Sample Final.
1. Show that the equation
\[x^2 - 5y^2 = 7 \]
does not have integer solutions.
2. Let \(U_{34} \) denote the group of all units of the ring \(\mathbb{Z}_{34} \). Is \(U_{34} \) cyclic? Justify your answer.
3. Determine which of the following polynomial rings are integral domain? Justify your answer.
 \((a) \mathbb{Q} [x] / (x^3 - 3) \)
 \((b) \mathbb{Q} [x] / (x^4 - 4) \)
 \((c) \mathbb{Z}_{15} [x] \)
 \((d) \mathbb{C} [x] / (x^2 + 1) \)
4. Factor the polynomial \(x^4 + x^2 + 1 \) into product of irreducibles in the ring \(\mathbb{Z}_3 [x] \).
5. Let \(\mathbb{C}^* \) denote the group of all non-zero complex numbers with operation of multiplication.
 \((a) \) Describe all finite subgroups of \(\mathbb{C}^* \).
 \((b) \) Show that if \(H \) is a finite subgroup of \(\mathbb{C}^* \), then the quotient group \(\mathbb{C}^* / H \) is isomorphic to \(\mathbb{C}^* \).
6. Is any ideal in \(\mathbb{Z}_2 [x] \) principal? The same question for \(\mathbb{Z}_4 [x] \).
7. Let \(R \) denote the quotient ring \(\mathbb{Z}_3 [x] / (x^2 + 1) \). Find the elementary divisors of the additive group \(R \) and the multiplicative group \(U \) of all units of \(R \).
8. List all Sylow subgroups of the group \(D_9 \).
9. Show that a group of order 33 is cyclic.
10. Show that the number \(3 \sqrt{3} + 1 \) is algebraic over \(\mathbb{Q} \). Find its minimal polynomial.
Solutions.
1. First solve the equation in \(\mathbb{Z}_7 \). We obtain \(\left(\frac{x}{y} \right)^2 = 5 \) or \(x = y = 0 \). Since the former equation does not have solutions in \(\mathbb{Z}_7 \), we obtain \(x \equiv y \equiv 0 \pmod{7} \). Then the left hand side of the equation \(x^2 - 5y^2 \) is divisible by 49, and could not be equal 7.
2. Since \(\mathbb{Z}_{34} \cong \mathbb{Z}_{17} \times \mathbb{Z}_2 \), \(U_{34} \cong U_{17} \), and \(U_{17} \) is a cyclic group of order 16 by Theorem 7.15.
3. \((a) \) Yes, because \(x^3 - 3 \) is irreducible over \(\mathbb{Q} \).
 \((b) \) No, since \(x^4 - 4 = (x^2 - 2)(x^2 + 2) \).
 \((c) \) No, since \(\mathbb{Z}_{15} \) is not an integral domain.
 \((d) \) No, because \(x^2 + 1 \) is reducible over \(\mathbb{C} \).
4. \(x^4 + x^2 + 1 = (x + 1)^2 (x - 1)^2 \)
5. Any finite subgroup of \(\mathbb{C}^* \) must be cyclic. Therefore for every \(n > 0 \) there exists a unique subgroup of order \(n \) consisting of all \(n^{th} \) roots of unity. Let \(H \) be such a subgroup. Consider the homomorphism \(f : \mathbb{C}^* \to \mathbb{C}^* \) defined by \(f(z) = z^n \). Then \(f \) is surjective and the kernel of \(f \) is \(H \). Therefore \(\mathbb{C}^* \) is isomorphic to \(\mathbb{C}^*/H \) by the first isomorphism theorem.

6. Every ideal in \(F[x] \) is principal if \(F \) is a field. In particular when \(F = \mathbb{Z}_2 \). For \(\mathbb{Z}_4[x] \) this is not so. Counter example: the ideal generated by 2 and \(x \).

7. \(R \) is isomorphic to \(\mathbb{Z}_3 \oplus \mathbb{Z}_3 \), \(U \) is cyclic, because \(R \) is a field and therefore \(U \) is isomorphic to \(\mathbb{Z}_8 \). Therefore elementary divisors of \(R \) are 3 and 3, elementary divisor of \(U \) is 8.

8. There is one Sylow 3-subgroup isomorphic to \(\mathbb{Z}_9 \). It is the subgroup of all rotations. There are 9 Sylow 2-subgroups, each is generated by one flip.

9. Let \(m \) be the number of Sylow 3-subgroups and \(n \) be the number of Sylow 11-subgroups. Then \(m \mid 11 \) and \(m \equiv 1 \pmod{3} \), that implies that \(m = 1 \). In the same way \(n \mid 11 \) and \(n \equiv 1 \pmod{11} \) implies that \(n = 1 \). Both Sylow subgroups are normal and cyclic, and the whole group is isomorphic to \(\mathbb{Z}_3 \times \mathbb{Z}_{11} \cong \mathbb{Z}_{33} \).

10. The number \(3\sqrt{3} + 1 \) is a root of polynomial \(p(x) = x^3 - 3x^2 + 3x - 4 \). Note that \(p(x) \) is irreducible over \(\mathbb{Q} \) because it does not have rational roots. Therefore \(p(x) \) is the minimal polynomial of \(3\sqrt{3} + 1 \).