PROBLEM SET # 11

Due April 17.

In this homework \mathfrak{g} is isomorphic to the symplectic Lie algebras $\mathfrak{sp}(2n)$ over complex numbers and V denotes the standard 2n-dimensional representation of \mathfrak{g} .

1. Prove that S^2V is isomorphic to the adjoint representation \mathfrak{g} .

2. Let L_1, \ldots, L_n be the fundamental representations of \mathfrak{g} and L_0 denote the trivial representation.

(a) Show for $2 \leq k \leq n$ the k-th exterior power $\Lambda^k V$ is isomorphic to the direct sum $L_k \oplus \Lambda^{k-2} V$.

(b) Let $\omega \in \Lambda^2$ denote the g-invariant bivector. Define the operators $e, f, h : \Lambda V \to \Lambda V$ by

$$e(x) := \omega \wedge x, \quad f = e^*, \quad h(x) = (n-k)x$$

for any $x \in \Lambda^k V$. Prove that e, f, h commute with the action of \mathfrak{g} and generate the Lie algebra isomorphic to $\mathfrak{sl}(2)$.

(c) Prove that

$$\Lambda V \simeq \bigoplus_{k=0}^n L_k \otimes V_{n-k}$$

where V_{n-k} is the irreducible representation of $\mathfrak{sl}(2)$ with highest weight n-k.

3. Let $\langle \cdot, \cdot \rangle$ denote a \mathfrak{g} -invariant symplectic form on V. Define the Weyl algebra A_n as the quotient of the tensor algebra T(V) by the ideal generated by $[x, y] - \langle x, y \rangle$ for $x, y \in V$. Prove that the span of $\{xy + yx \mid x, y \in V\}$ form a Lie subalgebra of A_n isomorphic to \mathfrak{g} .

Date: April 10, 2017.