Sample midterm

1. Find the rank and the dimension of the null space of the matrix A :
$\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12\end{array}\right]$,
2. Let \mathbb{P}_{3} denote the space of all polynimials of degree less or equal than 3 . Let T be a linear transromation from \mathbb{P}_{3} to itself defined by

$$
T(p(t))=p^{\prime \prime}(t)+p^{\prime}(t)+p(t) .
$$

(a) Find the matrix $[T]_{\mathcal{B}}$ for the basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$.
(b) Find eigenvalues and eigenspaces of T.
(c) Is T diagonalizable?
3. Let T and S be linear transformations in \mathbb{C}^{n} such that $S T=T S$. Prove that T and S have common eigenvector, i. e. there exists a vector v in \mathbb{C}^{n} such that

$$
T(v)=\lambda v, \quad S(v)=\mu v
$$

for some complex numbers λ and μ.
4.
(a) Find the orthogonal basis in $\operatorname{Col} A$ for

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

(b) Find the orthogonal projection of $\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right]$ onto $\operatorname{Col} A$.
5. Let A be a symmetric $n \times n$ matrix. Show that $\mathrm{Nul} A$ is the orthogonal complement to $\mathrm{Col} A$.
6. Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

Find a diagonal matrix D and an orthogonal matrix P such that $A=P D P^{T}$.

Solutions

1. The rank is 2 since we have the relation $2 \mathbf{a}_{2}=\mathbf{a}_{1}+\mathbf{a}_{3}$, and $\mathbf{a}_{1}, \mathbf{a}_{3}$ are linearly independent. The dimension of Nul A equals $1=3-2$ (see Theorem 14 page 221).
2. (a)

$$
[T]_{\mathcal{B}}=\left[\begin{array}{llll}
1 & 1 & 2 & 0 \\
0 & 1 & 2 & 6 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) The eigenvalue is 1 (see Theorem 1 page 239). The eigenspace is 1 -dimensional spanned by 1 .
(c) T is not diagonalizable since it does not have 4 linearly independent eigenvectors.
3. Over complex numbers every linear transformation has an eigenvalue. Let λ be an eigenvalue of T and W be the corresponding eigenspace. Then for any vector u in W we have

$$
T(S(u))=S(T(u))=S(\lambda u)=\lambda S(u)
$$

Therefore $S(u)$ also lies in W. Consider now S as a linear transformation $W \rightarrow W$. Then S has an eigenvector v in W. Then v is an eigenvector for both S and T.
4. Using Gram-Schmidt algorithm get

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
0 \\
-\frac{1}{3} \\
-\frac{1}{3} \\
\frac{1}{3}
\end{array}\right] .
$$

For orthogonal projection use Theorem 8 page 294. To get

$$
\hat{y}=\frac{4}{3} v_{1}-\frac{1}{2} v_{2}=\left[\begin{array}{c}
0 \\
\frac{3}{2} \\
\frac{3}{2} \\
1
\end{array}\right] .
$$

5. The easiest way is to use Theorem 3 on page 281 and the fact that $A^{T}=A$. Indeed,

$$
\left(\operatorname{Col} A^{T}\right)^{\perp}=(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A
$$

6. Eigenvalues are -1 and 3 and eigenvectors are

$$
\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

They are orthogonal and to make them orthonormal we divide by $\sqrt{2}$. Hence

$$
D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 3
\end{array}\right], \quad P=\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right] .
$$

