Landmarks in representation theory

Caroline Gruson and Vera Serganova

To Andrei Zelevinsky

Contents

Preface 7
Chapter 1. Introduction to representation theory of finite groups. 11

1. Definitions and examples 11
2. Ways to produce new representations 13
3. Invariant subspaces and irreducibility 14
4. Characters 17
5. Examples. 24
6. Invariant forms 28
7. Representations over \mathbb{R} 31
8. Relationship between representations over \mathbb{R} and over \mathbb{C} 32
Chapter 2. Modules with applications to finite groups 35
9. Modules over associative rings 35
10. Finitely generated modules and Noetherian rings. 38
11. The center of the group algebra $k(G)$ 40
12. One application 43
13. Generalities on induced modules 44
14. Induced representations for groups. 46
15. Double cosets and restriction to a subgroup 48
16. Mackey's criterion 50
17. Hecke algebras, a first glimpse 50
18. Some examples 52
19. Some generalities about field extension 53
20. Artin's theorem and representations over \mathbb{Q} 54
Chapter 3. Representations of compact groups 57
21. Compact groups 57
22. Orthogonality relations and Peter-Weyl Theorem 65
23. Examples 68
Chapter 4. Some results about unitary representations 75
24. Unitary representations of \mathbb{R}^{n} and Fourier transform 75
25. Heisenberg groups and the Stone-von Neumann theorem 79
26. Representations of $\mathrm{SL}_{2}(\mathbb{R})$ 87
Chapter 5. On algebraic methods 91
27. Introduction 91
28. Semisimple modules and density theorem 91
29. Wedderburn-Artin theorem 94
30. Jordan-Hölder theorem and indecomposable modules 95
31. A bit of homological algebra 99
32. Projective modules 103
33. Representations of artinian rings 108
34. Abelian categories 113
Chapter 6. Symmetric groups, Schur-Weyl duality and positive self-adjoint Hopf algebras 115
35. Representations of symmetric groups 115
36. Schur-Weyl duality. 120
37. Generalities on Hopf algebras 124
38. The Hopf algebra associated to the representations of symmetric groups 127
39. Classification of PSH algebras part 1: decomposition theorem 129
40. Classification of PSH algebras part 2: unicity for the rank 1 case 131
41. Bases of PSH algebras of rank one 135
42. Harvest 141
43. General linear groups over a finite field 148
Chapter 7. Introduction to representation theory of quivers 159
44. Representations of quivers 159
45. Path algebra 162
46. Standard resolution and consequences 165
47. Bricks 169
48. Orbits in representation variety 171
49. Coxeter-Dynkin and affine graphs 173
50. Quivers of finite type and Gabriel's theorem 177
Chapter 8. Representations of Dynkin and affine quivers 179
51. Reflection functors 179
52. Reflection functors and change of orientation. 181
53. Weyl group and reflection functors. 182
54. Coxeter functors. 183
55. Further properties of Coxeter functors 184
56. Affine root systems 186
57. Preprojective and preinjective representations. 189
58. Regular representations 191
59. Indecomposable representations of affine quivers 198
Chapter 9. Applications of quivers 201
60. From abelian categories to algebras 201
61. From categories to quivers 204
62. Finitely represented, tame and wild algebras 208
63. Frobenius algebras 209
64. Application to group algebras 211
65. On certain categories of $\mathfrak{s l}_{2}$-modules 214

Bibliography 227

Preface

Representation theory is a very active research topic in mathematics nowadays.
There are representations associated to several algebraic structures, representations of algebras, groups (of finite or infinite cardinal). Roughly speaking, a representation is a vector space equipped with a linear action of the algebraic structure. For example, the algebra of $n \times n$ matrices acts on the vector space \mathbb{C}^{n}. A slightly more complicated example is the action of the group $G L(n, \mathbb{C})$ in the set of $n \times n$-matrices, the group acting by conjugation.

In the beginning, there was no tendency to classify all the representations of a given object. The first result in this direction is due to Frobenius, who was interested in the general theory of finite groups. Let G be a finite group, a representation V of G is a complex vector space V together with a morphism of groups $\rho: G \rightarrow G L(V)$. One says V is irreducible if there exists no proper subspace $W \subset V$ such that W is stable under all $\rho(g), g \in G$. Frobenius showed there is finitely many irreducible representations of G and that they are completely determined by their characters: the character of V is the complex function $g \in G \mapsto \operatorname{Tr}(\rho(g))$ where Tr is the trace of the endomorphism. These characters form a basis of the complex valued functions on G invariant under conjugation. Then Frobenius proceeded to compute the characters of symmetric groups in general. His results inspired Schur, who was able to relate them to the theory of complex finite dimensional representations of $G L(n, \mathbb{C})$ through the Schur-Weyl duality. In both cases, every finite dimensional representation of the group is a direct sum of irreducible representations (we say that the representations are completely reducible).

The representation theory of symmetric groupes and the related combinatorics turn out to be very useful in a lot of questions. We decided to follow Zelevinsky and his book [37] and describe a Hopf algebra approach. This is an early example of categorification, which was born before the fashionable term categorification was invented.

Most of the results about representations of finite groups can be generalized to compact groups. In particular, once more, the complex finite dimensional representations of a compact groups are completely reducible, and the regular representation in the space of continuous functions on the compact group has the similar structure. This theory was developed by H. Weyl and the original motivation came from quantum mechanics. The first examples of compact groups are the group $S O(2)$
of rotations of the plane (the circle) and the group $S O(3)$ of rotations of the 3dimensional space. In the former case, the problem of computing the Fourier series for a function on the circle is equivalent to the decomposition of the regular representation. More generally, the study of complex representations of compact groups helps to understand Fourier analysis on such groups.

If a topological group is not compact, for example, the group of real numbers with operation of addition, the representation theory of such a group involves more complicated analysis (Fourier transform instead of Fourier series). The representation theory of real non-compact groups was initiated by Harish-Chandra and by the Russian school led by Gelfand. Here emphasis is on the classification of unitary representations due to applications from physics. It is also worth mentioning that this theory is closely related to harmonic analysis, and many special functions (such as Legendre polynomials) naturally appear in the context of representation theory.

In the theory of finite groups one can drop the assumption that the characteristic of the ground field is zero. This leads immediately to the loss of complete reducibility. This representation theory was initiated by Brauer and it is more algebraic. If one turns to algebras, a representation of an algebra is, by definition, the same as a module over this algebra. Let k be a field. Let A be a k-algebra which is finite dimensional as a vector space. It is a well-known fact that A-modules are not, in general, completely reducible: for instance, if $A=k[X] / X^{2}$ and $M=A$, the module M contains $k X$ as a submodule which has no A-stable complement. An indecomposable A-module is a module which has no non-trivial decomposition as a direct sum. It is also interesting to attempt a classification of A-modules. It is a very difficult task in general. Nevertheless, the irreduducible A-modules are in finite number. The radical R of A is defined as the ideal of A which annihilates each of those irreducible modules, it is a nilpotent ideal. Assume k is algebraically closed, the quotient ring A / R is a product of matrix algebras over $k, A / R=\Pi_{i} \operatorname{End}_{k}\left(S_{i}\right)$ where S_{i} runs along the irreducible A-modules.

If G is a finite group, the algebra $k(G)$ of k-valued functions on G, the composition law being the convolution, is a finite dimensional k-algebra, with a zero radical as long as the characteristic of the field k does not divide the cardinal of G. The irreducible modules of $k(G)$ are exactly the finite dimensional representations of the group G, the action of G extends linearly to $k(G)$. This shows that all $k(G)$-modules are completely reducible (Maschke's theorem).

In order to study finite dimensional k-algebras representations more generally, it is useful to introduce quivers. Let A be a finite dimensional k-algebra, denote S_{1}, \ldots, S_{n} its irreducible representations, and draw the following graph, called the quiver associated to A : the vertices are labelled by the $S_{i} \mathrm{~s}$ and we put l arrows between S_{i} and S_{j}, pointing at S_{j}, if $E x t^{1}\left(S_{i}, S_{j}\right)$ is of dimension l (the explicit definition of $E x t^{1}$ requires some homological algebra which is difficult to summarize in such a short introduction).

More generally, a quiver is an oriented graph with any number of vertices. Let Q be a quiver, a representation of Q is a set of vector spaces indexed by the vertices of Q together with linear maps associated to the arrows of Q. Those objects were first systematically used by Gabriel in the early 70's, and studied by a lot of people ever since. The aim is to characterize the finitely represented algebras, or in other terms the algebras with a finite number of indecomposable modules (up to isomorphism).

Today the representation theory has many flavors. In addition to the above mentioned, one should add representations over non-archimedian local fields with its applications to number theory, representations of infinite-dimensional Lie algebras with applications to number theory and physics and representations of quantum groups. However, in all these theories certain main ideas appear again and again very often in disguise. Due to technical details it may be difficult for a neophyte to recognize them. The goal of this book is to present some of these ideas in their most elementary incarnation.

We will assume that the reader is familiar with usual linear algebra (including the theory of Jordan forms and tensor products of vector spaces) and basic theory of groups and rings.

CHAPTER 1

Introduction to representation theory of finite groups.

Beauty is the first test: there is no permanent place in the world for ugly mathematics. (G.H. Hardy)

1. Definitions and examples

Let k be a field, V be a vector space over k. By GL (V) we denote the group of all invertible linear operators in V. If $\operatorname{dim} V=n$, then $\mathrm{GL}(V)$ is isomorphic to the group of invertible $n \times n$ matrices with entries in k.

A (linear) representation of a group G in V is a group homomorphism

$$
\rho: G \rightarrow \mathrm{GL}(V),
$$

$\operatorname{dim} V$ is called the degree or the dimension of the representation ρ (it may be infinite). For any $g \in G$ we denote by ρ_{g} the image of g in GL (V) and for any $v \in V$ we denote by $\rho_{g} v$ the image of v under the action of ρ_{g}. The following properties are direct consequences of the definition

- $\rho_{g} \rho_{h}=\rho_{g h}$;
- $\rho_{1}=\mathrm{Id}$;
- $\rho_{g}^{-1}=\rho_{g^{-1}}$;
- $\rho_{g}(x v+y w)=x \rho_{g} v+y \rho_{h} w$.

Example 1.1. (1) Let us consider the abelian group of integers \mathbb{Z} with operation of addition. Let V be the plane \mathbb{R}^{2} and for every $n \in \mathbb{Z}$, we set $\rho_{n}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)$. The reader can check that this defines a representation of degree 2 of \mathbb{Z}.
(2) Let G be the symmetric group $S_{n}, V=k^{n}$. For every $s \in S_{n}$ and $\left(x_{1}, \ldots, x_{n}\right) \in$ k^{n} set

$$
\rho_{s}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{s(1)}, \ldots, x_{s(n)}\right) .
$$

In this way we obtain a representation of the symmetric group S_{n} which is called the permutation representation.
(3) For any group G (finite or infinite) the trivial representation is the homomorphism $\rho: G \rightarrow k^{*}$ such that $\rho_{s}=1$ for all $s \in G$.
(4) Let G be a group and

$$
\mathcal{F}(G)=\{\varphi: G \rightarrow k\}
$$

be the space of functions on G with values in k. For any $g, h \in G$ and $\varphi \in \mathcal{F}(G)$ let

$$
\rho_{g} \varphi(h)=\varphi(h g) .
$$

Then $\rho: G \rightarrow \mathrm{GL}(\mathcal{F}(G))$ is a linear representation.
(5) Recall that the group algebra $k(G)$ is the vector space of all finite linear combinations $\sum c_{g} g, c_{g} \in k$ with natural multiplication. We define the regular representation $R: G \rightarrow \mathrm{GL}(k(G))$ in the following way

$$
R_{s}\left(\sum c_{g} g\right)=\sum c_{g} s g .
$$

Definition 1.2. Two representations of a group $G, \rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma:$ $G \rightarrow \mathrm{GL}(W)$ are called equivalent or isomorphic if there exists an invertible linear operator $T: V \rightarrow W$ such that $T \circ \rho_{g}=\sigma_{g} \circ T$ for any $g \in G$.

Example 1.3. If G is a finite group, then the representations in examples 4 and 5 are equivalent. Indeed, define $T: \mathcal{F}(G) \rightarrow k(G)$ by the formula

$$
T(\varphi)=\sum_{x \in G} \varphi(x) x^{-1}
$$

Then for any $\varphi \in \mathcal{F}(G)$ and $g \in G$ we have

$$
T\left(\rho_{g} \varphi\right)=\sum_{x \in G} \rho_{g} \varphi(x) x^{-1}=\sum_{x \in G} \varphi(x g) x^{-1}=\sum_{y \in G} \varphi(y) g y^{-1}=R_{g}(T \varphi) .
$$

Let a group G act on a set X on the right. Let $\mathcal{F}(X)$ be the set of k-valued functions on X. Then there is a representation of G in $\mathcal{F}(X)$ defined by

$$
\rho_{g} \varphi(x):=\varphi(x \cdot g)
$$

\{ex1\}
Exercise 1.4. Consider a left action $l: G \times X \rightarrow X$ of G on X. For every $\varphi \in \mathcal{F}(X), g \in G$ and $x \in X$ set

$$
\sigma_{g} \varphi(x)=\varphi\left(g^{-1} \cdot x\right)
$$

(a) Prove that σ is a representation of G in $\mathcal{F}(X)$.
(b) Define a right action $r: X \times G \rightarrow X$ by

$$
x \cdot g:=g^{-1} \cdot x
$$

and consider the representation ρ of G in $\mathcal{F}(X)$ associated with this action. Check that ρ and σ are equivalent representations.

Remark 1.5. As one can see from the previous exercise, there is a canonical way to go between right and left action and between corresponding representations.

2. Ways to produce new representations

Let G be a group.
Restriction. If H is a subgroup of G and $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation of G, the restriction of homomorphism ρ to H gives a representation of H which we call the restriction of ρ to H. We denote by $\operatorname{Res}_{H} \rho$ the restriction of ρ on H.

Lift. Let $p: G \rightarrow H$ be a homomorphism of groups. Then for every representation $\rho: H \rightarrow \mathrm{GL}(V)$, the composite homomorphism $\rho \circ p: G \rightarrow \mathrm{GL}(V)$ gives a representation of G on V. This construction is frequently used in the following case: let N be a normal subgroup of G, H denote the quotient group G / N and p be the natural projection. In this case p is obviously surjective. Note that in the general case we do not require p to be surjective.

