is also “preserved” by this extension of
σ 7→ 1/cσ.

(In the examples we saw, related to cubic equations, we had β = 1.)
Now if the transformation M preserves the line σ = 0, and β ∈ N, then513

The restriction F̃ (T ) of k(T, σ) to σ = 0 is periodic, and “is preserved” by M |σ=0.

If κ(σ) has non-0 limit for σ → +0, then F̃ (T ) is ∑nNne2πinβT . If the same holds for σ−α′κ(σ),
then instead of restriction one should take the main term of asymptotic in σ, and F̃ (T ) becomes∑
n n

α′Nne2πinβT . In applications below, M induces the transformation T 7→ −1/cβT on {σ = 0}, and
w(0, T ) = T

α/β. (Sometimes it is convenient to restate this as preservation of F̃ (T )(dT )α/2β(dσ)α′ .
Indeed, M sends dT 7→ 1/cβT 2dT . In examples below, (dσ)α′ behaves under M the same as (dT )α′/β.)

This leads to the following reformulation of the functional equation:
F̃ (T ) = const · TAF̃ (−1/cT) with A = α/β + 2α′/β.

Essentially, we introduced κ(σ) as an inverse Mellin transform of the gamma-factor γ(z) (see
Footnote 509); since in simplest examples this transform would eventually lead to the ϑ-functions
(sometimes called by a misnomer theta constants), we call κ(σ) the ϑ-term. Conclusion: “the purpose
of κ(σ) in life” is514 to combine its rescales κ(nσ) as ∑nNnκ(nσ).

511 For general systems of polynomial equations, the value of α depends on the number d of parameters for the
solutions: α = 1 + d. In these notes we focus on the case of 1 equation with 1 unknown, so d = 0, and α = 1.

512 In other words, if k(σ, T ) is a solution, then w(σ, T )k(σ′, T ′) is also a solution.
513 This tacitly assumes that k(T, σ) extends (as a solution to our PDE) from T = 0, σ > 0 up to σ = 0 and any T .

In our examples related to cubic equations, this was not completely true: it could be extended to σ > 0 honestly, but
did not have a continuous extension to σ ≥ 0. However, the extension made perfect sense as a generalized function on
σ = 0. (In the context of PDEs in question this is equivalent to the growth near the boundary σ = 0 being not quicker
than polynomial in σ−1.)

514 N.B. (???) Eventually, we would need to take into account that Nn is not a Fourier coefficient,
but the eigenvalue of the Hecke operators!

https://en.wikipedia.org/wiki/Cauchy%E2%80%93Kowalevski_theorem
https://en.wikipedia.org/wiki/Cauchy%E2%80%93Kowalevski_theorem
https://en.wikipedia.org/wiki/Theta_function#Auxiliary_functions
https://en.wikipedia.org/wiki/Arithmetic_zeta_function#Meromorphic_continuation_and_functional_equation
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Examples of ϑ-terms

In many examples we are going to have α0 = 0. This is the assumed value unless we state it
otherwise.

Start with an example which should be very familiar from what we investigated in the main part
of these notes. By Footnote 509 on p. 163, for r1 = 0, r2 = 1 the ODE on κ is ∂σκ(σ) = −2πκ(σ)
with the solution proportional to e−2πiσ (so α′ = 0).

The corresponding PDE is ∂σ − i∂T . This is the condition of being holomorphic in T + iσ,
so k(T, σ) is just the holomorphic extension of K(σ). Since the holomorphic extension is usually
considered as something “very natural”, even without the scheme introduced above, one “could have
just observed” that K(σ) has holomorphic extension from imaginary values of ζ to Im ζ > 0 (here
T = Re ζ, σ = Im ζ).515

Conclusion: κ(σ)e2πiT is proportional to e2πiζ . One can immediately see that n-rescalings are
κ(nσ)e2πinT , so A = β = 1. Hence putting s = 2πσ, t = 2πT and F (t) := F̃ (T ), f(s, t) := k(T, σ)
coincides with our description of f(s, t) as of “regularization” of F (t) in the section on p. 84. (This
means that the restriction to σ = 0 is ∑nNneint.)

As we explained in the preceding section, this form of κ works for a distilled cubic equation with
exactly 1 real root. It is also suitable for non-distilled quadratic equation without real roots.516

As we repeated it many times already, in this case not only do we get periodicity of F (t) and the
“fractal transform” at t = 0, but also fractal transforms in a dense collection of points of the form
t = 2πR/D.

The following example is almost as simple as the preceding one.
For r1 = 1, r2 = 0 the ODE on κ is ∂σκ(σ) = −2πσκ(σ). The solution κ(σ) is proportional to

e−πiσ2 (hence α′ = 0). So introduce S = σ2/2; then the differential operator becomes ∂S + 2π, and
we extend it to a PDE ∂S − i∂T . This is again condition of being holomorphic (but in a different
coordinate T + iS than above— it is a different conformal structure!).

The n-rescalings take the form κ(nσ)e2πin2T . In particular, here β = 2. Hence the restriction
of k(T, σ) to σ = 0 is ∑nNnein

2t, and A = ½. (Here for similarity with the case above we write
T =: 2πt.)

There are two main applications of this. First, one can consider the simplest polynomial equation:
x = 0; its solutions correspond to ÑGal

n ≡ 1. Since this is already “the simplest of equations”, there is
no distillation needed, so Nn ≡ 1, and F (t) is the ϑ-function ϑ(t) := ∑

n ein
2t. The arguments above

show that it has nice transformation properties w.r.t. t 7→ −1/4π2t. In fact, it is also a modular form
(in other words, it allows such a transform not only “near t = 0”, but also near other points πR/S).517

In fact, Riemann in his famous proof (“the second proof”) of the functional equation for the
Riemann’s ζ-function518 applied exactly the same method, but backwards: he used the known
behaviour of ϑ-function under transformation s 7→ 1/s to deduce the functional equation.

As another application of this case (r1 = 1, r2 = 0), we can consider a distilled quadratic equation
with 2 real roots. In the section on p. 62 we already saw that in this case Nn is a periodic function
of n, the Legendre symbol (from p. 208): Np =

(
p
D

)
(here D is the discriminant of the polynomial).

Moreover, the Euler formulation of Quadratic Reciprocity (on p. 15) shows that in this case Nn is an

515 This is the modus operandi with holomorphic modular forms: until Maass, people did not pay attention that
one may need a different procedure of continuation from ζ ∈ iR>0. Other examples of this section give a zoo of such
alternative continuations.

516 One may say that a distillation is similar to the difference between L-function of a field vs. the corresponding
motivic L-function. Compare with the section on p. 75.

517 Although it should be considered as a tensor of rank ¼, and not ½ as we had in the preceding example.
518 Done in 1859, but the equation itself was conjectured by Euler 110 years before this! (See “Two lectures. . . ” by

A. Weil of 1974.)

https://www.e-periodica.ch/digbib/view?pid=ens-001:1974:20::242#242
https://www.e-periodica.ch/digbib/view?pid=ens-001:1974:20::242#242
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even periodic function of n. In many cases519 this implies that it is actually a periodic function of n2.
Conclusion: if D has no prime divisors ≡4 −1, then ∑nNnein

2t is obtained from the ϑ-function by
multiplying its Fourier coefficients520 am by a periodic function of m. Recall that in this case A = ¼.

The next case to consider is good for a distilled quadratic equation without real roots: r1 = −1,
r2 = 1. Then the ODE on κ is (σ∂σ − 1)κ(σ) = −2πσ2κ(σ); writing κ(σ) = σκ̃(σ) leads to the same
equation on κ̃ as above: ∂σκ̃(σ) = −2πσκ̃(σ). (In particular, κ(σ) is proportional to σe−πiσ2 , and
α′ = 1.) This means that σ0 = −1.

So we again introduce S = σ2/2 etc., and κ̃ becomes a holomorphic function.
The n-rescalings of σκ̃(σ)e2πiT take the form nσκ̃(nσ)e2πin2T (here β = 2). Hence the main term

of the expanstion of k(T, σ) for σ ≈ 0 is σF (T ) with F (t) := ∑
n nNnein

2t. This leads521 to A = ¾.
Our arguments show that F (t) is preserved by t 7→ −1/Ct (as a tensor field). For a distilled

quadratic equation without real roots, Nn is odd periodic in n. In fact, in this case F (t) is also a
modular form: it is horizon-similar near any t = πR/S.

(The last two cases are also applicable to any abelian polynomials. According to the Class Field
Theory, the corresponding sequence ÑGal

n may be distilled into several components, and each of these
components Nn is a multiplicative periodic sequence. By multiplicativity N−1 = ±1, hence Nn is
either even, or odd—so one of the cases above is applicable.522 In fact, multiplicativity implies also
that Nn is either 0, or a root of 1—and the cases above cover the situations when these roots are ±1
—in other words, when numbers Nn are real.)

Above, we exhausted the cases when the degree of the ODE is 1. In the Maass case the ODE
has degree 2; this corresponds to r1 = 2, r2 = 0. The ODE is the modified Bessel equation
(σ∂σ)2κ(σ) = 4π2σ2κ(σ) (“of Bessel-order 0”) in the coordinate 2πσ. The solution we need is
proportional to K0(2πσ). (This explains appearence of Bessel functions in Remark 35 on p. 58; we
expand on this below.)

Note that κ̃(σ) :=
√
σκ(σ) satisfies the equation (σ∂σ − ½)2κ̃(σ) = 4π2σ2κ̃(σ), or σ2(∂2

σ −
4π2)κ̃(σ) = −¼κ̃(σ).

The key observation is that this ODE allows an extension to a PDE in (σ, T ) such that
•
√
σK0(2πσ)e2πiT is a solution, and

• the PDE has a symmetry (σ, T ) 7→ (nσ, nT ) for n > 0.
• the PDE has a symmetry inducing σ 7→ 1/cσ on T = 0.

This PDE is the eigenvalue problem for the Laplace operator in the (Lobachevsky) metric σ−2(dσ2 +
dT 2) with the eigenvalue ¼. Indeed, this metric is preserved by the dilation above, and by the
Lobachevsky 180°-rotations (the compositions of the reflection in the line T = 0 and the inversions in
the circles centered at 0). In other words, in the notations above, we can take α0 = ½, and the action
of M involves only the arguments of k(σ, T ), but not its values (in other words, it acts on k(σ, T ) as
on a scalar-valued function).

For any K, there is a unique extension of K̃(σ) :=
√
σK̃(σ) to an even in T solution k(σ, T ) of

the PDE. If K(σ) = ∑
nNnκ(nσ), then K̃(σ) = ∑

n
Nn/
√
n
√
nσκ(nσ), and the arguments above show

that the extension must be k(σ, T ) := ∑
n
Nn/
√
n
√
nσκ(nσ) cos 2πnT =

√
σ
∑
nNnκ(nσ) cos 2πnT .

519 This is related to the bottom-multiplicativity of the Legendre symbol (see p. 210).
Essentially, we need to check that

(
P
D

)
6=
(
P ′

D

)
then P 2 6≡D P ′2. This boils down to a2 ≡D 1 implying

(
a
D

)
= 1. With

the assumptions above this is automatically satisfied when D is prime (since D ≡4 1, D > 0); however, if D = D+D−
with D± ≡4 −1, D± > 0, then taking a ≡D+ 1 and a ≡D− −1 leads to a counterexample:

(
a
D

)
= −1.

520 Note that am is 1 or 0 depending on whether m is a square.
521 Note that the transformation for F (t) shows that the zone of horizon-self-similarity behaves as 1/

√
c instead of 1/c

we saw for polynomial of degree 3 (this is due to β = 2). Compare this with the Hasse–Artin conductor/discriminant
formula.

522 . . . with a minor correction. If the sequence Nn is not real, then σαk(1/cσ) is not k(σ) for the sequence Nn, but
k(σ) for the complexly conjugated sequence.

https://en.wikipedia.org/wiki/Class_field_theory#History
https://en.wikipedia.org/wiki/Class_field_theory#History
https://en.wikipedia.org/wiki/Conductor-discriminant_formula
https://en.wikipedia.org/wiki/Conductor-discriminant_formula
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The logarithmic asymptotic of K0(s) when s → 0 together with the slower growth of the
“other” solution suggest that the main term of asymptotic of ¼-eigenvalue k(σ, T ) of Laplace on the
Lobachevsky plane when σ → 0 is F (T )

√
σ log σ—and it is easy to show this by a direct calculation

(here we take asymptotic in σ of in the sense of generalized functions of T ). The action of the
transformation M described above on a function with such an asymptotic leads to a function with
the main term F (−1/cT)

√
σ/cT 2 log σ/cT 2, which is, up to negligible terms,

√
c|T |F (−1/cT)

√
σ log σ.

Conclusion: since we know that K̃(σ) is preserved by M , the function |T |F (−1/cT) is proportional
to F (t).

So this explains appearence of functions
√
sK0(s) in Remark 35 on p. 58, as well as why the

“actual fractal transform” in this case involves |T |, and the invariance of F under this transform.
Moreover, as we saw, and as the Langlands program predicts, a similar fractality happens near every
point πP/D.

There is one more case when one gets the ODE of the second order: r1 = 0, r2 = 2. The
ODE is (σ∂σ)2κ(σ) = 4π2σκ(σ). The coordinate change σ =: 4Σ2 with ω(Σ) := κ(4Σ2) makes
it (Σ∂Σ)2ω(Σ) = 4π2Σ2ω(Σ), which is the same equation as above (with Σ replacing every σ
used in the preceding example). The symmetries described above become (Σ, T ) 7→ (nΣ, nT ), or
(σ, T ) 7→ (n2σ, nT ), so β = ½.

Proceeding as above, we conclude that F (T ) := ∑
nNn cos 2πnβT = ∑

nNn cos 2π
√
nT satisfies

the same relation as above. However, since β /∈ Z, the function F is not periodic, so this argument
does not lead to combinable symmetries of the kind we saw before. In particular, there is a fractal
transform sending 0 7→ ∞, but not only we cannot expect the fractal behaviour at any point πP/D,
but not even at the points of the “trivial” Cantor hyper-family.523

This case is applicable to distilled polynomials of degree 5 with one real root, and non-distilled
case of degree 4 without real roots.

The Hecke operators

As we saw in the preceding section, what in degree 3 was the “trivial” fractal symmetry due to the
functional equation is always preserved as a symmetry of the function k(σ), but one cannot translate
it to a symmetry of a periodic function F (t) if the degree is above 3. How the Langlands theory
avoids this problem?

In degree 3, we described a simple procedure to translate the (distilled) sequence Nn into function
F (t): take the Fourier series with coefficients Nn. Likewise, given such a fractal function F (t), one
can find Nn as Fourier coefficients of F (t). However, there is another, very circumstantial connection
between F and Nn. In higher degrees, only this circumstantial connection survives. In particular, I
never heard of the direct recipe to find F given the sequence Nn: as far as I know, one can put certain
conditions on F which define it uniquely, but there is no immediate way to find this unique solution.

This indirect connection goes through the recurrence relations we (essentially) used to define
Nn. The Steps (c), (d) on p. 60 show that for a prime p, the sequence νp(k) := Npk satisfies a simple
recurrence relation νp(k) = A1νp(k − 1) + . . . + AKνp(k − K) for a certain value of K (for cubic
polynomials, K ≤ 2; if we allow trailing 0 s in the sequence (Ak), we may put K = 2). (Here the
coefficients Ak depend on p, so we may write it as Ap,k.)

523 Moreover, not only F is non-periodic (so to expect the behavior of F (T ) we need graphs on long intervals of T ,
but also the series converges much slower. For example, “the total weight” of coefficients Nn contributing to terms
cos τT with τ ∈ [τ0, τ1] with bounded |τ1 − τ0| was growing very slowly for cubic polynomials, but it grows quickier
than √τ0 in this case.

Adding to this the absense of suitable polynomials of degree 5 with discriminant below 1,500 and the fact that it
is the discriminant squared which leads to the zone of the horizon-self-similarity (due to β = ¼) it may happen that
plotting such F (−1)(T ) with any reasonable precision may be not possible with only “naive” algorithms.
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Combining with multiplicativity of Nn (Step (e) on p. 60), this may be rewritten in a more general
form:

NnpK = A1NnpK−1 + A2NnpK−2 + . . .+ AKNnp0 .

One can also write similar relations for a rational number n = ñ/pL with L ≤ K − 2, if we assume
that Nn = 0 unless n ∈ N.

Obviously, the conditions Nk = 0 for k ≤ 0, and N1 = 1, and numbers Ap,k for primes p (with
Ap,1 = Np) uniquely determine the sequence Nn, and its Fourier transform F (t). Moreover, it is easy
to rewrite the condition above in terms of the function F (T ).

Indeed, given an integer s and a 2πs-periodic function f(t), consider the function

Av f(t) := Avs f(t) := (f(t) + f(t+ 2π) + . . .+ f(t+ 2(s− 1)π))/s;

it is now 2π-periodic. Consider Fourier coefficients fn of f with n ∈ 1/sZ; then Fourier coefficients
(Av f)n of Av f satisfy (Av f)n = fn (for n ∈ Z). While a T -periodic function f is also kT -periodic,
Av f is well-defined since Avs and Avks coincide on 2πs-periodic functions.

For example, if f is 2π-periodic, then f(t/s) is 2πs-periodic, and

Av f(t/s) = (f(t/s) + f((t+ 2π)/s) + . . .+ f((t+ 2(s− 1)π)/s))/s

is 2π-periodic. Call its Fourier coefficients f [s]
n ; obviously, f [s]

n = fsn.
Now one can rewrite the recursion relation on Nn as

AvF (t/p) = A1F (t) + A2F (pt) + . . .+ AKF (pK−1t).

Indeed, this says that Nnp = A1Nn + A2Nn/p + . . .+ AKF (n/pK−1) if n ∈ N—which coincides with
the conditions above. One can immediately recognize this as a claim that F is an A1-eigenvector of
the operator Tp := Av ◦ µ1/p − Ap,2µp − . . .− Ap,KµpK−1 (here p is prime).

This operator is called the Hecke operator . Note that since in our examples K ≤ 2, this operator
is just Av ◦ µ1/p − Ap,2µp. Moreover, inspecting Footnote 184 on p. 74 shows that Ap,2 is always ±1
or 0, and 0 appears only for exceptional p; so essentially, in our cases the Hecke operator Tp takes one
of 3 different forms: Av ◦ µ1/p or Av ◦ µ1/p ± µp.

Furthermore, comparing these recursion relations with the table on p. 73 suggests that the sign
of Ap,2 (when it equals ±1) depends only on p mod c; here c is the conductor. In fact, more is true:
Ap,2 = 0 iff p divides c, otherwise the sign depends on whether X2 = p mod c has solutions; one can
write this using the Legendre symbol from p. 210 as Ap,2 = −

(
p
c

)
.

Conclusion: for polynomials of degree 3 the coefficient Ap,2 in the Hecke operators Tp for prime p
depend only on c and on p mod c; here c is the conductor. Eigenvalues of these operators for the
(common!) eigenvector F are integer. Moreover, these eigenvalues match the coloring ???524

In fact, it is easy to see that the operators Tp and Tp′ commute for mutually prime p, p′ when we
apply them to 2π-periodic functions. Since we are going to consider Tp only for prime p, this leads to
a commuting system of operators with a common eigenvector F .

This translation process provides an alternative description of our way to construct the function
F :

• We chose a symmetrical geometric object X: the line T ∈ R completed by T = ∞, with
fractional-linear transforms as symmetries.

524 N.B. (???) Ref?

https://en.wikipedia.org/wiki/Hecke_operator
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• We consider a certain type of tensor fields on X; the symmetries above act on such tensor
fields.525
• Given the conductor c, we define the Hecke operators Tp as above.
• There exists a 2π-periodic527 tensor field F which is an eigenvector of all the Hecke operators
with eigenvalues matching the coloring ???.528

However, this description also encompasses the fractal symmetries of F (t): before, we constructed F
explicitly, then started to check whether it is fractal-symmetric. As we show in the following section,
the translation to the eigenvalue-problem gives us a possibility to start looking for a suitable F (t)
among fractal-symmetric functions.529

The Hecke operators and higher degrees in Langlands program

The analisys above and our construction of the sequence Nn from the section on p. 59 completely
determine the properties of common eigenvectors of Hecke operators. Given any numbers Ap,2 (above
they are always −1, 0 or 1) and any eigenvalues, there is a function with period 1 which is a common
eigenvector (here we ignore questions of convergence of the Fourier series). Moreover, this determines
the Fourier coefficients with positive indices uniquely up to a multiplicative constant; likewise for the
negative indices.530

This leads to the following reformulation of the statement of Langlands program (in the case of
cubic polynomials):

• Choose the eigenvalues to match the red/green coloring of the sections ???.
• Then the common eigenvector constructed above is automorphic.531

Another way to reformulate this in a very compact form is to note that Hecke operators send
an automorphic function to an automorphic function.532 Therefore one can consider the action of

525 For example, −1/T sends F (T )(dT )k to F (−1/T)(dT )k/T 2k. From this, one can recognize the “actual” fractal
transform as matching k = ½ in the modular case, and fields F (T )|dT |½ in the Maass case.526

526 In fact, it is easier to formalize the description of this type of tensor slightly differently by using the standard
models of action of SL2R on tensor fields. Note that the argument T takes value on “a circle”, T ∈ RP1; consider a
coordinate ϑ on RP1 such that functions on RP1 are identified with π-periodic functions of ϑ. (For example, T = tanϑ.)

In the coordinate ϑ, one can use fields G(ϑ)|dϑ|½ (or ½-densities) for both cases of tensors, but say that in the
first case the coefficient G(ϑ) is π-anti-periodic (in other words, G is 2π-periodic, and G(ϑ+ π) = −G(ϑ)).

(This is another context in which the Maass form case is a bit easier than the modular form case: it does not need
“the twist” of anti-periodicity. Compare with Remark 99 on p. 143.)

527 N.B. (???) Periodicity: is it Hecke-like too?
528 N.B. (???) Ref?
529 N.B. (???) Why eigenvalue is fractal-symmetric?
530 In applications, there are additional conditions on F (preserved by Hecke operators) which determine the

negative Fourier coefficients given the positive ones. (For example, F (t) may continue holomorphically to {Im t > 0};
or F may be even.) If all eigenvalues equal 1−Ap,2 (which never happens in examples considered in these notes), then,
additionally, F ≡ const is a solution. This means that under suitable conditions, the common eigenvector is unique.

531 Note that the operator Av is defined only on periodic functions with integer periods. Hence this eigenvector is
automatically periodic.

532 Moreover, the same holds for automorphic functions with period of length 1.
Recall that any automorphic function is periodic with a period of integer length. Moreover, if for a given p one of

Ap,k with k ≥ 2 or the eigenvalue is non-0, then for the corresponding eigenvalue, p cannot divide the (numerator of)
length of the minimal period. In particular, it turns out that if c is square-free (so the previous sentence applies for
every p), any eigenfunction has a period of length 1. For p s of the other type, the Fourier coefficients Npkn vanish
for k 6= 0 if (p, n) = 1, and the length of the period is 1. Allowing functions with length of the period more than 1
does not add “essentially new” eigenfunctions. (This is quite similar to the relation between newforms and oldforms in
Atkin–Lehner–Li–Miyake theory.533 )

Because of this, below we consider the Hecke operators in automorphic functions with period 1 only.
533 ??? N.B.: only we do not use orthogonal complement??? Compare with this preprint for Γ0?

https://en.wikipedia.org/wiki/Representation_theory_of_diffeomorphism_groups
https://en.wikipedia.org/wiki/Representation_theory_of_diffeomorphism_groups
https://en.wikipedia.org/wiki/Density_on_a_manifold#s-densities_on_a_vector_space
https://en.wikipedia.org/wiki/Atkin%E2%80%93Lehner_theory
https://en.wikipedia.org/wiki/Atkin%E2%80%93Lehner_theory
https://arxiv.org/pdf/1503.02767.pdf
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Hecke operators in the vector space of automorphic functions; again, one can consider the common
eigenvector problem in this subspace. Call the restricted operators the automorphic Hecke operators.

We saw that in the whole space, any collection of eigenvalues matches an eigenvector; however, it
is not surprising that very few of collection survive in the subspace:
For a certain common eigenvector of automorphic Hecke operators, the eigenvalues matches the coloring of ???.
Call such a sequence of eigenvalues Ap,1 automorphic.

Furthermore, for every c ∈ N we can consider the automorphic functions F which have a period
of length 1 and such that the change of variables T 7→ −1/T gives a function with period of length
c. (We saw that any automorphic function with period of length 1 is of this form for a suitable c.)
They form a finite-dimensional subspace. If p|c for any prime p such that Ap,2 = 0, then the Hecke
operators preserve this subspace, so there is only a finite collection of common eigenvectors (up to a
multiplicative constant).

Moreover, there is only a finite collection of534 sequences Ap,2 = 0,±1 (for prime p) depending
only on p mod c; for each choice we have a finite number of choices of eigenvectors. This gives a finite
collection of automorphic sequences; they are called sequences on level c. Hence535 any automorphic
sequence lives on a certain level.536 537 Conclusion: for every c, there is a finite number of automorphic
sequences of leven c, and the sequence of colors for a cubic polynomial is one of them.

