
DESARGUES CONFIGURATIONS AND GROUPOIDS

ILYA ZAKHAREVICH

Abstract. We show how to reduce statements on existence of Desargues configu-

rations in a projective plane to more mainstream questions of math such as structure

of homogeneous spaces. The reduction goes through the groupoid of perspective

transformations of lines.
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0. Projective and affine planes

A pre-projective plane is a set Π together with a collection L of subsets of Π
(called lines) such that any two distinct lines intersect at exactly one point, and
there is exactly one line (denoted as (PP ′)) passing through an arbitrary pair P, P ′

of points of Π. A pre-projective plane is a projective plane if at least 2 lines exist,
and any line contains at least 3 points.

One can easily show that a pre-projective plane which is not a projective plane is
either empty, or L = {Π}, or there is a point P ∈ Π such that L consists of Π r {P}
and of all subsets {P, Q}, Q 6= P .

Given two projective planes Π and Π′, a pre-homomorphism Π → Π′ is a set map
f : Π → Π′ which sends a line of Π to a line of Π′. If f (P ) = f (Q), consider a line
l with P ∈ l, Q /∈ l, and a line m with P /∈ m, Q ∈ m. Consideration of f (l ∩ m)
implies f (l) = f (m); therefore f (Π r (PQ)) ⊂ f (l). This implies f (Π) = f (l). A
pre-homomorphism is a homomorphism if its image is not contained in a line; then
it is bijective; one can immediately see that a preimage of a line must be a line, thus
any homorphism is invertible. Endomorphisms of a plane Π (i.e., homomorphisms
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Π → Π) coincide with automorphisms (i.e., invertible homomorphisms); they form a
group denoted by AutΠ.

Consider a projective plane Π, fix a line l∞ on Π. An affine line is a line distinct
from l∞; an affine plane Πfin is Π r l∞. The line l∞ is called the horizon of the affine
plane. Two affine lines are parallel, if they intersect on the horizon.

Sometimes it is more convenient to consider an affine line as a subset of Πfin; in
what follows, this would never lead to confusion.

1. The groupoid of perspective transformations and line movements

Given a projective plane Π, two lines l, l′ on Π, and a point O not on l, l′,
projection from O identifies l with l′. Call such mappings l → l′ a (simple) perspective
transformation (with center at O).

A composite perspective transformation is a composition l → l1 → l2 → · · · →
lK → l′ of simple perspective transformation. Moreover, given a subset L of the set L
of lines in Π, and subset S of Π, one may consider similar chains of simple perspective
transformations such that all the lines are are in L, and all the centers are in S. Call
the resulting mappings l → l′ (L, S)-composite perspective transformations. We
obtain a category with the set of objects L, and arrows being the (L, S)-composite
perspective transformations; call it Persp(L,S). It is automatically a grouppoid. One
obtains a group Persp(L,S) (l, l) with a faithful action on l, for any l on L.

One can connect studying particular cases of this group action with existence of
certain Desargues configurations. Choose a line m on Π, and a point O. Take as L
the set of lines passing through O (and distinct from m provided m contains O), and
S = m (one can replace S by m r {O}; this would not change the category even if
O is on m). Denote this particular case of Persp(L,S) by PencilPersp(O,m); denote the
group PencilPersp(O,m) (l, l) by PER(O,m) l; here a line l contains O.

Obviously, the action of PER(O,m) l is transitive on l0 := lr({O} ∪ (l ∩ m)). Denote
by M(O,m)l the automorphism group of the PER(O,m) l-set l0; in other words, it
consists of mappings f : l0 → l0 such that f (gX) = g (f (X)) for any X in l0 and g
in PER(O,m) l; call such mappings O-movements along l w.r.t. m. As a corollary, the
action of M(O,m)l is free on l0. Moreover, the action of PER(O,m) l on l0 is free iff the
action of M(O,m)l on l0 is transitive.