Direct sum. If we have two representations $\rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma: G \rightarrow$ GL (W), then we can define $\rho \oplus \sigma: G \rightarrow \mathrm{GL}(V \oplus W)$ by the formula

$$
(\rho \oplus \sigma)_{g}(v, w)=\left(\rho_{g} v, \sigma_{g} w\right)
$$

Tensor product. The tensor product of two representations $\rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma: G \rightarrow \mathrm{GL}(W)$ is defined by

$$
(\rho \otimes \sigma)_{g}(v \otimes w)=\rho_{g} v \otimes \sigma_{g} w .
$$

Exterior tensor product. Let G and H be two groups. Consider representations $\rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma: H \rightarrow \mathrm{GL}(W)$ of G and H respectively. One defines their exterior tensor product $\rho \boxtimes \sigma: G \times H \rightarrow \mathrm{GL}(V \otimes W)$ by the formula

$$
(\rho \boxtimes \sigma)_{(g, h)} v \otimes w=\rho_{g} v \otimes \sigma_{h} w .
$$

Exercise 2.1. If $\delta: G \rightarrow G \times G$ is the diagonal embedding, show that for any representations ρ and σ of G

$$
\rho \otimes \sigma=(\rho \boxtimes \sigma) \circ \delta .
$$

Dual representation. Let V^{*} denote the dual space of V and $\langle\cdot, \cdot\rangle$ denote the natural pairing between V and V^{*}. For any representation $\rho: G \rightarrow \mathrm{GL}(V)$ one can define the dual representation $\rho^{*}: G \rightarrow \mathrm{GL}\left(V^{*}\right)$ by the formula

$$
\left\langle\rho_{g}^{*} \varphi, v\right\rangle=\left\langle\varphi, \rho_{g}^{-1} v\right\rangle
$$

for every $v \in V, \varphi \in V^{*}$.
Let V be a finite-dimensional representation of G with a fixed basis. Let A_{g} for $g \in G$ be the matrix of ρ_{g} in this basis. Then the matrix of ρ_{g}^{*} in the dual basis of V^{*} is equal to $\left(A_{g}^{t}\right)^{-1}$.

ExERCISE 2.2. Show that if G is finite, then its regular representation is self-dual

More generally, if $\rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma: G \rightarrow \mathrm{GL}(W)$ are two representations, then one can naturally define a representation τ of G on $\operatorname{Hom}_{k}(V, W)$ by the formula

$$
\tau_{g} \varphi=\sigma_{g} \circ \varphi \circ \rho_{g}^{-1}, g \in G, \varphi \in \operatorname{Hom}_{k}(V, W)
$$

Exercise 2.3. Show that if V and W are finite dimensional, then the representation τ of G on $\operatorname{Hom}_{k}(V, W)$ is isomorphic to $\rho^{*} \otimes \tau$.

Intertwining operators. A linear operator $T: V \rightarrow W$ is called an intertwining operator if $T \circ \rho_{g}=\sigma_{g} \circ T$ for any $g \in G$. The set of all intertwining operators will be denoted by $\operatorname{Hom}_{G}(V, W)$. It is clearly a vector space. Moreover, if $\rho=\sigma$, then $\operatorname{End}_{G}(V):=\operatorname{Hom}_{G}(V, V)$ has a natural structure of associative k-algebra with multiplication given by composition.

Exercise 2.4. Consider the regular representation of G in $k(G)$. Prove that the algebra of intertwiners $\operatorname{End}_{G}(k(G))$ is isomorphic to $k(G)$. $\left(\right.$ Hint: $\varphi \in \operatorname{End}_{G}(k(G))$ is completely determined by $\varphi(1)$.)

3. Invariant subspaces and irreducibility

3.1. Invariant subspaces and subrepresentations. Consider a representation $\rho: G \rightarrow \operatorname{GL}(V)$. A subspace $W \subset V$ is called G-invariant if $\rho_{g}(W) \subset W$ for any $g \in G$.

If W is a G-invariant subspace, then there are two representations of G naturally associated with it: the representation in W which is called a subrepresentation and the representation in the quotient space V / W which is called a quotient representation.

Exercise 3.1. Let $\rho: S_{n} \rightarrow \operatorname{GL}\left(k^{n}\right)$ be the permutation representation, then

$$
W=\{x(1, \ldots, 1) \mid x \in k\}
$$

and

$$
W^{\prime}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}+x_{2}+\cdots+x_{n}=0\right\}
$$

are invariant subspaces.
Exercise 3.2. Let G be a finite group of order $|G|$. Prove that any representation of G contains an invariant subspace of dimension less or equal than $|G|$.

3.2. Maschke's theorem.

\{Maschke\}
Theorem 3.3. (Maschke) Let G be a finite group such that char k does not divide $|G|$. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation and $W \subset V$ be a G-invariant subspace. Then there exists a complementary G-invariant subspace, i.e. a G-invariant subspace $W^{\prime} \subset V$ such that $V=W \oplus W^{\prime}$.

Proof. Let $W^{\prime \prime}$ be a subspace (not necessarily G-invariant) such that $W \oplus W^{\prime \prime}=$ V. Consider the projector $P: V \rightarrow V$ onto W with kernel $W^{\prime \prime}$. One has $P^{2}=P$. Now we construct a new operator

$$
\bar{P}:=\frac{1}{|G|} \sum_{g \in G} \rho_{g} \circ P \circ \rho_{g}^{-1} .
$$

An easy calculation shows that $\rho_{g} \circ \bar{P} \circ \rho_{g}^{-1}=\bar{P}$ for all $g \in G$, and therefore $\rho_{g} \circ \bar{P}=$ $\bar{P} \circ \rho_{g}$. In other words, $\bar{P} \in \operatorname{End}_{G}(V)$.

On the other hand, $\bar{P}_{\mid W}=\operatorname{Id}$ and $\operatorname{Im} \bar{P}=W$. Hence $\bar{P}^{2}=\bar{P}$.
Let $W^{\prime}=\operatorname{Ker} \bar{P}$. First, we claim that W^{\prime} is G-invariant. Indeed, let $w \in W^{\prime}$, then $\bar{P}\left(\rho_{g} w\right)=\rho_{g}(\bar{P} w)=0$ for all $g \in G$, hence $\rho_{g} w \in \operatorname{Ker} \bar{P}=W^{\prime}$.

Now we prove that $V=W \oplus W^{\prime}$. Indeed, $W \cap W^{\prime}=0$, since $\bar{P}_{\mid W}=I d$. On the other hand, for any $v \in V$, we have $w=\bar{P} v \in W$ and $w^{\prime}=v-\bar{P} v \in W^{\prime}$. Thus, $v=w+w^{\prime}$, and therefore $V=W+W^{\prime}$.

Remarks. If char k divides $|G|$ or G is infinite, the conclusion of Mashke's theorem does not hold anymore. Indeed, in the example of Exercise 3.1 W and W^{\prime} are complementary if and only if char k does not divide n. Otherwise, $W \subset W^{\prime} \subset V$, and one can show that neither W nor W^{\prime} have a G-invariant complement.

In the case of an infinite group, consider the representation of \mathbb{Z} in \mathbb{R}^{2} as in the first example of Section 1. The span of $(1,0)$ is the only G-invariant line. Therefore it can not have a G-invariant complement in \mathbb{R}^{2}.

3.3. Irreducible representations and Schur's lemma.

Definition 3.4. A non-zero representation is called irreducible if it does not contain any proper non-zero G-invariant subspace.

EXERCISE 3.5. Show that the dimension of any irreducible representation of a finite group G is not bigger than its order $|G|$.

The following elementary statement plays a key role in representation theory.
Lemma 3.6. (Schur) Let $\rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma: G \rightarrow \mathrm{GL}(W)$ be two irreducible representations. If $T \in \operatorname{Hom}_{G}(V, W)$, then either $T=0$ or T is an isomorphism.

Proof. Note that $\operatorname{Ker} T$ and $\operatorname{Im} T$ are G-invariant subspaces of V and W, respectively. Then by irreducibility of ρ, either $\operatorname{Ker} T=V$ or $\operatorname{Ker} T=0$, and by irreducibility of σ, either $\operatorname{Im} T=W$ or $\operatorname{Im} T=0$. Hence the statement.

Corollary 3.7. (a) Let $\rho: G \rightarrow \mathrm{GL}(V)$ be an irreducible representation. Then $\operatorname{End}_{G}(V)$ is a division ring.
(b) If the characteristic of k does not divide $|G|, \operatorname{End}_{G}(V)$ is a division ring if and only if ρ is irreducible.
(c) If k is algebraically closed and ρ is irreducible, then $\operatorname{End}_{G}(V)=k$.

Proof. (a) is an immediate consequence of Schur's Lemma.
To prove (b) we use Maschke's theorem. Indeed, if V is reducible, then $V=V_{1} \oplus V_{2}$ for some proper subspaces V_{1} and V_{2}. Let p_{1} be the projector on V_{1} with kernel V_{2} and p_{2} be the projector onto V_{2} with kernel V_{1}. Then $p_{1}, p_{2} \in \operatorname{End}_{G}(V)$ and $p_{1} \circ p_{2}=0$. Hence $\operatorname{End}_{G}(V)$ has zero divisors.

Let us prove (c). Consider $T \in \operatorname{End}_{G}(V)$. Then T has an eigenvalue $\lambda \in k$ and $T-\lambda \operatorname{Id} \in \operatorname{End}_{G}(V)$. Since $T-\lambda$ Id is not invertible, it must be zero by (a). Therefore $T=\lambda \mathrm{Id}$.

3.4. Complete reducibility.

Definition 3.8. A representation is called completely reducible if it splits into a direct sum of irreducible subrepresentations. (This direct sum might be infinite.)

THEOREM 3.9. Let $\rho: G \rightarrow G L(V)$ be a representation of a group G. The following conditions are equivalent.
(a) ρ is completely reducible;
(b) For any G-invariant subspace $W \subset V$ there exists a complementary G invariant subspace W^{\prime}.

Proof. This theorem is easier in the case of finite-dimensional V. To prove it for arbitrary V and G we need Zorn's lemma. First, note that if V is finite dimensional, then it always contains an irreducible subrepresentation. Indeed, we can take a subrepresentation of minimal positive dimension. If V is infinite dimensional then this is not true in general.

Lemma 3.10. If ρ satisfies (b), any subrepresentation and any quotient of ρ also satisfy (b).

Proof. To prove that any subrepresentation satisfies (b) consider a flag of G invariant subspaces $U \subset W \subset V$. Let $U^{\prime} \subset V$ and $W^{\prime} \subset V$ be G-invariant subspaces such that $U \oplus U^{\prime}=V$ and $W \oplus W^{\prime}=V$. Then $W=U \oplus\left(U^{\prime} \cap W\right)$.

The statement about quotients is dual and we leave it to the reader as an exercise.

Lemma 3.11. Let ρ satisfy (b). Then it contains an irreducible subrepresentation.
Proof. Pick up a non-zero vector $v \in V$ and let V^{\prime} be the span of $\rho_{g} v$ for all $g \in G$. Consider the set of G-invariant subspaces of V^{\prime} which do not contain v, with partial order given by inclusion. For any linearly ordered subset $\left\{X_{i}\right\}_{i \in I}$ there exists a maximal element, given by the union $\bigcup_{i \in I} X_{i}$. Hence there exists a proper maximal G-invariant subspace $W \subset V^{\prime}$, which does not contain v. By the previous lemma one can find a G-invariant subspace $U \subset V^{\prime}$ such that $V^{\prime}=W \oplus U$. Then U is isomorphic to the quotient representation V^{\prime} / W, which is irreducible by the maximality of W in V^{\prime}.

Now we will prove that (a) implies (b). We write

$$
V=\bigoplus_{i \in I} V_{i}
$$

for a family of irreducible G-invariant subspaces V_{i}. Let $W \subset V$ be some G-invariant subspace. By Zorn's lemma there exists a maximal subset $J \subset I$ such that

$$
W \cap \bigoplus_{j \in J} V_{j}=0
$$

We claim that $W^{\prime}:=\bigoplus_{j \in J} V_{j}$ is complementary to W. Indeed, it suffices to prove that $V=W+W^{\prime}$. For any $i \notin J$ we have $\left(V_{i} \oplus W^{\prime}\right) \cap W \neq 0$. Therefore there exists a non-zero vector $v \in V_{i}$ equal to $w+w^{\prime}$ for some $w \in W$ and $w^{\prime} \in W^{\prime}$. Hence $V_{i} \cap\left(W^{\prime}+W\right) \neq 0$ and by irreducibility of V_{i}, we have $V_{i} \subset W+W^{\prime}$. Therefore $V=W+W^{\prime}$.

To prove that (b) implies (a) consider the family of all irreducible subrepresentations $\left\{W_{k}\right\}_{k \in K}$ of V. Note that $\sum_{k \in K} W_{k}=V$ because otherwise $\sum_{k \in K} W_{k}$ has a G-invariant complement which contains an irreducible subrepresentation. Again due to Zorn's lemma one can find a minimal $J \subset K$ such that $\sum_{j \in J} W_{j}=V$. Then clearly $V=\bigoplus_{j \in J} W_{j}$.

The next statement follows from Maschke's theorem and Theorem 3.9.
Proposition 3.12. Let G be a finite group and k be a field such that char k does not divide $|G|$. Then every representation of G is completely reducible.

4. Characters

4.1. Definition and main properties. For a linear operator T in a finitedimensional vector space V we denote by $\operatorname{tr} T$ the trace of T.

For any finite-dimensional representation $\rho: G \rightarrow \mathrm{GL}(V)$ the function $\chi_{\rho}: G \rightarrow k$ defined by

$$
\chi_{\rho}(g)=\operatorname{tr} \rho_{g}
$$

is called the character of the representation ρ.
ExERCISE 4.1. Check the following properties of characters.
(1) $\chi_{\rho}(1)=\operatorname{dim} \rho$;
(2) if $\rho \cong \sigma$, then $\chi_{\rho}=\chi_{\sigma}$;
(3) $\chi_{\rho \oplus \sigma}=\chi_{\rho}+\chi_{\sigma}$;
(4) $\chi_{\rho \otimes \sigma}=\chi_{\rho} \chi_{\sigma}$;
(5) $\chi_{\rho^{*}}(g)=\chi_{\rho}\left(g^{-1}\right)$;
(6) $\chi_{\rho}\left(g h g^{-1}\right)=\chi_{\rho}(h)$.
\{charperm\}
ExErcise 4.2. Calculate the character of the permutation representation of S_{n} (see the first example of Section 1).
\{charreg\}
Example 4.3. If R is the regular representation of a finite group, then $\chi_{R}(g)=0$ for any $g \neq 1$ and $\chi_{R}(1)=|G|$.

Example 4.4. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation of dimension n and assume char $k \neq 2$. Consider the representation $\rho \otimes \rho$ in $V \otimes V$ and the decomposition

$$
V \otimes V=S^{2} V \oplus \Lambda^{2} V
$$

The subspaces $S^{2} V$ and $\Lambda^{2} V$ are G-invariant. Denote by sym and alt the subrepresentations of G in $S^{2} V$ and $\Lambda^{2} V$ respectively. Let us compute the characters $\chi_{\text {sym }}$ and $\chi_{\text {alt }}$.

