PROBLEM SET \# 11
 MATH 251

Due November 22.

1. Show that any algebra over a field k can be embedded into a left primitive ring.
2. (Lam 11.4) Which of the following implications are true?
(a) R is left primitive if and only if $M_{n}(R)$ is left primitive.
(b) R is left primitive if and only if $R[t]$ is left primitive.
3. (Lam 11.7) Let V be a right module over a division ring k and $E=\operatorname{End}\left(V_{k}\right)$. Let R be a subring of E and I be a non-zero ideal in R. Show that R is dense in E if and only if I is dense in E,
4. (Lam 11.14) Let R be a left primitive ring such that $1+r^{2}$ is a unit for any $r \in R$. Show that R is a division ring.
5. (Lam 12.1) Let R be a subdirectly irreducible ring. Show that if R is semiprimitive (resp. semiprime, reduced), then R is left primitive (resp. prime, a domain). In particular, R is left primitive if and only if R is right primitive.
[^0]
[^0]: Date: November 15, 2016.

