PROBLEM SET \# 10
 MATH 251

Due November 15.

1. (Lam 10.1) For any semiprime ring R, show that the center $Z(R)$ is reduced and that characteristic of R is either zero or a square free integer.
2.(Lam 10.2) Let $\mathcal{P} \subset R$ be a prime ideal, I be a left ideal and J be a right ideal. Does $I J \subset \mathcal{P}$ imply $I \subset P$ or $J \subset P$?
2. (Lam 10.4) Show that in a right artinian ring every prime ideal is maximal.
3. (Lam 10.4^{*}) For any division ring k, list all prime and semiprime ideals in the subalgebra of upper triangilar matrices in $M_{3}(k)$.
4. (Lam 10.10) Let $N_{1}(R)$ be the sum of all nilpotent ideals of a ring R.
(a) Show that $N_{1}(R)$ is a nil subideal of $N i l_{*} R$.
(b) Show that if $N_{1}(R)$ is nilpotent, then $N_{1}(R)=N i l_{*} R$.
(c) Show that $N_{1}(R)$ is nilpotent, if all ideals in R satisfies DCC.
(d) Give an example of a ring R such that $N_{1}(R) \neq \operatorname{Nil}_{*} R$.