Let $g \in G$ and denote by $\lambda_{1}, \ldots, \lambda_{n}$ the eigenvalues of ρ_{g} (taken with multiplicities). Then the eigenvalues of alt $_{g}$ are the products $\lambda_{i} \lambda_{j}$ for all $i<j$ while the eigenvalues of sym_{g} are $\lambda_{i} \lambda_{j}$ for $i \leq j$. This leads to

$$
\begin{aligned}
\chi_{\text {sym }}(g) & =\sum_{i \leq j} \lambda_{i} \lambda_{j}, \\
\chi_{\text {alt }}(g) & =\sum_{i<j} \lambda_{i} \lambda_{j} .
\end{aligned}
$$

Hence

$$
\chi_{\mathrm{sym}}(g)-\chi_{\mathrm{alt}}(g)=\sum_{i} \lambda_{i}^{2}=\operatorname{tr} \rho_{g^{2}}=\chi_{\rho}\left(g^{2}\right) .
$$

On the other hand by properties (3) and (4)

$$
\chi_{\mathrm{sym}}(g)+\chi_{\mathrm{alt}}(g)=\chi_{\rho \otimes \rho}(g)=\chi_{\rho}^{2}(g) .
$$

Thus, we get

$$
\begin{equation*}
\chi_{\mathrm{sym}}(g)=\frac{\chi_{\rho}^{2}(g)+\chi_{\rho}\left(g^{2}\right)}{2}, \chi_{\mathrm{alt}}(g)=\frac{\chi_{\rho}^{2}(g)-\chi_{\rho}\left(g^{2}\right)}{2} . \tag{1.1}
\end{equation*}
$$

Lemma 4.5. If $k=\mathbb{C}$ and G is finite, then for any finite-dimensional representation ρ and any $g \in G$ we have

$$
\chi_{\rho}(g)=\overline{\chi_{\rho}\left(g^{-1}\right)} .
$$

Proof. Indeed, $\chi_{\rho}(g)$ is the sum of all the eigenvalues of ρ_{g}. Since g has finite order, every eigenvalue of ρ_{g} is a root of 1 . Therefore the eigenvalues of $\rho_{g^{-1}}$ are the complex conjugates of the eigenvalues of ρ_{g}.
4.2. Orthogonality relations. In this subsection we assume that G is finite and the characteristic of the ground field k is zero. Introduce a non-degenerate symmetric bilinear form on the space of functions $\mathcal{F}(G)$ by the formula

$$
\begin{equation*}
(\varphi, \psi)=\frac{1}{|G|} \sum_{s \in G} \varphi\left(s^{-1}\right) \psi(s) \tag{1.2}
\end{equation*}
$$

If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation, then we denote by V^{G} the subspace of G-invariant vectors, i.e.

$$
V^{G}=\left\{v \in V \mid \rho_{g}(v)=v, \forall g \in G\right\} .
$$

Lemma 4.6. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation, then

$$
\operatorname{dim} V^{G}=\left(\chi_{\rho}, \chi_{\text {triv }}\right)
$$

where $\chi_{\text {triv }}$ denotes the character of the trivial representation, i.e. $\chi_{\text {triv }}(g)=1$ for all $g \in G$.

Proof. Consider the linear operator $P \in \operatorname{End}_{G}(V)$ defined by the formula

$$
P=\frac{1}{|G|} \sum_{g \in G} \rho_{g}
$$

Note that $P^{2}=P$ and $\operatorname{Im} P=V^{G}$. Thus, P is a projector on V^{G}. Since char $k=0$ we have

$$
\operatorname{tr} P=\operatorname{dim} \operatorname{Im} P=\operatorname{dim} V^{G}
$$

On the other hand, by direct calculation we get $\operatorname{tr} P=\left(\chi_{\rho}, \chi_{\text {triv }}\right)$, and the lemma follows.

Note that for two representations $\rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma: G \rightarrow \mathrm{GL}(W)$ we have

$$
\begin{equation*}
\operatorname{Hom}_{k}(V, W)^{G}=\operatorname{Hom}_{G}(V, W)=\left(V^{*} \otimes W\right)^{G} \tag{1.3}
\end{equation*}
$$

Therefore we have the following
Corollary 4.7. One has

$$
\operatorname{dim} \operatorname{Hom}_{G}(V, W)=\left(\chi_{\rho}, \chi_{\sigma}\right)
$$

Proof. The statement is a consequence of the following computation:

$$
\left(\chi_{\rho}, \chi_{\sigma}\right)=\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}\left(g^{-1}\right) \chi_{\sigma}(g)=\frac{1}{|G|} \sum_{g \in G} \chi_{\rho^{*} \otimes \sigma}(g)=\left(\chi_{\rho^{*} \otimes \sigma}, \chi_{t r i v}\right)
$$

The following theorem is usually called the orthogonality relations for characters.

THEOREM 4.8. Let ρ, σ be irreducible representations over a field of characteristic zero.
(a) If $\rho: G \rightarrow G L(V)$ and $\sigma: G \rightarrow G L(W)$ are not isomorphic, then $\left(\chi_{\rho}, \chi_{\sigma}\right)=0$.
(b) Assume that the ground field is algebraically closed. If ρ and σ are equivalent, then $\left(\chi_{\rho}, \chi_{\sigma}\right)=1$.

Proof. By Schur's lemma

$$
\operatorname{Hom}_{G}(V, W)=0
$$

Therefore Corollary 4.7 implies (a).
Assertion (b) follows from Corollary 3.7 (c) and Corollary 4.7.
This theorem has several important corollaries.
\{orth3\}
Corollary 4.9. Let

$$
\rho=m_{1} \rho_{1} \oplus \cdots \oplus m_{r} \rho_{r}
$$

be a decomposition into a sum of irreducible representations, where $m_{i} \rho_{i}$ is the direct sum of m_{i} copies of ρ_{i}. Then $m_{i}=\frac{\left(\chi_{\rho}, \chi_{\rho_{i}}\right)}{\left(\chi_{\rho_{i}}, \chi_{\rho_{i}}\right)}$.

The number m_{i} is called the multiplicity of an irreducible representation ρ_{i} in ρ.
Corollary 4.10. Two finite-dimensional representations ρ and σ are equivalent if and only if their characters coincide.

In the rest of this section we assume that the ground field is algebraically closed.
\{orth4\}
\{exttens\}
\{orth5\}

Corollary 4.11. A representation ρ is irreducible if and only if $\left(\chi_{\rho}, \chi_{\rho}\right)=1$.
Exercise 4.12. Let ρ and σ be irreducible representations of finite groups G and H respectively.
(a) If the ground field is algebraically closed, then the exterior product $\rho \boxtimes \sigma$ is an irreducible representation of $G \times H$.
(b) Give a counterexample to (a) in the case when the ground field is not algebraically closed.

ThEOREM 4.13. Every irreducible representation ρ appears in the regular representation with multiplicity $\operatorname{dim} \rho$.

Proof. The statement is a direct consequence of the following computation

$$
\left(\chi_{\rho}, \chi_{R}\right)=\frac{1}{|G|} \chi_{\rho}(1) \chi_{R}(1)=\operatorname{dim} \rho
$$

Corollary 4.14. Let $\rho_{1}, \ldots, \rho_{r}$ be all (up to isomorphism) irreducible representations of G and $n_{i}=\operatorname{dim} \rho_{i}$. Then

$$
n_{1}^{2}+\cdots+n_{r}^{2}=|G| .
$$

Proof. Indeed,

$$
\operatorname{dim} R=|G|=\chi_{R}(1)=\sum_{i=1}^{r} n_{i} \chi_{\rho_{i}}(1)=\sum_{i=1}^{r} n_{i}^{2}
$$

\{permrep\}
Example 4.15. Let G act on a finite set X and

$$
k(X)=\left\{\sum_{x \in X} b_{x} x \mid b_{x} \in k\right\} .
$$

Define $\rho: G \rightarrow \operatorname{GL}(k(X))$ by

$$
\rho_{g}\left(\sum_{x \in X} b_{x} x\right)=\sum_{x \in X} b_{x} g \cdot x .
$$

It is easy to check that ρ is a representation and

$$
\chi_{\rho}(g)=|\{x \in X \mid g \cdot x=x\}| .
$$

Clearly, ρ contains the trivial subrepresentation. To find the multiplicity of the trivial representation in ρ we have to calculate $\left(1, \chi_{\rho}\right)$:

$$
\left(1, \chi_{\rho}\right)=\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g)=\frac{1}{|G|} \sum_{g \in G} \sum_{g \cdot x=x} 1=\frac{1}{|G|} \sum_{x \in X} \sum_{g \in G_{x}} 1=\frac{1}{|G|} \sum_{x \in X}\left|G_{x}\right|
$$

where

$$
G_{x}=\{g \in G \mid g \cdot x=x\}
$$

Let $X=X_{1} \cup \cdots \cup X_{m}$ be the disjoint union of orbits. Then $\left|G_{x}\right|=\frac{|G|}{\left|X_{i}\right|}$ for each $x \in X_{i}$ and therefore

$$
\left(1, \chi_{\rho}\right)=\frac{1}{|G|} \sum_{i=1}^{m} \sum_{x \in X_{i}} \frac{|G|}{\left|X_{i}\right|}=m
$$

Now let us evaluate $\left(\chi_{\rho}, \chi_{\rho}\right)$:

$$
\left(\chi_{\rho}, \chi_{\rho}\right)=\frac{1}{|G|} \sum_{g \in G}\left(\sum_{g \cdot x=x} 1\right)^{2}=\frac{1}{|G|} \sum_{g \in G} \sum_{g \cdot x=x, g \cdot y=y} 1=\frac{1}{|G|} \sum_{(x, y) \in X \times X}\left|G_{(x, y)}\right| .
$$

Let σ be the representation associated with the action of G on $X \times X$. Then the last formula implies

$$
\left(\chi_{\rho}, \chi_{\rho}\right)=\left(1, \chi_{\sigma}\right)
$$

Thus, ρ is irreducible if and only if $|X|=1$, and ρ has two irreducible components if and only if the action of G on $X \times X$ with removed diagonal is transitive.

4.3. The number of irreducible representations of a finite group.

Definition 4.16. Let

$$
\mathcal{C}(G)=\left\{\varphi \in \mathcal{F}(G) \mid \varphi\left(g h g^{-1}\right)=\varphi(h)\right\} .
$$

Elements of $\mathcal{C}(G)$ are called class functions.
Exercise 4.17. Check that the restriction of (\cdot, \cdot) on $\mathcal{C}(G)$ is non-degenerate.
Theorem 4.18. The characters of irreducible representations of G form an orthonormal basis of $\mathcal{C}(G)$.

Proof. We have to show that if $\varphi \in \mathcal{C}(G)$ and $\left(\varphi, \chi_{\rho}\right)=0$ for any irreducible representation ρ, then $\varphi=0$. The following lemma is straightforward.

Lemma 4.19. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation, $\varphi \in \mathcal{C}(G)$ and

$$
T=\frac{1}{|G|} \sum_{g \in G} \varphi\left(g^{-1}\right) \rho_{g}
$$

Then $T \in \operatorname{End}_{G} V$ and $\operatorname{tr} T=\left(\varphi, \chi_{\rho}\right)$.
Thus, for any irreducible representation ρ we have

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} \varphi\left(g^{-1}\right) \rho_{g}=0 . \tag{1.4}
\end{equation*}
$$

But then the same is true for any representation ρ, since any representation is a direct sum of irreducible representations. Apply (1.4) to the case when $\rho=R$ is the regular representation. Then

$$
\frac{1}{|G|} \sum_{g \in G} \varphi\left(g^{-1}\right) R_{g}(1)=\frac{1}{|G|} \sum_{g \in G} \varphi\left(g^{-1}\right) g=0
$$

Hence $\varphi\left(g^{-1}\right)=0$ for all $g \in G$, i.e. $\varphi=0$.
Corollary 4.20. The number of isomorphism classes of irreducible representations equals the number of conjugacy classes in the group G.

Corollary 4.21. If G is a finite abelian group, then every irreducible representation of G is one-dimensional and the number of irreducible representations is the order of the group G.

For any group G (not necessarily finite) let G^{*} denote the set of all one-dimensional representations of G.

Exercise 4.22. (a) Show that G^{*} is a group with respect to the operation of tensor product.
(b) Show that the kernel of any $\rho \in G^{*}$ contains the commutator $[G, G]$. Hence we have $G^{*} \simeq(G /[G, G])^{*}$.
(c) Show that if G is a finite abelian group, then $G^{*} \simeq G$. (This isomorphism is not canonical.)

ExErcise 4.23. Consider the symmetric group S_{n} for $n \geq 2$.
(a) Prove that the commutator $\left[S_{n}, S_{n}\right]$ coincides with the subgroup A_{n} of all even permutation.
(b) Show that S_{n} has two up to isomorphism one-dimensional representations: the trivial and the sign representation $\epsilon: S_{n} \rightarrow\{1,-1\}$.

ExERCISE 4.24. Let ρ be a one-dimensional representation of a finite group G and σ is some other representation of G. Show that σ is irreducible if and only if $\rho \otimes \sigma$ is irreducible.
4.4. Isotypic components. Consider the decomposition of some representation $\rho: G \rightarrow G L(V)$ into a direct sum of irreducible representations

$$
\rho=m_{1} \rho_{1} \oplus \cdots \oplus m_{r} \rho_{r}
$$

The subspace $W_{i} \simeq V_{i}^{\oplus m_{i}}$ of the representation $m_{i} \rho_{i}$ is called the isotypic component of type ρ_{i} of V.

Lemma 4.25. Let n_{i} denote the dimension of the irreducible representation ρ_{i} and

$$
\pi_{i}:=\frac{n_{i}}{|G|} \sum_{g \in G} \chi_{i}\left(g^{-1}\right) \rho_{g}
$$

Then π_{i} is the projector on the isotypic component W_{i} of type ρ_{i}.
Proof. Define a linear operator on V_{j} by the formula

$$
\pi_{i j}:=\frac{n_{i}}{|G|} \sum_{g \in G} \chi_{i}\left(g^{-1}\right)\left(\rho_{j}\right)_{g}
$$

By construction $\pi_{i j} \in \operatorname{End}_{G}\left(V_{j}\right)$. Corollary 3.7 (c) implies that $\pi_{i j}=\lambda$ Id. By Theorem 4.8

$$
\operatorname{tr} \pi_{i j}=n_{i}\left(\chi_{i}, \chi_{j}\right)=n_{i} \delta_{i j}
$$

Now we write

$$
\pi_{i}=\sum_{j=1}^{r} \pi_{i j} .
$$

Hence

$$
\left.\pi_{i}\right|_{W_{j}}=\delta_{i j} \mathrm{Id}
$$

The statement follows.
4.5. A faithful representation. A representation $\rho: G \rightarrow G L(V)$ is called faithful if ρ is injective.

THEOREM 4.26. Let $\rho: G \rightarrow G L(V)$ be a faithful representation of a finite group G. Then every irreducible representation of G occurs in some tensor power of ρ.

Proof. We have to show that for any irreducible representation ρ_{i} there exists m such that $\left(\chi_{\rho}^{m}, \chi_{i}\right) \neq 0$. Assume that the statement is false for some i. Consider the generating functions

$$
\sum_{m=0}^{\infty} \chi_{\rho}^{m}(g) t^{m}=\frac{1}{1-t \chi_{\rho}(g)} .
$$

By our assumption for some i we have

$$
\sum_{g \in G} \frac{\chi_{i}\left(g^{-1}\right)}{1-t \chi_{\rho}(g)}=0 .
$$

Rewrite the above identity in the form

$$
\frac{n_{i}}{1-t n}=-\sum_{g \in G \backslash\{1\}} \frac{\chi_{i}\left(g^{-1}\right.}{1-t \chi_{\rho}(g)},
$$

where n denotes the dimension of ρ.
Both sides of the above identity are rational functions. If they are equal then $\chi_{\rho}(g)=n$ for at least one $g \neq 1$. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be the eigenvalues of ρ_{g}. Since g has finite order, all ε_{i}-s are roots of 1 . The condition

$$
\chi_{\rho}(g)=\varepsilon_{1}+\cdots+\varepsilon_{n}=n
$$

implies $\varepsilon_{1}=\cdots=\varepsilon_{n}=1$. Hence ρ_{g} is the identity operator, which contradict the assumption that ρ is faithful.

