PROBLEM SET # 12

Due April 24.

1. Let G be an algebraic group over \mathbb{C} and $\mathcal{O}(G)$ be the Hopf algebra of regular functions on G. Let V be a G-module. Check that the action map $G \times V \to V$ induces the comodule map

$$\rho: V \to V \otimes \mathcal{O}(G)$$

which satisfies the conditions

$$(\rho \otimes \operatorname{id}_{\mathcal{O}(G)}) \circ \rho = (\operatorname{id}_V \otimes \Delta) \circ \rho,$$
$$(\operatorname{id}_V \otimes \varepsilon) \circ \rho = \operatorname{id}_V,$$

here Δ is the comultiplication and ε is the counit.

2. In notation of problem one, consider the *G*-module $\mathcal{O}(G)$ with action induced by the right multiplication on *G*. Prove that for any $f \in \mathcal{O}(G)$ there exists a finite-dimensional *G*-submodule containing *f*.

3. Let G be a connected compact real Lie group. Prove that left and right invariant volume forms on G coincide.

4. Prove that a real form of $\mathfrak{sl}(n,\mathbb{C})$ is isomorphic to one of the following:

(1) $\mathfrak{sl}(n,\mathbb{R});$

- (2) $\mathfrak{su}(p,q)$, the Lie algebra of traceless matrices which preserve the Hermitian form of signature (p,q), where p+q=n;
- (3) $\mathfrak{sl}(\frac{n}{2},\mathbb{H})$, the traceless \mathbb{H} -linear operators in $\mathbb{H}^{\frac{n}{2}}$ for even n.

Date: April 17, 2017.