In the geometric context of p. 168, we can generalize this approach as:
• We chose a symmetrical geometric object X with a certain collection of symmetries of X.
• Inside the set of symmetries, we consider only a suitable subset of “symmetries with rational
coefficients”, so that it is possible to say that “two symmetries are adelically close”.
• We consider a certain type of tensor fields on X (so the symmetries act on these tensor
fields).
• An automorphic tensor field is one which is preserved by any “rational” symmetry close to id.
• We define the “X-Hecke operators Tp acting on automorphic tensor fields on X (as suitable
linear combinations of the action of symmetries; the coefficients may depend on the conductor
c).
• Look for common eigenvectors of Tp, and call the corresponding sequence of eigenvalues
X-automorphic.

One of the approaches of the Langlands program is that for any point-counting sequence (such
as ÑGal

n )538 539 can be “distilled”, and any distilled part gives a sequence Nn such that numbers Np

coincide with a certain sequence of X-automorphic eigenvalues.540 Moreover, the geometric object X
matching a given point-counting problem may be chosen from one of the few series of known examples.

In fact, any eigenvector F obtained this way is automatically “fractally symmetric” tensor field on
X. This is a part of being X-automorphic!

However, note a major difference with the case when X is 1-dimensional (as the cases considered
so far were: F was a function of one variable): above, given any collection of coefficients Ap,2 of Hecke
operators, and any collection of eigenvalues Ap, we could immediately calculate Fourier coefficients of
the common eigenvector F . However, with more complicated X s (apparently) this problem becomes

534 N.B. (???) Which?
535 N.B. (???) Is χ(p) always of this form, for an automorphic sequence?
536 Atkin–Lehner–Li–Miyake theory shows that for a given sequence, the eigenvectors form a 1-dimensional space

if we consider the minimal possible level.
537 N.B. (???) Is not uniqueness shown above anyway?!
538 One can do more: when one considers polynomials of many variables, one can count not only the points, but

also “algebraic cycles”.
539 N.B. (???) Ref?
540 Moreover, (Npk ) for k ≥ 2 are the coefficients in the definitions of Hecke operators.

https://en.wikipedia.org/wiki/Atkin%E2%80%93Lehner_theory
https://en.wikipedia.org/wiki/Algebraic_cycle


VERIFICATION AND FURTHER EXAMPLES 171

much harder. (At least, I do not know cases when F for a particular distilled sequence Nn is described
with X of dimension > 1 and “as explicitly” as the recipe of Steps (a)–(e) (from p. 60)— followed by
the Fourier transform.)

Conclusion: to every arithmetic “counting problem” (for solutions of a system of polynomial
equations, or for “families” of such solutions—a.k.a. “cycles”), one can assign a geometric object X
with a collection of “generalized Hecke operators” acting on appropriate tensor fields on X such that
the solution to the counting problem is an X-automorphic sequence.

However, this is not all! “The other approach” of Langlands program goes in the opposite direction:
it claims that any X-automorphic sequence is related to a certain arithmetic “generalized counting
problem”. It defines exactly what a generalized counting problem is—however, I do not know whether
every such problem may be related to a distillation of a cycle-counting problem for a system of
polynomial equations.

Verification and further examples

While we exhausted the examples we may easily plot with our tools, it makes sense to mention
what else has a chance to be handled in a similar way. First, we must explain why the fractality
observed for cubic polynomials should take place. The key ingredient is our description of Weil
denominators as characteristic polynomials of matrices for Frobenius permutations (see Footnote
322 on p. 118). From another point of view, Frobenius elements permute 3 roots, inspect their 3×3
permutation matrices. A permutation matrix can be thought of as permuting real weights assigned
to the permuted points (the roots of the polynomial!). However, since these permutations preserve
the total weight, the eigenvalues of these matrices split into two parts: the eigenvalue 1 “for the total
weight”, while the rest matches the action of the permutation on the distributions of weights with total
0. (The latter vector space is 2-dimensional, hence this action is, essentially, given by 2×2 matrices.)

On the other hand, having the numerator 1− u essentially cancels the eigenvalue 1; so all that
remains is the second action. Summarizing:

• For every permutation of 3 roots, we inspect how it acts on “real weights assigned to roots”
with total 0.
• The characteristic polynomial of this 2×2 matrix has degree 2.
• To every non-exceptional prime number p we assign a particular Frobenious permutation.541
• Consider the characteristic polynomial of the 2×2 matrix of the action of Frobenius permuta-
tion.
• The coefficients of this characteristic polynomial can be considered as coefficients of the
recurrence relation.542
• Our numbers543 Npk =: ak are defined by this recurrence relation. (We start with a0 = 1, and
ak=0 for k < 0.)

People who have heard of544 Artin L-function can immediately recognize545 that our numbers Nm are
exactly the coefficents of this function (for our assignment of 2×2 matrices).546

541 Well, only a conjugacy class—but all permutations in a class have the same characteristic polynomial.
542 For example, a polynomial 1− 3u+ 2u2 gives a recursion relation ak − 3ak−1 + 2ak−2 = 0.
543 . . . from the section on p. 59.
544 N.B. (???) This is a duplicate of the section on p. 131.
545 In addition to what we did in the section on p. 115, one needs to check that the standard definition of

the Frobenius permutation gives a 3-cycle if there are no roots mod p (the “red” primes), a transposition in the case of
1 root, and the trivial permutation in the case of 3 roots.

546 Since our language is not good enough for a general description of what happens in exceptional primes, this
does not verify the match if m is divisible by an exceptional prime. Still, in our particular case one can check such
matches as well.

https://en.wikipedia.org/wiki/Artin_L-function
https://en.wikipedia.org/wiki/Frobenius_endomorphism#Frobenius_for_global_fields
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Finally, recall that in the simplest cases this part of Langlands program is already known:

F (t) has required fractal properties when Nm are coefficients of an “uncomplicated” Artin L-function.

According to Langlands–Tunnell results (of ≈ 1980)547 a case is “uncomplicated” if the matrices
are 2×2, and it is not the “icosahedral” case: products of these 2 × 2 matrices do not match the
composition laws of the symmetries of an icosahedron.548

One can try to proceed as above for polynomials of degree d > 3. Basically, there are two strategies:
start as above, with weights with total 0, which leads to (d− 1)×(d− 1)-matrices; or proceed with
appropriately chosen 2×2-matrices.549

In the first case, one still gets Np := Ñp − 1 for non-special p. However, start with recalling
that in the cubic case, cyclic polynomials would lead to 2×2-matrices which can be simultaneously
diagonalized—and that this made the fractality patterns more complicated (see Remark 78 on p. 130).
So, first of all, one may need to exclude a similar situation: when the (d− 1)×(d− 1)-matrices above
can be simultaneously block-diagonalized.550 551

Moreover, in the 2×2 case Gelbart explicitly states552 how to translate Artin’s L-function to a
particular “automorphic form” (which is F , in our language), and the properties of this form. While
in the case of general n×n matrices Cogdell apparently says that this would work too:553 “Surprisingly,
the technique is exactly the same as Hecke’s, i.e., inverting the integral representation”, I could not
find any exposition which would result in anything “explicit”, such as our generalized functions F .

In the second case, where we assign 2×2-matrices, the Langlands program has sufficiently explicit
formulations554 to ensure the same fractality properties for F (t) as what we saw in our examples.
—However, in this case the numbers Np need to be given by more complicated formulas555 than

547 In Knapp’s notes in the Edinburgh Proceedings Representation Theory and Automorphic Forms, 1997, this is
Theorem 8.9 (together with the paragraph after Theorem 8.7).

548 The icosahedral case is also known, but only in the “even” case (meaning: 1 real root) since 2009. See
Khare–Wintenberger paper Serre’s modularity conjecture. I .

549 These two cases should be eventually connected by Langlands functoriality (for an introduction, see Friedberg’s
AMS Notes).

Note that for functoriality to be immediately applicable, in a particular direction, one needs an extra property: if
one strategy assigns to two Galois symmetries g and g′ the matrices Mg and Mg′ which have the same eigenvalues with
the same multiplicies, then the other strategy must do likewise. (For non-cyclic cubic polynomials this works with our
first strategy and an arbitrary strategy in place of the second strategy.)

550 For 2×2-matrices, block-diagonalization and diagonalization are equivalent.
551 For example, this happens for abelean polynomials in degree ≥ 3 (as we already saw in Remark 78 on p. 130),

and, in degree ≥ 4, for polynomials with the Galois group being the dihedral group Dk.
552 In Section 4.2 (and Remark 2.5.5) of his chapter in Modular Forms and Fermat’s Last Theorem. I could not

find similarly explicit and general statements elsewhere!
553 In Analytic Theory of L-Functions for GLn.
On the other hand, Bump writes “The form of the Gamma factors in the functional equation show that a

complex Galois representation can be associated with an automorphic form in this way only if the automorphic
form is a modular form of weight one or a Maass form of weight zero with a Laplacian eigenvalue of ¼” (in
Automorphic forms and representations, CUP 1998).

554 Compare with Footnote 548 on p. 172.
555 Moreover, arguments of these formulas may include the counts Ñ extra

p for some ancillary polynomials! (This
is somewhat similar to what we did in Remark 40 on p. 72.) Still, the resulting numbers remain remote cousins of
our original coloring of numbers into red/green on p. 19: the possible coefficients Np assigned to red and green prime
numbers p are different.

These “ancillary” polynomials may be “symmetric powers” of the initial polynomial P : if P has roots xk, the
second symmetric power would have roots x1 + x2, x1 + x3, etc.

https://pdfs.semanticscholar.org/cef1/cd21bca1217aad76408af7b49229b5f195d4.pdf
http://abel.harvard.edu/ev/docs/khare1.pdf
https://en.wikipedia.org/wiki/Langlands_program#Generalized_functoriality
https://www.ams.org/journals/notices/201806/rnoti-p663.pdf
https://www.ams.org/journals/notices/201806/rnoti-p663.pdf
https://en.wikipedia.org/wiki/Dihedral_group
https://www.springer.com/gp/book/9780387989983
https://archive.org/stream/cw5jNvvqOBrYgSpVBEB9WyasURWMFicx/D.%20Bump%2C%20J.%20W.%20Cogdell%2C%20E.%20de%20Shalit%2C%20D.%20Gaitsgory%2C%20E.%20Kowalski%2C%20S.%20S.%20Kudla%20%28auth.%29%2C%20Joseph%20Bernstein%2C%20Stephen%20Gelbart%20%28eds.%29%20-%20An%20Introduction%20to%20the%20Langlands%20Program-Birkh%C3%A4user%20Basel%20%282004%29_djvu.txt
https://math.stanford.edu/~bump/book.html
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Np := Ñp − 1 even for non-special p. Moreover, only a few “flavors” of polynomials allow such
inclusions into 2× 2-matrices.556

For example, in degree 4 the Galois group is a subgroup of S4, which is a group of rotations of
a cube, hence may be included into557 SO3R ' PSU2 ⊂ PSL2C ⊂ PGL2C. The same558 happens in
degree 5 when the discriminant is a complete square: the Galois group is a subgroup of A5 which is a
group of rotations of icosahedron. (Compare with the section on tetrahedral/etc. cases in WikiPedia.)

With the first scenario, we are dealing with a sequence of numbers Nn obtained by the essentially
the same rules as the rules for cubic polynomials in the beginning of this section. Moreover, the fractal
transform at 0, given by F (1/Ct)/t, still multiplies F (t) by a constant (due to the “Hecke’s functional
equation”); therefore the same happens at t in the Cantor hyper-family (see p. 83). However, I could
not find what the Langlands program could predict about the fractality near other rational multiples
of 2π. This leads to a question about coefficients Nn of the Artin’s L-function of the (d− 1)×(d− 1)
matrices defined above:

Would the Fourier transform of Nn be an exact fractal?

This question is kind of remote from Langlands program: when we assign (d− 1)×(d− 1) matrices,
this gives a mapping from the Galois group of an irreducible polynomial into GLd−1C. By Langlands
program, this is related to objects whose symmetries contain the “Langlands dual” group, which is
also GLd−1 —but (in principle!) we need to consider the “adelic flavor” of this group.559

Fortunately, the Galois group we started with was finite, so this is the so called “Artin case”,560

and—to make the long story short—we can ignore the “adelic” part and substitute something much
simpler. In the Artin case, the “complicated part of adelic GLd−1” should act trivially! After we take
this into account, what we need is a geometric object T̂ with the action of the group GLd−1R and a
tensor field F̂ (t̂), t̂ ∈ T̂ , which is preserved by a certain congruence-subgroup of GLd−1Z. (The choice
of the congruence-subgroup is the place where the conductor enters the picture!)

With d − 1 = 2 the geometric object is the t-line (completed by t = ∞), and the tensor field
is our function F (t) (considered as a tensor-field on this line). The fact that it is preserved by a
congruence-subgroup led to fractal symmetries of F (t) and F (−1)(t). However, for d > 3 the group
GLd−1R does not act on the projective line! This is why the fractality of F (t) requires a separate
consideration. Anyway, a question remains:

Is there a recipe for F̂ (t̂) in terms of d and the sequence Nn?

At the very end, the “arithmetic” part of the Langlands program happens to have two facets:
reciprocity and functoriality; above, we used reciprocity only. Question:

Is it possible to extract any additional info about functions F (t) from Langlands functoriality?

556 One needs to consider inclusions since the kernel would lead to us, essentially, studying a polynomial of a
smaller degree.

557 Note that this mapping does not lift to a mapping to GL2C. While there is another mapping into GL2C, it
passes through S4 → S3, hence has a kernel.—Therefore the corresponding sequence Nn corresponds to a related
polynomial (the “cubic resolvent”) of degree 3 (from .

558 . . . only in this case there is no non-trivial homomorphism into GL2C whatsoever.
559 The adeles in question are rational adeles, provided our polynomial had rational coefficients (so the Galois

group is defined over rationals). (This is why we eventually arrive at the real flavor of GLd−1.)
560 Essentially, this means that we consider “motives of dimension 0”— indeed, our polynomial is 1 equation with 1

unknown.

https://en.wikipedia.org/wiki/Group_representation
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The bird’s eye view and the Grothendieck group of manifolds

In these notes, we chipped off a tiny chunk from the Langlands program; this chunk shows that
the “point counting function” Ñm (see p. 60) for polynomials of degree up to 3 is in no way “random”,
but has a very strong “pattern” (when restricted to prime m; otherwise, one needs to consider ÑGal

m ).
Essentially, the Langlands program “at large” goes in the direction of stating “something similar”561
for general systems of polynomial equations.

Suppose that the last (fuzzy) statement is literally true. What would be the corollaries for
arithmetic? Consider the vector space spanned by all possible sequences Ñp (indexed by prime p).
Then:562

• This vector space has an increasing filtration indexed by a certain “complexity degree”.563
• So far, we encountered three levels of complexity: if we have no equations and d unknowns,
then Ñp = pd, so we have a polynomial sequence. For a quadratic equation with 1 unknown,
we get a periodic sequence. (Likewise for other abelian polynomials.) For a non-abelian cubic
equation with 1 unknown, we get Ñp = 1 +Np where Np are coefficients of a modular or a
Maass form (and 1 is a polynomial— so it sits in “a simpler” level of filtration!).564
• The existence of our “distillation process” suggests that the filtration above can be refined
to a grading.
• The Langlands program suggests that the index set of the grading is related to complex
reductive groups.565

Moreover, “joining systems of equations together” shows that the vector space above is actually
closed under pointwise multiplication of sequences. It is not very hard to check that when we multiply
coefficients of a modular form by a periodic function, the result is again a sequence of coefficients of a
modular form.566 This suggests567:

The filtration above is closely related to pointwise multiplication.

(The first non-trivial examples of such multiplicativity were discovered by Rankin and Selberg about
1940.)

Finally, the vector space above is a very close relative of the K-group (actually, it has a structure
of a commutative ring) of algebraic manifolds:568 given a submanifold Z ⊂ X, we can introduce a
relation [X] = [Z] + [X r Z] in the abelian group generated by classes [X] of isomorphism of such
manifolds. The K-group is the quotient by these relations. Direct product of manifolds gives a
structure of a ring on this group. The vector space above is a quotient of this ring by a certain ideal.569

561 Unfortunate, my almost complete illiteracy in these topics does not let me say anything more precise.
562 I suspect that this approach should be well-known to specialists in the Langlands program—but I never saw it

mentioned explicitly.
563 This measure of complexity is “orthogonal” to dimension, degree, discriminant and height.
564 In fact, for elliptic curves the answer is quite similar to the last one (only the weight of the form is different,

and 1 is replaced by 1 + p).
565 Moreover, for every group there is an additional filtration by conductor (ordered by divisibility). For example,

inside the vector space of periodic sequences (here the group is GL1C) one considers subspaces of c-periodic sequences.
566 Although I did not see it written this way! The resulting conductor is typically much harder; it is a divisor of

cK2; here c is conductor of a modular form, and K is the length of the period.
567 I cannot follow it close enough, but I suspect that Cogdell’s paper (see Footnote 553 on p. 172) investigates

what happens in this directions.
568 Warning: this should not be confused with the (completely unrelated) K-group of an individual manifold!
569 Very little is known about the K-group. However, it is known that the affine line (“zero equations with one

unknown”) is a divisor of zero, hence this ideal is non-trivial!

https://en.wikipedia.org/wiki/Rankin%E2%80%93Selberg_method
https://en.wikipedia.org/wiki/Modular_form#Standard_definition
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The filtration conjectured above can be lifted to the K-group—but the ideal remains unfiltered.
This leads to a question:

Can the lifted filtration be “meaningfully refined” so that the result subdivides the ideal?



Exercises on Fourier transform

The following exercises are not tuned/debugged yet.570

Exercises G: Fourier transform as black box—and other approaches

Only a very minimal knowledge of Fourier series is required for the main body of these notes. It
seems that for this purpose, on the first reading it is possible to treat Fourier transform as “a black
box”, with only two particular properties of this “black box” important for our purposes:

• No information is lost by the (direct and inverse) Fourier transforms.
In other words, they are bijections between sequences and 2π-periodic functions— so they

recode the information contained in the series into a function—and back.
• “The speed of decay” of the sequence matches “the degree of smoothness” of the function.
Here “the speed of decay” of the terms of the sequence measures how quickly they go to 0.
One may say that “the degree of smoothness” of the periodic function essentially measures
how many derivatives of the function “make sense”.

These two properties are easiest to understand571 provided we consider sequences which “decay
‘sufficiently’ fast”, and functions which are “‘sufficiently’ smooth”. Moreover, the second property may
be qualified numerically: consider two operations:

• Multiplication of a sequence (an) by n (which decreases the “rate of decay”), and
• Taking a derivative of a function (which decreases the “degree of smoothness”).

Fact: these operations “match each other” (up to a factor i =
√
−1) “under Fourier transform”. In

other words, the derivative (Fa)′ of the Fourier transform of a sequence an is the Fourier transform
F (inan) of the sequence (

√
−1nan). So:

Each step in “how many derivatives make sense” matches speedup by the factor 1/|n| of “the rate of decay”.

To finish the “black box” treatment: keep in mind that the Fourier transform was invented more
than a century before “the hidden symmetries” we discuss here were conjectured/understood—and it
has an enormous usability outside of the topics of these notes. So its role in “unraveling” the hidden
symmetries of number theory is not of “a specialized tool invented for this particular purpose”, but
should be considered as a mathematical miracle.

The exercises below are for the readers who are not satisfied with the “black box approach” and
want to understand “all the details”.—Use them as a tool to control one’s understanding. Warning:
These excercises may be quite heavy on “the analytic skills”: they assume a working dexterity in
dealing with integrals and estimates.572 573 An exercise may depend on the results of the preceding
exercises, but in most cases one should be able to solve them “independently” when one “just takes
the conclusions of preceding exercises as given”.574

570 N.B. (???) Check!
571 We inspect the points of view which make this valid in the other cases as well in the group L of exercises

on p. 191. These points of view are important for our purposes since the sequences we consider are “one or two steps
worse” than what can be covered by the “easiest” approaches.

572 On the other hand, it is probably much more important to be able to understand “what these exercises are
about” than to be able to actually solve them. This is why we promote them only as “a tool of control”.

573 The hints are not yet field-tested: I’m not sure that they are really helpful.
574 Or one may use plotting software to “cheat” and look what is the result of missed problems. (I expect that the

values of the constants in the estimates below are “correct”—but one should be ready to change them a bit if they do
not actually “fit”. Please let me know about every such case!)

176
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The story of Fourier transform of 2π-periodic functions goes like this:
• Given such a function F , it may be “represented in a certain sense by a series” ∑k∈Z Fkeikt.
• The numbers Fk may be found integrating 1

2πF (t)e−ikt over the period.
The devil is in the details: what does it mean to be “represented in a certain sense by a series”, and
(a bit less intriguing) what “integration over period” actually means.

In the simplest case, the meaning is plain. Repeat that a trigonometric polynomial is an expression
of the form c0 +c1 cos t+c2 cos 2t+c3 cos t+ . . .+cm cosmt+s1 sin t+s2 sin 2t+s3 sin 3t+ . . .+sn sinnt.
Exercise G0000: For any polynomial P (x, y) of two variables, P (cos t, sin t) is a trigonometric polynomial.
Any trigonometric polynomial F may be written in the form F−ue−iut +F−u+1e−i(u−1)t + . . .+Fv−1ei(v−1)t +
Fveivt with u, v ∈ Z.

Moreover, one can find Fk with k ∈ Z as the k th Fourier coefficient of F defined as 1
2π
∫ 2π
0 F (t)e−iktdt.

In particular, if k < −u or q > v, the latter integral is 0.
Hint: It is enough to consider the case k = 0.

In order of complexity, the next case is when F is “smooth enough”. We start with two observations
recalling the usual criteria of convergence:
Exercise G000 (Cauchy’s convergence test): Given a subset S of an interval [−M,M ], the hull of S is
the smallest closed interval575 containing S. Say that a sequence Sn with |Sn| bounded by M is a Cauchy
sequence if the length of the hull of the set {Sn, Sn+1, Sn+2, . . .} decreases to 0 as n grows. (Denote this hull
by [mn,Mn].)

Show that the sequence mn is non-decreasing, and the sequence Mn is non-increasing, and there is a
number L such that mn ≤ L ≤Mn for every n. Show that for a Cauchy sequence, such L is unique. Show
that if L is unique, it is576 the limit of Sn.

Hint: Consider the hull of {m1,m2, . . .}.
Exercise G00 (Bounds for power law sums): Recall Lagrange’s Mean value theorem expressing a
difference via derivative: f(x+ 1)− f(x) = f ′(x+ c) for a certain 0 < c < 1 (provided f ′(x+ c) makes sense
for all such c). Hence f(x+ 1)− f(x) > f ′(x+ 1) if f ′ decreases.

Show that 1/(n+ 1)r + 1/(n+ 2)r + . . .+ 1/mr < 1
(r−1)nr−1 for any m > n ≥ 1 and r > 1. (Hence given

r > 1, by increasing n one can make this sum as small as necessary for all m > n at once.)
Hint: 1/nr−1 − 1/(n+ 1)r−1 > (r − 1)/(n+ 1)r for r > 1.

Exercise G0: If G has a continuous m th derivative, then its Fourier coefficients |Gk| < C/(1 + km) for a
certain number C.

Given a sequence (fk) such that |fk| ≤ C/|k|r for k 6= 0, the corresponding Fourier series F (t) :=∑∞
−∞ fkeikt converges at every t to a continuous function F provided r > 1. Likewise, if r > n+ 1, then F

has n continuous derivatives. (Moreover, the corresponding Fourier series converges uniformly577 in t.)
Hint: Show that |F≤K(t1)− F≤K(t2)| ≤ 2SK sin min(π/2,K|t1 − t2|/2) with SK := ∑K

k=−K |fk|.
Note a gap of size 2 in the conclusions of this exercise: starting with m, we allow r ≤ m, hence

the round-trip gives a knowledge of n continuous derivatives provided n < m− 1. This is essentially
the same as putting n = m− 2.
Exercise G1: The Fourier coefficients Fk of the continuous function F defined in the preceding exercise
coincide with numbers fk.

Hint: Use uniform convergence.
Anyway, one can use the description above as578 a way to reconstruct a continuous function F

from its Fourier coefficients Fk:
575 Usually, one denotes its ends by inf S and supS. To get this interval, take the intersection of all the closed

intervals containing S. (This intersection is closed and convex, hence an interval.)
576 It should be obvious that if Sn has a limit l, then L is unique and L = l.
577 This means that by choosing N one can make |F≤N (t)− F (t)| small simultaneously for all t.
578 N.B. (???) Generalize to integrable? sum-then-differentiate?

https://en.wikipedia.org/wiki/Cauchy%27s_convergence_test
https://en.wikipedia.org/wiki/Mean_value_theorem
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Exercise G2: If F is continuous, then the series G(t) := −∑k 6=0 Fk/k
2·eikt converges at every t (uniformly!),

and G has a continuous second derivative. Moreover,579 F0 +G′′(t) coincides with F .
Hint: Consider the second antiderivative of F − F0.

Exercises H: Fourier transform and “generalized functions”

Here we show how one can translate the results of a very naive approach above into an extremely
powerful machinery covering the majority of situations580 where Fourier series appear in analysis.
However, this approach requires a tiny bit of abstraction. People for whom this bit it too large to
digest on the first bite may want to switch first to the exercise sections K on p. 187 and L on p. 191
where we treat things in a very down-to-Earth terms.

The exercises of the preceding section show the importance of the following situation: we have a
function G whose Fourier series converges to G (pointwise, or uniformly—does not matter). It might
be hard to see from the Fourier coefficients Gk of G, but it turns out that G has an m th derivative
G(m) ( “in a certain sense” — for example, a continuous m th derivative). Nevertheless, we want to
work with F := G(m) “as if” it matches the Fourier series im∑∞−∞ kmGkeikt.