5. Examples.

In the examples below we assume that the ground field is \mathbb{C}.
Example 5.1. Let $G=S_{3}$. There are three conjugacy classes in G, each class is denoted by some element in this class: 1,(12),(123). Therefore there are three irreducible representations, denote their characters by χ_{1}, χ_{2} and χ_{3}. It is not difficult to see that S_{3} has the following table of characters

	1	(12)	(123)
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

The characters of one-dimensional representations are given in the first and the second row (those are the trivial representation and the sign representation, see Exercise 4.23), the last character χ_{3} can be obtained by using the identity

$$
\begin{equation*}
\chi_{\text {perm }}=\chi_{1}+\chi_{3}, \tag{1.5}
\end{equation*}
$$

where $\chi_{\text {perm }}$ stands for the character of the permutation representation, see Exercise 4.2.

Example 5.2. Let $G=S_{4}$. In this case we have the following character table (in the first row we write the number of elements in each conjugacy class).

	1	6	8	3	6
	1	(12)	(123)	$(12)(34)$	(1234)
χ_{1}	1	1	1	1	1
χ_{2}	1	-1	1	1	-1
χ_{3}	3	1	0	-1	-1
χ_{4}	3	-1	0	-1	1
χ_{5}	2	0	-1	2	0

The first two rows are the characters of the one-dimensional representations. The third one can again be obtained from (1.5). When we take the tensor product $\rho_{4}:=$ $\rho_{2} \otimes \rho_{3}$ we get a new 3 -dimensional irreducible representation, see Exercise 4.24 whose character χ_{4} is equal to the product $\chi_{2} \chi_{3}$. The last character can be obtained through Theorem 4.8. An alternative way to describe ρ_{5} is to consider S_{4} / K_{4}, where

$$
K_{4}=\{1,(12)(34),(13)(24),(14)(23)\}
$$

is the Klein subgroup. Observe that $S_{4} / K_{4} \cong S_{3}$, and therefore the two-dimensional representation σ of S_{3} can be lifted to a representation of S_{4} by

$$
\rho_{5}=\sigma \circ p,
$$

where $p: S_{4} \rightarrow S_{3}$ is the natural projection.
Example 5.3. Now let $G=A_{5}$. There are 5 irreducible representations of G over \mathbb{C}. Here is the character table

	1	20	15	12	12
	1	(123)	$(12)(34)$	(12345)	(12354)
χ_{1}	1	1	1	1	1
χ_{2}	4	1	0	-1	-1
χ_{3}	5	-1	1	0	0
χ_{4}	3	0	-1	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$
χ_{5}	3	0	-1	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$

To obtain χ_{2} we use the permutation representation and (1.5) once more. In order to construct new irreducible representations we consider the characters $\chi_{\text {sym }}$ and $\chi_{\text {alt }}$ of the second symmetric and the second exterior powers of ρ_{2} respectively. Using (1.1) we compute

	1	(123)	$(12)(34)$	(12345)	(12354)
$\chi_{\text {sym }}$	10	1	2	0	0
$\chi_{\text {alt }}$	6	0	-2	1	1

It is easy to check that

$$
\left(\chi_{\text {sym }}, \chi_{\text {sym }}\right)=3,\left(\chi_{\text {sym }}, \chi_{1}\right)=\left(\chi_{\text {sym }}, \chi_{2}\right)=1 .
$$

Therefore

$$
\chi_{3}=\chi_{\text {sym }}-\chi_{1}-\chi_{2}
$$

is the character of another irreducible representation of dimension 5 . We still miss two.

To find then we use $\chi_{\text {alt }}$. We have

$$
\left(\chi_{\text {alt }}, \chi_{\text {alt }}\right)=2,\left(\chi_{\text {alt }}, \chi_{1}\right)=\left(\chi_{\text {alt }}, \chi_{2}\right)=\left(\chi_{\text {alt }}, \chi_{3}\right)=0 .
$$

Therefore $\chi_{\text {alt }}=\chi_{4}+\chi_{5}$ is the sum of two irreducible characters. First we compute the dimensions of ρ_{4} and ρ_{5} using

$$
1^{2}+4^{2}+5^{2}+n_{4}^{2}+n_{5}^{2}=60
$$

We obtain $n_{4}=n_{5}=3$.
Next, we use Theorem 4.8 to compute some other values of χ_{4} and χ_{5}. The equations

$$
\left(\chi_{4}, \chi_{1}+\chi_{2}\right)=0,\left(\chi_{4}, \chi_{3}\right)=0
$$

imply

$$
\chi_{4}((123))=0, \chi_{4}((12)(34))=-1 .
$$

The same argument applied to χ_{5} gives

$$
\chi_{5}((123))=0, \chi_{5}((12)(34))=-1 .
$$

Finally let us denote

$$
x=\chi_{4}((12345)), y=\chi_{4}((12354))
$$

and write down the equation arising from $\left(\chi_{4}, \chi_{4}\right)=1$:

$$
\frac{1}{60}\left(9+15+12 x^{2}+12 y^{2}\right)=1
$$

or more simply

$$
\begin{equation*}
x^{2}+y^{2}=3 . \tag{1.6}
\end{equation*}
$$

On the other hand, $\left(\chi_{4}, \chi_{1}\right)=0$, which gives

$$
3-15+12(x+y)=0
$$

or simply

$$
\begin{equation*}
x+y=1 . \tag{1.7}
\end{equation*}
$$

The system (1.6), (1.7) has two solutions

$$
x_{1}=\frac{1+\sqrt{5}}{2}, y_{1}=\frac{1-\sqrt{5}}{2}, \quad x_{2}=\frac{1-\sqrt{5}}{2}, y_{2}=\frac{1+\sqrt{5}}{2} .
$$

They give the characters χ_{4} and χ_{5}.
Now that we have the character table of A_{5} we would like to explain a geometric construction related to it. First, we observe that the previous constructions work over the ground field \mathbb{R} of real numbers. In particular, the representations ρ_{4} and ρ_{5} are defined over \mathbb{R}. Indeed, they are subrepresentations of the second exterior power of ρ_{2} and by Lemma 4.25 the corresponding projectors are defined over \mathbb{R}. Therefore we have an action of A_{5} in \mathbb{R}^{3}. Our next step is to show that this action preserves the scalar product. In a more general context we have the following result.

Lemma 5.4. Let V be a finite-dimensional vector space over \mathbb{R} and ρ be a representation of some finite group G in V. There exists a positive definite scalar product $B: V \times V \rightarrow \mathbb{R}$ such that $B\left(\rho_{g} u, \rho_{g} v\right)=B(u, v)$ for any $u, v \in V$ and $g \in G$.

Remark. Such a scalar product is called invariant.
Proof. Let $C: V \times V \rightarrow \mathbb{R}$ be some positive definite scalar product. Set

$$
B(u, v):=\sum_{g \in G} C\left(\rho_{g} u, \rho_{g} v\right) .
$$

Then B satisfies the conditions of the lemma.
Dodecahedron. We have constructed two 3-dimensional irreducible representations of A_{5}, we can use any of them to construct a dodecahedron, i.e. a regular polyhedron with 12 pentagonal faces and 20 vertices. For instance, let us take $\rho=\rho_{4}$. By Lemma 5.4 we may assume that for all $g \in G, \rho_{g}$ acts on \mathbb{R}^{3} by an orthogonal
matrix. We claim that ρ_{g} preserves the orientation in \mathbb{R}^{3}, in other words the determinant $\operatorname{det} \rho_{g}$ is 1 for all $g \in G$. We already know that $\operatorname{det} \rho_{g}= \pm 1$. Therefore if g is of odd order the determinant is necessarily 1 . If g is of even order, it belongs to the conjugacy class of $(12)(34)$. Hence it is an involution with trace -1 , thus a rotation by 180°. Recall that any isometry in \mathbb{R}^{3} preserving orientation is a rotation.

Let $g=(123)$, then it is of order 3, hence ρ_{g} is a rotation by 120°. Pick up a non-zero x fixed by ρ_{g}. Consider its orbit $S=\left\{\rho_{g}(x) \mid g \in A_{5}\right\}$. Since the stabilizer of x in A_{5} is the cyclic group generated by ρ_{g}, we know that S has 20 points. Moreover, all points of S lie on a sphere, and hence the convex hull Δ of S is a polytope with vertices in S. We will show that Δ is a regular polytope whose faces are regular pentagons.

Let $h=(12345)$. Consider the subgroup $H \subset A_{5}$ generated by h. Since ρ_{h} is a rotation by 72°. Without loss of generality we may assume the axis of ρ_{h} is vertical. Hence the different orbits of H in S lie on 4 horizontal planes. The top and the bottom plane sections are faces of Δ. Thus, we can conclude that at least some faces of Δ are regular pentagons.

Next, we claim that any vertex of Δ belongs to exactly three pentagonal faces. Indeed, it follows from the fact that the stabilizer of any $s \in S$ has order three and it acts on the set of pentagonal faces containing s.

Finally, assume there is a face f of Δ which is not a regular pentagon. Then at least one angle of f is not less than 60°. Denote this angle by α and the corresponding vertex by s. Consider the stabilizer of s in A_{5}. It is a cyclic group of order 3 acting on the set of faces containing s. Thus, there are at least three plane angles at s which are equal to α. But then the total sum of all plane angles at s should be at least $3 \times 72^{\circ}+3 \alpha$ which is bigger that 360°, thus, a contradiction. Thus, all the faces of Δ are regular pentagons. Hence the total number of faces is 12 .

Note that we have also proved that the group of rotations of a dodecahedron is isomorphic to A_{5}.

Exercise 5.5. Let D_{4} denote the dihedral group of order 8 and H_{8} denote the multiplicative subgroup of quaternions consisting of $\pm 1, \pm i, \pm j, \pm k$. Compute the character tables of both groups and verify that those tables coincide.

6. Invariant forms

We assume here that char $k=0$. Recall that a bilinear form on a vector space V is a map $B: V \times V \rightarrow k$ satisfying
(1) $B(c v, d w)=c d B(v, w)$;
(2) $B\left(v_{1}+v_{2}, w\right)=B\left(v_{1}, w\right)+B\left(v_{2}, w\right)$;
(3) $B\left(v, w_{1}+w_{2}\right)=B\left(v, w_{1}\right)+B\left(v, w_{2}\right)$.

One can also think about a bilinear form as a vector in $V^{*} \otimes V^{*}$ or as the homomorphism $B: V \rightarrow V^{*}$ given by the formula $B_{v}(w)=B(v, w)$. A bilinear form is symmetric if $B(v, w)=B(w, v)$ and skew-symmetric if $B(v, w)=-B(w, v)$. Every
bilinear form can be uniquely written as a sum $B=B^{+}+B^{-}$where B^{+}is symmetric and B^{-}skew-symmetric form,

$$
B^{ \pm}(v, w)=\frac{B(v, w) \pm B(w, v)}{2}
$$

Such a decomposition corresponds to the decomposition
\{equ1\}

$$
\begin{equation*}
V^{*} \otimes V^{*}=S^{2} V^{*} \oplus \Lambda^{2} V^{*} \tag{1.8}
\end{equation*}
$$

A bilinear form is non-degenerate if $B: V \rightarrow V^{*}$ is an isomorphism, in other words if $B(v, V)=0$ implies $v=0$.

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation. We say that a bilinear form B on V is G-invariant if

$$
B\left(\rho_{g} v, \rho_{g} w\right)=B(v, w)
$$

for any $v, w \in V, g \in G$. If there is no possible confusion we use the word invariant instead of G-invariant.

Exercise 6.1. Check the following
(1) If $W \subset V$ is an invariant subspace, then $W^{\perp}=\{v \in V \mid B(v, W)=0\}$ is invariant. In particular, Ker B is invariant.
(2) $B: V \rightarrow V^{*}$ is invariant if and only if $B \in \operatorname{Hom}_{G}\left(V, V^{*}\right)$.
(3) If B is invariant, then B^{+}and B^{-}are invariant.

Lemma 6.2. Let $\rho: G \rightarrow G L(V)$ be an irreducible representation of G, then any non-zero invariant bilinear form on V is non-degenerate. If k is algebraically closed, then such a bilinear form is unique up to scalar multiplication.

Remark. Lemma 6.2 holds for a field of arbitrary characteristic.
Proof. Follows from Exercise 6.1 (2) and Schur's lemma.
Lemma 6.3. Let $\rho: G \rightarrow G L(V)$ be an irreducible representation of G. Then it admits a non-zero invariant form if and only if $\chi_{\rho}(g)=\chi_{\rho}\left(g^{-1}\right)$ for any $g \in G$.

Proof. Since every nontrivial invariant bilinear form establishes an isomorphism between ρ and ρ^{*}, the statement follows from Corollary 4.10.

Lemma 6.4. (a) If k is algebraically closed, then every non-zero invariant bilinear form on an irreducible representation ρ is either symmetric or skew-symmetric.
(b) Define

$$
m_{\rho}=\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}\left(g^{2}\right)
$$

Then $m_{\rho}=1,0$ or -1 .
(c) If $m_{\rho}=0$, then ρ does not admit an invariant form. If $m_{\rho}=1$ (resp. $m_{\rho}=-1$), then ρ admits a symmetric (resp. skew-symmetric) invariant form.

Proof. First, (a) is a consequence of Lemma 6.2 and Exercise 6.1.
Let us prove (b) and (c). Recall that $\rho \otimes \rho=\rho_{\text {alt }} \oplus \rho_{\text {sym }}$. Using 1.1 we obtain

$$
\begin{aligned}
& \left(\chi_{\text {sym }}, \chi_{\text {triv }}\right)=\frac{1}{|G|} \sum_{g \in G} \frac{\chi_{\rho}^{2}(g)+\chi_{\rho}\left(g^{2}\right)}{2}, \\
& \left(\chi_{\text {alt }}, \chi_{\text {triv }}\right)=\frac{1}{|G|} \sum_{g \in G} \frac{\chi_{\rho}^{2}(g)-\chi_{\rho}\left(g^{2}\right)}{2} .
\end{aligned}
$$

Note that

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}^{2}(g)=\left(\chi_{\rho}, \chi_{\rho^{*}}\right)
$$

Therefore

$$
\begin{aligned}
& \left(\chi_{\text {sym }}, \chi_{\text {triv }}\right)=\frac{\left(\chi_{\rho}, \chi_{\rho^{*}}\right)+m_{\rho}}{2} \\
& \left(\chi_{\text {alt }}, \chi_{\text {triv }}\right)=\frac{\left(\chi_{\rho}, \chi_{\rho^{*}}\right)-m_{\rho}}{2}
\end{aligned}
$$

We have the folowing trichotomy

- ρ does not have an invariant form, if and only if ρ is not isomorphic to ρ^{*}. In this case $\left(\chi_{\rho}, \chi_{\rho^{*}}\right)=0$ and $\left(\chi_{\text {sym }}, \chi_{\text {triv }}\right)=\left(\chi_{\text {alt }}, \chi_{\text {triv }}\right)=0$. Therefore $m_{\rho}=0$.
- ρ has a symmetric invariant form if and only if $\left(\chi_{\rho}, \chi_{\rho^{*}}\right)=1$ and $\left(\chi_{\text {sym }}, \chi_{\text {triv }}\right)=$ 1. This implies $m_{\rho}=1$.
- ρ admits a skew-symmetric invariant if and only if $\left(\chi_{\rho}, \chi_{\rho^{*}}\right)=1$ and $\left(\chi_{\text {alt }}, \chi_{\text {triv }}\right)=$ 1. This implies $m_{\rho}=1$.