There are two distinct cases to consider: the “little” case, when O is on m, and
the “fixed-point” case, when O is not on m. In the first case l0 is a line without a
point, in the second l0 is a line without 2 points. Considering m as horizon of an
affine plane Π r m, in the first case we consider compositions of parallel projections
between a pencil of parallel lines; in the second case we consider parallel projections
between lines passing through a “fixed point” O.

Example 1.1. One can immediately see that the action of PER(O,m) l and of M(O,m)l
on l0 is free transitive if Π is a projective plane over a field k. The corresponding
groups are abelean, and PER(O,m) l = M(O,m)l. In the “little” case these groups
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coincide with the additive group of k acting by translation on an affine line; in the
“fixed point” case these groups coincide with the multiplicative group of k acting by
expansion on an affine line with a fixed point O.

In the “little” case, when O = m ∩ l, M(O,m)l is denoted by Transm l; its elements
are called translations of l. In the remaining (“fixed point”) case elements of M(O,m)l
are called O-dilations of l.

2. Desargues configurations

Theorem 2.1. The action of PER(O,m) l (and/or of M(O,m)l on l0) is free transitive
iff the Desargue theorem with center O and axis m holds.

Proof. It is enough to show that the action of PER(O,m) l on l0 is free iff the Desargues
theorem with center O and axis m holds. On the other hand, the former statement
is equivalent to the fact that given two distinct lines l, l′ through O (both distinct
from m), and points P, P ′ on l0, l′0 correspondingly, there is at most one composite
perspective transformation l → l′ in PencilPersp(O,m) (l, l′) which sends P to P ′. On
the gripping hand, there is always a simple perspective transformation which sends
P to P ′; therefore the theorem reduces to

Lemma 2.2. The set of composite perspective transformations in PencilPersp(O,m) (l, l′)
coincides with the set of simple perspective transformations l → l′ with center on m
(for any 2 distinct line l, l′ through O, distinct from m) iff the Desargues theorem
with center O and axis m holds.

Proof. Assume that the Desargues theorem with center O and axis m holds. Consi-
der 3 distinct lines l, l′, l′′ through O, and two simple perspective transformations

l
π
−→ l′

π′

−→ l′′ with centers P , P ′ on the line m. If the centers are not distinct, the
composition is a simple perspective transform with the same center; assume that the
centers are distinct. We claim that the composition is again a simple perspective
transformation with a center on m. Indeed, take two distinct points A1, A2 on l0 and
not on m; let Bk = πAk, Ck = π′Bk, k = 1, 2.

Recall that what the Desargues theorem claims is that the lines (A1C1) and (A2C2)
intersect at a point of m. In particular, (A2C2) passes through the point P ′′ :=
(A1C1)∩m; since this point does not depend on A2, we conclude that the composition
l → l′′ is a simple perspective with center P ′′.

Likewise, assume that the composition l → l′′ is a simple perspective with center
P ′′. It is enough to show that P ′′ ∈ m. Note that π′ ◦ π sends the points Q = m ∩ l
to Q′′ = m∩ l′′; thus P ′′ is collinear with Q and Q′′; if O /∈ m, Q 6= Q′′, thus P ′′ is on
the line (QQ′′) = m. If O ∈ m, and P ′′ /∈ m, then applying the same arguments to

representation of π as a composition: π = (π′)
−1

◦ (π′ ◦ π) leads to a contradiction.
Now consider an arbitrary element of PencilPersp(O,m) (l1, lK) with l1 6= lK ; consider

its shortest representation as composition of simple perspective transformations l1 →
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l2 → · · · → lK; by definition, lm 6= lm+1; if the “collapse” rule above holds, one must
have lm = lm+2. Therefore, if K > 1, then the chain starts as l1 → l2 → l1 → l2 →
. . . . Take any line l′ passing through O distinct from l1, l2 and m (such a line may
not exit if there are 3 points on a projective line; however, there is exactly one such
plane, and this exceptional case is easy to check). Split projection l2 → l1 in the
chain to composition l2 → l′ → l2 of projections with the same centers. Then the
chain becomes l1 → l2 → l′ → l1 → l2, which collapses to l1 → l2; contradiction with
assumption K > 1.