So we call the numbers imkmGk the formal Fourier coefficients of F . Note that if F is actually a
continuous function, then these numbers coincide with the “usual” Fourier coefficients of F ; in other
words, one can find numbers Fk as “certain integrals involving F ” (as above). (In particular, dropping
the word “formal” does not lead to any confusion;— so we do this below.) However, if the framed
“sense” above is more delicate, the calculation of Fk in terms of F may require a delicate analysis.581

The most general approach to the “sense” of the m th derivative (as above, in the framed phrase) is
to do it formally. So say that a pair (F,m) with F a continuous function and m ∈ Z≥0 represents an
m th formal derivative derivative of F . Write this pair down as F [m]. To fix obvious defects, say that
F [m] and G[m] are indistinguishable when F −G is a polynomial of degree ≤ m− 1. In addition, say
also that F [m] and G[m−1] are indistinguishable when G is the derivative of (differentiable) function F .
Exercise H1: Suppose that n ≥ m and one can join formal derivatives F [n] and G[m] by a chain of
indistinguishable formal derivatives. Then F has n − m continuous derivatives, and F (n−m) − G is a
polynomial of degree ≤ m− 1.

Hint: By induction, construct k ≥ 0 and a continuous function H with k + n−m continuous derivatives
s.t. F = H(k) and H(k+n−m) −G is a polynomial of degree ≤ m− 1.

If one can join F [0] and G[0] by a chain as above, then F = G.
Now we may consider formal repeated derivatives “up to undistinguishability”. In other words, we

identify formal derivatives which may be connected by a chain as in the exercise. The short name for
a “formal repeated derivative of a continuous function up to undistinguishability” is a generalized
function.582 583

579 N.B. (???) Compare with Cesàro summation.
580 There is a bit more general theory of “Fourier transform of hyperfunctions”. The situations where it is actually

inavoidable are rare—and we do not mention them in these notes except Footnote 603 on p. 186.
581 N.B. (???) Compare with the discussion after Exercise H5 on p. 179 and “multiply-by-Cm???.
582 Note that the usual definition of generalized functions uses not the fact that every generalized function is

repeated derivative of a continuous function, but the fact that every generalized function has well defined F -averaged
values for a smooth weight function F . Compare with the discussion after Exercise L25 on p. 196.

583 For people who did not see similar approaches before, this definition may seem abstract.—However, this is
exactly the way one deals with rational numbers!

There, instead of differentiation, one divides by a positive integer. So “a rational number is described by its
numerator R and denominator S” (written as R/S), but the numbers written as R/S and R1/S1 are indistinguishable if
R1 = kR and S1 = kS with k > 0.

Without these “generalized numbers”, one could divide an integer R by a positive integer S “only sometimes”.
(Like a continuous function not always having S th derivative.) Now one can always “proceed with this division” by
“considering a formal expression R/S”. (So keep this analogy in mind when dealing with operations defined below.)

https://en.wikipedia.org/wiki/Ces%C3%A0ro_summation
https://en.wikipedia.org/wiki/Hyperfunction
https://en.wikipedia.org/wiki/Generalized_function
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Define addition of F [n] and G[m] by writing them down (up to undistinguishability!) as k th formal
derivatives (with k ≥ max(m,n)) and defining H [k] + J [k] := (H + J)[k]. Finally, one can define the
derivative as (F [n])′ := F [n+1] and parallel translation by T as (F [n])(t− T ) := (F (t− T ))[n].

It is clear that this addition—and subtraction, and multiplication by a constant—makes sense
on “derivatives up to undistinguishability”, and satisfy all the usual properties of these operations.584
Moreover, the second claim of the last exercise shows that one can consider continuous functions as
particular cases of generalized functions.
Exercise H2: Taking derivative of continuously differentiable functions is compatible with the inclusion of
continuous functions into “generalized functions”. Same for addition of continuous functions and multiplying
them by a constant.

If F is a formal repeated derivative and F ′ coincides up to undistinguishability with 0, then there is a
number C such that F coincides up to undistinguishability with the constant (continuous) function C.

Conclusion: these compatibility properties make it possible to use the notation F (n) for the n th
formal derivative of a continuous function F up to undistinguishability. Indeed, if this derivative
coincides with a continuous585 function G, all our operations with the formal derivative (including
considering the antiderivatives!) coincide with operations on G.

Conclusion: we defined a collection of “objects” called “generalized functions”; they allow the
usual operations of addition, multiplication by a constant, differentiation, and antiderivative (defined
up to addition of a constant function). Every continuous function (and later we include L1-functions
and measures, see Exercise M3) is identified with a unique generalized function.

Say that a generalized function F is T -periodic if F (t − T ) coincides with F . Say that two
generalized functions F (n) and G(n) (with continuous functions F and G) coincide on an open set S if

• If S is an interval: if F −G coincides with a polynomial of degree ≤ n− 1 on S.
• In general: if F (n) and G(n) coincide on any subinterval of S.

(This makes sense586 since both parts give compatible results if S is an interval.)
Exercise H3: Define δ as ½|t|′′. Then δ coincides with 0 on Rr {0}.
Exercise H4: Consider a generalized function F which coincides with 0 on R r {0}. Then F is a linear
combination of δ-function and its derivatives.
Exercise H5: If a generalized function F is T -periodic, and is an M th derivative of a continuous function,
then there is a number F0 such that for any m ≥ M one can write F − F0 = G(m) with G a T -periodic
continuous function. Moreover, G is defined uniquely up to addition of a constant.

Hint: Write F = H ′ and consider the generalized function H(t− T )−H(t).
Call such number F0 the average value of F . This exercise shows that the argument after

Exercise G2 is applicable to F − F0 —provided one understands a certain sense as “in the sense of
generalized functions”. In other words, we define Fourier coefficients Fk of F for k 6= 0 as imkmGk;
here Gk are the Fourier coefficients of G. The 0th Fourier coefficient of F may be defined as F0.

However, to “give enbodiment” to this definition, we need
• To describe the relation of Fk to the expressions 1

2π
∫
period F (t)e−iktdt.

Warning: for rational numbers, there is “the best” (“reduced”) representation as R/S. Hence to compare rational
numbers for equality, one can reduce the representations, then compare numerators and denominators separately. For
generalized functions, this is not possible—hence to check equality of F [n] and G[m], one is forced to do something like
Exercise H1.

584 Such collections are called “vector spaces”.
585 In classical analysis one can also consider situations of “derivatives which make sense as non-continuous functions”

of a special form, in Exercise M3 we show how such functions (e.g., L1-functions, or measures) can be included in our
formal framework.

586 To be pedantic, one should have checked that the definition above is not changed if F (n) = F̃ (ñ) and G(n) = G̃(ñ)

and one replaces n by ñ.

https://en.wikipedia.org/wiki/Vector_space
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• To describe the relation of F to the expression ∑∞−∞ Fkeikt.
We address the first issue in the rest of this section, and the second issue in the next section I on p. 180.

Exercise H6: Show that for every n ≥ 0 there are polynomial expressions Ek, k = 0, . . . , n, in G and
derivatives of Φ (up to Φ(n)) such that ΦG(n) = E0 + E′1 + E′′2 + . . .+ E

(n)
n provided Φ and G are functions

such that all the involved derivatives make sense.
Hint: Guess En and proceed by induction.

Consider a formal derivative F = G(n) with a continuous G. Then for every n times continuously
differentiable Φ, the expressions Ek give continuous functions, so we can define ΦF using the RHS of
the expression in the exercise.

Exercise H7: Show that different (indistinguishable!) representations F = G(n) = G̃(ñ) of a generalized
function F lead to the same generalized function ΦF provided Φ has at least max(n, ñ) continuous derivatives.
Moreover, for n = 0 one gets “the usual multiplication” of continuous functions.

Show that the Leibniz’s rule (ΦF )′ = Φ′F + ΦF ′ holds provided Φ has sufficiently many continuous
derivatives for all the products to make sense. Show that Ψ(ΦF ) = (ΨΦ)F provided Φ and Ψ have sufficiently
many continuous derivatives. Show that 1·F = F , and (ΦF )(t− T ) = (Φ(t− T ))·(F (t− T )).

Show that if Φ is 0 on an interval [a, b], then ΦF is 0 on the interval (a, b).

Exercise H8: Show that tδ = 0, and tnδ(n) = (−1)nn!δ.
Hint: One can calculate tδ(n) using Leibniz’s rule.

Suppose that Φ has n + 2 continuous derivatives,587 and Φ(0) = Φ′(0) = . . . = Φ(n−1)(0) = 0. Find
Φ(t)δ(n).

Exercise H9: Consider M > 0. Given a generalized function G which is 0 on (−∞,−M) and on (M,∞),
define

∫∞
−∞G(t)dt as C+ −C−. Here C− and C+ are the (constant!) values on (−∞,−M) and on (M,∞) of

an arbitrary antiderivative of G.
Show that the average value of a 2π-periodic generalized function F coincides with588

∫∞
−∞Φ(t)F (t)dt

provided Φ is smooth enough for the product to make sense, Φ vanishes outside of [−2π, 2π], and Φ(t) +
Φ(t− 2π) = 1/2π on [0, 2π].

Hint: Check separately the case of constant F , and of F = H(n) with a periodic continuous H.

Exercise H10: Assume that F is a 2π-periodic generalized function. Show that the average value of F ′ is 0.
Show that the Fourier coefficient Fk of a 2π-periodic generalized function F coincides with the average

value of e−iktF (t).
Hint: Same as in preceding exercise.

Exercises I: Convergence of generalized functions

Two preceding exercises address the first shortcoming mentioned after Exercise H5 on p. 179. To
cover the second, consider the set C−m of generalized functions consisting of m th (formal) derivatives
of continuous functions. Say that a sequence F[k] of generalized functions from C−m converges in the

587 In fact, since δ is a measure, it is enough to have n continuous derivatives—but to define the product and verify
this, one needs a delicate statement from analysis. Compare with the discussion after Exercise L17 on p. 195.

588 One cannot replace this blindly with
∫ 2π

0 F (t)dt: this expression is of the form
∫∞
−∞Ψ(t)F (t)dt with Ψ being 1

between 0 and 2π and 0 outside of [0, 2π]. However, the product does not make sense unless the generalized function F
is of a special form—because of the jumps of Ψ. For example, even though this expression can be assigned a certain
sense when F is a measure, but then the result depends on the choice of the values of Ψ at 0 and 2π.
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sense589 590 of C−m to F ∈ C−m if on any finite interval I there is a choice of m th antiderivatives
G[k] and G of F[k] and F such that G[k] → G uniformly on I .
Exercise I1: Given a sequence F[k] → F as above and an m times continuously differentiable Φ, the sequence
ΦFk converges to ΦF in the sense of C−m. If all F[k] are 0 outside of [−M,M ], then F has the same property.

If in addition the sequence of numbers
∫∞
−∞ F[k](t)dt converges to L, then

∫∞
−∞ F (t)dt = L.

Convergence of 2π-periodic generalized functions in the sense of C−m implies convergence of their k th
Fourier coefficient for every k.
Exercise I2: The partial Fourier sums ΣK

k=−KFkeikt of a 2π-periodic generalized function F ∈ C−n converge
in the sense of C−n−2 to F .

Hint: Compare the case n = 0 with Exercise G0 on p. 177.
Similarly to the convergence of sequences in C−n, one can consider convergence of families in C−n

parameterized by subsets of R.
Exercise I3: If F is in C−n, then the family Ds := (F (t)− F (t− s))/s (with s 6= 0) in C−n converges to F ′
in the sense of C−n−1.

In fact, this works also when n is negative!
Exercise I4: If a family converges in the sense of C−n, then it converges in the sense of C−(n+1).

This shows that it makes sense to use a figure of speach “converges in the sense of C−n for a
suitable n” (and then the convergence holds for larger n too). The shortcut is converges in the sense
of generalized functions.
Exercise I5: A sequence Fk with k ∈ Z consists of Fourier coefficients of a 2π-periodic generalized function
F iff there are numbers C, N such that |Fk| ≤ C·(1 + |k|)N . Moreover, then F ∈ C−N−2.

If F ∈ C−m, then one can put591 N = m.

One calls such sequences tempered. Note that this not only fully describes how the Fourier
transform of 2π-periodic generalized functions behaves, but also identifies the set of 2π-periodic
generalized functions with an easy-to-describe set of sequences.

Exercises J: Visualization of generalized functions

The introduction of the notion of generalized functions592 completely changed the landscape of
discussions in many domains of math. This makes it very important to have tools to visualize the
given generalized function F (of the form G(n) with a continuous function G).

In the simplest case, F is continuous.
Exercise J1: Recall that any continuous function C can be considered as a formal 0th derivative C [0], so
defines a generalized function. Say that a generalized function F is m times continuously differentiable on an
interval (a, b) if there is an m times continuously differentiable (continuous) function C such that F coincides
with C on (a, b). (Here m ∈ Z≥0.)

Show that then F ′ is m− 1 times continuously differentiable on (a, b) provided m ≥ 1. Show that any
antiderivative of F is m+ 1 times continuously differentiable on (a, b).

589 For a general sequence of generalized functions, it converges if on every finite interval there is a corresponding
m = m(I ) such that there is convergence in the sense of C−m.

In fact, one can even generalize the notion of a generalized function, by allowing its “degree of smoothness −m” to
“depend on an interval”: on different finite intervals one may have different generalized functions, but they should be
undistinguishable where several make sense.

590 N.B. (???) Need to clarify the previous footnote.
591 Note the gap of 2 between translations N ù m and m ù N . It is the same gap as in Exercise G0 on p. 177.
592 . . . and their multi-dimensional analogues—where one considers repeated (formal) partial derivatives of

continuous functions, like ∂k+lF/∂xk∂yl with a continuous functions F (in the case dim = 2). Here F is considered up
to the functions like P (x)C(y) + c(x)p(y) with P , p polynomials of suitable degrees, and C and c continuous.
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In such a case, the graph of F makes perfect sense—hence a visualization of F exists in the most
“convincing” form.

Likewise for the case when F may be represented by a piecewise-continuous function C. (Here
one can take the—continuous!—antiderivative G of C, and we assume that F is represented by the
formal derivative G[1].) Already here one “annoyance” appears: G does not depend on the values of
C at the points of jumps—so these points should better be excluded from the plot “since they do not
contribute into F”.

There are three workaround for the latter annoyance by normalizing the value at the points of
jump:
Exercise J2: Suppose that a function F has the left and right limits at every point. Show that there is a
function lF which is left-continuous (so lF (t0) = limt→t0− lF (t)) and which has the same left and right limits
as F . Likewise for rF which is right-continuous.

Alternatively, one may replace the conditions above by mF (t0) = ½
(

lim
t→t0−

lF (t) + lim
t→t0+ lF (t)

)
.

The last flavor is convenient 593

The other flavors are especially important in the theory of random processes.594

One can show that if F allows an antiderivative G, then G is continuous, and lF , rF and mF also
allow G as an antiderivative. Conclusion: chosing one of l- or r- or m-flavors allows one to visualize
some of (formal) derivatives of continuous functions. (Indeed, a function which has left and right
limits at every point has a “non-pathological” graph—at least, the closure of the graph—taken as a
subset of R2 —is 595 596.)

On the next level of the complexity hierarchy, F is not of the forms considered above, but F = G′,
and G has a non-pathological graph.
Exercise J3: Consider G′ = F = Fnice + Fδ with Fδ a linear combination of shifts of δ-functions. If Fnice
has left and right limits at every t then the coefficients ck and shifts tk of summands ckδ(t − tk) can be
reconstructed from the jumps of G.

If Fnice has the left limit at t0, then this limit equals the slope of left tangent ray to the graph of G at
(t, G(t− 0). Likewise for the right limit.

Note that the context of this exercise is very close to what happens on the plot on p. 68. This
plot has jumps, and it seems that at every point there is the “lower” and the “upper” left (and right)
tangent rays. In other words, here instead of the left limit there is what seems to be a lower left limit
and the upper left limit. Likewise, other “typical” fractal plots in the main body of our notes do not
have jumps, but they also seem to have a “lower” and the “upper” left and right tangent rays.597

In yet higher levels of the complexity hierarchy, all we can plot is a repeated antiderivative of F .
In such cases, the interpretation of features of these plots in terms of behaviour of F becomes more
and more remote. For the second antiderivative, the corners match the δ-components of F and the
jumps match δ′-components—but to say more is way harder; as the order of the antiderivative grows,
the matching becomes harder and harder.

Another convenient way to visualize is applicable to generalized functions which are “δ-like” in
the sense that they vanish outside of 0 (compare with Exercise H4 on p. 179). To proceed, define

593 N.B. (???) . . . due to Exercise L6 on p. 193.
594 . . . in the context of Doob’s notion of “time-dependent filtration of σ-algebras”.
595 N.B. (???) What? A very small subset of R2?
596 N.B. (???) In fact, this works even when we allow the left and right limits to be +∞ and −∞.
597 One should be very careful here. These “lower” and “upper” tangent lines appear not due to Fnice having a

lower left and the upper left limits, but because suitably averaged values of F having such limits. Even if we could
assign values at points to our functions F , these values would be598 unbounded on any interval.

598 N.B. (???) Convert to an exercise?

https://en.wikipedia.org/wiki/Stochastic_process#Filtration
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the operation <s of rescaling s times; it acts on formal derivatives as <s(F (n)) := F (n)
s,n with599

Fs,n(t) := sn−1F (t/s) (with s 6= 0).
Exercise J4: Show that rescaling indistinguishable formal derivatives gives indistinguishable formal deriva-
tives.

Hence it makes sense to rescale generalized functions.
Exercise J5: Consider a continuous function c which vanishes outside of [−M,M ]. Show that the family
<sc has a limit when s→ 0 in the sense of C−m for a suitable m. Find the smallest possible m. Show that
the result of rescaling does not depend on c (up to a multiplicative constant).

This is how a lot of people “imagine δ-function”: as something approximated by a very high and
very narrow peak.
Exercise J6: Consider a continuous function F which vanishes outside of [−M,M ] and such that

∫∞
−∞ F (t)tkdt =

0 for 0 ≤ k < K. Show that the family <sF/sK has a limit when s→ 0 in the sense of C−m for a suitable
m. Find the smallest possible m. Show that the result of rescaling does not depend on F satisfying the
conditions above (up to a multiplicative constant).
Remark 107: Note that if c in Exercise J5 has a continuous K th derivative, then in Exercise J6 one
can take600 F := c(K). Comparing with Exercise I3, the limit of <sF/sK must be the K th derivative
of the limit of <sc.
Exercise J7: Show that the results of two preceding exercises hold (with possibly a different choice of m) if
F is a generalized function.

Hint: Subtract a suitable continuous function F̃ .
Exercise J8: In the context of two preceding exercises, put F (t) := ∑K

k=0(−1)k
(K
k

)
δ(t − k). Show that

<sF/sK → δ(K).
Show that a piecewise-constant function F which vanishes outside of [0,K + 1] and is (−1)k

(K
k

)
between

k and k + 1 gives the same limit as F .
Show that a continuous piecewise-linear function F̂ which vanishes outside of [−1,K + 1], whose graph

has corners only over points t ∈ Z and such that F̂ (k) = (−1)k
(K
k

)
for 0 ≤ k ≤ K, k ∈ Z gives the same limit

as F . k + 1 gives the same limit as F .
Remark 108: The functions F and F̂ can be described as convolutions of F “with suitable kernels”:
F = F ? H1 and F̂ = F ? H2 (moreover, H2 is a translation of H1 ? H1). It turns out that the limits
like <sF/sK are compatible with convolutions; if one believes this, then to prove the last exercise, it
is enough to apply Exercise J5 to H1.

For numerically better convergence, one can translate F as F (t+ K/2). (This gives the same limit,
but the convergence is— in many respects—much better.)
Remark 109: If fact, F itself may be described as a repeated convolution f ? f ? f ? . . . ? f (with K
copies of f); here f is F constructed for K = 1.

The physicists could use yet another way to visualize a generalized function. For example, in
electrostatic the distribution of charges would often be described as a generalized function. Here
pointwise charges correspond to δ-functions; simple-layer distributions of charges correspond to
“δ-functions of a part of coordinates”. Likewise, “dipoles” or double-layer distributions of charges
correspond to derivatives of such δ-functions; “quadrupoles” correspond to (partial) 2nd derivatives
of δ-functions.

The physicists visualize such distributions of charges by plotting “the electric force” created by
these charges, or by plotting the “potential function” for these charges. In 1-dimensional cases this

599 The extra −1 in the exponent n− 1 “corresponds” to considering F “as a density F (t)dt”.
600 Or one can proceed in the other direction: F must have a K th antiderivative c which vanishes outside of

[−M,M ].

https://en.wikipedia.org/wiki/Newtonian_potential
https://en.wikipedia.org/wiki/Dipole
https://en.wikipedia.org/wiki/Double_layer_potential
https://en.wikipedia.org/wiki/Quadrupole
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corresponds to taking the 1st and the 2nd derivatives; however, in multidimensional cases this matches
not the operators of taking a mixed derivative, but so-called “elliptic operators”.

Exercise J9: On the plots above we show electric fields of two of three distributions of charges: a horizontal
dipole (−∂δ/∂x or a rescaled 	⊕); a vertical dipole (−∂δ/∂y or a rescaled ⊕	); a quadrupole (∂2δ/∂x∂y or a

rescaled 	⊕⊕	). Recall that a δ-charge generates the electrical field r/r3 (here r := (x, y) is the radius-vector,
and r = |r|). Which of the plots matches which distribution?

(On these plots the direction of the field is correct, but the dependence of the magnitude on the distance
is mollified a bit. Pay attention that the charges are at the red dot—which is not on the grid.)

Hint: Symmetries!

One more way of visualization is very relevant to the discussion in the main body of these notes.
Jump to the next way of visualization if you are not confortable with analytic functions.

So consider an analytic function ϕ on U ⊂ C (such as H := {z | Im z > 0}). Say that ϕ is tempered
on U if there is a continuous function C(x) on R such that |ϕ(x+ iy)| < C(x)/yn for an appropriate
n when 0 < y < 1. Below, “tempered” means “tempered on H”. Recall that every analytic function
on H has an antiderivative—hence has repeated antiderivatives of arbitrary orders.
Exercise J10: If ϕ is tempered, then its antiderivative is tempered too. Moreover, one of the repeated
antiderivatives of ϕ has a continuous extension to H := {z | Im z ≥ 0}.

Exercise J11: Suppose that ϕ is tempered; write it as ψ(n) with ψ continuous on H. Denote by G the
(continous) restriction of ψ to R ⊂ H. Show that the generalized function G(n) does not depend on the
choices of n and ψ.

The generalized function G(n) is called the boundary trace value of ϕ. Note that if ϕ itself allows a
continuous extension to R, then the boundary trace coincides with the limit values of ϕ:
Exercise J12: Suppose that ϕ is tempered and ϕ allows a continuous extension ϕ+ to H ∪I ; here I is an
open interval in R. Then the boundary trace of ϕ is continuous on I and coincides with ϕ+|I .

Note that one can treat −H := {z | Im z < 0} in the same terms.
Exercise J13: Consider a smooth function S(t, w) vanishing for t outside of [−M,M ]. For a continuous
function C(t) consider the generalized function C(n)(t) and the function I(w) :=

∫∞
−∞ S(t, w)C(n)(t)dt. Show
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that I(w) is a smooth function of w, and I(m)(w) can be calculated by plugging ∂mS(t, w)/∂wm into the
integral instead of S.

Hint: One can write S(t, w) = ∂nS+(t, w)/∂tn + S0(t)α0(w) + S1(t)α1(w) + . . .+ Sn−1(t)αn−1(w) with a
smooth S+(t, w) vanishing for t /∈ [−M,M ] and suitable smooth Sk, αk.

This leads to what is called “differentiation under the sign of integral”.
Exercise J14: Consider a smooth function S on R which vanishes outside of [−M,M ]. Define a function
Sz(x) := S(x)/(z − x), here z ∈ C; obviously, it is a smooth function of x unless z ∈ [−M,M ] ⊂ R. Given
a generalized function F , define ϕSF (z) :=

∫∞
−∞ Sz(x)F (x)dx. Show that this is a continuos function of

z ∈ Cr [−M,M ].

Differentiation in z under the sign of integral shows that ϕSF (u+ iv) depends on u and v “in no
more complicated way601 than 1/(u+ iv − x)”. One can apply this to solve:
Exercise J15: Show that ϕSF (z) is an analytic function of z ∈ Cr [−M,M ]. Show that its restrictions to
H and to −H are tempered functions.

Exercise J16: Denote by ϕ+ and ϕ− the boundary traces of restrictions of ϕSF (z) to H and to −H. Show
that602 ϕ+ − ϕ− = −2πiSF .

Show that for any generalized function F and any interval (−L,L) one can find tempered analytic
functions Ψ+ on H and Ψ− on −H such that the difference ϕ+ − ϕ− of their boundary traces ϕ+ and ϕ−
coincides with F on (−L,L).

In fact, this statement may be inverted. Given a tempered analytic function Ψ on CrR, consider
its restrictions Ψ+ to H and Ψ− to −H. Call the difference ϕ+ − ϕ− of their boundary traces “the
jump of Ψ on R”. The “magic of analytic function theory” implies:
Exercise J17: Consider a finite open interval I ⊂ R and a tempered analytic function Ψ on Cr (Rr I ).
Then the jump of Ψ on R vanishes on I .

If ϕ+ and ϕ− in the context of the preceding exercise coincide on I , then there is Ψ as above such that
Ψ+ is its restriction to H and Ψ− its restriction to −H.
Hint: Consider first the case when Ψ′+ and Ψ′− extend continuously to I . Then apply “C1 and Cauchy–Riemann

equations imply analiticity”.