Let $k=\mathbb{C}$. An irreducible representation of a finite group G is called real if $m_{\rho}=1$, complex if $m_{\rho}=0$ and quaternionic if $m_{\rho}=-1$.

Remark. Since $\chi_{\rho}\left(s^{-1}\right)=\bar{\chi}_{\rho}(s)$, then χ_{ρ} takes only real values for real and quaternionic representations. If ρ is complex there is at least one $g \in G$ such that $\chi_{\rho}(g) \notin \mathbb{R}$. This terminology will become clear in Section 8.

Exercise 6.5. Show that
(a) All irreducible representation of S_{4} are real.
(b) All non-trivial irreducible representations of \mathbb{Z}_{3} are complex.
(c) The two-dimensional representation of the quaternionic group H_{8} is quaternionic (see Exercise 5.5).

Exercise 6.6. Assume that the order of G be odd. Show that all non-trivial irreducible representation of G are complex. (Hint: prove that $m_{\rho}=\left(\chi_{\rho}, \chi_{\text {triv }}\right)$.)

7. Representations over \mathbb{R}

Let us recall that by Lemma 5.4 every representation of a finite group over \mathbb{R} admits an invariant positive definite scalar product. Assume the representation $\rho: G \rightarrow G L(V)$ is irreducible. Denote by $B(\cdot, \cdot)$ an invariant scalar product and let $Q(\cdot, \cdot)$ denote another invariant symmetric form on V. These two forms can be silmultaneously diagonalized. Therefore there exists $\lambda \in \mathbb{R}$, such that $\operatorname{Ker}(Q-\lambda B) \neq 0$. Since $\operatorname{Ker}(Q-\lambda B) \neq 0$ is G-invariant and ρ is irreducible, this implies $Q=\lambda B$. There we have
\{bilinear3\}
\{frobenius $\}$
THEOREM 7.2. Let $\mathbb{R} \subset K$ be a division ring and a finite-dimensional algebra over \mathbb{R}. Then \mathbb{K} is isomorphic to \mathbb{R}, \mathbb{C} or \mathbb{H}.

Proof. If K is a field, then $K \cong \mathbb{R}$ or \mathbb{C}, because $\mathbb{C}=\overline{\mathbb{R}}$ and $[\mathbb{C}: \mathbb{R}]=2$.
Assume that K is not commutative. Then it contains a subfield isomorphic to \mathbb{C} obtained by taking $x \in K \backslash \mathbb{R}$ and considering $\mathbb{R}[x]$. Therefore without loss of generality we may assume $\mathbb{R} \subset \mathbb{C} \subset K$.

Consider the involutive \mathbb{C}-linear automoprhism of K defined by the formula

$$
f(x)=i x i^{-1}
$$

Look at the eigenspace decomposition of K with respect to f

$$
K=K_{1} \oplus K_{-1}
$$

where

$$
K_{ \pm 1}=\{x \in K \mid f(x)= \pm x\}
$$

One can easily check the following inclusions

$$
K_{1} K_{1} \subset K_{1}, \quad K_{-1} K_{-1} \subset K_{1}, \quad K_{1} K_{-1} \subset K_{-1}, \quad K_{-1} K_{1} \subset K_{-1}
$$

The eigenspace K_{1} coincides with the centralizer of \mathbb{C} in K. Therefore $K_{1}=\mathbb{C}$.
Choose a non-zero $y \in K^{-}$. The left multiplication by y defines an isomorphism of \mathbb{R} vector spaces K_{1} and K_{-1}. Hence $\operatorname{dim}_{\mathbb{R}} K_{1}=\operatorname{dim}_{\mathbb{R}} K_{-1}=2$ and $\operatorname{dim} K=4$.

For any $z=a+b i \in K_{1}$ and any $w \in K_{-1}$, we have

$$
w \bar{z}=w a-w b i=a w+b i w=z w .
$$

Since $w^{2} \in \mathbb{C}$ and commutes with w, we have $w^{2} \in \mathbb{R}$. We claim that w^{2} is negative since otherwise $w^{2}=c^{2}$ for some real c and $(w-c)(w+c)=0$, which is impossible, since K is a division ring. Set $j:=\frac{w}{\sqrt{-w^{2}}}$. Then $j^{2}=-1$ and $i j=-j i$. So if we set $k:=i j$, then $1, i, j, k$ form the standard basis of \mathbb{H}.

Lemma 7.3. Let $\rho: G \rightarrow \operatorname{GL}(V)$ be an irreducible representation over \mathbb{R}, then there are three possibilities:
(1) $\operatorname{End}_{G}(V)=\mathbb{R}$ and $\left(\chi_{\rho}, \chi_{\rho}\right)=1$;
(2) $\operatorname{End}_{G}(V) \cong \mathbb{C}$ and $\left(\chi_{\rho}, \chi_{\rho}\right)=2$;
(3) $\operatorname{End}_{G}(V) \cong \mathbb{H}$ and $\left(\chi_{\rho}, \chi_{\rho}\right)=4$.

Proof. Corollary 3.7 and Theorem 7.2 imply that $\operatorname{End}_{G}(V)$ is isomorphic to \mathbb{R}, \mathbb{C} or $\mathbb{H},\left(\chi_{\rho}, \chi_{\rho}\right)=1,2$ or 4 as follows from Corollary 4.7.
\{real\}

8. Relationship between representations over \mathbb{R} and over \mathbb{C}

Hermitian invariant form. Recall that a Hermitian form is a binary additive form on a complex vector space satisfying the conditions

$$
H(a v, b w)=\bar{a} b H(v, w), H(w, v)=\bar{H}(v, w) .
$$

The following Lemma can be proved exactly as Lemma 7.1.
Lemma 8.1. Every representation of a finite group over \mathbb{C} admits a positivedefinite invariant Hermitian form. If the representation is irreducible, then any two invariant Hermitian forms on it are proportional.

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation of dimension n over \mathbb{C}. Denote by $V^{\mathbb{R}}$ the space V considered as a vector space over \mathbb{R} of dimension $2 n$. Denote by $\rho^{\mathbb{R}}$ the representation of G in $V^{\mathbb{R}}$.

Exercise 8.2. Show that

$$
\chi_{\rho^{\mathbb{R}}}=\chi_{\rho}+\bar{\chi}_{\rho} .
$$

The exercise implies that $\left(\chi_{\rho^{\mathbb{R}}}, \chi_{\rho^{\mathbb{R}}}\right)$ is either 2 or 4 . Hence $\operatorname{dim} \operatorname{End}_{G}\left(V^{\mathbb{R}}\right)$ is either 2 or 4 . Moreover, \mathbb{C} is a self-centralizing subalgebra in $\operatorname{End}_{G}\left(V^{\mathbb{R}}\right)$. Therefore $\operatorname{End}_{G}\left(V^{\mathbb{R}}\right)$ is isomorphic to \mathbb{C}, \mathbb{H} or to the ring $M_{2}(\mathbb{R})$ of real matrices of size 2×2.

Proposition 8.3. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be an irreducible representation over \mathbb{C}. Then one of the follwoing three cases occur.
(1) $\operatorname{End}_{G}\left(V^{\mathbb{R}}\right) \simeq M_{2}(\mathbb{R})$. Then there exists a basis of V such that the matrices ρ_{g} for all $g \in G$ have real entries. In this case V admits an invariant scalar product.
(2) $\operatorname{End}_{G}\left(V^{\mathbb{R}}\right) \simeq \mathbb{C}$. Then ρ is complex, i.e. ρ does not admit any invariant bilinear form.
(3) $\operatorname{End}_{G}\left(V^{\mathbb{R}}\right) \simeq \mathbb{H}$. Then ρ admits an invariant skew-symmetric form.

Proof. The statement (1) follows from Lemma 7.1. For (2) use Exercise 8.3. Since $\left(\chi_{\rho^{\mathbb{R}}}, \chi_{\rho_{\mathbb{R}}}\right)=2$ by Lemma 7.3, then $\chi_{\rho} \neq \bar{\chi}_{\rho}$, and therefore ρ is complex.

Finally let us prove (3). Let $j \in \operatorname{End}_{G}\left(V^{\mathbb{R}}\right)=\mathbb{H}$, then $j(b v)=\bar{b} v$ for all $b \in \mathbb{C}$. Let H be a positive-definite invariant Hermitian form on V. Then

$$
Q(v, w)=H(j w, j v)
$$

is another invariant positive-definite Hermitian form. By Lemma $8.1 Q=\lambda H$ and λ should be positive because Q is also positive definite. Since $j^{2}=-1$, one has $\lambda^{2}=1$ and therefore $\lambda=1$. Thus,

$$
H(v, w)=H(j w, j v)
$$

Set

$$
B(v, w)=H(j v, w)
$$

Then B is a bilinear invariant form, and

$$
B(w, v)=H(j w, v)=H\left(j v, j^{2} w\right)=-H(j v, w)=-B(v, w)
$$

hence B is skew-symmetric.
\{realcor\}
Corollary 8.4. Let σ be an irreducible representation of G over \mathbb{R}. There are three possibilities for σ
(1) $\chi_{\sigma}=\chi_{\rho}$ for some real representation ρ of G over \mathbb{C};
(2) $\chi_{\sigma}=\chi_{\rho}+\bar{\chi}_{\rho}$ for some complex representation ρ of G over \mathbb{C};
(3) $\chi_{\sigma}=2 \chi_{\rho}$ for some quaternionic representation ρ of G over \mathbb{C}.

Theorem 8.5. Let G be a finite group, r denote the number of conjugacy classes and s denote the number of classes which are stable under inversion. Then $\frac{r+s}{2}$ is the number of irreducible representations of G over \mathbb{R}.

Proof. Recall that $\mathcal{C}(G)$ is the space of complex valued class functions on G. Consider the involution $\theta: \mathcal{C}(G) \rightarrow \mathcal{C}(G)$ given by

$$
\theta \varphi(g)=\varphi\left(g^{-1}\right)
$$

An easy calculation shows that $\operatorname{dim} \mathcal{C}(G)^{\theta}=s+\frac{r-s}{2}=\frac{r+s}{2}$.
Denote by $\chi_{1}, \ldots, \chi_{r}$ the irreducible characters of G over \mathbb{C}. Recall that $\chi_{1}, \ldots, \chi_{r}$ form a basis of $\mathcal{C}(G)$. Observe that for any character χ_{ρ}

$$
\theta\left(\chi_{\rho}\right)=\chi_{\rho^{*}} .
$$

Therefore θ permutes irreducible characters $\chi_{1}, \ldots, \chi_{r}$. Corollary 8.4 implies that the number of irreducible representations of G over \mathbb{R} equals the number of selfdual irreducible representations over \mathbb{C} plus half the number of those which are not self-dual. Therefore this number is equal to $\operatorname{dim} \mathcal{C}(G)^{\theta}$.

CHAPTER 2

Modules with applications to finite groups

1. Modules over associative rings

1.1. The notion of module.

Definition 1.1. Let R be an associative ring with identity element $1 \in R$. An abelian group M is called a (left) R-module if there is a map $R \times M \rightarrow M$, $(a, m) \mapsto a m$ such that for all $a, b \in R$ and $m, n \in M$ we have
(1) $(a b) m=a(b m)$;
(2) $1 m=m$;
(3) $(a+b) m=a m+b m$;
(4) $a(m+n)=a m+a n$.

One can define in a similar way a right R-module. Unless otherwise stated we only consider left modules and we say module for left module.

Example 1.2. If R is a field then R-modules are vector spaces over R.
Example 1.3. Let G be a group and $k(G)$ be its group algebra over k. Then every $k(G)$-module V is a vector space over k equipped with a G-action. Set

$$
\rho_{g} v:=g v
$$

for all $g \in G \subset k(G), v \in V$. This defines a representation $\rho: G \rightarrow G L(V)$.
Conversely, if V is a vector space over k and $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation, the formula

$$
\left(\sum_{g \in G} a_{g} g\right) v:=\sum_{g \in G} a_{g} \rho_{g} v
$$

defines a $k(G)$-module structure on V.
In other words, to study representations of G over k is exactly the same as to study $k(G)$-modules. Hence from now on we will talk indifferently of $k(G)$-modules, representations of G over k or just simply G-modules over k.

Definition 1.4. Let M be an R-module. A submodule $N \subset M$ is a subgroup which is invariant under the R-action. If $N \subset M$ is a submodule then the quotient M / N has a natural R-module structure. A non-zero module M is simple or irreducible if all submodules are either zero or M.

REMARK 1.5. Sums and intersections of submodules are submodules.

Example 1.6. If R is an arbitrary ring, then R is a left R-module with action given by left multiplication. Its submodules are the left ideals.

Let $\left\{M_{j}\right\}_{j \in J}$ be a family of R-modules. We define the direct sum $\bigoplus_{j \in J} M_{j}$ and the direct product $\prod_{j \in J} M_{j}$ in the obvious way. An R-module is $f r e e$ if it is isomophic to a direct sum of I copies of R, (I can be infinite).

Exercise 1.7. If R is a division ring, then every non-zero R-module is free.
Exercise 1.8. Let $R=\mathbb{Z}$ be the ring of integers.
(a) Show that any simple \mathbb{Z}-module is isomorphic to $\mathbb{Z} / p \mathbb{Z}$ for some prime p.
(b) Let M be a \mathbb{Z}-module. We call $m \in M$ a torsion element if $r m=0$ for some non-zero $r \in \mathbb{Z}$. Prove that the subset $M^{\text {tor }}$ of all torsion elements is a submodule.
(c) We say M is torsion free if $M^{\text {tor }}=0$. Prove that $M / M^{\text {tor }}$ is torsion free.
(d) Give an example of a non-zero torsion free \mathbb{Z}-module which is not free.

Let M and N be R-modules. In the same way as in the group case we define the abelian group $\operatorname{Hom}_{R}(M, N)$ of R-invariant homomorphisms from M to N and the ring $\operatorname{End}_{R}(M)$ of R-invariant endomorphisms of M. In particular if k is a field and V is an n-dimensional vector space, then $\operatorname{End}_{k}(V)$ is the matrix ring $M_{n}(k)$.

In this context we have the following formulation of Schur's Lemma. Its proof is the same as in the group case.

Lemma 1.9. Let M and N be simple R-modules. If $\varphi \in \operatorname{Hom}_{R}(M, N)$ is not zero then it is an isomorphism.

If M is a simple module, then $\operatorname{End}_{R}(M)$ is a division ring.
1.2. A group algebra is a product of matrix rings. Recall that for every ring R one defines R^{op} as the ring with the same abelian group structure together with the new multiplication $*$ given by

$$
a * b=b a
$$

Lemma 1.10. The ring $\operatorname{End}_{R}(R)$ is isomorphic to $R^{o p}$.
Proof. For all $a \in R$, define $\varphi_{a} \in \operatorname{End}(R)$ by the formula

$$
\varphi_{a}(x)=x a
$$

It is easy to check that

- $\varphi_{a} \in \operatorname{End}_{R}(R)$,
- $\varphi_{b a}=\varphi_{a} \circ \varphi_{b}$.