Similarly, the former condition of lemma implies the case of composition l → l′ → l′′

considered above; thus it implies the corresponding case of Desargues theorem. �

This finishes the proof of the theorem. �

3. Plane movements

Consider the pencil of lines passing through a point O ∈ Π. We saw that given
a line m on Π, one can associate a group M(O,m)l to each of these lines; this group
acts freely on the line with removed point(s) O and {m ∩ l}.

One can immediately see that these groups are canonically identified: given a point
P on m, the projection from P identifies any two lines l, l′ of the pencil which do
not pass through P . This identification associates to M(O,m)l a certain group G′ of
transformations of l′.

Lemma 3.1. The action of G′ on l′ coincides with the action of M(O,m)l
′. Thus

obtained identification of M(O,m)l with M(O,m)l
′ does not depend on the choice of P .

Proof. Consider g ∈ M(O,m)l, denote by g′ the corresponding element of g. Denote by
π the P -projection from l′ to l; then g′ = π−1gπ. We want to show that g′ commutes
with the action of PER(O,m) l′.

Given any element of ρ′ ∈ PER(O,m) l′, consider ρ = πρ′π−1; it is manifestly an
element of PER(O,m) l. Since g commutes with ρ, g′ must commute with ρ′. Hence
g′ ∈ M(O,m)l

′.
Given a different projection π̃ : l′ → l with center on m, ππ̃−1 is an element of

PER(O,m) l. Thus g′ = π−1gπ = π (ππ̃−1) g (ππ̃−1)
−1

π−1 = π̃−1gπ̃. �

An element g ∈ M(O,m)l acts on l r ({O} ∪ (l ∩ P )); extend it to O and to l ∩ m
as identity. Given g ∈ M(O,m)l, we constructed a permutation of points of any line
passing through O (and distinct from m). Since these permutations are compatible
on O, they induce a permutation of points Π r m; extend it to m as identity. Call
such permutations of Π the (O, m)-motions of Π.

Theorem 3.2. An (O, m)-motion of Π is an automorphism of Π; in other words, it
sends a line to a line.

Proof. The statement is obvious for the line m, and for any line passing though
O. Let n be a line not passing through O and distinct from m. Since motions are
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invertible, it is enough to show that the image of n is contained in a line passing
through P = n ∩ m.

Consider lines l, l′ passing through O and distinct from m; consider Q = l ∩ n; it
is distinct from O and l ∩ m. Identify l and l′ using projection π from P ; let Q be
identified with Q′. Consider g ∈ M(O,m)l and the corresponding movement g′ of l′;
it is enough to show that points P , g′Q′ and gQ are collinear, but this immediately
follows from g being idenfied with g′ via π. �

4. Coordinatization and commutation

A coordinate system OXY is a collection of three non-collinear points O, X, Y on a
projective plane Π. The projection from Y identifies Πr(XY ) with (OX)r{X}; the
projection from X identifies Πr (XY ) with (OY )r{Y }. Obviously, two projections
taken together identify the affine plane Πr (XY ) with the product of two affine lines
(OX) r {X} and (OY ) r {Y }; this identification is called OXY -coordinate system.

Consider a translation in Trans(XY ) (OX) and the corresponding motion g of Π.
Since g preserves lines passing through X, the projection to (OY ) is not changed by
g.

Label cor50.10

Corollary 4.1. Motions g, g′ of Π corresponding to an element of Transm l and an
element of Transm l′ commute provided l ∩ l′ is not on m.