Consider a finite open interval I ⊂ R and tempered functions Ψ and Ψ̃ on CrR. Say that these
functions have “manifestly the same jump on I ” if Ψ− Ψ̃ is a restriction of a function analytic on
Cr (RrI ). A “manifestly defined jump on I ” is described by a tempered function Ψ on CrR up
to changing Ψ to a function with manifestly the same jump on I . Such jump vanishes on I if Ψ
may be taken to be 0.
Exercise J18: Consider a manifestly defined jump on I described by a tempered analytic function Ψ on
Cr R. Associate to this description the generalized function F on R which is the jump of Ψ. Show that a
different description Ψ̃ of the same manifestly defined jump would lead to a generalized function F̃ which
coincides with F on I .

Moreover, if tempered analytic function Ψ and Ψ̃ on C r R have jumps which are the same on I (as
generalized functions), then Ψ and Ψ̃ have manifestly the same jumps on I .

Hint: Exercise J17.
Furthermore, for any generalized function F0 on R one can find a manifestly defined jump on I whose

associated generalized function F coincides with F0 on I .

Conclusion: manifestly defined jumps of tempered functions are the same as “restrictions of
generalized functions to intervals”. Since a generalized function is uniquely defined by its restrictions

601 N.B. (???) How to quantify this?
602 N.B. (???) Need a hint? Compare with Footnote J19 on p. 186.

https://en.wikipedia.org/wiki/Cauchy%E2%80%93Riemann_equations#Goursat's_theorem_and_its_generalizations
https://en.wikipedia.org/wiki/Cauchy%E2%80%93Riemann_equations#Goursat's_theorem_and_its_generalizations
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to finite open intervals, one could define a generalized function as suitable equivalence classes of
tempered functions603 on Cr R. Such approach is very fruitful in many contexts.

Remark 110: For example, in the main body of the text we consider certain particular sequences
encoding information from arithmetic problems, and take their Fourier transforms F . However, the
typical approach is to consider F as a trace of a certain analytic function Ψ+ on H, and work with
Ψ+ instead. (Note that F can be “made into a jump” by putting Ψ− := 0 on −H.)

Exercise J19: Consider the main branch of the analytic function log z defined on Cr R≤0. Show that its
antiderivative z log z − z allows continuous extensions to H and −H, and its jump on R is 2πiz on (−∞, 0]
and vanishes on [0,∞).

Show that the jump of log z on R is piecewise-constant and is 0 on (0,∞) and 2πi on (−∞, 0), and the
jump of 1/z on R coincides with −2πiδ. Show that the boundary traces of 1/z from H and from −H are
linear combinations of the δ-measure and the generalized function 1/x := (x log |x| − x)′′.

Remark 111: Note that the latter representation “loses a bit of degree of smoothness”. Indeed,
−2πiδ is a (complex-valued) measure—but when we represent it as a difference ϕ+ − ϕ− of traces
from H and from −H, the components ϕ± are linear combinations of δ and the generalized function
1/t which is not a measure.

Exercise J20: If the jump on R of a tempered analytic function Ψ on C r R coincides as a generalized
function with a real-analytic function ϕ on an interval I ⊂ R, then both the restriction Ψ+ of Ψ to H and
the restriction Ψ− to −H allow analytic continuations through I .

Hint: It is enough to find a particular representation of a manifestly defined jump.

Finally, we examine yet another way of visualization; it is applicable to certain generalized functions
from C−2. For these generalized functions, their antiderivative has left and right limits, and it is
“not oscillating too much”. The former conditions allow one to assign “weight” to any interval; the
latter condition ensures that splitting an interval into a disjoint union of subintervals corresponds to
addition of weights.604

Such generalized functions are called “measures”. We study them in the group L of exercises
on p. 191. (While “weights” as above cannot be immediately translated into pictures, they still provide
a very tangible corporeal way of representing these generalizaed functions.)
Exercise J21: Given a closed interval Iα, divide it into 3 equal parts, and call the left and the right ones
Iα0 and Iα2 correspondingly (assume them closed). Let Eα be the “excluded” (open) middle interval. If the
interval I has a certain weight w, assign to Iα0 and Iα2 weights w/2.

Now proceed with the intervals Iα0 and Iα2 likewise, then with the corresponding subintervals Iα00
and Iα02 and Iα20 and Iα22. Etc.

Start with I = [0, 1] with weight 1 and proceed as above. This assigns non-negative weights to
subintervals like I0020022 etc. Call such intervals Iα. Show that for any t there is a (finite or infinite—or
empty) sequence of indices α1, α2, . . . such that all intervals Iαk are inside (−∞, t), do not intersect, and
any interval Iα contained in (−∞, t) is a part of one of Iαk .

Let C(t) be the total weight of all intervals Iαk . Show that C is between 0 and 1, and depends
continuously on t.

Denote by C the Cantor set: the points of [0, 1] which are not in any one of intervals Eα. Show that
¼ ∈ C and find C(¼). Show that the generalized function C ′ vanishes on all the intervals Eα, and the total
length of these (non-intersecting!) intervals is 1. (Also, C ′ vanishes on (−∞, 0) and on (1,∞).)

603 Weakening the assumption of “being tempered” leads to yet more general objects than generalized functions.
Dropping this assumption altogether leads to the huge class of hyperfunctions. In multidimensional case, these require
a more delicate description via “ the edge of the wedge” approach.

604 The non-trivial part is that this should work for infinitely (countably!) many subintervals too.

https://en.wikipedia.org/wiki/Cantor_set
https://en.wikipedia.org/wiki/Hyperfunction
https://en.wikipedia.org/wiki/Edge-of-the-wedge_theorem#Connection_with_hyperfunctions


EXERCISES K: MEANDER WAVE 187

Show that points of C are in 1-to-1 correspondence with infinite fractions 0.d1d2d3d4 . . . in base 3 such
that dk = 0 or dk = 2 for every k.

Hint: Pay attention that fractions 0.122222. . . and 0.2000. . . in base 3 denote the same real number.
(In fact, C ′ is a measure, and it vanishes on any interval which does not intersect C. The weight

of any interval with ends a and b is C(b) − C(a). In particular, the weight of any point is 0— for
measures, this is equivalent to the antiderivative being constant.)
Exercise J22: Do as in the preceding exercise, but for every interval Iα = [a, b] choose arbitrarily605 two
non-intersecting subintervals Iα0 = [a, x] and Iα2 = [y, b] correspondingly. Assign them weights w0 and
w2 := w − w0 with an arbitrary w0 6= 0, w.

Proceeding as in the preceding exercise, now 606

This provides examples of continuous functions C on [0, 1] which have a well-defined derivative on
a collection of subintervals with the total length 1. However, this derivative is always 0—but C still
grows from 0 to 1. (And still, C has no jumps!)

Such measures C ′ are called singular measures. In fact, a nice fact holds: for any measure µ one
can find a converging linear combination µδ of translations of δ-measures, and a measure µ0 with a
density F such that “the rest” µ− µδ − µ0 is a singular measure.607

(Unfortunately, this very strong and beautiful fact of analysis is not helpful for what we do in
these notes: the functions we plot are more complicated than antiderivatives of measures.)

Exercises K: Meander wave

The exercises of this section focus on summing the Fourier series of the “rectangular=meander
wave” (see Exercise K0 on p. 188). They form the first half608 of explanation why “partial sums” of
Fourier transform lead to pictures like what we can see on p. 62. On these plots one can see that the
“spikes” on the blue and on the red plot have the same height, but are twice as wide on the blue plot.
(Recall that the blue plot sums ½ of Fourier terms of the red plot.) The appearence of such spikes is
called “Gibbs phenomenon”.

The exercises demonstrate the utility of switching between derivatives and antiderivatives in
dealing with Fourier series of non-smooth functions, and may suggest why “the sine integral” Si(x)
and its derivative sinc(x) play so important roles in the theory of Fourier series. The base is the
formulas for how the Fourier transform (the summation of Fourier series) interacts with taking
derivative and antiderivative. When the Fourier transform is F (t) := ∑

n aneint, we denote by F≤N the
result of summation with n restricted to −N ≤ n ≤ N (“partial sums” of Fourier series). For such
partial sums, the formulas for derivatives/antiderivatives in t hold trivially: applying these operations
to F≤N(t) corresponds to609 multiply/divide an by in.

Hint: To deal with integration constants below, it may help to be able to recognize when the sum of a
Fourier series is odd, and when it is even.

Depending on one’s tastes, it may be easier to do generalized functions first, or this section (and
the next one) first. Another approach is to skim through this (and the next) section to understand the
style of these problems, then switch to the group H of exercises on Fourier transform of generalized

605 In fact, one can allow these intervals to not cantain a and b—but this way one does not get any “extra” Cantor
sets.

606 N.B. (???) When the process converges and C is continuous?
607 Moreover, F coincides with the “usual” derivative of the antiderivative M of the measure µ. In particular, this

means that singular measures coincide with measures whose antiderivative is continuous (this implies µδ = 0), but its
derivative is “equal to 0 almost everywhere”—or “0 in the sense of L1-functions”.

608 N.B. (???) The second half?
609 Here a0 is exceptional. For the anti-derivative to have a Fourier series it must be periodic, hence a0 = 0 must

hold.—Hence one may assume that a0 = 0. Then in the formula for the antiderivative one gets 0/i0 when n = 0—
which is convenient to resolve as 0. (For example, this allows taking repeated antiderivatives.— In other respects, a
particular choice for 0/i0 in this formula does not matter: any RHS will result in a “correct” antiderivative!)

https://en.wikipedia.org/wiki/Singular_measure
https://en.wikipedia.org/wiki/Trigonometric_integral#Sine_integral
https://en.wikipedia.org/wiki/Sinc_function
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functions on p. 178—and only after covering them, return to solving exercises here. (Moreover, keep
in mind that we do not use the spirit and the results of these exercises directly in the main body of
our notes.)
Exercise K0: Show that “the meander wave” M(x) (or “the rectangular wave”) is the Fourier transform
of an := −i/n for odd n, with a2k := 0. Here the 2π-periodic function M is given by M(x) = π/2 for x in
(0, π), M(x) = −π/2 for x in (−π, 0), M(x) = 0 for x = 0, π.

Hint: The easiest way is to use the inverse Fourier transform.
Exercise K1: Show that M≤100(x) is odd, and M≤100(x+ π/2) is even.

For the following exercises it makes sense to inspect M≤100(x) with plotting software on intervals
[0.01, 0.1], [0.01, 0.4], and [1, 2]. (In GP/PARI, one can use

plot(x=0.01,0.4,sum(n=-100,100,if(n%2,real(-I*exp(I*n*x)/n))))

—or one can use ploth() instead.) In the exercises below it is OK to estimate values of elementary
functions using calculators (as opposed to “the real aces”, who would estimate these values from the
definitions ;–)).
Exercise K2: Write a formula for M ′≤100(x) in terms of trigonometric functions. Show that M ′≤100(x)
oscillates for x ∈ [1, 2] with amplitude close to 1. Find “the period” of the oscillations (this is a figure of
speech—they are not periodic in the strict sense).
Exercise K3: (Here we assume a “heuristic” approach. We will ask the same question later610 requiring
complete explanations—but with a lot of hints!) Explain why M≤100(x) for x ∈ [1, 2] oscillates about a
certain value with amplitude close to 0.01.
Exercise K4: Using sin x ≈ x for small x, sketch the plot of M ′≤100(x) for x ∈ [−0.07, 0.07].
Exercise K5: Using the result of the preceding exercise, sketch (very roughly is OK!) the plot of M≤100(x)
for x ∈ [−0.07, 0.07].
Exercise K6: Show that for a = πk/100, b = π(k + 1)/100 with k such that a, b ∈ [1, 2], one can write∫ b
a M

′
≤100(x)dx = ±E/100 with E between 2 and 3.

Exercise K7: How much can one improve the estimate 3 in the preceding exercise? (This assumes “with
minimal modifications of the arguments”!)
Exercise K8: Denoting the integral in Exercise K6 as Ik, show that |Ik + Ik+1| ≤ 0.00045 under the
assumptions of that Exercise.

Hint: Use the formula for sin x− sin y.
Exercise K9: Show that |

∫ b
a M

′
≤100(x)dx| ≤ 0.04 for a, b ∈ [1, 2].

Exercise K10: Show that M≤10,000(x) for x ∈ [1, 2] is within 0.0002 of a certain constant.

In the exercises below, we say that a shape S is “within distance ε” from a shape T if for any
point of T , there is a point of S at the distance ≤ ε (and the same for S and T exchanged). The
minimal working value of ε is usually called “the Hausdorff distance” between S and T .
Exercise K11: Given 3 shapes R, S, T , show that Hausdorff distance satisfies the triangle unequality. In
other words, distance(R, T ) ≤ distance(R,S) + distance(S, T ).
Exercise K12: A certain “simple” shape is within distance 0.0002 from the plot of M≤10,000(x) on the
interval [1, 2]. Find this shape (it is OK to find it “up to a small parallel translation in vertical direction”).
Exercise K13: Proceeding as in Exercises K7, K8, but for M ′≤m(x) instead of M ′≤100(x), show that
|Ik + Ik+1| ≤ 1/2k2, and |Ik| ≤ 4/(πk).

Exercise K14: Show that
∣∣∣∫ ba M ′≤m(x)dx

∣∣∣ ≤ (3t+ 1)/m for a, b ∈ [1/t, 2]; here t ≥ 1.
610 Starting with Exercise K6.
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Exercise K15: Using the results of Exercise K14 on p. 188, how can one extend the interval [1, 2] in
Exercise K12 on p. 188 if one allows being “within distance 0.02”?
Exercise K16: With notations as in Exercise K8 on p. 188, show that |I2k−1| > I2k.
Exercise K17: Show that maxM≤100(x) on [0, π/2] is achieved at x = π/100.
Exercise K18: Show that for a certain C the union of the solution to Exercise K15 and the interval [0, C]
on the y-axis is within distance 0.02 of the graph of M≤10,000(x) on [0, 1]. Find an appropriate C.
Exercise K19: Show that C =

∫ π
0 sin(x)dx/x works as a solution of Exercise K18.

Exercise K20: Show that there is a shape S such that for every given distance ε > 0, the graphs of M≤m(x)
for x ∈ [−10, 10] is within distance ε of S provided that m is large enough.

In fact, if one requires that S “has no holes” (in the language of topology, this is “closed”) then such
S in Exercise K20 is unique. In topology, such a shape as S is called “the limit of graphs in Hausdorff
topology”. The effect illustrated in Exercise K20 (more precisely, that S is “not a rectangular wave”)
is called “the Gibbs phenomenon”.

Above, we essentially described the Gibbs phenomenon up to precision 2/
√
m. In fact, there is a

much finer description which works up to precision about 4/m.
Exercise K21: Show that f(x) := 1/sin(x)−1/x is a smooth function on the interval [0, π/2]. (This assumes
knowledge of Taylor series—or a very skillful integration by parts. People who do not know this may skip
this exercise and consider its result as “given” for what follows.)

Below, we use notations D0 := max |f(x)|, D1 := max |f ′(x)|, D2 := max |f ′′(x)| on [0,π/2] (with
f from the preceding exercise). (Using plotting software, one can “be convinced” that the maxima
are achieved at π/2, and are less than ½. In fact, one can omit the absolute values in the descriptions
above.)
Exercise K22: Show that there is a function g(x) such that |M≤m(x/m)−g(x)| ≤ D0/m+(D1+D2x/m)/m2

for any m ≥ 1 and x in [0,mπ/2]. Using the estimates above, show that |M≤m(x/m)− g(x)| ≤ 2/m. (Again,
if one is too lazy to do the required integrations by part, one may try to guess g(x), check with plotting
software, and consider this result as “given” for what follows.)

Hint: Differentiate.
In the following exercise, use the fact611 that ifM is smooth near x0, then the Fourier approximtion

M≤m(x0) must get closer to M(x0) as m→∞.
Exercise K23: Show that

∫∞
−∞ sin(x)dx/x = π.

Hint: Choose x0 and use the result of the preceding exercise and Exercise K0 on p. 188.
Inspecting the plot of “the sine integral” Six :=

∫ x
0 sin tdt/t in a plotting software, one can notice

that the maxima and minima of this plot are close to the curves612 y = π/2± 1/x. So this function is
“close to” being squeezed between these curves. Below, assume that this holds: in other words, that
| Six− π/2| ≤ 1/(x− α) for all x > α, while | Six− π/2| ≥ 1/(x+ α) for an appropriate value of x
in every interval [x0, x0 + 2π] with x0 ≥ 0. Here we assume that α is an appropriate “small” number
(it is about 0.3).
Remark 112: One can do this in GP/PARI by ploth(x=1,10,[real(Si(x)),Pi/2+1/x,Pi/2-1/x]).
Here Si is defined (after putting Eps_=1e-18) in https://oeis.org/w/images/2/21/LiEiRelatedFunctions.txt.

Exercise K24: Consider the shape S defined in Exercise K18, restricted to x in [0, π/2]. Show that by
extending S by the zone between graphs of π/2± 1/(mx) for x in [2π/m, π/2] the resulting shapes are within
4/m of the graph of M≤m(x) on [0, π/2]. Here m = 10,000.

611 As an alternative, one can use the fact 1 − 1/3 + 1/5 − 1/7 + . . . = π/4. To understand this, note that the
antiderivative of 1− x2 + x4 − x6 + . . . is atan x.

612 Question: how this π/2 is related to Exercise K23?

https://oeis.org/w/images/2/21/LiEiRelatedFunctions.txt
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Exercise K25: Show that the method of Exercise K24 on p. 189 works in the context of Exercise K20
on p. 189 as well with ε = 4/m.
Exercise K26: Show that Exercise K18 on p. 189 can be amplified: 0.02 may be replaced by 0.0104.
Exercise K27: Show that in Exercise K18 on p. 189 one cannot replace 0.02 by 0.0096.
Exercise K28: Consider the odd 2π-periodic function W which coincides with π − x for x ∈ (0, 2π) (the
“triangular wave”). Put W{m}(x) := 2(sin x + ½ sin 2x + 1/3 sin 3x + . . . + 1/m sinmx). As in the exercises
above, show that W{m}(x)→W (x) as m→∞ for every x.

Show that the functionW{m}(x)−W (x) of x behaves very similar to what we found aboutM≤m(x)−M(x).
Hint: Write a formula for (W{m}(x) + x)′.

613

Exercise K29: Show that W{m} is the m th partial Fourier sum W≤m for W .
Show that W≤m(x)−W≤m(x+ π) = 2M≤m(x). (Hence M≤m(π/2) ≈ π/2.)

Remark 113: Note that only in Exercises K0 on p. 188 and K23 we refer to the fact that the inverse
Fourier transform inverts the summing of Fourier series. If we ignore these exercises, we still gave a
rather detailed description of partial sums M≤m(x) of the Fourier series with the coefficients an given
in Exercise K0 on p. 188.

In particular, we have shown that M≤m(x) is close to a meander wave of a certain height, and we
know that this height is given by the integral in Exercise K23 on p. 189. Conclusion: the “non-ignored”
exercises prove that the Fourier transform of the inverse Fourier transform of M is proportional to M .
The “ignored” exercises allow us614 to calculate the integral given that actually M≤m ≈M .
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Gibbs max(M1000‒M,0)If one reflects a graph of an oscillating function w.r.t. the
bisectrix of the first quadrant, the resulting curve obviously cannot
be a graph of a function. However, the following “mathematical
jokes” show that if one laces in the Hausdorff distance, this may
still happen:
Exercise K30: Given a symmetry σ sending S to σS, say that a shape
S is ε-approximately-symmetrical w.r.t. σ if σS is within distance
ε from S. Show that the plot of max(M≤10,000,0(x) − π/2) for x in
[0, C − π/2] is 0.001-approximately-symmetrical w.r.t. reflection σ in
the bisectrix of the first quadrant. Here C is defined in Exercise K19
on p. 189 (so C − π/2 ≈ 0.28114).
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Gibbs    error M1000‒MThe plot above illustrates what happens in the last exercise
—only for M≤1,000 instead of M≤10,000. Likewise, the plot on the
right illustrates the next one (with the same substitution):
Exercise K31: Is the conclusion of Exercise K30 still applicable to
the graph of M≤10,000(x)−M(x) for x on [−π/2, π/2]?

Finally, the following exercises have no relationship to the main
body of the text: they only clarify another facet of the notion of
Hausdorff distance introduced above.
Exercise K32: Given triangles 4A1A2A3 and 4B1B2B3 with
|AkBk| ≤ 1 for every 1 ≤ k ≤ 3, shows that Hausdorff Distance(4A1A2A3,4B1B2B3) ≤ 1.
Exercise K33: Find triangles4A1A2A3 and4B1B2B3 with Hausdorff Distance(4A1A2A3,4B1B2B3) = 1
such that |AkBl| ≥ 2 for every 1 ≤ k ≤ 3 and 1 ≤ l ≤ 3.

613 N.B. (???) See section on Cesàro.
614 The alternative way is Exercise K29.
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The preceding exercise works with both notions of triangle: “the filled triangle”, and “the closed
broken line”.

set samples 5000
set size ratio -1
unset autoscale
set autoscale
set autoscale noextend
set output "gibbs-diff.pdf"
set term pdfcairo size 36,35 round fontscale 5
max(a,b)=a>b?a:b
diff(x,N)=-pi/2*sgn(x)+2*(sum [i=1:N] sin((2*i-1)*x)/(2*i-1))
tit(pre,N,post)=sprintf("Gibbs%s{/:Italic M}_{%d}–{/:Italic M}%s",pre,N,post)
N=1000; plot [-pi/2 : pi/2] sample [-pi/2 : -pi/2*2/N] diff(x,N) title tit(" error ",N,"") lc "#ed2d2e", [-pi/2*2/N : pi/2*2/N] diff(x,N) notitle lc "#ed2d2e", [pi/2*2/N : pi/2] diff(x,N) notitle lc "#ed2d2e"
set output "gibbs-above.pdf"
set term pdfcairo size 7.2,7 round fontscale 1
plot [0 : 0.28114] max(0,diff(x,N)) title tit(" max(",N,",0)") lc "#ed2d2e"
unset output
unset term

Exercises L: Fourier transform and measures

Here we discuss the language which predates historically the language of generalized functions.
The latter one turns out to be much simpler (we handle this in the group H of exercises on p. 178),
but it may feel a bit too abstract, and may require a little bit more effort to visualize.

Depending on one’s tastes, it may be easier to do generalized functions first, or this section first.
Another approach is to skim through this section to understand the style of these exercises, then
switch to the group H of exercises on Fourier transform of generalized functions on p. 178—and only
after covering them, return to solving exercises here. (Moreover, keep in mind that we do not use the
spirit and the results of these exercises directly in the main body of our notes.)

In the group G of exercises on p. 176 and in the preceding section, we investigated the case of
Fourier transforms of sequences which were decaying relatively quick. The following exercise just
recalls a particular case of Exercise G0 on p. 177:

Exercise L1: Given a sequence (an) such that |an| ≤ C/|n|r for n 6= 0, its Fourier transform F is continuous
provided r > 1.

Hint: Show that |Fm(x1)− Fm(x2)| ≤ 2Sm sin min(π/2,m(|x1 − x2|/2) with Sm := ∑m
k=−m |ak|.

One cannot extend this to r = 1: we already saw such examples where the function F had jumps
—but in our examples, F had left and right limits at every point. Unfortunately, in general with
r = 1 it is not only possible that F has pretty bad behaviour—but it may happen615 that the series
in F (x) := ∑

n aneinx is diverging for every x.
Nevertheless, at least in some cases616 one can discuss “what is F ” even if the series above diverges!

To explain, we need to allow F to be a new kind of object, which— like a function—may be thought
of as “depending on x”, but it may “not have a value anywhere”. Our first aim is to describe objects
F (x) of this kind which still have well-defined average value on intervals.

The latter condition can be restated as
∫ b
a F (x)dx making sense. (Another way to say this is “F

has an antiderivative well-defined at every point”.) Our first aim is to cover the subcase when F (x)

615 N.B. (???) Is it happening for our Eisenstein examples? Probably Kolmogorov’s example is not
having r = 1?

616 N.B. (???) Check!
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may be defined as a number for every x. Such functions F which “may be integrated” are called
L1-integrable (locally on every finite part of R).617 Example: Any continuous function F (x) is such.618

Remark 114: Already for L1-integrable functions the notion “of a value at a point” becomes blurry.
Indeed, changing the value of F at one particular point does not change

∫ b
a F (x)dx, hence would

not change the average values on intervals. Conclusion: If we are interested in the averaged values
only,619 then F (x) is not uniquely determined by these values.

In fact, if F has a limit at x, then one can require620 that F (x) coincides with this limit. Note
that if this holds for every x, then F can be chosen to be continuous. Conclusion: if F is continuous,
then it is uniquely determined by its antiderivative621 F (−1).

Our next aims are to consider “the general situation in which an antiderivative makes sense”.
Suppose that to every (finite) interval I of R we assign “its weight” µ(I ), and if I , I 1, I 2 are
intervals such that I = I1 ∪I2 and I1 ∩I2 = ∅, then “additivity” µ(I ) = µ(I1) + µ(I2) holds.
Here we allow “an interval” to be closed or open— independently on the left and the right side. We
also allow intervals [b, b] := {b} made of one point b. (One can think of µ as assigning every interval
“its weight w.r.t. a certain distribution of mass”.623) One calls µ an additive function of intervals.