In this way we have constructed a homomorphism

$$
\varphi: R^{\mathrm{op}} \rightarrow \operatorname{End}_{R}(R)
$$

All we have to show that this is an isomorphism.
Injectivity: Assume $\varphi_{a}=\varphi_{b}$. Then $\varphi_{a}(1)=\varphi_{b}(1)$, hence $a=b$.
Surjectivity: let $\gamma \in \operatorname{End}_{R}(R)$. One has for all $x \in R$

$$
\gamma(x)=\gamma(x 1)=x \gamma(1) .
$$

Therefore $\gamma=\varphi_{\gamma(1)}$.
Lemma 1.11. Let $\rho_{i}: G \rightarrow \mathrm{GL}\left(V_{i}\right), i=1, \ldots, l$, be a finite set of pairwise nonisomorphic irreducible representations of a finite group G over an algebraically closed field k, and let

$$
V=V_{1}^{\oplus m_{1}} \oplus \cdots \oplus V_{l}^{\oplus m_{l}}
$$

Then

$$
\operatorname{End}_{G}(V) \cong M_{m_{1}}(k) \times \cdots \times M_{m_{l}}(k) .
$$

Proof. If φ is an element of $\operatorname{End}_{G}(V)$, then Schur's Lemma implies that φ preserves isotypic components. Therefore we have an isomorphism

$$
\operatorname{End}_{G}(V) \cong \operatorname{End}_{G}\left(V_{1}^{\oplus m_{1}}\right) \times \cdots \times \operatorname{End}_{G}\left(V_{l}^{\oplus m_{l}}\right)
$$

Thus it suffices to prove the following
Lemma 1.12. Let G be a finite group, k be an algebraically closed field and W be a simple $k(G)$-module. Then $\operatorname{End}_{G}\left(W^{\oplus m}\right)$ is isomorphic to the matrix ring $M_{m}(k)$.

Proof. For all $i, j=1, \ldots, m$ denote by p_{j} the canonical projection of $W^{\oplus m}$ onto its j-th factor and by q_{i} the embedding of W as the i-th factor into $W^{\oplus m}$. Take $\varphi \in \operatorname{End}_{G}\left(W^{\oplus m}\right)$. For all $i, j=1, \ldots, m$ denote by $\varphi_{i j}$ the composition map

$$
W \xrightarrow{q_{j}} W^{\oplus m} \xrightarrow{\varphi} W^{\oplus m} \xrightarrow{p_{i}} W .
$$

Since $\varphi_{i j} \in \operatorname{End}_{G}(W)$, Schur's Lemma implies

$$
\varphi_{i j}=c_{i j} \operatorname{Id}_{W}
$$

for some $c_{i j} \in k$. Thus we obtain a map

$$
\Phi: \operatorname{End}\left(W^{\oplus m}\right) \rightarrow M_{m}(k)
$$

Moreover, φ can be written uniquely as

$$
\varphi=\sum_{i, j=1}^{m} c_{i j} q_{i} \circ p_{j} .
$$

If ψ is another element in $\operatorname{End}\left(W^{\oplus m}\right)$ we write

$$
\psi=\sum_{i, j=1}^{m} d_{i j} q_{i} \circ p_{j}
$$

Then we have, for the composition

$$
\varphi \circ \psi=\sum_{i, j, k=1}^{m} c_{i k} d_{k j} q_{i} \circ p_{j} .
$$

This shows that Φ is a homomorphism of rings. Injectivity and surjectivity of Φ are direct consequences of the definition.

Theorem 1.13. Let G be a finite group. Assume k is algebraically closed and char $k=0$. Then

$$
k(G) \cong M_{n_{1}}(k) \times \cdots \times M_{n_{r}}(k),
$$

where n_{1}, \ldots, n_{r} are the dimensions of all up to isomorphism irreducible representations.

Proof. By Lemma 1.10

$$
\operatorname{End}_{k(G)}(k(G)) \cong k(G)^{\mathrm{op}} .
$$

Moreover, $g \mapsto g^{-1}$ gives an isomorphism

$$
k(G)^{\mathrm{op}} \cong k(G) .
$$

On the other hand, by Theorem 4.13 Chapter 1 one has

$$
k(G)=V_{1}^{\oplus n_{1}} \oplus \cdots \oplus V_{r}^{\oplus n_{r}},
$$

where V_{1}, \ldots, V_{r} are simple G-modules. Applying Lemma 1.11 we get the theorem.

2. Finitely generated modules and Noetherian rings.

Definition 2.1. An R-module M is finitely generated if there exist finitely many elements $x_{1}, \ldots, x_{n} \in M$ such that $M=R x_{1}+\cdots+R x_{n}$.

Lemma 2.2. Let

$$
0 \rightarrow N \xrightarrow{q} M \xrightarrow{p} L \rightarrow 0
$$

be an exact sequence of R-modules.
(a) If M is finitely generated, then L is finitely generated.
(b) If N and L are finitely generated, then M is finitely generated.

Proof. The first assertion is obvious. For the second let

$$
L=R x_{1}+\cdots+R x_{n}, \quad N=R y_{1}+\cdots+R y_{m}
$$

then one has $M=R p^{-1}\left(x_{1}\right)+\cdots+R p^{-1}\left(x_{n}\right)+R q\left(y_{1}\right)+\cdots+R q\left(y_{m}\right)$.
Lemma 2.3. Let R be a ring. The following conditions are equivalent
(1) Every increasing chain of left ideals in R is finite, in other words for any sequence $I_{1} \subset I_{2} \subset \ldots$ of left ideals, there exists n_{0} such that for all $n>n_{0}$, $I_{n}=I_{n_{0}}$.
(2) Every left ideal is a finitely generated R-module.

Proof. $(1) \Rightarrow(2)$. Assume that some left ideal I is not finitely generated. Then there exists an infinite sequence of $x_{n} \in I$ such that

$$
x_{n+1} \notin R x_{1}+\cdots+R x_{n} .
$$

But then $I_{n}=R x_{1}+\cdots+R x_{n}$ form an infinite increasing chain of ideals which does not stabilize.
$(2) \Rightarrow(1)$. Let $I_{1} \subset I_{2} \subset \ldots$ be an increasing chain of ideals. Consider

$$
I:=\bigcup_{n} I_{n}
$$

Then by (2) I is finitely generated. Therefore $I=R x_{1}+\cdots+R x_{s}$ for some $x_{1}, \ldots x_{s} \in$ I. Then there exists n_{0} such that $x_{1}, \ldots, x_{s} \in I_{n_{0}}$. Hence $I=I_{n_{0}}$ and the chain stabilizes.

Definition 2.4. A ring satisfying the conditions of Lemma 2.3 is called (left) Noetherian.

Lemma 2.5. Let R be a left Noetherian ring and M be a finitely generated R module. Then every submodule of M is finitely generated.

Proof. First, we prove the statement when M is free. Then M is isomorphic to R^{n} for some n and we use induction on n. For $n=1$ the statement follows from definition. Consider the exact sequence

$$
0 \rightarrow R^{n-1} \rightarrow R^{n} \rightarrow R \rightarrow 0
$$

Let N be a submodule of R^{n}. Consider the exact sequence obtained by restriction to N

$$
0 \rightarrow N \cap R^{n-1} \rightarrow N \rightarrow N^{\prime} \rightarrow 0
$$

By induction assumption $N \cap R^{n-1}$ is finitely generated and $N^{\prime} \subset R$ is finitely generated. Therefore by Lemma 2.2 (b), N is finitely generated.

In the general case M is a quotient of a free module of finite rank. We use the exact sequence

$$
0 \rightarrow K \rightarrow R^{n} \xrightarrow{p} M \rightarrow 0
$$

If N is a submodule of M, then $p^{-1}(N) \subset R^{n}$ is finitely generated. Therefore by Lemma 2.2 (a), N is also finitely generated.

Exercise 2.6. (a) A principal ideal domain is a Noetherian ring. In particular, \mathbb{Z} and the polynomial ring $k[X]$ are Noetherian.
(b) Show that the polynomial ring $k\left[X_{1}, \ldots, X_{n}, \ldots\right]$ of infinitely many variables is not Noetherian.
(c) A subring of a Noetherian ring is not automatically Noetherian. For example, let R be a subring of $\mathbb{C}[X, Y]$ consisting of polynomial functions constant on the cross $X^{2}-Y^{2}=0$. Show that R is not Noetherian.

Let R be a commutative ring. An element $r \in R$ is called integral over \mathbb{Z} if there exists a monic polynomial $p(X) \in \mathbb{Z}[X]$ such that $p(r)=0$.

Exercise 2.7. Check that r is integral over \mathbb{Z} if and only if $\mathbb{Z}[r] \subset R$ is a finitely generated \mathbb{Z}-module.

Remark. The complex numbers which are integral over \mathbb{Z} are usually called algebraic integers. All the rational numbers which are integral over \mathbb{Z} belong to \mathbb{Z}.

Lemma 2.8. Let R be a commutative ring and S be the set of elements integral over \mathbb{Z}. Then S is a subring of R.

Proof. Let $x, y \in S$. By assumption $\mathbb{Z}[x]$ and $\mathbb{Z}[y]$ are finitely generated \mathbb{Z} modules. Then $\mathbb{Z}[x, y]$ is also finitely generated. Since \mathbb{Z} is Noetherian ring, Lemma 2.5 implies that for every $s \in \mathbb{Z}[x, y]$ the \mathbb{Z}-submodule $\mathbb{Z}[s]$ is finitely generated.

3. The center of the group algebra $k(G)$

In this section we assume that k is algebraically closed of characteristic 0 and G is a finite group. In this section we obtain some results about the center $Z(G)$ of the group ring $k(G)$. It is clear that $Z(G)$ can be identified with the subspace of class functions:

$$
Z(G)=\left\{\sum_{s \in G} f(s) s \mid f \in \mathcal{C}(G)\right\}
$$

Recall that if n_{1}, \ldots, n_{r} are the dimensions of isomorphism classes of simple G modules, then by Theorem 1.13 we have an isomorphism

$$
k(G) \simeq M_{n_{1}}(k) \times \cdots \times M_{n_{r}}(k)
$$

If $e_{i} \in k(G)$ denotes the element corresponding to the identity matrix in $M_{n_{i}}(K)$, the e_{1}, \ldots, e_{r} form a basis of $Z(G)$ and one has

$$
\begin{array}{r}
e_{i} e_{j}=\delta_{i j} e_{i} \\
1_{G}=e_{1}+\cdots+e_{r} .
\end{array}
$$

If $\rho_{j}: G \rightarrow \mathrm{GL}\left(V_{j}\right)$ is an irreducible representation, then e_{j} acts on V_{j} as the identity element and we have

$$
\begin{equation*}
\rho_{j}\left(e_{i}\right)=\delta_{i j} \operatorname{Id}_{V_{j}} . \tag{2.1}
\end{equation*}
$$

LEmma 3.1. If χ_{i} is the character of the irreducible representation ρ_{i} of dimension n_{i}, then one has

$$
\begin{equation*}
e_{i}=\frac{n_{i}}{|G|} \sum_{g \in G} \chi_{i}\left(g^{-1}\right) g \tag{2.2}
\end{equation*}
$$

Proof. We have to check (2.1). Since $\rho_{j}\left(e_{i}\right)$ belongs to $\operatorname{End}_{G}\left(V_{j}\right)$, Schur's Lemma implies $\rho_{j}\left(e_{i}\right)=\lambda$ Id for some λ. Now we use orthogonality relations, Theorem 4.8

$$
\operatorname{tr} \rho_{j}\left(e_{i}\right)=\frac{n_{i}}{|G|} \sum \chi_{i}\left(g^{-1}\right) \chi_{j}(g)=\frac{n_{i}}{|G|}\left(\chi_{i}, \chi_{j}\right)=\delta_{i j} n_{i} .
$$

Therefore we have $n_{j} \lambda=\delta_{i j} n_{i}$ which implies $\lambda=\delta_{i j}$.
Exercise 3.2. Define $\omega_{i}: Z(G) \rightarrow k$ by the formula

$$
\omega_{i}\left(\sum a_{s} s\right)=\frac{1}{n_{i}} \sum a_{s} \chi_{i}\left(s^{-1}\right)
$$

and $\omega: Z(G) \rightarrow k^{r}$ by

$$
\omega=\left(\omega_{1}, \ldots, \omega_{r}\right) .
$$

Check that ω is an isomorphism of rings. Hint: check that $\omega_{i}\left(e_{j}\right)=\delta_{i j}$ using again the orthogonality relations.

For any conjugacy class C in G let

$$
\eta_{C}:=\sum_{g \in C} g .
$$

Clearly, the set η_{C} for C running over the set of conjugacy classes is a basis in $Z(G)$.
Lemma 3.3. For any irreducible character χ_{i} and g in a conjugacy class C, the number $\frac{|C|}{n_{i}} \chi_{i}(g)$ is algebraic integer.

Proof. Observe that

$$
\frac{|C|}{n_{i}} \chi_{i}(g)=\omega_{i}\left(\eta_{C}\right) .
$$

Since any homomorphism maps an alegebraic integer to an algebraic integer, the statement follows.

Lemma 3.4. For any conjugacy class $C \subset G$ we have

$$
\eta_{C}=|C| \sum_{i=1}^{r} \frac{\chi_{i}(g)}{n_{i}} e_{i},
$$

where g is any element of C.
Proof. If we extend by linearity $\chi_{1}, \ldots, \chi_{r}$ to linear functionals on $k(G)$, then (2.1) implies $\chi_{j}\left(e_{i}\right)=n_{i} \delta_{i, j}$. Thus, $\chi_{1}, \ldots, \chi_{r}$ form a basis in the dual space $Z(G)^{*}$. Therefore it suffices to check that

$$
\chi_{j}\left(\eta_{C}\right)=|C| \sum_{i=1}^{r} \frac{\chi_{i}(g)}{n_{i}} \chi_{j}\left(e_{i}\right)=|C| \chi_{j}(g) .
$$

The next statement is called sometimes the second orthogonality relation.

Lemma 3.5. If $g, h \in G$ lie in the same conjugacy class C, we have

$$
\sum_{i=1}^{r} \chi_{i}(g) \chi_{i}\left(h^{-1}\right)=\frac{|G|}{|C|}
$$

If g and h are not conjugate we have

$$
\sum_{i=1}^{r} \chi_{i}(g) \chi_{i}\left(h^{-1}\right)=0 .
$$

Proof. The statement follows from Lemma 3.1 and Lemma 3.4. Indeed, if g is in the conjugacy class C, we have

$$
\eta_{C}=|C| \sum_{i=1}^{r} \frac{\chi_{i}(g)}{n_{i}} e_{i}=\frac{|C|}{|G|} \sum_{i=1}^{r} \sum_{h \in G} \chi_{i}(g) \chi_{i}\left(h^{-1}\right) h .
$$

The coefficient of h in the last expression is 1 if $h \in C$ and zero otherwise. This implies the lemma.