Proof. Indeed, consider OXY -coordinate system on Π r m; here m = (XY ), l =
(OX), l′ = (OY ). Since g sends any line through X into itself, g preserves the
second coordinate; likewise, g′ preserves the second coordinate. Moreover, g sends
any line through Y to a line through Y ; therefore g can be written in coordinates
x, y as (x, y) 7→ (G (x) , y); likewise g′ acts as (x, y) 7→ (x, G′ (y)). Therefore g and g′

commute on Π r m, thus on Π. �

5. Types of automorphisms of Π and commutation

Fix a line m in a projective plane Π. Call an automorphism f : Π → Π an m-
translation if f (X) = X for any X ∈ m, and either f = id, or f (X) = X implies
X ∈ M . It is clear that any motion corresponding to an element of Transm l, l 6= m,
is an m-translation.

Proposition 5.1. Consider an m-translation f 6= id. Consider P /∈ M ; then f (P ) 6=
P . Consider the line l = (P f (P )). Then f is a motion corresponding to the
translation f |l along the line l.

Proof. First of all, let O = l ∩ m. Then f (l) = f ((PO)) = (f (P )O). Since f (P )
and O are on l, f (l) = l. Moreover, for any Q /∈ m, the line (Q f (Q)) passes through
O. (Indeed, as above, we know that (Q f (Q)) and l are sent into themselves by
f ; therefore (Q f (Q)) ∩ l is preserved by f . Therefore (Q f (Q)) ∩ l is on m, thus
coincides with O.)
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One can conclude that any line passing through O is sent into itself by f . Consider
a sequence of simple perspectives l → l1 → · · · → lK → l with all lines l, lk, k =
1, . . . , K, passing through O, and the centers of perspective on m. Then the lines
and the centers of perspectives are preserved by f ; therefore f commutes with any
mapping of the chain, thus with the composition. Therefore f |l ∈ Transm l.

Now the fact that l sends any line not passing through O to a line which intersects
m at the same point implies that restriction of f to all the lines passing through O
are compatible (in the sense used in the definition of the motion). This finishes the
proof of the proposition. �

Corollary 5.2. Suppose that the group Transm l′ contains more than one element.
Then the group Transm l is commutative provided l ∩ l′ is not on m.

Proof. Let O = l ∩ l′, h be a non-trivial element of Transm l′, and Y1 = hO ∈ l′.
Consider g, g′ ∈ Transm l, let X1 = g (O) ∈ l; denote by the same letters h, g, g′ the
corresponding motions of Π. We already know that h commutes both with g and
with g′.

Consider the automorphism hg of Π. Let X = l∩m, Y = l′∩m; consider the OXY
coordinate system. Note that hg sends any line passing through X to a line passing
through X; identify the set of lines passing through X with l′; then gh induces a
mapping F : l′ → l′. Using the coordinate system the same way as in the proof
of Corollary 4.1, it is clear that F coincides with h. Since Transm l′ acts freely on
l′\ {Y }, h (P ) 6= P for any P ∈ l′ r {Y }. Therefore gh (P ) 6= P for any P ∈ Π r m.

By the preceeding proposition, gh is a non-trivial m-translation of Π. Moreover,
the arguments above show that gh (O) /∈ l; therefore, the line l̄ = (O gh (O)) is
distinct from l. By the proposition above, gh corresponds to a translation (gh) |l̄
along the line l̄; by Corollary 4.1, gh commutes with g′. Since h commutes with g′,
gg′ = ghh−1g′ = gh · g′h−1 = g′ · gh · h−1 = g′g. �

6. On commutation of translations (not needed, unfinished)

Consider an (O, m)-motion g and an (O′, m′)-motion g′; suppose that both are
non-trivial. If they commute, then g fixes g′O and points of g′m; therefore, g′m = m;
thus either m = m′, or O′ ∈ m and O ∈ m′. Moreover, if O /∈ m, one can conclude
that g′O cannot be on m (neither if m = m′, nor if O ∈ m′); hence g′O = O. If
m = m′, then g′O = O implies O = O′.

Thus either both motions are translations, or they are both dilations, or O′ ∈ m
and O ∈ m′. Here we consider the simplest case when both transformations are
translations, and m = m′.
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