With this language, start with generalizing “non-negative functions”. A “non-negative measure”
should satisfy µ(I ) ≥ 0 for every I , and one more “non-pathology” condition:624 given any x, by a
suitable choice of ε > 0

One can make µ((x, x+ ε)) and µ((x− ε, x)) arbitrarily close to 0.

Example: The δ-measure assigns 1 or 0 to I depending on whether 0 ∈ I . Example: given
a continuous (or L1-integrable) function F (x) ≥ 0, assign to any (closed/open/etc.) interval with
ends a and b the weight

∫ b
a F (x)dx. As “distributions of masses”, they describe a point-mass at

x = 0 on a massless wire, and a wire with variable cross-section F (x). One calls F the density of the
corresponding measure µ.
Exercise L2: Show that these examples define non-negative measures.
Remark 115: The example of δ-measure µδ may be thought of “having an infinite density at x = 0”:
away from 0 the density is obviously 0, but “the total integral should be625 1”. So when the density
makes sense, it may be thought of as “value at a point” of the measure µ—but there may be points

617 Here we again cheat a bit: to be honest, we need to first describe “in which sense we understand the integral”.
The notion of L1 corresponds to the so called Lebesgue integrability—the most widely used flavor of integrability
nowadays.

In addition to the “fundamental properties of measures” listed below, we use the following properties of integrability:
that it is closed under addition, under multiplication by a piecewise-continuous functions, under inf of a sequence of
non-negative functions. We also use the facts that antiderivative is linear, and if infinum above is 0, then any definite
integral goes to 0.

618 Moreover, in this case the integral “works in the Riemann sense”.—Or: it may be described in the “high-school’s
language”.

619 Which is the same as being interested only in the “antiderivative F (−1) :=
∫ x
−C f(y)dy of F”.

620 . . . without changing the average values of F on the intervals.
621 In general one F is uniquely defined by F (−1) away from a “very small” set of points x. The exceptions make

“a set of measure 0”. The way to reconstruct F (x) “outside of this small set” is to take the derivative of F (−1) —but
one can do this only at points x where622 this derivative makes sense!

622 If F is continuous, then F (−1) has a derivative everywhere. So this reconstruction of F is possible everywhere—
since this derivative coincides with F .

623 The physicists would prefer to call it “a distribution of charges”—since µ(I ) may be negative. They would
reserve the term “distribution of mass” to the case of non-negative measures considered below.

624 We clarify one aspect of this condition in Footnote 628 on p. 193.
625 If one replaces the point 0 by an interval [−ε/2, ε/2], then to make the total weight 1, the density should be 1/ε

on this interval. To “approximate” δ-measure, ε should get closer and closer to 0—and note how this leads to the
density growing to ∞.

https://en.wikipedia.org/wiki/Lp_space
https://en.wikipedia.org/wiki/Measure_(mathematics)#Definition
https://en.wikipedia.org/wiki/Lebesgue_integration
https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Lebesgue_measure#Null_sets
https://encyclopediaofmath.org/wiki/Absolute_continuity#Absolute_continuity_of_a_function
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where the density “is infinite”—or it may be “just undefined” at some points, as in Footnote 621
on p. 192.
Exercise L3: Show that an additive function µ of intervals is uniquely determined by its values on closed
intervals. Same for the open intervals. Same for the values of µ on open-on-the-left and closed-on-the-right
intervals, and on intervals [b, b] for all b.

Exercise L4: Given a non-negative measure µ and an interval I0, there is a unique non-negative measure
µ0 such that µ0(I ) = µ(I ) if I ⊂ I0 and µ0(I ) = 0 if I ∩I0 = ∅.

The same holds for additive functions of intervals.

In fact, the same holds for measures (which we introduce below). One calls µ0 the restriction µ|I
of µ to I .
Exercise L5: Given a function U , assign to the interval (a, b] its weight µ((a, b]) := U(b)− U(a).

(1) Then µ can be extended to an additive function µ of intervals.
Hint: The choice of µ([b, b]) is arbitrary.

(2) Moreover, there is a non-negative-measure choice of such µ iff U is non-decreasing and continuous
on the right (and then such µ is unique).

Hint: One must investigate “other kinds” of intervals!
(3) Every non-negative measure µ may be obtained in such a way. Moreover, the corresponding U is

defined uniquely up to addition of a constant.

The condition of (2) are not symmetrical. However, there is a way to fix this:

Exercise L6: Given a function Ũ , say that it is an antiderivative of a measure µ if µ([a, b]) + µ((a, b]) +
µ([a, b)) + µ((a, b)) = 4(Ũ(b)− Ũ(a)) for any a ≤ b. (Here (a, a) := ∅.)

(1) Every non-negative measure µ has an antiderivative. This antiderivative is defined uniquely up to
addition of a constant.

(2) Every right- and left-continuous non-decreasing function Ũ such that Ũ(x) = ½(L(x) +R(x)) is an
antiderivative of a uniquely determined non-negative measure µ. Here L(x) is the left limit of Ũ at
x, and R(x) is the right limit.

(3) Moreover, then µ((a, b)) = L(b)−R(a), and µ([b, b]) = R(b)− L(b).

One calls a non-negative measure µ as in the last Exercise the formal derivative of the function Ũ .
The following exercise shows that this is a direct generalization of the “usual” notion of derivative.
Exercise L7: If Ũ has a continuous derivative F , then626 µ from Exercise L6 is obtained from F as in
Exercise L2 on p. 192.

For the last step towards definition of “measures”, say that an additive function µ of intervals is a
measure if µ = µ+−µ− with non-negative measures µ+, µ−. For measures, the notion of antiderivative
still makes a perfect sense. However, characterising which functions are antiderivatives of measures is
much more complicated than what we do628 in Exercise L6(2).

626 In fact, the same holds if µ has a density.— In other words, Ũ has a derivative F “almost everywhere”, F is
L1-integrable, and Ũ coincides with the antiderivative of F constructed via integration627 . (The latter condition is not
void!) In analysis, such functions U are called “absolutely continuous”.

627 N.B. (???) The classical definition of antiderivative requires derivative to exist in every point.
Correct in other places too?

628 This is the reason why we start with non-negative measures first. The blue-framed property on p. 192 is
significantly simpler than what is required to characterise the general case.

The corresponding general property of antiderivatives is called having “bounded variation”.629 The corresponding
property of measures is the so-called σ-additivity: it is similar to additivity, but we allow splitting an interval into a
disjoint union of not 2 intervals, but of countably many intervals.

629 Another way to say this is that “functions U of bounded variations have a formal derivative, this derivative is a
measure, and U is one of the antiderivatives U + const of this measure.

https://en.wikipedia.org/wiki/Absolute_continuity
https://en.wikipedia.org/wiki/Bounded_variation
https://en.wikipedia.org/wiki/Sigma-additive_set_function
https://en.wikipedia.org/wiki/Countable_set
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To clarify the notion of a measure, say that µ ≥ µ0 (with functions of intervals µ and µ0) iff
µ(I ) ≥ µ0(I ) for every interval I . One of the fundamental facts about non-negative measures is that
given two such measures µ1 and µ2, there is a measure min(µ1, µ2) which satisfies min(µ1, µ2) ≤ µk
for k = 1, 2, and

min(µ1, µ2) ≥ µ for any measure µ such that µ ≤ µ1 and µ ≤ µ2.

(so it is a largest measure which is below µ1 and µ2).
Exercise L8: Given a measure µ there are unique non-negative measures µ+ and µ− s.t. µ = µ+ − µ− and
min(µ+, µ−) = 0. A sum or difference of measures is a measure. A measure multiplied by a number is a
measure.

In the conditions of this exercise, |µ| is defined as µ+ + µ−.
Exercise L9: If µ has density F , then |µ| has density |F |. If |µ| has density D, then630 µ has a density.

Define max(µ1, µ2) = µ1 + µ2 −min(µ1, µ2). Show that |µ| = max(µ,−µ).
Exercise L10: Show that there is no measure with the antiderivative U coinciding with x sin(1/x) for x 6= 0.

Hint: Consider the total increment of U on a suitable collection of intervals.
Show that if the antiderivative of a measure coincides with xG(1/x) for x 6= 0 and G is periodic, then

G = const.
Hint: Consider oscillations of G(x)/x for |x| � 0.

Exercise L11: Say that an additive function of intervals is T -periodic if µ(I ) = µ(IT ) for any I . Here IT is
the parallel translation of I by the distance T. If µ is T -periodic, then µ((x, x+T ]) = µ([x, x+T )) = µ([0, T ))
for every x.

Define the norm ‖µ‖ of a T -periodic631 measure µ as |µ|([0, T )). Consider ‖µ − µ0‖ as the
distance632 between two T -periodic measures µ and µ0.
Exercise L12: Given three T -periodic measures µk, k = 1, 2, 3, show that ‖µ1−µ3‖ ≤ ‖µ1−µ2‖+‖µ2−µ3‖.
Show that µ1 = µ2 iff ‖µ1 − µ2‖ = 0.

Since we can measure distances, we can consider infinite sums: we say that µ1 + µ2 + . . . ultra-
converges to µ if ‖µ− (µ1 + µ2 + . . .+ µn)‖ decreases to 0 as n grows. If measures µk have densities
Fk, we can also write down the LHS as633 F1 + F2 + . . ..
Exercise L13: Show that if a T -periodic measure µ has a density, then ‖δper − µ‖ ≥ 1. Here δper(x) is the
δ-measure at 0 extended outside of (−2π, 2π) by 2π-periodicity.

In particular, cos 0x+ 2 cos 1x+ 2 cos 2x+ . . . is not ultra-converging to 2πδper(x).

This means that to have Fourier transform of 2π-periodic measures, we need another notion of
convergence. One convenient approach is based on the following fundamental property of measures;
however, before we introduce it, we need to twist our language a bit.

Given a function F , we say that “F ′ makes sense as a measure” if there is a measure µ such that F
is an antiderivative of this measure. Note that in this phrase, F ′ is not a function, but just a symbol.
On the other hand, one can (and we would) identify F ′ with the measure µ. The property claims:

If U is 2π-periodic and U ′ makes sense as a measure, the Fourier series of U converges at every x.

630 N.B. (???) Check!
631 Likewise, one can consider measures which vanish outside of the given interval.
632 N.B. (???) Examples where such convergence happens? Multiplication by a continuous function?

(In general can multiply by an L∞-function on (M , µ) :=
∐
α(R, µα); here {µα} is the maximal collection

of pairwise singular non-negative non-0 measures on R. Note that a measure on R can be identified
with an L1-function on (a not σ-finite) M . Compare with the desciption of the dual space to measures
with “ultra” topology.)

633 N.B. (???) WRONG: too strong convergence! Need to consider a much weaker distance. . .
Should not we discuss σ-additivity first? Infinite sums?
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In fact, one can amplify this: there is a uniform bound for all functions Uk(x): a number C > 0 such
that |Uk(x)| ≤ C for every k and every x.

(The Fourier coefficients “make sense” due to Exercise L16.)
Exercise L14: Consider a sequence Vk(x)→ V (x) convergent for every x. Assume that all functions Vk(x)
are uniformly bounded and have antiderivatives V (−1)

k . Then the sequence of functions V (−1)
k converges

uniformly634 provided V (−1)
k (0) = 0. In other words:

Taking antiderivative improves pointwise-uniformly-bounded convergence to uniform convergence.
Hint: It is enough to consider the case when Vk monotonically increases/decreases (put

WK,L(x) := max0≤k<L VK+k(x) and WK(x) := WK,∞(x).)
Our next aim is to proceed “one more step to the left”: we want to force the antiderivative to

improve “convergence of measures” to pointwise-uniformly-bounded convergence . With the “brute
force approach”, assuming that µ and µk, k ≥ 1 have antiderivatives U and Uk, say that635 µ1 +µ2 + . . .
converges to µ if Fk are uniformly bounded on every finite interval, and F − (F1 + F2 + . . .+ Fn) goes
to 0 at every point when n grows.636 Likewise for convergence of sequences of measures. (Since the
antiderivative may be changed by a constant, we assume that this property holds for a suitable choice
of antiderivatives.637)

Say that a measure is continuous (or smooth, etc.) if it has continuous (or smooth, etc.) density F .
In other words, we more or less identify µ with its density.638 639 Observe that this identification is
compatible with our notation for derivatives and antiderivatives: if µ has a continuous density F , then
µ(−1) coincides with F (−1) + const; and if G has a continuous derivative F , then G′ makes sense as a
measure, and the measure G′ has density H.
Exercise L15: Show that δ-measure is a limit of a sequence of smooth measures. Show that µ = ∑

k µk
does not imply µ(I ) = ∑

k µk(I ).
640

Exercise L16: Given a function U such that U ′ makes sense as a measure, the integral
∫∞
−∞ U(x)G(x)dx

makes sense if G is continuous and vanishes outside of [−B,B] for some B.
Hint: One may assume that U is non-decreasing. Then if |G| < C, subdividing [−B,B] into intervals of length ε
allows to find

∫∞
−∞ U(x)G(x)dx up to precision εC(U(B)− U(−B)) + 2Bζ max(|U(−B)|, |U(B)|). Here ζ is

the maximum of variation of G on these intervals.
Exercise L17: Given a function U such that U ′ makes sense as a measure µ, and a continuously differentiable
function Φ such that641 Φ(x) = 0 for x /∈ [−B,B], define I :=

∫∞
−∞Φ(x)µ(x) (here µ(x) is just a symbol)

634 This means that the pointwise limit W (x) exists for every x, and the “speed of convergence” may be chosen
independently of x: for every ε > 0 there is K > 0 “which works” for every x—or |V (−1)

k (x)−W (x)| < ε provided
k > K.

635 N.B. (???) Why is this important?
636 N.B. (???) Check convergence on intervals I .
637 In fact, one may just require that F (0) = Fk(0) = 0 for every k.
638 Note that this “identification” loses a bit of information about the density. For example, changing density in

one point does not change the measure.
Note the similarity of this loss of information with the definiton of a vector in the vector space L1: it is an absolutely

integrable function up to a change which does not affect the corresponding measure. Hence L1 coincides with the set of
measures which have integrable densities.

639 To preserve “dimension”, sometimes µ is identified with the expression F (x)dx.
640 N.B. (???) Our notion of convergence does not cover convergence of µ([x, x])—but it covers

convergence if one “averages between closed and open intervals”! In other words, convergence of measures
implies convergence of the weight of “blurred intervals”—on which the boundary points are considered
“with multiplicity ½”. Such weight of the interval between a and b is ½µ({a}) + µ((a, b)) + ½µ({b}). (This
is hardwired into our definition of the antiderivative of measure.)

641 N.B. (???) Is not U(x)Φ(x)→ 0 when x→ ±∞ enough?
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as I = −
∫∞
−∞Φ′(x)U(x)dx. Show that if U ′ is continuous, then I =

∫∞
−∞Φ(x)U ′(x)dx. (Same for U ′

integrable.642)
The third fundamental property of measures is that

Given µ, the integral I :=
∫∞
−∞Φ(x)µ(x) can be generalized to the case of continuous Φ too.

Moreover, if Φ(x) = 0 for x /∈ [−B,B], then |I| ≤ C max |Φ(x)| for a certain C depending on B.
Furthermore, if µ and Φ are non-negative, then I ≥ 0.
Exercise L18: Consider an interval I0; assume that µ(I ) = 0 if I ∩I0 = ∅. Then

∫∞
−∞Ψ(x)µ(x) = Cµ(I0)

if Ψ is continuosly differentiable and Ψ|I0 ≡ C.
Same if Ψ is only continuous.

Hint: Squeeze Ψ between two continuously differentiable functions which are constant on I0.
Hence for µ as in this exercise and I0 = [a, b], one can define

∫ b
a Φ(x)µ(x) for a continuous function

Φ on [a, b].

Exercise L19: If Φ(x) = 0 for x /∈ [−B,B], then
∣∣∣∫∞−∞Φ(x)µ(x)

∣∣∣ ≤ |µ|((−B,B))M ; here M := maxx |Φ(x)|.
Hint: One can assume |µ|((−∞, B]) = |µ|([B,∞)) = 0; then if µ,Φ ≥ 0, then

∫ B
−B(M − Φ(x))µ(x) ≥ 0.

Exercise L20: Suppose that µk → µ and a continuously differentiable function Φ vanishes outside of
(−B,B). Then

∫∞
−∞Φ(x)µk(x)→

∫∞
−∞Φ(x)µ(x).

In fact, with practically the same proof, one can allow Φ to be a function of bounded variation.
However, this does not work for general continuous Φ:
Exercise L21: Put Φ(x) := x sin π/4x for x 6= 0 and 0 otherwise. Find measures µk → 0 with∫∞
−∞Φ(x)µk(x)→ +∞.

Hint: Consider linear combinations of measures νn := δ(x− 1/n).
Exercise L22: Given a 2π-periodic measure µ, one can find a number m0 such that µ − m0µ1 has a
2π-periodic antiderivative F . (Here µ1 is the measure with constant density 1.—Sometimes it is denoted as
µ1 = dx.)

In the latter case, say that m0 is the 0th Fourier coefficient of µ, and mk := −iFk/k is the k th
Fourier coefficient.
Exercise L23: For a 2π-periodic measure µ with Fourier coefficients mk, consider the measure µK with the
(smooth) density ∑K

k=−K mkeikx. Show that µK → µ.
Exercise L24: Fourier coefficients of a 2π-periodic µ coincide with suitable Φ-weighted densities of µ.

Hint: Take Φ vanishing outside [−2π, 2π], and choose a suitable function Φ(x− 2π) + Φ(x) on [0, 2π].
In fact, Φ can be chosen to be smooth.

Exercise L25: Define µm to be the measure with (smooth) density cos 0x+ 2 cos 1x+ 2 cos 2x+ . . .+ cosmx.
Show that µk → 2πδper. Here δper is a 2π-periodic measure such that δper(I ) = δ(I ) if I ⊂ (−2π, 2π).

Let’s sum up what we obtained. Given a continuous function Φ1 vanishing outside of a finite
interval and such that

∫∞
−∞ Φ1(x)dx = 1, it is natural to call the number

∫∞
−∞ Φ1(x)µ(x) the Φ-weighted

averaged density of the measure µ. (At least, this is compatible with the case when the density is
L1-integrable.) However, fixing one continuous function Φ1 as above, given any continuous function Φ
vanishing outside of a finite interval, a suitable expression Φ− CΦ1 is again of the form considered
above. Conclusion: dropping the condition

∫∞
−∞Φ1(x)dx = 1 results in an equivalent collection of

data about µ. However, we need to change the name: use “Φ1-weighted value” in the general case.
So:
• the measures do not have values at points, but

642 N.B. (???) If U ′ is integrable, then the latter integral makes sense. And???



EXERCISES M: OTHER STARTING POINTS FOR FORMAL DERIVATIVES 197

• they have “Φ-weighted average value” for suitable Φ.
• If µ has a density F , and Φ vanishes outside a small interval containing x, the “Φ-weighted
average value” approximates the value F (x) at the point x.
• Moreover, convergence of measures results in convergence of Φ-weighted values—but:
• . . . this only holds provided Φ is smooth enough.

Remark 116: In fact, we cover measures also in another group of exercises on p. 186.

Exercises M: Other starting points for formal derivatives

(What we discuss in this section is for people fluent with the language of measures.— If not, one
may try to skim through the group L of exercises on p. 191 before reading what follows.)

In the definitions of the preceding groups of exercises, the phrase “a continuous function” played a
very special role. However, we used only the following properties of continuous functions:

• The set C0 of continuous functions is a vector space. (See Footnote 584 on p. 179.)
• Certain continuous functions are called “continuously differentiable functions”. They form a
vector subspace C1.
• There is linear operation d/dt sending C1 → C0.
• Every continuous function is in the image of d/dt. If d/dt sends a function f (from C1) to 0,
then f is proportional to a particular function (“a constant”).

Using these, we can define the class Cn ⊂ C1, n ≥ 1, inductively as (d/dt)−1Cn−1 (together with
the mapping (d/dt)n : Cn → C0); one can also define polynomials of degree < n as functions in
Cn which are sent by (d/dt)n to 0. (One can interpret C0 as a vector space with an operation of
antidifferentiation—but the result of this operation is defined only “up to an additive constant”.643)

What is important to us is that after replacing C0 by another class C0 of “functions” the construction
of formal derivatives up to undistinguishability can be translated word-by-word (together with all its
corollaries)—provided C0 satisfies the properties in the preceding list.644 So one obtains the set (a
vector space!) of formal derivatives of elements of C0 up to undistinguishability. Denote it as Cgen.

For example, put C0 := {smooth functions} (so then C1 = C0).—But then the result is trivial:
Exercise M1: If C1 = C0, then any element of Cgen coincides with a uniquely defined element of C0.

However, if one puts C0 to be absolutely continuous functions, or L1-functions,645 or measures,646

then these give “meaningful theories” Cgen—but, as the following exercises shows, they do not give
anything new. The results coincide with “the generalized functions as based on continuous functions”.
Exercise M2: Consider a class C as above with the corresponding subspaces Cn and maps d/dt : Cn → Cn−1

given for n ≥ 1. Suppose that for a suitable N ≥ 0 we can identify CN with a subspace V ⊂ Ck ⊂ C0 for
a suitable k ≥ 0. Suppose that the subspace CN+1 ⊂ CN is identified with W ⊂ V . Assume that either
k ≥ 1, or k = 0 and W ⊂ C1; then there is a well-defined mapping d/dt : W → C0. Finally, suppose that the
identification above sends the mapping d/dt : CN+1 → CN to the mapping d/dt : W → C0.

Note that given F ∈ C0, one can write F = (d/dt)NG with G ∈ CN ; denote by g the element of Ck
corresponding to G. Show that then there is a well-defined linear map sending F to g(N) (considered as a
generalized function)— its result does not depend on the choice of G. Likewise, if one considers a formal

643 This may be formalized by fixing a 1-dimensional subspace 〈const〉 ⊂ V (here V := C0) and an injective mapping
α : V → V/〈const〉. Then C1 is the preimage in V of Imα.

644 In particular, one can define subspaces Cn inside C0 and the (surjective) maps d/dt : Cn+1 → Cn.
645 Here it is important that we consider not “L1-integrable functions”, but such functions “up to a change on

a subset of measure 0”. Otherwise there is no mapping d/dt : C1 → C0 (in other words: the mapping of taking the
antiderivative has a kernel).

646 We consider “L1-integrability and “measures” in the group L of exercises on p. 191.
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derivative F [M ] as an element of Cgen, show that sending F [M ] to g(M+N) gives an operation sending Cgen to
the space of generalized functions.

Hint: Show that undistinguishable formal derivatives are sent to the same image.
Suppose now that V ⊃ CK for a suitable number K ≥ k. Show that the map above is a bijection

from Cgen to generalized functions. Show that this map is compatible with taking derivatives, and sends
polynomials647 to polynomials preserving the degree.

Exercise M3: The assumptions of the preceding exercise are satisfied if C consists of absolutely continuous
functions, or L1-functions, or measures. In the latter case, δ-measure is identified with the δ-function.

Conclusion: We introduced generalized functions (essentially) by saying that a continuous function
is a generalized function, and a “derivative” of a generalized function is also a generalized function.
For any kind of mathematical object for which taking repeated antiderivatives makes sense—and one
of them is continuous, any object of this kind may be identified with a generalized function.

For example, measures allow antiderivatives, and the second antiderivative of any measure is
continuous—hence any measure is a generalized function. Moreover, any continuous function is
a density of a measure—hence any generalized function may be written as a (formal) repeated
derivative of a measure. (This is what Exercise M3 claims!)648

In particular, the description above is good for functions with the second continuous deriva-
tive. However, the main body of our notes deals with “functions” F (t) such that only the second
antiderivative of F is a well-defined continuous function.649

One stumbling stone is that they remain valid in more complicated cases too—but then time to
time one needs to mix in the word “generalized”.

650 as “usual functions”.651

For example, if the sequence is constant (“no decay at all”) then the periodic function is proportional
to a δ-function: it is “essentially” generalized function! It cannot be described by “sending every
numeric argument to a numeric value”; it is a more complicated object. However, the antiderivative
(or “the derivative of order −1) of the δ-function takes the value 0 to the left of 0, and the value 1
to the right of 0—so it may be described “by sending arguments to values”. Hence (ignoring the
value of the antiderivative at 0—which is typically irrelevant) one may say that “no decay at all” is
matched to “smoothness of degree654 −1”.

647 Recall that we define polynomials of degree m as the kernel of (d/dt)m+1.
648 N.B. (???) Can we illustrate the corresponding filtrations Cm and Mm?
649 N.B. (???) Moreover, for our example of Eisenstein series . . . (Only left- and right-continuous—

and only conjecturally!).
650 N.B. (???) Fix this!
651 Here we implicitly refer to the fact that generalized functions have all the derivatives—when these derivatives

are taken “in the sense of generalized functions”. (Same for antiderivatives.)
However, any generalized function is either continuous (so we may ask: how many derivatives make sense as usual

functions?), or it may be described as n th derivative of a “usual” function (e.g., of a continuous function).652 (Then
we can say that its degree of smoothness is −n.)

The finer points of the “degree of smoothness” are whether the “topmost” of these “usual” derivatives is continuous
(or left-/right-continuous). Compare with the plot on p. 62— it is already a plot of an antiderivative, but one needs to
take one more antiderivative to make it continuous.

652 For example, δ-function is a derivative of a “usual”653 step-function, and is the second derivative (in the sense
of generalized functions) of a continuous function ½|x|. So its “degree of smoothness” is −1—in the sense that its
−1 st derivative is left-and-right-continuous.

