PROBLEM SET \# 7
 MATH 251

Due October 25.

1. Let G be a finite abelian group, and m be the least common multiple of orders of all elements. Show that k is a splitting field for G if and only if k contains a primitive m-th root of 1 .
2. Let G be a finite abelian group, k be a splitting field for G.
(a) The set \hat{G} of irreducible representations of G over k is a group with operation of tensor product.
(b) If the characteristic of k does not divide $|G|$, then \hat{G} is isomorphic to G.
3. Let G and H be two finite groups, V and W be two absolutely simple $k[G]$ and $k[H]$-modules respectively.
(a) Prove that $V \otimes W$ is absolutely simple $k[G \times H]$-module. Note that the statement is true in any characteristic.
(b) Show by counterexample that if V and W are simple $k[G]$ and $k[H]$-modules respectively, the tensor product $V \otimes W$ may not be simple as $k[G \times H]$-module.
4. (Lam 8.21) Show that over $\mathbb{Q}, G=A_{5}$ has four irreducible representations of dimensions $1,4,5$ and 6 respectively.
5. (Lam 8.23) If a finite group G has at most three irreducible complex representations, show that $G \simeq\{1\}, Z_{2}, Z_{3}$ or S_{3}.
6. (Lam 8.24) Suppose the character table of a finite group G has the following two rows:

g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}
1	1	1	ω^{2}	ω	ω^{2}	ω
2	-2	0	-1	-1	1	1

where $\omega=e^{2 \pi i / 3}$. Determine the rest of the character table.

[^0]
[^0]: Date: October 18, 2016.

