PROBLEM SET # 9

Due April 3.

1. Let \mathfrak{g} be a simple Lie algebra with generators $\{e_i, f_i, h_i \mid i = 1, \dots, n\}$ and simple roots $\alpha_1, \ldots, \alpha_n$. Check that for any h in the Cartan subalgebra:

$$\exp(\operatorname{ad} e_i) \exp(-\operatorname{ad} f_i) \exp(\operatorname{ad} e_i)(h) = h - \alpha_i(h)h_i.$$

2. Compute dimensions of the exceptional Lie algebras F_4, E_6, E_7, E_8 .

3. Obtain the Lie algebra of type B_n , C_n and F_4 as the set of fixed points of a suitable automorphisms of the Lie algebra A_{2n} , A_{2n+1} and E_6 respectively.

4. Let \mathfrak{g}_0 be a simple Lie algebra with the Killing form B, W and W^* be simple \mathfrak{g}_0 -modules dual to each other. Assume that there are non-zero \mathfrak{g}_0 -invariant maps

$$T: \Lambda^3 W \to k, \quad T': \Lambda^3 W^* \to k.$$

(a) Check that the maps $\eta: \Lambda^2 W \to W^*, \theta: \Lambda^2 W^* \to W$ defined by

$$\begin{split} \langle \eta(u \wedge v), w \rangle &= T(u, v, w), \quad u, v, w \in W, \\ \langle \theta(u' \wedge v'), w' \rangle &= T'(u', v', w'), \quad u', v', w' \in W^*, \\ \text{and } \zeta : W \otimes W^* \to \mathfrak{g}_0 \text{ defined by} \end{split}$$

$$B(\zeta(v \otimes w'), x) = \langle w', xv \rangle, \quad x \in \mathfrak{g}_0, v \in W, w' \in W^*$$

are homomorphisms of \mathfrak{g}_0 -modules.

(b) Let $\mathfrak{g} = \mathfrak{g}_0 \oplus W \oplus W^*$. Define the bracket $[\cdot, \cdot] : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ by setting

(1) [x, y] is the same as in \mathfrak{g}_0 for $x, y \in \mathfrak{g}_0$,

(2)
$$[x, v] = xv$$
 for all $x \in \mathfrak{g}_0$ and $v \in W$,

(3) [x, v'] = xv' for all $x \in \mathfrak{g}_0$ and $v' \in W^*$,

(4) $[v, w] = a\eta(v \wedge w)$ for all $v, w \in W$,

(5) $[v', w'] = b\theta(v' \wedge w')$ for all $v', w' \in W^*$

(6) $[v, w'] = c\zeta(v \otimes w')$ for all $v \in W$ and $w' \in W^*$,

where $a, b, c \in k$. Show that one can choose $a, b, c \neq 0$ so that \mathfrak{g} is a Lie algebra.

5. Apply the construction of Problem 5 in the following cases:

(a) $\mathfrak{g}_0 = \mathfrak{sl}(3)$, W is the standard 3-dimensional $\mathfrak{sl}(3)$ -module to obtain the Lie algebra of type G_2 .

(b) $\mathfrak{g}_0 = \mathfrak{sl}(9), W = \Lambda^3 V$, where V is the standard 9-dimensional $\mathfrak{sl}(9)$ -module to obtain the Lie algebra of type E_8 .

Date: March 29, 2017.