653 What is a “usual” function? There are many different sub-flavors. The most useful are “continuous”, or
“left-and-right-continuous”, or L1, or L2, or “measures”.

654 . . . with the flavor of −1 st derivative “being left-and-right-continuous”.

https://en.wikipedia.org/wiki/Generalized_function
https://en.wikipedia.org/wiki/Lp_space
https://en.wikipedia.org/wiki/Square-integrable_function
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Similarly, if (an) decays at least as quick as const /|n|2, then its Fourier transform is continuous.655
It is also useful to understand that the rate of decay of Fourier coefficients corresponds to the

smoothness of the sum of Fourier series. (In particular, taking derivative—which makes a Ck-function
“less smooth”—corresponds to multiplication by n—which makes the Fourier coefficients decay
slower. Likewise for integration: it makes a function “smoother”, and makes the Fourier coefficients
to decay quicker.)

Finally, it may help to know some particular cases of the preceding connection. In particular,
if coefficents are in `1 (hence “do not decay too slow”) then the sum of the series is a continuous
function. (In the opposite direction one can get only a much weaker estimate: continuity implies that
the coefficients are bounded.656)

Solutions to Fourier “Meander wave” exercises

The main tool are the estimates of F (y) provided F ′(y) = G(y) sin y with G ≥ 0 a decreasing
function of y (the case of an increasing G > 0 can be handled very similarly). (Here y is a linear
coordinate change of the variable x from the exercises.) Note that the local maximums N2k−1 of F
are achieved at the points y2k−1 = (2k − 1)π, and local minimums n2k of F are achieved at the points
y2k = 2kπ. Moreover,

N2k−1 −N2k+1 = −
∫ y2k+1

y2k−1
G(y) sin ydy =

∫ y2k+1

y2k
(G(y − π)−G(y)) sin ydy ≥ 0,

hence local maxima decrease. Likewise, local minima increase. Furthermore,

N2k−1 − n2k = −
∫ y2k

y2k−1
G(y) sin ydy ≤ 2 max

[y2k−1,y2k]
G(y) = 2G(y2k−1).

Similarly, N2k+1 − n2k ≤ 2G(y2k).
Moreover, for k ≤ l

N2k−1 −N2l+1

=
∫ y2k+1

y2k
((G(y−π)−G(y))+(G(y+π)−G(y+2π))+. . .+(G(y+(l−k)π−π)−G(y+(l−k)π))) sin ydy

≤
∫ y2k+1

y2k
((G(y − π)−G(y + (l − k)π))) sin ydy ≤ 2(G(y2k−1)−G(y2l+1)).

Therefore F (y) with y between y2k−1 and y2l+1

• oscillates, with
• every increasing/decreasing half-wave “crossing” the all the levels in the interval [B,C] :=

[n2l, N2l+1].
• The interval [B,C] has length at most 2G(y2l).
• The maximum of F (y) between y2k−1 and y2l+1 is at most C + 2(G(y2k−1)−G(y2l+1)).
• The minimum of F (y) between y2k−1 and y2l+1 is at least B − 2(G(y2k)−G(y2l)).

As the result, we can squeeze the values of F (y) on [y2k−1, y2l+1] into an interval of length at most657

2(G(y2l) +G(y2k−1)−G(y2l+1) +G(y2k)−G(y2l)) = 2(G(y2k−1)−G(y2l+1) +G(y2k)) ≤ 4G(y2k−1).
(If l� k and G decreases quickly enough, then two estimates on the right are close to each other.)

One can get similar estimates if one replaces one (or both) y2k−1 and y2l+1 by y2k and y2l.
655 For example, if a0 = 0 and an := 1/n2 for Z 3 n 6= 0 then its Fourier transform (the sum of the corresponding

Fourier series
∑
n>0 2 cos(nx)/n2) is a 2π-periodic “parabolic sawtooth” function; it is (|x| −π)2/2−π2/6 on [−2π, 2π].

656 Recall that it is possible to get a 1-to-1 match between “degrees of the growth of coefficients” and “degrees of
smoothness of the sum”—but one needs a bit more complicated gauges of these degrees, such as the Sobolev classes

657 Since we do not know the integration constant, we cannot estimate the ends of this interval, only its length!

https://en.wikipedia.org/wiki/Sobolev_space#The_case_p_=_2
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In the “meander wave” exercises, a partial Fourier sum M≤2r is an antiderivative of 2(cosx +
cos 3x + . . . + cos(2r − 1)x) = sin(2rx)/sin x. So put y = 2rx, and G(y) := 1/(2r sin(y/2r)). Note
that if y ≤ πr, then sin(y/2r) ≥ y/(πr), hence G(y) ≈ 1/y for small y, while G(y) ≤ π/(2y). The
analysis above is applicable on (0, πr] where G decreases.

This shows that M≤2r(x) takes values inside an interval of length ≤ π/(rX) for x on [X, π/2]
if 2rX ∈ πZ. (Indeed, the right end of the interval of y s is rπ, so has the required form of yr.)
Conclusion: if X > 0, then M≤m(x) −M≤m(π/2) is uniformly going to 0 on [X, π/2] as m → ∞.
Moreover, one can replace [X, π/2] by [Xm, π/2] provided mXm →∞.

Likewise, for F (Y ) := Si(Y ) =
∫ Y

0 sin ydy/y with Y ≥ 0 we can use G(y) = 1/y. The estimates
above show that F has a certain limit as Y → ∞; denote it by Π/2. Moreover, although G is not
smooth at 0, still the integral makes perfect sense—and hence putting y0 = 0 does not break the fact
that the sequence F (y2m) increases. Therefore F (Y ) > 0 for y > 0, and the limit of F is positive.

For Exercise K22 on p. 189, put g := Si. Then put ∆m(y) := M≤m(y/m)− g(y), hence m∆′m(y) =
G̃(y/m) sin y with G̃(y) := 1/sin(y) − 1/y ≥ 0. Since G̃ increases658on [0, π/2], we can repeat the
analysis above with y changed to −y. Hence one can estimate m∆m(y) on [0, Y ] as being confined to
an interval of length ≤ 4 max[0,Y/m] G̃/m (provided y ∈ πZ, 0 < Y/m < π/2 and m is even).

On the other hand, this interval contains ∆m(0) = 0; hence we can conclude that |∆m(Y )| ≤ cY/m2

for a suitable constant c. Therefore |M≤m(x) − Si(mx)| ≤ cx/m. Hence if mxm goes to ∞, then
M≤m(xm) ≈ Si(mxm)→ Π/2.

Conclusion: M≤m is close to Π/2 on the interval [Xm.π − Xm] if mXm → ∞. In other words,
πM≤m → ΠM as m→∞.

Next, W≤m(x) + x is an antiderivative of 1 + 2(cosx+ cos 2x+ cos 3x+ . . .+ cosmx) = sin((m+
½)x)/sin(½x). So we can put y := (m + ½)x and G(y) := 1/((m + ½) sin(y/(2m + 1))) which
is positive and decreases on (0, (m + ½)π). (Since the right end is not in πZ, one needs a minor
modification to the arguments above. We are going to ignore this complication.)

Since G is of very similar form to what we considered above (only twice larger), we can show
that W≤m(x) + x is odd, and is approximately constant on any interval of the form (Xm, 2π −Xm)
with Xm → 0 and mXm → ∞. Moreover, this shows that659 W≤m(x) + x ≈ 2 Si((m + ½)x) on
(−2π +Xm, 2π −Xm).

Finally, since W≤m(x) is odd 2π-periodic, W≤m(π) = 0. Therefore W≤m(x) +x ≈ W≤m(π) +π = π.
Conclusion: Si(x) ≈ π/2 for x� 0; hence Π = π. This concludes the proof that the inverse Fourier
transform is actually inverse to the Fourier transform on the examples of rectangular and triangular
waves M and W .

For the Hausdorff distance approximation: consider the broken line connecting the local maxima
and a similar line for minima. For x ≤ π/2 above the first local minimum both graphs make sense.
The description of oscillation of the function F above shows that any point in the region between
these graphs may be shifted horizontally by at most “the period of oscillation” to get on the graph of
F . Moreover, a point with x below the first local minimum can be shifted to the y-axis by a similar
shift.

Therefore the graph of F may be approximated by the region described above together with the
projection of the graph to the y-axis. The latter is described by the absolute maximum of F . Finally,

658 In fact, all derivatives of G̃ are positive (and increase) on [0, π). Indeed, note that −1/t has all derivatives
positive (and growing) for t < 0; hence the same holds for ϕa(t) := 1/(t− a)− 1/t with a > 0. Therefore all derivatives of
ϕa(t)− ϕa(−b− t) are positive on (−b/2, 0) if b > 0. (Indeed, the odd-order derivatives of two terms have the same
sign; for even-ordered, it is an increment of the corresponding repeated derivative between −b− t < t.)

Now use the fact that the Mittag-Leffler’s decomposition of 1/sin x − 1/x is a convergent sum of terms ϕπ(x −
(2k − 1)π)− ϕπ(−x− (2k − 1)π), and put t := x− (2k − 1)π, b := (4k − 2)π.

659 In fact, the same argument as above shows that |W≤m(t) + t− 2 Si((m+ ½)t)| ≤ ct/(m+ ½) for 0 ≤ t ≤ π.

https://en.wikipedia.org/wiki/Mittag-Leffler%27s_theorem
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the curve connecting the maxima may be approximated by a hyperbola—as required. Likewise for
minima.

i. ii. iii. iiii. iiiii. iiiiii. iiiiiii. iiiiiiii. iiiiiiiii. iiiiiiiiii. iiiiiiiiiii. iiiiiiiiiiii. iiiiiiiiiiiii. iiiiiiiiiiiiii.
iiiiiiiiiiiiiii. iiiiiiiiiiiiiiii. iiiiiiiiiiiiiiiii. iiiiiiiiiiiiiiiiii.

i. ii. iii. iiii. iiiii. iiiiii. iiiiiii. iiiiiiii. iiiiiiiii. iiiiiiiiii. iiiiiiiiiii. iiiiiiiiiiii. iiiiiiiiiiiii. iiiiiiiiiiiiii.
iiiiiiiiiiiiiii. iiiiiiiiiiiiiiii. iiiiiiiiiiiiiiiii. iiiiiiiiiiiiiiiiii.

Exercises N: Cesàro-like summation

For the following argument, we need to enhance arguments in the beginning of the section
on p. 199 to handle estimates of F (y + 2π)− F (y) =

∫ t+2π
y G(y) sin ydy. Since this may be written as∫ t+π

y (G(y)−G(y + π)) sin ydy, its magnitude may be bounded660 by 2πmaxY ∈[y,y+π] |G′(Y )|.
Heuristically speaking, this means that for |F (y + T )− F (y)| to be small (for all y, assuming T

fixed), T must be close to a multiple of 2π—provided |G′| is much smaller than |G(y)|. And the
latter condition matches the choice G(x) := g(x/m) with m→∞ in our applications of estimates of
F . Moreover, in our cases the oscillations of F are parasitic—they are due to “us cutting the Fourier
series early”—so, generally speaking, our preference is to lower the effect of these oscillation (when
there is such a possibility).

In other words, we consider F (y) = (G(y) sin y)(−1) as “having two parts”: the “parasitic”
oscillating part (which is essentially determined by the behaviour of G(x) for x “not very far” from
y), and the slowly changing “secular” part Fsec made by contribution of remaining x s. Considering
F (x + 2π) − F (x) has a chance to suppress the “parasitic” oscillating part—which can make the
“secular” part more visible.

Conclusion: Define the approximate derivative ∆TF (y) := (F (y + T/2)− F (y − T/2))/T of F ;
then for contribution of parasitic oscillations into ∆TF to be small, one should choose T to be close
to a multiple of 2π. Moreover, when acting on the “secular” part, the approximate derivative has a
“discretization error” which goes down as T becomes smaller; so the best candidates seem to be T ≈ 0
or T ≈ 2π. In the former case, it turns out that T in denominator of ∆TF kills all the advantages of
“cancellation of oscillations”. Hence “the best choice” of the approximate derivative to estimate the
derivative of the “secular” part of F is

F ′sec ≈ ∆2πF.

Recall the conclusion of Exercise G2 on p. 178: to calculate F (t) given the Fourier coefficients Fk
of F , one cannot just use partial sums of this Fourier series (they may diverge!). One should instead
proceed in steps:

• Consider another Fourier series with coefficients −Fk/k2 (for k 6= 0).
• Calculate its sum (converging in a very strong sense!) S(τ) at points τ ≈ t.
• Take the second derivative of this sum S(τ) at τ = t.

Exercise N1: Show that exchanging the last two steps (in the sense of taking the second derivative of a
series term-wise) brings one back to the Fourier series of F (so it may diverge).

If F is continuous, then S has two continous derivatives, hence the second derivative may be
approximated by the approximate second derivative (S(t + ∆t) − 2S(t) + S(t − ∆t))/(∆t)2 when
∆t→ 0. Conclusion: F (t) may be approximated by (S≤m(t+ ∆t)− 2S≤m(t) + S≤m(t−∆t))/(∆t)2 if
one

• First takes the limit m→∞.
• Second, lets ∆t→ 0.

Recall that S≤m(t) is the partial sum of the Fourier series for S (with the coefficients −Fk/k2).

660 N.B. (???) Find local extrema?

https://en.wikipedia.org/wiki/Secular_variation
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Exercise N2: Show that for a continuous F with a 2π-periodic second antiderivative S one can approximate
F (t) ≈ (S≤m(t+ ∆t)− 2S≤m(t) + S≤m(t−∆t))/(∆t)2 with arbitrary precision by choosing ∆t sufficiently
small, and m depending on ∆t.

Hint: For a fixed ∆t, it is enough to approximate S by S≤m only in C0 sense.
This shows that to approximate F , one can take ∆t → 0 and choose m as m ≥ m(∆t) in the

formula of the exercise. Here the choice of m may depend on F ; moreover (for certain functions F ) the
function m may grow very quick when ∆t→ 0. Below we investigate another approach: it turns out
that by fine-tuning, m may be choosen relatively small, and be independent of F . However, instead of
an infinite interval [m,∞) of possible m, every ∆t matches a quite narrow zone of “fine-tuned” m s.

As we saw in our investigation of the meander and triangular waves in the group K of exercises
their partial Fourier sums are contaminated by “parasitic oscillations”. The following exercise shows
that these oscillations may be quite large.
Exercise N3: Define the periodic measure ωm as the derivative of W≤m(t) + t with W the triangular wave
from the section on p. 187. Recall that we expect ωm to “approximate” the measure (W (t) + t)′ = 2πδper
(sum of δ-measures at points of 2πZ). The latter measure vanishes on the interval [ε, 2π− ε] (with 0 < ε < π);
so denote by ωm,ε the restriction of ωm to such an interval.

Show that the norm ‖ωm,ε‖ does not go to 0 when m→∞.
Hint: Estimate the average value (or “amplitude”) of |W ′≤m + 1|.

Show that the norm ‖ωm‖ is not bounded when m→∞.
Hint: Harmonic series.

Compare this with Exercise L13 on p. 194 which shows another breakage of a somewhat similar
property. In fact, our next aim is to show that the conditions of Exercise N3 are in fact much more
important than the property from Exercise L13 on p. 194. But before we do this, we want to highlight
a situation where the properties of the last exercise are actually satisfied.

To reach this situation, we “mollify”661 the oscillations above by a suitable choice of the step of
the approximate derivative.662

Exercise N4: Define the periodic measure Ωm as the approximate derivative ∆2π/m of W≤m(t) + t with W
as above. Recall that we expect Ωm to be “close” to ωm, so the measures Ωm have a chance to “approximate”
the measure 2πδper. Again, denote by Ωm,ε the restriction of Ωm to the interval [ε, 2π − ε] (with 0 < ε < π).

Show that the norm ‖Ωm,ε‖ → 0 when m→∞ (call this “condition (A)”). Show that the norm ‖Ωm‖ is
bounded when m→∞ (call this “condition (B)”). Show that the average value of Ωm is 2π.

In other words, taking “the best choice” of the step of the approximate derivative (same as in the
beginning of this section), we replace “the pathological measures” ωm by the measures Ωm which are
“warm and cozy” in the sense of the exercises above. Our next step is to explain why being “warm
and cozy” is so useful.

Say that a sequence µk of 2π-periodic measures specially converges to cδper if µk([0, 2π))→ c, and
‖µk|[ε.2π−ε]‖ → 0 for any 0 < ε < π, as well as there is C such that ‖µk‖ < C for any k. (We are
going to use this for c = 0, 1, 2π.)

Recall that if f and g are 2π-periodic, the convolution f ? g of f and g is defined as (f ? g)(t) :=∫ 2π
0 f(t − s)g(s)ds . Note that if f and g are continuous, then (f ? g)(t) is a well-defined number.
Moreover, if g is a measure and f is continuous, then putting ft(s) := f(t − s), the integral may
be understood as the value of the measure ftg on the interval [0, 2π). Since the change of variable

661 N.B. (???) Use this word before?
662 This corresponds to making ∆t depend on m in Exercise N2 on p. 202. However, instead of the second

approximate derivative (of the second antiderivative) in that exercise, below we use the first derivative (of the first
antiderivative). (Although a very similar argument works for the literal situation of the latter exercise.)

Keep in mind that the step of approximate derivative is 1/m th of what we discuss above since y is t rescaled m
times.
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s1 = t− s shows that the integral is actually symmetric in f and g, one can proceed similarly in the
case when f is a measure, and g is continuous.663

Exercise N5: If g is a trigonometric polynomial ∑K
k=−K akeikt, then664 (F ? g)(t) = 2π∑K

k=−K akFkeikt.
Here Fk are Fourier coefficients of a continuous function F .

Hint: It is enough to consider g(t) := eikt.
Hence F≤m(t) = F ? (W ′≤m(t) + 1)/2π.

Remark 117: This explains the attention we pay to the properties of W≤m: the convolution with
the derivative of this (smooth!) function describes the process of taking the m th partial Fourier sum
of any 2π-periodic function F . Hence using the formula for convolution, the information about W≤m
may be translated to the information about the properties of partial Fourier summation.

In other words: although W is not continuous, the details of convergence of W≤m to W reflect the
worst case of convergence of partial Fourier sums for continuous functions.

Exercise N6: Consider a sequence of trigonometric polynomials (gm) having Fourier coefficients gm,k .
Suppose that this sequence specially converges to 2πδper and gm,k vanish for |k| > Km for a certain sequence
(Km). Then given a continuous function F with Fourier coefficients Fk, the sequence of trigonometric
polynomials Φm(t) := ∑Km

k=−Km gm,kFke
ikt converges to F (t) at every point t.

Hint: It is enough to assume that t = 0 and F (0) = 0, |F (s)| < δ if |s| < ε.
Show that this convergence is actually uniform in t.

Hint: Use uniform continuity to find suitable δ and ε.

Exercise N7: Show that failure of Exercise N3 is directly related to partial sums of Fourier series of
continuous functions F not converging to F .

Hint: Remark 117. (We do not require a complete proof here. Handwaving arguments are enough.)

Given a sequence of weights (w̃k) which vanishes for |k| � 0, call the (finite!) sum∑KN
k=−KN w̃kFke

ikt

the w̃-weighted partial sum of the infinite sum ∑∞
k=−∞ Fkeikt. Likewise, if w(r) is a function on665

[0, 1], a w-weighted partial sum is ∑K
k=−K w(|k|/K)Fkeikt. In particular, the “usual” partial sum is

1-weighted (it corresponds to w ≡ 1).
Exercise N6 gives a certain recipe for checking that a sequence of weighted partial sums of Fourier

series converges to the function F in question. Moreover, by Exercise N4 on p. 202 this recipe is not
void. This allows to apply the conditions (A) and (B) of Exercise N4 on p. 202 to a given weight
function w.
Exercise N8: Show that the weighted partial sums of Exercise N6 with gm = Ωm (with the sequence Ωm

from Exercise N4 on p. 202) match the function w(r) = (eiπr − e−iπr)/(2πir) = sin(πr)/πr.
Hint: One should treat k = 0 specially.

Show that the formula of Exercise N2 on p. 202 matches

w(r) = (eik∆t + e−ik∆t − 2)/(−k∆t)2 = 2(1− cos(αr))/(αr)2 with α := m∆t.

Recall that we know that the former function w leads to convergence of w-weighted partial Fourier
sums—but we do not know the conditions on m∆t which make the latter w satisfy this. The following
exercise should clarify what to expect:

663 In fact, when both f and g are measures, one can define f ? g as a measure. (Although this uses quite delicate
properties of measures.)

664 N.B. (???) Check 2π.
665 One can allow w to be defined on [−1, 1] by replacing |k| by k in the following formula (then it describes the

case of even w). Likewise, one can replace the upper limit 1 by u if one replaces K in the limits of summation by uK.
Finally, one may extend w by 0 outside of its interval of definition; then one can change K in the limits of summation

to ∞.

https://en.wikipedia.org/wiki/Heine%E2%80%93Cantor_theorem


204 Exercises on Fourier transform

Exercise N9: Define the periodic measure Ωm,β as the approximate derivative ∆2πβ/m of W≤m(t) + t with
W as above; here β > 0. Show that the average value of Ωm,β is 2π. Show that the corresponding function w
(see the preceding exercise) is sin(βπr)/βπr.

Show that the norm ‖Ωm,β,ε‖ → 0 when m→∞ iff β ∈ Z>0. (Here Ωm,β,ε is the restriction of Ωm,β to
[ε, 2π − ε].) Show that the norm ‖Ωm,β‖ is bounded when m→∞ iff β ∈ Z>0.

This brings the question: which functions w (extended to R by 0 as in Footnote 665 on p. 203)
satisfy the conditions of the preceding exercise? So far, we can only answer this for w in the family
sin(βπr)/βπr. One obvious condition is:
Exercise N10: One should have w(0) = 1.

Exercise N11: Consider a trigonometric polynomial g(t) := ∑K
k=−K gkeikt. Suppose that g is real and

[−K,K] can be broken into I subintervals of monotonicity of gk. Then |g(t)| ≤ L(t) with L(t) :=
maxk |gk|· min(2K + 1, (I + 2)/2| sin t/2|).

If the sequence gk has J intervals of convexity/concavity and666 gK = g−K = 0, then one can replace L(t)
by min(L(t),max−K≤k<K |gk − gk+1|·J/| sin t/2|2).

The following exercise “explains” the conditions of Exercise N9 on p. 204.
Exercise N12: If the interval [−u, u] of definition of a weight function w can be split into a finite number of
subintervals where w is convex or concave, and w is continuous when extended to R by 0, then w satisfies
the condition (A) of Exercise N4 on p. 202.

If in addition there are α,C > 0 such that |w(r1)−w(r2)| ≤ C·|r1− r2|α on [−u, u], then w satisfies the
condition (B) as well. (This covers functions having a continuous derivative away from a finite collection of
points Rl near which w − w(Rl) has a power-law asymptotic.)

As a corollary, one can use any such w as a way to find good approximations of a continuous
function F by its w-weighted partial Fourier sums. This covers not only Exercise N9 on p. 204, but
also shows that one should use m∆t ∈ 2πZ>0 in Exercise N2 on p. 202.

In fact, there are two approaches to understand the significance of weighted partial Fourier sums.
In both approaches, one considers “putting extra coefficients” w̃k into a linear combination ∑ w̃kFkeikt
of sin-or-cos-waves as a “frequency-dependent667 filtering of the signal” ∑Fkeikt. (So the “components
Fkeikt of different frequencies k” are attenuated at different rates.)

In the first approach, one considers “the usual” partial Fourier sums F≤m as the primary objects.
Only may say that “if they do not converge to F , then this is due to ‘parasitic oscillations’ in F≤m”.
So one can consider a w-weighted partial sum as “an honest partial sum which is filtered to dump the
parasitic oscillations”. Then one says that

After a suitable filtering, the partial Fourier sums give excellent approximations for F .

In the other approach, one considers “the usual” partial Fourier sums F≤m as “just the wstep-
weighted partial Fourier sums” with wstep(r) being the step-function (which is 1 or 0 depending on
|r| ≤ 1). This makes “the usual” sums just one of a collections of equally legitimate approaches. In
other words: here the primary object is the infinite Fourier series as a whole which is considered to
be “undistinghuisable from F itself”.668 Taking “the usual” partial Fourier sum F≤m is considered as
“this infinite series filtered with ‘a very abrupt’ filter”— the filter which passes through the frequencies
up to m unchanged, and kills the high frequencies completely. Then one can say:

A filter with an “abrupt” spectral response w “produces ringing”.

666 Of course, this condition can be achieved by replacing K by K + 1—but note that this increases the range of k
in the max below.

667 To be honest, this covers a case of an even function w, for which the coefficients do not depend on “the difference
of phase” of sin and cos.

668 Compare with Exercise I2 on p. 181.
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(In other words, an interval of t where F is non-smooth has “non-local effects” after filtering: changing
F on this interval can change the result of filtering significantly even far away from this interval.669)

With this approach, it is the “w-weighted partial Fourier sums with a ‘good’ w” (or, more generally,
a ‘good’ w̃) which are the cornerstones of approximating “the infinite Fourier sum”. Taking a limit
w[k] → wstep (with “good” w[k]) allows calculation of “the usual” partial sums in terms of “the good
weighted sums”—but one should accept that such an extra limit may break convergence to F .

One can call such “good” weighted partial Fourier sums the Cesàro-like approximations. Among pos-
sible functions w, the choice w(r) := (1−|r|)N is called “the N th order Cesàro sum” or “the Hölder sum”
(with N = 1 giving “the Cesàro sum” or “the Fejér sum”).