Lemma 3.6. Let $u=\sum_{g \in G} a_{g} g \in Z(G)$. If all a_{g} are algebraic integers, then u is integral over \mathbb{Z}.

Proof. Consider the basis η_{C} of $Z(G)$. Every η_{C} is integral over \mathbb{Z} since the subring generated by all η_{C} is a finitely generated \mathbb{Z}-module. Now the statement follows from Lemma 2.8.

Theorem 3.7. For all $i=1, \ldots, r$ the dimension n_{i} divides $|G|$.
Proof. For every $g \in G$, all eigenvalues of $\rho(g)$ are roots of 1 . Therefore $\chi_{\rho}(s)$ is an algebraic integer. By Lemma $3.6 u=\sum_{s \in G} \chi_{i}(s) s$ is integral over \mathbb{Z}. Recall the homomorphism ω_{i} from Exercise 3.2. Since $\omega_{i}(u)$ is an algebraic integer we have

$$
\omega_{i}(u)=\frac{1}{n_{i}} \sum_{s \in G} \chi_{i}(s) \chi_{i}\left(s^{-1}\right)=\frac{|G|}{n_{i}}\left(\chi_{i}, \chi_{i}\right)=\frac{|G|}{n_{i}} .
$$

Therefore $\frac{|G|}{n_{i}} \in \mathbb{Z}$.
THEOREM 3.8. Let Z be the center of G and ρ be an irreducible n-dimensional representation of G. Then n divides $\frac{|G|}{|Z|}$.

Proof. Let G^{m} be the direct product of m copies of G and ρ^{m} be the exterior product of m copies of ρ. The dimension of ρ^{m} is n^{m}. Furthermore, ρ^{m} is irreducible by Exercise 4.12. Consider the normal subgroup N of G^{m} defined by

$$
N=\left\{\left(z_{1}, \ldots, z_{m}\right) \in Z^{m} \mid z_{1} z_{2} \ldots z_{m}=1\right\}
$$

We have $|N|=|Z|^{m-1}$. Furthermore, N lies in the kernel of ρ^{m}. Therefore ρ^{m} is a representation of the quotient group $H=G / N$. Hence, by Theorem 3.7, n^{m} divides $\frac{|G|^{m}}{|Z|^{m-1}}$ for every $m>0$. It follows from prime factorization that n divides $\frac{|G|}{|Z|}$.

4. One application

We will show now one application of the results of the previous section. It is well known that any finite group whose order is a power of a prime number is solvable. The following statement is a generalization of this result. The proof uses essentially representation theory.
\{IIburnside\}
Theorem 4.1. (Burnside). Let G be a finite group of order $p^{s} q^{t}$ for some prime numbers p, q and some $s, t \in \mathbb{N}$. Then G is solvable.

Proof. For the proof of the theorem we need the following lemma.
Lemma 4.2. Let ρ be a complex representation of a finite group G of dimension n. Let $g \in G$ be such that $\frac{\chi_{\rho}(g)}{n}$ is an algebraic integer. Then ρ_{g} is a scalar operator.

Proof. Let m be the order of g and $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be the eigenvalues of ρ_{g}. Let ζ be a primitive m-th root of 1 and denote by Γ the Galois group of $\mathbb{Q}(\zeta)$ over \mathbb{Q}. Each ε_{i} is a power of ζ. Assume that $\varepsilon_{i} \neq \varepsilon_{j}$ for some $i \neq j$. By the triangle inequality we have

$$
\left|\frac{\chi_{\rho}(g)}{n}\right|=\left|\frac{\varepsilon_{1}+\cdots+\varepsilon_{n}}{n}\right|<1,
$$

and for any $\gamma \in \Gamma$

$$
\left|\frac{\gamma\left(\chi_{\rho}(g)\right)}{n}\right|=\left|\frac{\gamma\left(\varepsilon_{1}\right)+\cdots+\gamma\left(\varepsilon_{n}\right)}{n}\right| \leq 1
$$

Let

$$
d:=\prod_{\gamma \in \Gamma} \frac{\gamma\left(\chi_{\rho}(g)\right)}{n}
$$

Then $d \in \mathbb{Z}$ but $|d|<1$ and we obtain a contradiction.
To prove the theorem it suffices to show that G has a non-trivial proper normal subgroup. Indeed, if N is such subgroup, then using induction on the order of the group we may assume that G / N and N are solvable and hence G is also solvable.

Consider a Sylow subgroup P of G of order p^{s}. Then P has a non-trival center, let $g \neq 1$ be an element in this center. Denote by C the conjugacy class of g. If $|C|=1$, then G has a non-trivial center and we are done. Assume that $|C|>1$. Since the centralizer of g in G contains P, we have $|C|=q^{m}$ for some $m>0$.

Let $\chi_{1}, \ldots, \chi_{r}$ be the irreducible characters of G, n_{1}, \ldots, n_{r} denote the dimensions of the corresponding irreducible representations $\rho_{1}, \ldots, \rho_{r}$. Assume that ρ_{1} is the trivial representations. The relation

$$
\sum_{i=1}^{r} n_{i}^{2}=1+\sum_{i=1}^{r} n_{i}^{2}=|G|
$$

implies that there exists $i>1$ such that $\left(n_{i}, q\right)=1$. We claim that i can be chosen in such a way that $\chi_{i}(g) \neq 0$. Indeed, by Lemma 3.5 we have

$$
0=\sum_{i=1}^{r} \chi_{i}(g) \chi_{1}(1)=\sum_{i=1}^{r} n_{i} \chi_{i}(g)=1+\sum_{i=2}^{r} n_{i} \chi_{i}(g) .
$$

If we assume that $\chi_{i}(g)=0$ for all $i>1$ such that $\left(n_{i}, q\right)=1$, we would have $1+q a=0$ for some algebraic integer a and this is impossible.

By Lemma 3.3 the number $\frac{|C| \chi_{i}(g)}{n_{i}}$ is an algebraic integer. Recall that $\left(n_{i},|C|\right)=1$. Hence there are integers a, b such that $a|C|+b n_{i}=1$. Therefore $\frac{\chi_{i}(g)}{n_{i}}=a \frac{|C| \chi_{i}(g)}{n_{i}}+$ $b \chi_{i}(g)$ is an algebraic integer. By Lemma 4.2 we obtain that $\rho_{i}(g)$ is a scalar operator.

Let N be the subset of all elements $h \in G$ such that $\rho_{i}(h)$ is a scalar operator. It is easy to check that N is a normal subgroup of G. Since $g \in N$, we know that $N \neq\{1\}$. If $N=G$, then $n_{i}=1$, and therefore the commutator group $[G, G]$ is nontrivial. Otherwise, N is a proper normal subgroup of G. The proof of the theorem is complete.

5. Generalities on induced modules

Let A be a ring, B be a subring of A and M be a B-module. Consider the abelian group $A \otimes_{B} M$ defined by generators and relations in the following way. The generators are all elements of the Cartesian product $A \times M$ and the relations:

$$
\begin{array}{r}
\left(a_{1}+a_{2}\right) \times m-a_{1} \times m-a_{2} \times m, \quad a_{1}, a_{2} \in A, m \in M, \\
a \times\left(m_{1}+m_{2}\right)-a \times m_{1}-a \times m_{2}, \quad a \in A, m_{1}, m_{2} \in M, \\
a b \times m-a \times b m, \quad a \in A, b \in B, m \in M . \tag{2.5}
\end{array}
$$

This group has a structure of A-module, A acting on it by left multiplication. For every $a \in A$ and $m \in M$ we denote by $a \otimes m$ the corresponding element in $A \otimes_{B} M$.

Definition 5.1. The A-module $A \otimes_{B} M$ is called the induced module.
Exercise 5.2. (a) Show that $A \otimes_{B} B$ is isomorphic to A.
(b) Show that if M_{1} and M_{2} are two B-modules, then there exists a canonical isomorphism of A-modules

$$
A \otimes_{B}\left(M_{1} \oplus M_{2}\right) \simeq A \otimes_{B} M_{1} \oplus A \otimes_{B} M_{2}
$$

(c) Check that for any $n \in \mathbb{Z}$ one has

$$
\mathbb{Q} \otimes_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z})=0
$$

Theorem 5.3. (Frobenius reciprocity.) For every B-module M and for every A-module N, there is an isomorphism of abelian groups

$$
\operatorname{Hom}_{B}(M, N) \cong \operatorname{Hom}_{A}\left(A \otimes_{B} M, N\right) .
$$

Proof. Let M be a B-module and N be an A-module. Consider $j: M \rightarrow A \otimes_{B} M$ defined by

$$
j(m):=1 \otimes m
$$

which is a homomorphism of B-modules.
Lemma 5.4. For every $\varphi \in \operatorname{Hom}_{B}(M, N)$ there exists a unique $\psi \in \operatorname{Hom}_{A}\left(A \otimes_{B} M, N\right)$ \{lm1\} such that $\psi \circ j=\varphi$. In other words, the following diagram is commutative

Proof. We define ψ by the formula

$$
\psi(a \otimes m):=a \varphi(m)
$$

for all $a \in A$ and $m \in M$. The reader can check that ψ is well defined, i.e. the relations defining $A \otimes_{B} M$ are preserved by ψ. That proves the existence of ψ.

To check uniqueness we just note that for all $a \in A$ and $m \in M, \psi$ must satisfy the relation

$$
\psi(a \otimes m)=a \psi(1 \otimes m)=a \varphi(m)
$$

To prove the theorem we observe that by the above lemma the map $\psi \mapsto \varphi:=\psi \circ j$ gives an isomorphism between $\operatorname{Hom}_{A}\left(A \otimes_{B} M, N\right)$ and $\operatorname{Hom}_{B}(M, N)$.

Remark 5.5. For readers familiar with category theory the former theorem can be reformulated as follows. Since any A-module M is automatically a B-module, we have a natural functor Res from the category of A-modules to the category of B modules. This functor is usually called the restriction functor. The induction functor Ind from the category of B-modules to the category of A-modules which sends M to $A \otimes_{B} M$ is left adjoint of Res.

Example 5.6. Let $k \subset F$ be a field extension. For any vector space M over k, $F \otimes_{k} M$ is a vector space of the same dimension over F. If we have an exact sequence of vector spaces

$$
0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0
$$

then the sequence

$$
0 \rightarrow F \otimes_{k} N \rightarrow F \otimes_{k} M \rightarrow F \otimes_{k} L \rightarrow 0
$$

is also exact. In other words the induction in this situation is an exact functor.

Exercise 5.7. Let A be a ring and B be a subring of A.
(a) Show that if a sequence of B-modules

$$
N \rightarrow M \rightarrow L \rightarrow 0
$$

is exact, then the sequence

$$
A \otimes_{B} N \rightarrow A \otimes_{B} M \rightarrow A \otimes_{B} L \rightarrow 0
$$

of induced modules is also exact. In other words the induction functor is right exact.
(b) Assume that A is a free B-module, then the induction functor is exact. In other words, if a sequence

$$
0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0
$$

of B-modules is exact, then the sequence

$$
0 \rightarrow A \otimes_{B} N \rightarrow A \otimes_{B} M \rightarrow A \otimes_{B} L \rightarrow 0
$$

is also exact.
(c) Let $A=\mathbb{Z}[X] /\left(X^{2}, 2 X\right)$ and $B=\mathbb{Z}$. Consider the exact sequence

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\varphi} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
$$

where φ is the multiplication by 2 . Check that after applying induction we get a sequence of A-modules

$$
0 \rightarrow A \rightarrow A \rightarrow A / 2 A \rightarrow 0
$$

which is not exact.
Later we discuss general properties of induction but now we are going to study induction for the case of groups.

6. Induced representations for groups.

Let G be a finite group. Let H be a subgroup of G and $\rho: H \rightarrow \operatorname{GL}(V)$ be a representation of H with characater χ. Then the induced representation $\operatorname{Ind}_{H}^{G} \rho$ is by definition the $k(G)$-module

$$
k(G) \otimes_{k(H)} V .
$$

The following lemma has a straightforward proof.
Lemma 6.1. The dimension of $\operatorname{Ind}_{H}^{G} \rho$ equals the product of $\operatorname{dim} \rho$ by the index [$G: H]$ of H. More precisely, let S be a set of representatives of left cosets in G / H, i.e.

$$
G=\coprod_{s \in S} s H
$$

then

$$
\begin{equation*}
k(G) \otimes_{k(H)} V=\bigoplus_{s \in S} s \otimes V \tag{2.6}
\end{equation*}
$$

Moreover, for any $g \in G, s \in S$ there exists a unique $s^{\prime} \in S$ such that $\left(s^{\prime}\right)^{-1} g s \in H$. Then the action of g on $s \otimes v$ for all $v \in V$ is given by

$$
\begin{equation*}
g(s \otimes v)=s^{\prime} \otimes \rho_{\left(s^{\prime}\right)^{-1} g s} v . \tag{2.7}
\end{equation*}
$$

Example 6.2. Let ρ be the trivial representation of H. Then $\operatorname{Ind}_{H}^{G} \rho$ is the permutation representation of G obtained from the natural left action of G on the set of left cosets G / H, see Example 3 in Section 4.2 Chapter 1.

Lemma 6.3. We keep the notations of the previous lemma. Denote by $\operatorname{Ind}_{H}^{G} \chi$ the character of the induced representation. Then one has for $g \in G$

$$
\begin{equation*}
\text { \{indequ2\} } \quad \operatorname{Ind}_{H}^{G} \chi(g)=\sum_{s \in S, s^{-1} g s \in H} \chi\left(s^{-1} g s\right) . \tag{2.8}
\end{equation*}
$$

Proof. (2.6) and (2.7) imply

$$
\operatorname{Ind}_{H}^{G} \chi(g)=\sum_{s \in S} \delta_{s, s^{\prime}} \operatorname{tr} \rho_{\left(s^{\prime}\right)^{-1} g s}
$$

Corollary 6.4. In the notations of Lemma 6.3 we have

$$
\operatorname{Ind}_{H}^{G} \chi(g)=\frac{1}{|H|} \sum_{u \in G, u^{-1} g u \in H} \chi\left(u^{-1} g u\right) .
$$

Proof. If $s^{-1} g s \in H$, then for all $u \in s H$ we have $\chi\left(u^{-1} g u\right)=\chi\left(s^{-1} g s\right)$. Therefore

$$
\chi\left(s^{-1} g s\right)=\frac{1}{|H|} \sum_{u \in s H} \chi\left(u^{-1} g u\right) .
$$

Hence the statement follows from (2.8).
Corollary 6.5. Let H be a normal subgroup in G. Then $\operatorname{Ind}_{H}^{G} \chi(g)=0$ for any $g \notin H$.

Exercise 6.6. (a) Let $G=S_{3}$ and $H=A_{3}$ be its normal cyclic subgroup. Consider a one-dimensional representation of H such that $\rho(123)=\varepsilon$, where ε is a primitive 3 -rd root of 1 . Show that then

$$
\begin{gathered}
\operatorname{Ind}_{H}^{G} \chi_{\rho}(1)=2, \\
\operatorname{Ind}_{H}^{G} \chi_{\rho}(12)=0, \\
\operatorname{Ind}_{H}^{G} \chi_{\rho}(123)=-1 .
\end{gathered}
$$

Therefore $\operatorname{Ind}_{H}^{G} \rho$ is the irreducible 2-dimensional representation of S_{3}.
(b) Next, consider the 2-element subgroup K of $G=S_{3}$ generated by the transposition (12), and let σ be the (unique) non-trivial one-dimensional representation of K. Show that

$$
\operatorname{Ind}_{K}^{G} \chi_{\sigma}(1)=3
$$

$$
\begin{gathered}
\operatorname{Ind}_{K}^{G} \chi_{\sigma}(12)=-1 \\
\operatorname{Ind}_{H}^{G} \chi_{\rho}(123)=0
\end{gathered}
$$

Therefore $\operatorname{Ind}_{K}^{G} \sigma$ is the direct sum of the sign representation and the 2-dimensional irreducible representation.

