PROBLEM SET # 1

Due January 130.

1. Show that SO(n) is connected for all $n \ge 1$.

2. Describe the Lie algebras of U(n) and SU(n) as subalgebras in $M(n, \mathbb{C})$. Calculate dimensions of U(n) and SU(n).

3. Let Q be a non-degenerate symmetric form on \mathbb{R}^n of signature (p,q), where p+q=n i.e. there exists a Q-orthogonal basis v_1, \ldots, v_n in \mathbb{R}^n such that $Q(v_i, v_i) = 1$ for $i \leq p$ and $Q(v_i, v_i) = -1$ for i > p. Let SO(p,q) be the subgroup of all operators $X \in SL(n, \mathbb{R})$ such that Q(Xv, Xw) = Q(v, w) for all $v, w \in \mathbb{R}^n$.

(a) Calculate dimension of SO(p,q).

(b) Prove that SO(p,q) is compact if and only if p = 0 or q = 0.

(c) Show that SO(1, n-1) has two connected components.

Date: January 16, 2017.