As with the “usual” partial Fourier sums (see Exercise I2 on p. 181), one has:

Exercise N13: If w(0) = 1 and w is continuous at 0 then the w-weighted partial Fourier sums of any
generalized function F converge to F in the sense of generalized functions.

Hint: Since such a partial sum of F ′ is the derivative of the sum for F , it is enough to consider F ∈ C2.

However, the “better” is a filter w, the stronger is the sense in which “ringing disappears”.
The following exercise gives a quantitative description (although in most contexts, the qualitative
description is enough):

Exercise N14: Suppose that the extension of w to R is of class Cs with s th derivative having a finite number
of intervals of monotonicity and 0 < ε < π. Then the m th w-weighted partial Fourier sums W[w,≤m] of the
triangular wave W go to W uniformly on [ε, 2π − ε] together with their derivatives up to the order s. The
error in the derivative of order K := s+ 1− l with l ≥ 0 can be estimated as |(W −W[w,≤m])(K)| ≤ const/ml.

Hint: The derivatives of w(r)-weighted partial Fourier sums match rkw(r)-weighted partial Fourier sums.
Multiplication by rk does not break much the condition on intervals of monotinicity since one can split everything

into a sum of mononotic terms. Compare with Exercise N11 on p. 204.

Exercise N15: Suppose that F is a 2π-periodic generalized function of class C−k and the extension of w to
R is of class Ck+K+2. If a < b < c < d and F vanishes on [a, d], then the w-weighted partial Fourier sums of
F go to 0 uniformly on [b, c] together with their derivatives up to order K.
Hint: It is enough to consider k = 0. To estimate K th derivative of a partial sum, one convolves with K + 1 st
derivative of a partial sum for W . Note that w(k+K+1) ∈ C1 hence may be represented as sum of two continuous

functions with two intervals of monotonicity.

Likewise if (instead of vanishing) F has K continuous derivatives on (a, d). One can also allow
F to be a k th (formal) derivative of a piecewise-continuous function with simple jumps (away from
(a, d)), or even of a measure.670 Similarly, the hint shows that as an extra generalization one may only
require that w(k+K+2) is a measure and w(k+K+1) is continuous.

669 This is somewhat similar to “resonances”, when a momentary disturbance of a system leads to long-persisting
oscillations.

670 This boils down to the statement that given a measure µ vanishing outside of [−L,L] the integral
∫∞
−∞G(t)eimtµ(t)

can be estimated uniformly in m given max[−L,L] |G(t)|. However, a similar property holds if instead of µ we use a
generalized function which is smooth outside of 0, vanishes outside of (−L,L), and equals 1/t near 0 (however, one
needs to also know max[−L,L] |G′(t)|).

Here the generalized function 1/t is defined in Exercise J19 on p. 186 as (log |t|)′ = (t log |t| − t)′′. (This makes
sense if one understands log as an L1-function, or understands t log |t| as a continuous function.)

Indeed, assume that H(t) vanishes outside of (−L,L). Then
∫
H(t)dt/t vanishes if H is even, hence one can

consider instead
∫∞

0 (H(t)−H(−t))dt/t. This allows reducing to the case G ≡ 1, which in turn is reduced to estimating∫K
0 sinmtdt/t =

∫mK
0 sin tdt/t. However, by calculations in the section on p. 199 this function of mK has a limit at

∞, hence is bounded.
Therefore we may also require that F is k th derivative of a linear combination of a measure and functions 1/(t−Tk)

(or of boundary traces of functions 1/(z − Tk)).

https://en.wikipedia.org/wiki/Ces%C3%A0ro_summation
https://en.wikipedia.org/wiki/H%C3%B6lder_summation
https://en.wikipedia.org/wiki/Fej%C3%A9r_kernel
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The most important application is the case K = 0: to get a convergence of the Fourier series at a
suitable point, it is better to have w of class Ck+2. This is a very important particular case of Abel
summation.671

Exercise N16: The w-weighted partial sums of 1− 2 + 3− 4 + 5− . . . converge if w ∈ C3(R≥0), and the
result depends only on w(0). (Here one defines the w-weighted partial sums the same way as we defined the
w-weighted partial Fourier sums.)
Hint: 1· cos t+ 2· cos 2t+ 3· cos 3t+ 4· cos 4t+ 5· cos 5t+ . . . is related to W ′′ which is a formal derivative
of a measure which is smooth on (0, 2π). Hence one can calculate its density at t = π as above, with k = 1 and

K = 0.
Likewise, to regularise the sum 1v − 2v + 3v − 4v + 5v − . . . one should use672 w ∈ Cv+2(R) with w(0) = 1.
As above, we can weaken the condition on w as w(v+2) being a measure and w(v+1) being continuous.

Moreover, replacing 1· cos t+ 2· cos 2t+ 3· cos 3t+ 4· cos 4t+ 5· cos 5t+ . . . by 1·eit + 2·e2it +
3·e3it + 4·e4it + 5·e5it + . . . make only the arguments r ≥ 0 of w(r) matter.673 Hence it is enough to
require that the restriction of w to R≥0 are “sufficiently smooth”.674

The importance of this is due to the identity
(1− 2·2v)(1v + 2v + 3v + 4v + 5v + . . .) = 1v − 2v + 3v − 4v + 5v − . . .

(valid when both sides make sense). This means that one may define 1v + 2v + 3v + 4v + 5v + . . . as
(1v − 2v + 3v − 4v + 5v − . . .)/(1− 21+r), and define 1v − 2v + 3v − 4v + 5v − . . . as the common limit
of “good” w-weighted sums. This allows one to define this sum with the only (pole) singularity at
v = −1.
Exercise N17: Show that in the case v = 0 the Cesàro summation gives 1−1+1−1+1− . . . = ½. Likewise,
for v = 1 one needs the 2nd order Cesàro summation leading to 1− 2 + 3− 4 + 5− . . . = ¼.

Using the definition above, this leads to675 β0 := 1+1+1+. . . = −½ and β1 := 1+2+3+4+5+. . . = −1/12.
Hint: Construct a 2π-periodic generalized function F with a suitable Fourier series such that F is smooth on

(0, 2π) and calculate F (π).

671 N.B. (???) Relation to k.
672 N.B. (???) Do we need v + 2? Is the result dependent on w′(0)?
673 Note that as in Remark 111 on p. 186, this makes a function “a bit more singular”. However, this does not

matter due to the argument in Footnote 670.
674 This helps since we may want to consider w(r) := (1− |r|)L on [−1, 1]. Then L ≥ r + 1 works.
675 Here it is very important how we index the summands. For the identities without alternating signs to work, we

must consider the leading term 1 as a1, the next term (1 or 2) as a2 etc. (Considering the leading term as a0 etc. leads
to different answers! For example, the analogue of β1 becomes 1+β1 +β0 = 5/12 instead of β1 = −1/12. Indeed, denoting
the position by the lower index, 10 + 21 + 32 + . . . = 10 + (1 + 1)1 + (2 + 1)2 + . . . = 1 + (11 + 22 + . . .) + (11 + 12 + . . .).)

https://en.wikipedia.org/wiki/Divergent_series#Abel_summation
https://en.wikipedia.org/wiki/Divergent_series#Abel_summation


Appendix: Quadratic reciprocity: Euler vs. Legendre
In context of these notes, the principal aim of this appendix is to try to reorient people who are

already fluent with the Legendre’s formulation of Quadratic Reciprocity, but who are bewildered by
our use of (more important!) Euler’s formulation. However, this appendix is self-contained, so may be
also used by anybody who wants to find more about Quadratic Reciprocity than the basics of Euler
formulation discussed so far (see p. 15). In the rest of these notes, we do not rely on the results of
this appendix.

Note that here we do not discuss proofs of Quadratic Reciprocity— just what is common and
what is different for its two important formulations.

Essentially, what we want to highlight here are the features which have a sporting chance to survive
generalizations to the case of polynomials of higher degree. In this respect, the Euler’s approach is
much better than the Lagrange’s one.

Euler formulation was future-proof

After Legendre discovered much more structure in the patterns considered at the beginning of
this paper, the Euler’s formulation have been mostly shadowed by the Legendre’s one. It took more
than a century for mathematicians to realize that in the context of direct generalizations of Quadratic
Reciprocity the Euler formulation (see p. 15) is way more natural (compare with Footnote 32).

To a large extent, the aim of the simplest generalization (“the Class Field Theory”) can be stated
the same way as above: find “possible prime divisors of P (n)”; this theory describes the answer under
the condition that P “leads to an abelian field extension”.676 It turns out that Euler’s formulation
extends almost literally to this case!

So nowadays in the context of number theory “at large” the Euler’s formulation would be considered
at least on equal footing with the (more elaborate) Legendre’s one.

Recall that Euler’s formulation describes the symmetries of the answers to the question of “possible
prime divisors of a quadratic sequence”: one can color Z red and green so that the coloring is periodic,
(anti)symmetric, and a prime p appears as a divisor if and only if p is colored green.677

In particular, the collection of possible (anti)symmetries (the “group of symmetries”) is an infinite
dihedral group. Moreover, the Euler formulation says how large this group is comparing to the whole
group of symmetries of Z (which is also an infinite dihedral group): its index is (a divisor of) |4D|,
where D is the discriminant of the quadratic sequence.679 680

In fact, the (anti-)palindromicity is a particular case of top-multiplicativity (considered in the
following section).

676 Any irreducible quadratic P satisfies this condition. An irreducible cubic P satisfies it if and only if its
discriminant is a perfect square.

677 This is a 2-colors variant of Euler’s formulation. Above, on p. 15, we discussed a coloring into 3 colors, when the
residues not mutually prime with |4N | were colored gray.678 On the other hand, given such a residue r, two columns
±r modN contain at most one prime number (even in the exceptional case N = 2r, when these two columns degenerate
into one). Because of this, it is easy to convert gray to red or green as required above.

678 In fact, we described “gray” differently: as “this residue has only a finite number of prime number representatives”.
However, a residue mod c not mutually prime with c cannot contain more than 1 prime number. Moreover, by Dirichlet
theorem on arithmetic progressions, the other residues are represented by infinitely many prime numbers.

679 It turns out that such a focus on symmetry survives even the widest possible generalization of our naive questions
about prime divisors, given by the Langlands program. In fact, the usual formulations of the Langlands program are
written completely in terms of describing particular flavors of symmetries.

680 For pizza numbers, D = − 7
4 , which leads to the length 7 of the period. For polynomial with integer coefficients,

one can replace |4D| by |D|.

207

https://en.wikipedia.org/wiki/Class_field_theory#History
https://en.wikipedia.org/wiki/Abelian_extension
https://en.wikipedia.org/wiki/Infinite_dihedral_group
https://en.wikipedia.org/wiki/Infinite_dihedral_group
https://en.wikipedia.org/wiki/Index_of_a_subgroup
https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
https://en.wikipedia.org/wiki/Langlands_program


208 Appendix: Quadratic reciprocity: Euler vs. Legendre

Similar to the Euler’s formulation, the answers given by the Class Field Theory are encoded by a
periodic coloring of Z into several colors. This coloring also has a suitable palindromicity property, as
well as top-multiplicativity (discussed in the next section). The only difference is that colors match
not the numbers {±1}, but complex roots of 1 of a suitable degree d.681

In contrast, the generalizations of Lagrange’s formulation turn out to be much more esoteric.
On the other hand, almost simultaneously with the discovery of Class Field Theory in the beginning

of 20th century, another development took place: Quadratic Reciprocity entered the realm of “popular
mathematics”. And, as expected, what was popularized was offset by decades w.r.t. the frontier of
math; it was the Legendre’s formulation which entered the math pop-culture!

So, in the last century, a curious situation arised: the major textbooks on number theory as well
as “capsule expositions” of Quadratic Reciprocity by the leading number theorists would highlight the
Euler’s approach.—And, at the same time, what most mathematicans know is the Legendre’s one,
since they “learned Quadratic Reciprocity too early”, when they were more focused on the pop-math!

Legendre’s notation and top-multiplicativity

Half a century after Euler, Legendre found a different way to write down the patterns of colors we
observed above. He would use 1, −1 and 0 instead of our •, • and • (see p. 15; this is compatible
with our rules −• = • and −• = •). At least, this convention allows a concise way to write down
the property which was known long before Legendre: consider three sequences: “squares + N”,
“squares + M”, and “squares −MN”; every prime number p acquires 3 colors each depending on
whether it is a divisor of numbers in the first, and/or the second, and/or the third sequence. Then

The third color is “the product” of two other colors.
(Here the “product” is calculated according to the assignments of numbers 0,±1 to the colors).

Using the Legendre’s notation (Legendre symbol)
(
−N
p

)
for “the color” of prime p (taking values

in {0,±1}, with 0 meaning “p divides N”) for “squares +N”, this may be written as(
−N
p

)
·
(
−M
p

)
=
(
NM

p

)
(and this is a much simpler fact that it looks: it is an almost immediate corollary of non-0 residues
mod p being invertible).

For example, from the list on p. 10 we can see that 23 cannot be a divisor of “squares + 3”, and
the list on 12 shows that 23 is not a possible divisor of “squares + 1”. Using the rule above with
N = 3 and M = 1, we can conclude that 23 must be a divisor of the sequence “squares− 3”. And
indeed, 72 − 3 = 23× 2.

This may be called multiplicativity in the top argument: when the top argument NM = (−N)(−M)
is a product, one can replace the symbol by a product of symbols.682

Euler’s formulation implies the case of small |N |

Essentially, top-multiplicativity reduces calculation of
(
n
p

)
to the cases when n = −1, or n is prime.

Obviously, since a square + n can be even for any n, the number 2 is going to be always green. Hence
one can focus on odd primes p only.

Note that if |n| = |N | is fixed and small, the first statement (the periodicity) in Euler’s formulation
reduces finding

(
n
p

)
for all odd primes p to a check of a finitely many values of (odd) primes p. For

681 In other words, the roots e2πin/d of zd − 1 = 0. The corresponding prime number p can be a divisor if and only
if z = 1; the other possible values of z may be thought of “as different reasons for p not to be a divisor”.

682 This property explains why using −N in the definition of Legendre’s symbol simplifies working with this
notation.

https://en.wikipedia.org/wiki/Class_field_theory#History
https://en.wikipedia.org/wiki/Legendre_symbol
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example, for n = −1 it is enough to check p = 3, 5; likewise, for n = 2 it is enough to check683
p = 3, 5, 7, 17: these prime numbers cover all the odd residues mod |4n|—and the even residues are
going to be gray anyway.
Remark 118: For what follows, the values n = −1, 2 are of particular importance. Sometimes it
is convenient to describe

(
−1
p

)
and

(
2
p

)
by a compact formula; the customary way is to condense

the red/green colors given above into
(
−1
p

)
= (−1)(p−1)/2 and

(
2
p

)
= (−1)(p2−1)/8. For odd residues p

(mod 4 or mod 8 correspondingly) these formulas match the colors found above.
However, the particular way the right-hand sides of these formulas are written down carries

absolutely no significance. (There is a lot of other expressions which would give the same results!)684

Legendre’s p↔ q-reciprocity

Top-multiplicativity and two cases of Remark 118 reduce the calculation of Legendre symbols
(
n
p

)
to the case

(
q
p

)
where both p and q are different (positive) odd primes. By definition,

(
n
p

)
=
(
n′

p

)
if

n ≡p n′ (“top-periodicity”); hence one can further reduce the calculation to the case q < p.
The final nail to get a recipe for a quick calculation is the Legendre’s p↔ q-law (“reciprocity”):

The sign in
(
q

p

)
= ±

(
p

q

)
is “−” if p ≡4 q ≡4 −1, otherwise it is “+”.

This assumes that p and q are distinct odd positive primes.
Remark 119: This helps in calculations since if q < p, the right-hand side has a smaller number
at the bottom, so p ↔ q-law may be used in recursive algorithms. For example, to deal with the
right-hand side, one can reduce p mod q (by top-periodicity), factor the resulting residue p′ < q as
p′ = p1 . . . pr and use top-multiplicativity—so now one needs just to calculate

(
p1
q

)
, . . . ,

(
pr
q

)
(and

now p1, . . . , pr are much smaller than p). To these symbols, one can apply the p ↔ q-reciprocity
again; etc.

It turns out that this gives a very quick algorithm for calculation of
(
n
p

)
. This algorithm is the

principal reason for interest in p↔ q-reciprocity.

Euler’s formulation implies p↔ q-reciprocity

We already saw that two special cases of n = −1, 2 for
(
n
p

)
are immediate corollaries of the Euler’

formulation. What may be yet more surprising is that the p ↔ q-reciprocity is also an immediate
corollary!

Apparently, this fact was not discovered until 20th century: A. Scholz published this argument
in his Einführung in die Zahlentheorie in 1939 as a part of his proof of Quadratic Reciprocity.
(Baumgart–Lemmermeyer enumerate this as “Proof No. 175” in their list of 314 proofs.685)

If p ≡4 q, this argument does not even need palindromicity, just periodicity! Indeed, write
q = p+ 4n; then(

q

p

)
◦=
(
q − p
p

)
=
(

4n
p

)
∗=
(
n

p

)
=
◦

(
n

p+ 4n

)
=
(
n

q

)
∗=
(

4n
q

)
◦=
(

4n− q
q

)
=
(
−p
q

)
∗=
(
−1
q

)(
p

q

)
.

683 In fact, this was already checked in the section on p. 12. Moreover, using Euler’s palindromicity, the latter check
can be reduced to p = 3, 7; in other words, this follows from m2 − 2 being divisible by 7 for m = 3, and from m2 − 2
being only ±1 mod 3 (enough to check m = 0 and m = ±1) which shows that m2 − 2 cannot be divisible by 3.

684 Well, having p2 in the formula for
(2
p

)
has an advantage: it makes palindromicity explicit.

685 In fact, this is one of only two proofs in their list which they mark as first proving the Euler’s formulation, then
deducing the rest from this formulation. The second such proof is Proof No. 243 by D. M. Goldschmidt of 1981.

https://en.wikipedia.org/wiki/Legendre_symbol#Computational_example
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(observe also that
(
−1
q

)
=
◦

(
−1
p

)
). Here we mark =-signs which use periodicity in top/bottom arguments

with ◦ above/below, and mark them with ∗ if they use top-multiplicativity. (Only the step marked
with =

◦
is non-obvious!)

Likewise, if p ≡4 −q, write p+ q = 4n (with n > 0). Then(
q

p

)
=
(

4n− p
p

)
◦=
(

4n
p

)
∗=
(
n

p

)
!=
(
n

q

)
,

likewise
(
p
q

)
=
(
n
q

)
, hence

(
q
p

)
=
(
p
q

)
. The equality marked with “!” uses the palindromicity—and this

is the only non-trivial step.

Legendre’s formulation implies bottom-periodicity

The “Legendre’s formulation” consists of 3 statements: the answers for
(
n
p

)
with n = −1, 2 found

in Remark 118, and the p↔ q-reciprocity.
To deduce periodicity of

(
n
p

)
in p from Legendre’s formulation, we need to find (for a given n) a

|4n|-periodic function f(m) such that for prime m = p it coincides with
(
n
p

)
. By top-multiplicativity,

it is enough to consider the cases when n = −1, n = 2, or n = q is an odd prime. In the first two
cases the Legendre’s formulation explicitly implies bottom-periodicity with a period of length |4n|.

However, in the last case
(
q
p

)
= g(p)

(
p
q

)
for a certain 4-periodic function g. Now

(
m
q

)
is explicitly

q-periodic in m, which immediately implies that the right-hand side is 4q-periodic.

Legendre’s formulation implies palindromicity

To deduce the palindromicity from Legendre’s formulation is trickier. When showing periodicity,
we found a periodic function f(m) such that for prime m = p it coincides with

(
n
p

)
; this function

takes values 0, ±1, and it was constructed as a product over factors of n. Since palindromicity means
f(−m) = f(m) (provided n > 0), it is enough to show palindromicity for the case n = p with a
positive prime p. Since

(
2
p

)
is an even function of p mod 8 (we already checked this— see the wheels

above on p. 15!), we may assume that q is odd.
So what we need to show is

(
q
p

)
=
(
q
p′

)
for distinct odd primes q, p and p′ such that 4q|p + p′.

If q ≡4 1, then q ↔ p-reciprocity reduces this to
(
p
q

)
=
(
p′

q

)
, which follows from top-periodicity,

top-multiplicativity, and from
(
−1
q

)
= 1. If q ≡4 3, then q ↔ p-reciprocity may be rewritten as(

q
p

)
=
(
−1
p

)(
p
q

)
. Therefore palindromicity is reduced to

(
−1
p

)(
−1
p′

)(
−1
q

)
= 1, or

(
−1
p

)(
−1
p′

)
= −1, which

follows from 4|p+ p′.

Remark 120: If we want to prove anti-palindromicity for n = −N < 0, then by multiplicativity, it is
enough to consider the case n = −1. What we need to show is that

(
−1
p

)
coincides with a 4N -periodic

odd function for any N > 0. However, we already know this for N = 1—and this implies the general
case.

Legendre’s formulation and bottom-multiplicativity

There is another very important aspect of Quadratic Reciprocity which becomes much more
conceptual in the Euler’s formulation. A certain crucial feature, bottom-multiplicativity, is “hidden
inside a definition” when one uses a Legendre’s formulation.
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Recall that the bottom-periodicity allows considering the argument p of
(
n
p

)
as a residue mod |4n|.

Now the bottom-multiplicativity can be stated parallelly to top-multiplicativity:(
n

a

)(
n

b

)
=
(
n

ab

)
with a, b residues mod |4n|.

However, the meaning of this is very different from the top-multiplicativity, since we defined
(
n
p

)
just

for prime values of p: what this equality says is that if three (positive) prime numbers p, p′, p′′ satisfy
p′p′′ ≡|4n| p, then

(
n
p′

)(
n
p′′

)
=
(
n
p

)
.

This was the Euler-styled approach to the bottom-multiplicativity. In Legendre’s approach, it
is kind of hidden behind a trick: so far, we defined

(
n
p

)
just in the case of prime p (see p. 208). In

fact, Jacobi defined686 his generalization of Legendre symbol for any odd m > 0 by multiplicativity:(
n

p1...pr

) def=
(
n
p1

)
. . .
(
n
pr

)
with prime p1, . . . , pr.687 Note that what was surprising in Euler’s formulation

becomes a definition in the Legendre’s (Jacobi’s) approach.
However, when Legendre’s symbol

(
n
m

)
is defined for any688 odd m > 0, the bottom-periodicity

can be stated in a much more straightforward way:
(
n
m

)
=
(

n
m+4n

)
if m > 0, m + 4n > 0 are odd.

This is completely parallel to the top-periodicity (which preserves its form with a composite m as
well):

(
n
m

)
=
(
n+m
m

)
.

Conclusion: Before the observation above, to color a residue m mod |4n| on the conductor wheel
we needed to find a prime number p ≡|4n| m, and use

(
n
p

)
as the color. Now one can factorm = p1 . . . pr

instead, and use
(
n
p1

)
. . .
(
n
pr

)
. (This is using the bottom-periodicity vs. the bottom-multiplicativity.)

Remark 121: Likewise, now the palindromicity may be rewritten as
(
n
m

)
=
(

n
4n−m

)
if n > 0,

0 < m < 4n, similarly for anti-palindromicity (for n < 0). In fact, the found above formulas for
n = −1 and n = 2 preserve their form for a composite m as well; same for the top-multiplicativity. In
particular,

(
−n
m

)
=
(
−1
m

)(
n
m

)
.

Using these rules, one can change n to make |n| ≤ ½m, or change m to make m ≤ 2|n|, or factor
m. Doing these steps in this order, one can reduce calculation of

(
n
m

)
to the case of prime m < |2n|;

then one can repeat this round again (etc). The process stops if m = 1 (when
(
n
m

)
= 1), or if n = 0

(when
(
n
m

)
= 0 if m 6= 0).

This gives an algorithm for recursive calculation of
(
n
m

)
which does not use p↔ q-reciprocity. In

fact, it terminates very quickly even without using any “fancy” factorization methods.689

Compare Euler’s and Legendre’s formulations

One can conclude:
• It is as easy to deduce the Legendre’s formulation from the Euler’s one as in the other
direction.

686 About half a century after Legendre.
687 We want to emphasize it:

(
n
m

)
for a non-prime m is not defined as the “color” of m for the sequence squares−n.

Instead, it “combines” the colors of the prime factors of m.
This distinctness is highlighted in Remark 123.
688 There are several convenient ways to extend this tom ≤ 0, but different contexts benefit from different extensions.

So it is reasonable to restrict attention to m > 0.
689 Indeed, the only case when the first two steps do not decrease |n|+m a lot is when m = 2n− a and a� n;

then they reduce n, m to become n′ = n− a, m′ = 2n′ − a = m− 2a. Choosing a small odd prime p - a, a few such
steps would ensure p|m′, and one will be able to decrease m′ a lot by factoring out p.
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• The Legendre’s p ↔ q-symmetry shows interrelation of prime divisors of two different
quadratic sequences.
• The Euler’s formulation shows an infinite-dihedral symmetry of prime divisors of any particular
quadratic sequence.
• Both approaches lead to quick algorithms for calculation of

(
n
p

)
.

In short: the Euler’s formulation is “much more fundamental”—and contemporary (“adelic”)— in
its approach: it chooses a particular equation x2 = n, and examines existence of its solution mod p for
different prime numbers p.

