PROBLEM SET # 1

In this set \mathfrak{g} is a semisimple algebra over the field of complex number and Δ is its root system.

1. Let $\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$. Show that
 $$(\rho, \alpha_i) = \frac{1}{2}(\alpha_i, \alpha_i)$$
 for any simple root α_i.

2. Recall that a \mathfrak{g}-module M is a weight module if M is semisimple over Cartan subalgebra \mathfrak{h} and all \mathfrak{h}-eigenspaces are finite-dimensional. Show that a submodule of a weight module is a weight module.

3. Show that the Casimir element
 $$\Omega = \sum_{i=1}^{\dim \mathfrak{g}} e_i e^i,$$
 where $\{e_i\}$ and $\{e^i\}$ are dual bases of \mathfrak{g} does not depend on a choice of $\{e_i\}$ and lies in the center of the universal enveloping algebra.

4. Let x, h, y be the standard basis in \mathfrak{sl}_2. Fix $\lambda, \mu \in \mathbb{C}$, let
 $$F_{\lambda, \mu} = t^\lambda \mathbb{C}[t, t^{-1}].$$
 Define the action of \mathfrak{sl}_2 on $F_{\lambda, \mu}$ by
 $$y = -\frac{\partial}{\partial t}, h = 2t \frac{\partial}{\partial t} + \mu, x = t^2 \frac{\partial}{\partial t} + \mu t.$$
 (a) Show that $F_{\lambda, \mu}$ is a weight \mathfrak{sl}_2-module;
 (b) Calculate the eigenvalue of the Casimir element on $F_{\lambda, \mu}$;
 (c) Find all λ and μ for which $F_{\lambda, \mu}$ is reducible.

Date: January 25, 2010.