Therefore, while our “colorings of conductor wheels” do not look “very mathematical” if one is
fluent with just the Legendre’s approach, in fact they bring us much closer to the high-voltage wire in
the guts of Quadratic Reciprocity.690

690 I paraphrase Jordan Ellenberg’s “You feel you’ve reached into the universe’s guts and put your hand on the
wire” on the nature of mathematical understanding, from How Not to Be Wrong.

https://en.wikipedia.org/wiki/Adele_ring
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The case p = 2 of
(
n
p

)
and the shortest period

Above, on p. 208, we argued why the case p = 2 is simpler than other primes: for any n, the
sequence “squares− n” contains an even number, hence the number 2 is going to be always green
(which Legendre encodes as 1). However, this does not still address the question about the color of
the residue of 2 mod c on the conductor wheel! First, the color of 2 may be an exception comparing
to other prime numbers p ≡c 2 (as we saw for n = −3 on the 3-wheel on p. 15); second, this residue
may be colored gray (as we saw for the same n = −3 on the 6-wheel on p. 15)!

In particular, the answer depends on our choice of c, the size of the conductor wheel.691 While the
Euler’s formulation implies that c = |4n| will work, it does not claim that shorter periods are not
possible.

So we need to know what is the shortest period in Euler’s formulation “with exceptions”, and
what are the possible exceptions. It turns out692 that the answer is694 C = 2M |n0|, depending only on
the square-free part695 n0 of n, here M depends only on n0 mod 4: if n0 ≡4 1, then M = 0; otherwise
M = 2. Moreover:696

On the C-wheel, there is no exception unless n0 ≡8 5, when 2 is the only exception.

(We already saw such an exception happening for n = −3 on p. 13.) Hence 2 modC is going to be
colored gray unless n0 ≡4 1, when it is colored as

(
2
n0

)
(which coincides with the RHS of n0+1

2 ≡4 ±1).
Obviously,697 an odd prime p is gray if and only if it divides n0.

Conclusion: put C ′ := C unless n0 ≡8 5, when C ′ = 2C; then C ′-wheel is the smallest conductor-
wheel with no exceptional primes.

691 For example, if 2|c, then the color of 2 mod c must be gray, which would lead to
(
n
2
)

= 0.
692 Indeed, when we deduced the bottom-periodicity from Legendre formulation (see p. 210), we already saw that

the color
(
n
p

)
of p may be rewritten as

(
p
q1

)
. . .
(
p
qk

)
(here ql are odd prime divisors of n which enter the prime

decomposition of n with odd exponents), possibly multiplied by
(−1
p

)
and/or

(2
p

)
(which we know to be 4-periodic in p,

and 8-periodic in p). (This assumes that p is odd and mutually prime with n.)
For a fixed odd prime q, note that

(
p
q

)
takes both values ±1 for infinitely many primes p. Moreover, the collection

of numbers
(
p
q1

)
, . . . ,

(
p
qk

)
is a combinations of ±1, and any such a combination appears for infinitely many odd primes

p (and here one can also require p ≡8 k for any odd k).693 Since
(
p
q1

)
is q1-periodic, this implies that the shortest

period which works with finitely many exceptional primes p has length C := 2mq1 . . . qk with m = 0, 2, 3 depending
on whether

(−1
p

)
and/or

(2
p

)
appears above. (Moreover, assume p 6= 2; then p mutually prime with n cannot be an

exception, and the remaining s p are gray—as the only prime number in its column.) Therefore, even if one allows
exceptions, the shortest period has length C.

A more detailed examination of the argument above shows that C depends just on the square-free part n0 of n,
and m depends just on n0 mod 4: if n0 is even, then m = 3; if n0 ≡4 3, then m = 2; otherwise m = 0. Hence 2 modC
is going to be colored gray unless n0 ≡4 1.

In the latter case, C is odd, and one can also find out when p = 2 is going to be an exception. Indeed, the argument
above shows that all odd p with p ≡C 2 have the same color

(2
C

)
—while 2 is always green.

693 All these statements follow from the Chinese remainder theorem, and from Dirichlet theorem on arithmetic
progressions.

694 One can recognize this as the discriminant of the field Q[
√
n ].

695 Here we write n = n0K
2 with the maximal possible K.

696 Indeed, all prime divisors of C appear as different different residues modC and do not share their residues with
other primes. Hence their color is determined by their residues modC. Conclusion: the only exception may be p = 2,
and just if m = 0.

697 See Footnote 678.
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Remark 122: It took almost a century after Legendre (and 50 years after Jacobi) to realize the
importance of treating p = 2 like this! Kronecker noticed that defining

(
n
p

)
for p = 2 using the

C-wheel above allows extension to
(
n
m

)
(with any m) by bottom-multiplicativity. What is crucial

is that this extension is simultaneously bottom-periodic, bottom-multiplicative, is defined for every
m > 0, and has close relation to our problem of divisors of numbers in a quadratic sequence.698

Remark 123: For example, observe two colored rows we matched on p. 8. Now one can recognize
the bottom row as colored according to

(
−7
m

)
in the sense of Kronecker.699 (The “complete” match

between these rows is due to the discriminant for our sequence being D = −7 6≡8 5, hence p = 2 is
not an exception.)

Divisors of P (n) with quadratic P

The considerations above describe more or less completely the prime divisors of numbers in any
polynomial sequence P (n) of degree 2 (compare with Remark 6). Indeed, if P is decomposable, then
as we saw on p. 5, already the divisors of one linear factor “would cover” all prime numbers (with just
a finite number of exceptions).

If P is irreducible, then
• Prime divisors p of the numbers in the sequence coincide with p such that P (x) = 0 has
solutions mod p. (Here p = 2 may be an exception since it is possible that P takes integer
values, and coefficients of P have 2 as a denominator: triangular numbers!)
• The “quadratic formula” −b±

√
D

2a , D := b2 − 4ac, shows that existence of solutions mod p is
equivalent to existence of solutions of x2 −D ≡p 0, provided p - 2a (again, this is a finite
number of exceptional primes p s).

Conclusion: with a finite number of exceptions, prime divisors of numbers P (x) are the same as
prime divisors of numbers x2 −D.

698 In fact, there are several flavors of the definition of Kronecker symbol. Our flavor is compatible with them
where they all agree.

The reason for discrepancies is that our n and C are in a certain way interchangeable (since
(
n
m

)
=
(
C
m

)
for any m),

so it is not clear “whether we are calculating a function of n, or a function of C =: C(n)”. Since any value of n makes
sense, if we accept that our description gives

(
n
m

)
, then there would be no possible discrepancy.

However, it turns out that the approach “that ‘matching the colors’ describes not
(
n
m

)
but

(C(n)
m

)
” is more fruitful.

But not every number is a possible value of C(n), since C(n) is a fundamental discriminant! Hence if we consider(
n
m

)
=
(
C
m

)
as a function of C = C(n), then our description does not define it on every number C. In particular, one may

imagine several different extensions with the arbitrary upper argument (not necessarily a fundamental discriminant)—
and different extensions are useful in different situtations.

699 This is not exactly true since we were using slightly different notations on p. 8. We have not introduced “the
gray color” yet, so m with 7|m was colored green, not gray. (Recall that

(
n
p

)
= 0 if p|n.)

https://en.wikipedia.org/wiki/Kronecker_symbol
http://mathworld.wolfram.com/KroneckerSymbol.html
https://en.wikipedia.org/wiki/Fundamental_discriminant
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Most of the references we used in these notes are accompanied by a PDF crosslink to the

corresponding resource. The notable exceptions are the collection edited by Cassels and Fröhlich
(from which I found out that what is important about quadratic reciprocity is not the p ↔ q-law,
but the periodicity—or, as we call it here, the Euler’s formulation), Lang’s book Elliptic functions
(which teached me the relation of the tower of congruence-groups with the adelic approach), the first
half700 of Jared Weinstein’s review of reciprocity laws, Example 4.7.5 of which led me to Gelbart’s
paper with quite a detailed exposition,701 Lemmermeyer’s book on higher reciprocity laws (however,
we mentioned Baumgart–Lemmermeyer’s compendium of proofs of quadratic reciprocity).

Another text which the readers may find useful is Keith Conrad’ notes on history of Class Field
Theory, as well as Roquette’s book on the related subject.

For the simplest example of how modularity may be related to cubic equations of negative
discriminant see Part 6 of Jerry Shurman’s notes “Toward Modularity: the Simplest Non-Abelian
Example”.

For me, the Apanasov, Krushkal and Gusevski’s book Kleinian Groups and Uniformization in
Examples and Problems was very inspiring as a compendium of tricks (and treats!) about groups
of symmetries in non-Euclidean geometries. (In fact, Harvey’s review of this book highlights many
objectives and difficulties equally applicable to the design of our notes!)

The plot on p. 34 is from series of papers by J. Bernstein, F. Chamizo, S. Miller, A. Reznikov,
Wil. Schmidt of 90s and 00s. (My interest in these topics stemmed a bit later from answering some
questions of Don Zagier using a similar approach.)

For guidance in these labyrinths, I’m indebtful to hints from T. Barnet-Lamb, N. Gurevich and
A. Reznikov. (This lists only what happened in the last decade; to clear my earlier misunderstandings
in these topics, it probably took whole divisions of people—and it is really sad that now I cannot list
them all!)

To continue further, probably the best starting points are the discussion The Langlands program for beginners
on StackExchange and slides by Sury. One can continue by following the discussion Zeta Functions: Dedekind Versus Hasse-Weil
in n-Cat Café (as well as following the links mentioned in these discussions).

Another very convenient resource is the online tables of number fields. For example, a query with

Degree=3, r1=3*, |D|=1..1000, sort1=Gal, sort2=|D|, sort3=h

would result in a list of 27 real cubic fields of small discriminant (first cyclic, then non-cyclic ones).702
Note that when searching for polynomials of degree 4, the Galois groups are enumerated (by

“T-num”) according to their size (and, for the first two, rank), with Z/(4), Z/(2)× Z/(2), D4, A4 and
S4 getting T-num s from 1 to 5. (The first two are named C4 and V4 in the reports.)

How to compute

As we said, the recent updates to GP/PARI math-calculator made a lot of tedious calculations
much simpler to perform. Here we want to collect tidbits about these calculations. First, below we

700 The second half of this review is dedicated to Scholtzefication, which looks unrelated to what we discuss here.
701 See Footnote 552 on p. 172.
702 One can check that all these cyclic fields, and the non-cyclic ones with 2 smallest values D = 22 · 27, 229 of

discriminant (as well as 4 more of 20 remaining non-cyclic fields) appear in our family M · “Tetrahedral numbers” +N
for relatively small values of M and N .

Likewise, from 10 complex cubic fields with discriminant up to −110, the family includes all but three, with
D = −31,−22 · 19,−3 · 29. In particular, it includes one with the smallest magnitude 23 of discriminant, which we
investigated in Section on p. 51.
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https://www.google.com/search?q=book+Cassels+Froehlich&ie=utf-8&oe=utf-8&hl=en&pws=0
https://www.google.com/search?q=lang+elliptic+functions+book&ie=utf-8&oe=utf-8&hl=en&num=10&pws=0
https://www.ams.org/journals/bull/2016-53-01/S0273-0979-2015-01515-6/S0273-0979-2015-01515-6.pdf
https://www.springer.com/gp/book/9780387989983
https://www.springer.com/gp/book/9780387989983
https://www.google.com/search?q=Lemmermeyer+book+reciprocity+laws&ie=utf-8&oe=utf-8&hl=en&pws=0
https://www.google.com/search?q=Lemmermeyer+Baumgart+book+reciprocity+&ie=utf-8&oe=utf-8&hl=en&pws=0
https://kconrad.math.uconn.edu/blurbs/gradnumthy/cfthistory.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/cfthistory.pdf
https://www.google.com/search?q=book+Roquette+Riemann+hypothersis&ie=utf-8&oe=utf-8&hl=en&pws=0
http://people.reed.edu/~jerry/361/lectures/cubicmodularity.pdf
http://people.reed.edu/~jerry/361/lectures/cubicmodularity.pdf
https://www.google.com/search?q=apanasov+krushkal+kleinian&ie=utf-8&oe=utf-8&hl=en&num=10&pws=0
https://projecteuclid.org/download/pdf_1/euclid.bams/1183554735
https://math.stackexchange.com/questions/48981/the-langlands-program-for-beginners/49153#49153
https://math.stackexchange.com/questions/48981/the-langlands-program-for-beginners/49153#49153
https://www.isibang.ac.in/~sury/langlandshandout.pdf
https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html
https://golem.ph.utexas.edu/category/2010/07/zeta_functions_dedekind_versus.html
http://journals.cambridge.org/download.php?file=%2FJCM%2FJCM17_01%2FS1461157014000424a.pdf&code=257ba134f2c4d8e908c095f29250a990
https://hobbes.la.asu.edu/NFDB/
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assume that our polynomial P takes integer values, and is in the variable X; then one can get the array
of “exceptional primes” for P as
my(Den = denominator(content(P))); factor(abs(poldisc(PP=P*Den))*Den*polcoeff(PP,poldegree(PP)))[,1].

One can check that P is irreducible by 1==factor(P)[,2].
For a non-exceptional prime p and an irreducible P one can find Ñ res

p as

# select(x -> x == 1, factormod(P,p,1)[,1]).

The alternative way is poldegree(gcd(P+Mod(0,p),X^p-X)), but since GP/PARI has no “sparse
polynomials”, the “calculation” of X^p for a large p may take too much stack space (and/or time).
Both methods may be generalized to finding ÑGal

pk : in the first expression, one should replace p by
[ffinit(p,k,varlower("PP")),p]; for the second one, replace X^p-X by X^{p^k}-X.

For the following discussion, assume we initialized a few pieces of data with

NN = lfunan(lf = lfuninit(lfuncreate(nf = nfinit(P,3)[1]),[0]),1000);.

Here one can replace 1000 by a larger number, and get a longer array NN. Note that NN[p] = Np + 1
for a prime p, likewise Npk = NN[p^k]− NN[p^(k-1)]— including the exceptional values of p.

Since for Artin’s L-function of a field the conductor is the discriminant of the field, one can find
the conductor as nf.disc. Moreover, if one wants to calculate Npk “by hand”, to choose the correct
sequence of 5 listed in Items (c) and (d) on p. 60 it is enough to know the pair [Np, Np2 ].

To see the prime decomposition of p in the field nf, inspect
Mat(apply(x -> ["base-prime",x[1][1],"ramification",x[1][3],"ff-degree",x[1][4],"multiplicity",x[2]], Col(idealfactor(nf,p))))

The first three cases (those which may appear for “non-exceptional” primes) correspond to 0, 1, or 3
factors with "ff-degree" being 1 (while no factors have "ramification" larger than 1). The last
two cases correspond to presence of factors with "ramification" being 2 and 3 correspondingly.

For these 5 cases, the p-local factor of the denominator of L-function is 1 − p3 (no points over
Fp means that there is one point over Fp3), or (1− p)(1− p2) (one point over Fp, unramified, means
that there is one other point over Fp2), or (1 − p)3 (three points over Fp), or (1 − p)2 (two points
over Fp, one ramified), or 1− p (one triple-ramified point over Fp). Since disjoint union of manifolds
corresponds to (product of their equations and to) a product of L-functions, and the L-function of
a point (which is a solution to X = 0) has local factor of the denominator being 1− p (so it is the
Riemann ζ-function), the process of “distillation” (which proceeds “as if it removes” a point) would
divide these local factors by 1− p.

Conclusion: in these 5 cases, after distillation one gets 1 + p+ p2, or 1− p2, or (1− p)2, or 1− p,
or 1. Replacing p by a formal variable p and inverting, one gets 5 series in p, and the coefficients at
pk, k > 0, are exactly as described (above???).

So Np is #idealfactorBase(nf,p)-1 (here idealfactorBase() is like idealfactor(), but
returns only the vector of factors defined over the base field Fp; see the definition below), and to
distinguish the second and fifth cases (when Np = 0) one can check idealfactor(nf,p)[1][1][3]>1
(which detects ramification). This means that the function

Ntype(p,nf)=my(f=idealfactorBase(nf,p));if(#f!=1,return([#f-1,0]);[0,f[1][1][3]>1];

allows to determine the type of the sequence for every prime (“exceptional” or not):

coeff3Npow(k,t)=if(t[1]==2,k+1,t[1]==1,1,t[1]==-1,(k+2)%3-1,t[2],0,!(k%2));

here we use the case-like extended if() introduced in recent GP/PARI.703

703 One can cut-and-paste the code below (including the intervening text) into gp.
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NtypeNonSpec(p,P)=my(F);[# select(x -> x == 1, (F=factormod(P,p,1)[,1])) - 1,#F,poldegree(P),0];
idealfactorBase2(nf,p)=my(F);[select(x -> x[1][4] == 1, F=Col(idealfactor(nf,p))),F];
Ntype(p,nf)=if(type(nf)=="t_POL",nf=nfinit(nf,3)[1]);my([f,F]=idealfactorBase2(nf,p));my(d=sum(k=1,#F,F[k][1][4]));\

return([#f-1,#F,d,sum(k=1,#F,F[k][1][3]-1)]); \\ 2:total # of factors 3:deg skeleton; 4:"extra" ramific,unused;
coeffNpow(k,t)=if(t[3]==3,coeff3Npow(k,t),t[3]>3,coeff4__5Npow(k,t),coeff1__2Npow(k,t));

\\ good for -1,0,2; and -2 (for Artin only; [0,-1] for Artin too)
coeff3Npow(k,t)=if(t[1]==2,k+1,!t[1],if(t[2]<0,(-1)^(k\2),1)*!(k%2),t[1]==-2,(-1)^k*(k+1),(k+2)%3-1);
coeff1__2Npow(k,t)=t[1]^k; \\ good for 0,±1
ppFactor(x)=["base-prime",x[1][1],"ramification",x[1][3],"ff-degree",x[1][4],"multiplicity",x[2]];
specPrimes(P)=my(Den = denominator(content(P))); factor(abs(poldisc(P=P*Den))*Den*polcoeff(P,poldegree(P)))[,1];
reportSpecFactors(P,nf=nfinit(P,3)[1])=my(ps=specPrimes(P));\

for(n=1,#ps,printp(Mat(apply(x -> ppFactor(x), Col(idealfactor(nf,ps[n]))))));
\\ Artinization by massaging: good for deg=4, codiscriminant=-3; except 0,-1,0,1,0,-1,...

MSGart(t,p)=my(fix=centerlift(Mod(p,3)));if(fix,[t[1]-fix,-(t[3]==4&&t[1]==-1&&t[2]<=1),t[3]-1],t);
MSGid(t,p)=t; MSG=MSGid;

\\ The following operate on a global array N_n. We do not overwrite known elements of N_n[]!
N_n_preINIT(LIM)= N_n=vector(LIM,i,"");0;
N_n_fill_p(p,t)= my(Lim=floor(log(#N_n)/log(p))); for(POW=1,Lim,if(N_n[p^POW]=="",N_n[p^POW]=coeffNpow(POW,MSG(t,p))));
N_n_INIT_LST(LST)= for(n=1,#LST,N_n_fill_p(LST[n][1],LST[n][2]));
N_n_INIT_SPEC_ps(P,LST=0)= if(LST,N_n_INIT_LST(LST);return); \

my(ps=specPrimes(P),nf=nfinit(P,3)[1]);for(n=1,#ps,N_n_fill_p(ps[n],Ntype(ps[n],nf)));
\\ Check avoids calling NtypeNonSpec() in presence of denominators

N_n_INITpsNONSPEC(P)= forprime(p=2,#N_n,if(N_n[p]=="",N_n_fill_p(p,NtypeNonSpec(p,P))));
N_n_fill_N(n)=if(""!=N_n[n],return); my(d=factor(n),D=1); for(i=1,#d[,2],D*=N_n[d[i,1]^d[i,2]]);N_n[n]=D;

\\ The last 2 statements compactify (arrays with edited entries are not memory-efficient)
N_n_INIT(LIM,P,LST=0)= N_n_preINIT(LIM);N_n_INIT_SPEC_ps(P,LST);N_n_INITpsNONSPEC(P);for(n=1,#N_n,N_n_fill_N(n));N_n=N_n;0;

/*
Now doing N_n_INIT(1000,X*(X^2-1)+12) initializes the array N_n with 1000 first numbers Nk.*/

\\ Intermediate data to calc the Fourier transform: in global array of poly PN_n
PN_nINIT(LIM,P,LST=0) = PN_n=0; N_n_INIT(LIM,P,LST); PN_n=apply(f -> Polrev(vector(#N_n\f,n,1.*N_n[n]/n)), [1,2]);0;
N_n_cFt(X,f=1)=my(v=exp(I*X));v*subst(PN_n[f],x,v);
N_n_Ft(X,f=1)=imag(N_n_cFt(X,f));

/*
After PN_nINIT(LIM,P),704 one can plot with ploth(X=-0.1,7,[N_n_Ft(X,2),N_n_Ft(X)]).

This would draw the Fourier transform of half the array N_n, and the whole array—so that one can
see whether one needs to calculate more elements of N_n. (To get pictures of this report, we needed
LIM of order of magnitude of million(s).)

(Plotting with my(c);ploth(X=-0.1,7,[N_n_Ft(X,2),imag(c=N_n_cFt(X)),real(c)]) would
show the real and the imaginary part.)

If one wants to cover the case of degree 4, one should add this code:*/
coeff4_0Npow(k,t)=if(t[2]>1,(1+k\2)*(1-2*(k%2)),[1,-1,0,0][1+k%4]);
coeff4__5Npow(k,t)=if(t[3]>4,coeff5Npow(k,t),t[1]==3,(k+1)*(k+2)/2,t[1]==1,1+k\2,t[1]==-1,coeff4_0Npow(k,t),!(k%3));
\\ deg=5: Roots: 5 → (1-u)4 ⇒ (d+1)*(d+2)*(d+3)/6; 3 → (1-u)2(1-u2) ⇒ (d+2)2/4 if 2|d, (d+1)(d+3)/4 otherw;
\\ 2 → (1-u)(1-u3) ⇒ 1+d\3; ??? 1 → {1}{2}{2} (1-u2)2 1+d/2 if 2|d, 0 otherwise or {1}{4} 1-u4 ⇒ 1 if 4|d, 0 otherwise
\\ 0 {2}{3} (1+u)(1-u3) 1,-1,1,0,0,0 repeated; {5} 1,-1,0,0,0 repeated
coeff5_01Npow(k,t)=if(t[1]==-1,if(t[2]>1,[1,-1,1,0,0,0][1+k%6],[1,-1,0,0,0][1+k%5]),t[2]>2,(!bitand(k,1))*(1+k/2),!bitand(k,3));
coeff5Npow(k,t)=if(t[3]>5,error("power"),t[1]==4,(k+1)*(k+2)*(k+3)/6,t[1]==2,(k+2)^2\4,t[1]==1,1+k\3,coeff5_01Npow(k,t));

/*
Above, we compute the array N_n “manually” following the rules of Items (c) and (d) on p. 60;

however, PARI has a primitive lfunan() which calculates essentially the same data. To compare these
two results, use:*/
ckPrN(p,n)=my(a,b,c);if((a=N_n[p^n])==(b=NN[p^n])-(c=NN[p^(n-1)]),,print(p"^"n":\t"a"\t"b" - "c));
ckPr(p,L)=for(n=1,floor(log(L)/log(p)),ckPrN(p,n));
ck(L=#NN)=forprime(p=2,L,ckPr(p,L));

704 This usage assumes that P is irreducible. Otherwise one needs to specify the parameter LST explicitly. For
example, for the case M = 16 considered on 63,

LST = [[2,[0,0,3]],[3,[2,0,3]],[13,[1,0,3]]]
One can find the primes to include by specPrimes(P). To find the suitable arrays, follow the explanations above and
the section on p. 115. (Here [2,0,3] means “Npk behaves same as for a cubic polynomial with Np = 2”.)
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ckP(P,LIM=1000000)=N_n_INIT(LIM,P);NN = lfunan(lf = lfuninit(lfuncreate(nf = nfinit(P,3)[1]),[0]),LIM);ck();
repP(p)=[[N_n[p^k]|k<-[0..floor(log(#NN)/log(p))]],[NN[p^k]|k<-[0..floor(log(#NN)/log(p))]]];

A few more tidbits: one can find
(
a
b

)
by kronecker(a,b). One can find `s (defined on p. 136)

as lfun(13,-s). In the case of modular forms, if one knows Np for a few values of p, one can
use mfeigensearch([[1..LIMc],1], [[p1,Np1],...,[pk,Npk]]) to list all cases for sequences Nm

with these particular values,705 706 up to c = LIMc.
The code to find “runs” (see Footnote 492 on p. 157), via findSW(20*10^9,1) (which may count

wrongly divisors of the discriminant, since we use NtypeNonSpec):
findSW(M,rep,N=1,stp,pr)=my(i=0,j=0,t,prev);\
forprime(p=1,M,my(v=NtypeNonSpec(p,P));\
if(v[1],\

if(v[1]>1,i++;j++;if(p>=N,t=rep*(4*j-2.5-i)>0;if(pr||t,print([i,4*j-2,p,v,prev,j,i-4*j+1]));if(t,if(stp,break,rep*=-1)));prev=p),\
i++;prev=p));\

1.*(i+1)/j

705 For example, one can run my(p);mf=mfeigensearch([[1..800],1], vector(50,k,[p=prime(k),N_n[p]]));#mf,
increasing the limit 800 until at least one modular form is found, and increasing the count 50 until the number of
found forms decreases to 1. Then mf[1] contais the found form; one can inspect it via mfdescribe(mf[1]).

706 N.B. (???) The only way I know to find the conductor is to decrease LIMc until the found form
disappears.
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