Now we assume that k has characteristic zero. Let us recall that, in Section 4.2 Chapter 1, we defined a scalar product on the space $\mathcal{C}(G)$ of class functions by (1.2). When we consider several groups at the same time we specify the group by the a lower index.

Theorem 6.7. Consider two representations $\rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma: H \rightarrow$ GL (W). Then we have the identity

$$
\begin{equation*}
\left(\operatorname{Ind}_{H}^{G} \chi_{\sigma}, \chi_{\rho}\right)_{G}=\left(\chi_{\sigma}, \operatorname{Res}_{H} \chi_{\rho}\right)_{H} \tag{2.9}
\end{equation*}
$$

Proof. The statement follows from Frobenius reciprocity (Theorem 5.3) and Corollary 4.7 in Chapter 1, since

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} W, V\right)=\operatorname{dim} \operatorname{Hom}_{H}(W, V)
$$

Exercise 6.8. Prove Theorem 6.7 directly from Corollary 6.4. Define two maps

$$
\operatorname{Res}_{H}: \mathcal{C}(G) \rightarrow \mathcal{C}(H), \operatorname{Ind}_{H}^{G}: \mathcal{C}(H) \rightarrow \mathcal{C}(G),
$$

the former is the restriction on a subgroup, the latter is defined by (2.8). Then for any $\varphi \in \mathcal{C}(G), \psi \in \mathcal{C}(H)$

$$
\left(\operatorname{Ind}_{H}^{G} \varphi, \psi\right)_{G}=\left(\varphi, \operatorname{Res}_{H} \psi\right)_{H}
$$

7. Double cosets and restriction to a subgroup

If K and H are subgroups of G one can define the equivalence relation on $G: s \sim t$ if and only if $s \in K t H$. The equivalence classes are called double cosets. We can choose a set of representative $T \subset G$ such that

$$
G=\coprod_{t \in T} K \mathrm{tH} .
$$

We define the set of double cosets by $K \backslash G / H$. One can identify $K \backslash G / H$ with K orbits on $S=G / H$ in the obvious way and with G-orbits on $G / K \times G / H$ by the formula

$$
K t H \rightarrow G(K, t H) .
$$

Example 7.1. Let \mathbb{F} be a field. Let $G=\mathrm{GL}_{2}(\mathbb{F})$ be the group of all invertible 2×2 matrices with coefficients in \mathbb{F}. Consider the natural action of G on \mathbb{F}^{2}. Let B be the subgroup of upper-triangular matrices in G. We denote by \mathbb{P}^{1} the projective line which is the set of all one-dimensional linear subspaces of \mathbb{F}^{2}. Clearly, G acts on \mathbb{P}^{1}.

Exercise 7.2. Prove that G acts transitively on \mathbb{P}^{1} and that the stabilizer of any point in \mathbb{P}^{1} is isomorphic to B.

By the above exercise one can identify G / B with the set of lines \mathbb{P}^{1}. The set of double cosets $B \backslash G / B$ can be identified with the set of G-orbits in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ or with the set of B-orbits in \mathbb{P}^{1}.

Exercise 7.3. Check that G has only two orbits on $\mathbb{P}^{1} \times \mathbb{P}^{1}$: the diagonal and its complement. Thus, $|B \backslash G / B|=2$ and

$$
G=B \cup B s B,
$$

where

$$
s=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Theorem 7.4. Let $T \subset G$ such that $G=\coprod_{s \in T} K s H$. Then

$$
\operatorname{Res}_{K} \operatorname{Ind}_{H}^{G} \rho=\oplus_{s \in T} \operatorname{Ind}_{K \cap s H s^{-1}}^{K} \rho^{s},
$$

where

$$
\rho_{h}^{s} \stackrel{\text { def }}{=} \rho_{s^{-1} h s},
$$

for any $h \in s H^{-1}$.
Proof. Let $s \in T$ and $W^{s}=k(K)(s \otimes V)$. Then by construction, W^{s} is K invariant and

$$
k(G) \otimes_{k(H)} V=\oplus_{s \in T} W^{s}
$$

Thus, we need to check that the representation of K in W^{s} is isomorphic to $\operatorname{Ind}_{K \cap s H s^{-1}}^{K} \rho^{s}$. We define a homomorphism

$$
\alpha: \operatorname{Ind}_{K \cap s H s^{-1}}^{K} V \rightarrow W^{s}
$$

by $\alpha(t \otimes v)=t s \otimes v$ for any $t \in K, v \in V$. It is well defined

$$
\alpha\left(t h \otimes v-t \otimes \rho_{h}^{s} v\right)=t h s \otimes v-t s \otimes \rho_{s^{-1} h s} v=t s\left(s^{-1} h s\right) \otimes v-t s \otimes \rho_{s^{-1} h s} v=0
$$

and obviously surjective. Injectivity can be proved by counting dimensions.
Example 7.5. Let us go back to our example $B \subset \mathrm{SL}_{2}(\mathbb{F})$ (see Exercise 7.3). We now assume that $\mathbb{F}=\mathbb{F}_{q}$ is the finite field with q elements. Theorem 7.4 tells us that for any representation ρ of B

$$
\operatorname{Ind}_{B}^{G} \rho=\rho \oplus \operatorname{Ind}_{H}^{G} \rho^{\prime},
$$

where $H=B \cap s B s^{-1}$ is a subgroup of diagonal matrices and

$$
\rho^{\prime}\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=\rho\left(\begin{array}{ll}
b & 0 \\
0 & a
\end{array}\right)
$$

Corollary 7.6. If H is a normal subgroup of G, then

$$
\operatorname{Res}_{H} \operatorname{Ind}_{H}^{G} \rho=\oplus_{s \in G / H} \rho^{s} .
$$

8. Mackey's criterion

In order to compute $\left(\operatorname{Ind}_{H}^{G} \chi, \operatorname{Ind}_{H}^{G} \chi\right)$, we use Frobenius reciprocity and Theorem 7.4. One has:

$$
\begin{gathered}
\left(\operatorname{Ind}_{H}^{G} \chi, \operatorname{Ind}_{H}^{G} \chi\right)_{G}=\left(\operatorname{Res}_{H} \operatorname{Ind}_{H}^{G} \chi, \chi\right)_{H}=\sum_{s \in T}\left(\operatorname{Ind}_{H \cap s H s^{-1}}^{H} \chi^{s}, \chi\right)_{H}= \\
=\sum_{s \in T}\left(\chi^{s}, \operatorname{Res}_{H \cap s H s^{-1}} \chi\right)_{H \cap s H s^{-1}}=(\chi, \chi)_{H}+\sum_{s \in T \backslash\{1\}}\left(\chi^{s}, \operatorname{Res}_{H \cap s H s^{-1}} \chi\right)_{H \cap s H s^{-1}} .
\end{gathered}
$$

We call two representation disjoint if they do not have any irreducible component in common, or in other words if their characters are orthogonal.

ThEOREM 8.1. (Mackey's criterion) The representation $\operatorname{Ind}_{H}^{G} \rho$ is irreducible if and only if ρ is irreducible and ρ^{s} and ρ are disjoint representations of $H \cap s \mathrm{Hs}^{-1}$ for all $s \in T \backslash\{1\}$.

Proof. Write the condition

$$
\left(\operatorname{Ind}_{H}^{G} \chi, \operatorname{Ind}_{H}^{G} \chi\right)_{G}=1
$$

and use the above formula.
Corollary 8.2. Let H be a normal subgroup of G and ρ be an irreducible representation of H. Then $\operatorname{Ind}_{H}^{G} \rho$ is irreducible if and only if ρ^{s} is not isomorphic to ρ for any $s \in G / H, s \notin H$.

Remark 8.3. Note that if H is normal, then G / H acts on the set of representations of H. In fact, this is a part of the action of the group Aut H of automorphisms of H on the set of representation of H. Indeed, if $\varphi \in$ Aut H and $\rho: H \rightarrow \operatorname{GL}(V)$ is a representation, then $\rho^{\varphi}: H \rightarrow \mathrm{GL}(V)$ defined by

$$
\rho_{t}^{\varphi}=\rho_{\varphi(t)}
$$

is a new representation of H.

9. Hecke algebras, a first glimpse

Definition 9.1. Let G be a group, $H \subset G$ a subgroup, consider $\mathcal{H}(G, H) \subset k(G)$ defined by:

$$
\mathcal{H}(G, H):=\operatorname{End}_{G}\left(\operatorname{Ind}_{H}^{G} \text { triv }\right)
$$

This is the Hecke algebra associated to the pair (G, H).
Define the projector

$$
\Pi_{H}:=\frac{1}{|H|} \sum_{h \in H} h \in k(G)
$$

Exercise 9.2. Show that

$$
\operatorname{Ind}_{H}^{G} \text { triv }=k(G) \Pi_{H}
$$

Applying Frobenius reciprocity, one gets:

$$
\text { End } G \operatorname{Ind}_{H}^{G} \text { triv }=\operatorname{Hom}_{H}\left(\operatorname{triv}, \operatorname{Ind}_{H}^{G} \text { triv }\right)
$$

We can identify the Hecke algebra with $\Pi_{H} k(G) \Pi_{H}$. Therefore a basis of the Hecke algebra can be enumerated by the double cosets, i.e. elements of $H \backslash G / H$.

Set, for $g \in G$,

$$
\eta_{g}:=\Pi_{H} g \Pi_{H} .
$$

it is clear that those functions are constant on double cosets and give a basis of the Hecke algebra. Then, the multiplication is given by the formula

$$
\begin{equation*}
\left\{\text { heckemultiplicałfifi.gnf } \sum_{g^{\prime \prime} \in G} \frac{1}{|H|}\left|g H g^{\prime} \cap H g^{\prime \prime} H\right| \eta_{g^{\prime \prime}}\right. \tag{2.10}
\end{equation*}
$$

Exercise 9.3. Consider the pair $G=G L_{2}\left(\mathbb{F}_{q}\right), H=B$ the subgroup of upper triangular matrices. Then by Exercise 7.3 we know that the Hecke algebra $\mathcal{H}(G, B)$ is 2 -dimensional. The identity element η_{e} corresponds to the double coset B. The second element of the basis is η_{s}. Let us compute η_{s}^{2} using (2.10). We have

$$
\eta_{s}^{2}=a \eta_{e}+b \eta_{s}
$$

where

$$
a=\frac{|s B s \cap B|}{|B|}, \quad b=\frac{s B s \cap B s B}{|B|} .
$$

Since $s B s$ is the subgroup of the lower triangular matrices in G, the intersection subgroup $s B s \cap B$ is the subgroup of diagonal matrices. Therefore we have

$$
|B|=(q-1)^{2} q, \quad|s B s \cap B|=(q-1)^{2}, \quad a=\frac{1}{q}, \quad b=1-a=\frac{q-1}{q} .
$$

Definition 9.4. We say that a G-module V is multiplicity free if any simple G-module appears in V with multiplicity either 0 or 1 .

Proposition 9.5. Assume that k is algebraically closed. The following conditions on the pair $H \subset G$ are equivalent
(1) The G-module $\operatorname{Ind}_{H}^{G}$ triv is multiplicity free;
(2) For any G-module M the dimension of subspace M^{H} of H-invariants is at most one;
(3) The Hecke algebra $\mathcal{H}(G, H)$ is commutative.

Proof. (1) is equivalent to (2) by Frobenius reciprocity. Equivalence of (1) and (3) follows from Lemma 1.11.

Lemma 9.6. Let G be a finite group and $H \subset G$ be a subgroup. Let $\varphi: G \rightarrow G$ be antiautomorphism of G such that for any $g \in G$ we have $\varphi(g) \in H g H$. Then $\mathcal{H}(G, H)$ is commutative.

Proof. Extend φ to the whole group algebra $k(G)$ by linearity. Then φ is an antiautomorphism of $k(G)$ and for all $g \in G$ we have $\varphi\left(\eta_{g}\right)=\eta_{g}$. Therefore for any $g, h \in H \backslash G / H$ we have

$$
\eta_{g} \eta_{h}=\sum c_{g, h}^{u} \eta_{u}=\sum_{u \in H \backslash G / H} c_{g, h}^{u} \varphi\left(\eta_{u}\right)=\varphi\left(\eta_{g} \eta_{h}\right)=\varphi\left(\eta_{h}\right) \varphi\left(\eta_{g}\right)=\eta_{h} \eta_{g}
$$

Exercise 9.7. Let G be the symmetric group S_{n} and $H=S_{p} \times S_{n-p}$. Prove that $\mathcal{H}(G, H)$ is abelian. Hint: consider $\varphi(g)=g^{-1}$ and apply Lemma 9.6.

10. Some examples

Let H be a subgroup of G of index 2. Then H is normal and $G=H \cup s H$ for some $s \in G \backslash H$. Suppose that ρ is an irreducible representation of H. There are two possibilities
(1) ρ^{s} is isomorphic to ρ;
(2) ρ^{s} is not isomorphic to ρ.

Hence there are two possibilities for $\operatorname{Ind}_{H}^{G} \rho$:
(1) $\operatorname{Ind}_{H}^{G} \rho=\sigma \oplus \sigma^{\prime}$, where σ and σ^{\prime} are two non-isomorphic irreducible representations of G;
(2) $\operatorname{Ind}_{H}^{G} \rho$ is irreducible.

For instance, let $G=S_{5}, H=A_{5}$ and $\rho_{1}, \ldots, \rho_{5}$ be the irreducible representations of H introduced in Example 5.3. 3. Then for $i=1,2,3$

$$
\operatorname{Ind}_{H}^{G} \rho_{i}=\sigma_{i} \oplus\left(\sigma_{i} \otimes \operatorname{sgn}\right),
$$

where sgn denotes the sign representation. Furthermore, the induced modules $\operatorname{Ind}_{H}^{G} \rho_{4}$ and $\operatorname{Ind}_{H}^{G} \rho_{5}$ are isomorphic and irreducible. Thus in dimensions 1,4 and $5, S_{5}$ has two non-isomorphic irreducible representations and only one in dimension 6 .

Now let G be the subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ consisting of matrices of shape

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)
$$

where $a \in \mathbb{F}_{q}^{*}$ and $b \in \mathbb{F}_{q}$. Let us classify complex irreducible representations of G. One has $|G|=q^{2}-q$. Furtheremore G has q conjugacy classes with the following representatives

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right),
$$

(in the last case $a \neq 1$). Note that

$$
H=\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right), b \in \mathbb{F}_{q}\right\}
$$

is a normal subgroup of G and the quotient G / H is isomorphic to \mathbb{F}_{q}^{*} which is cyclic of order $q-1$.

Therefore G has $q-1$ one-dimensional representations which can be lifted from G / H. That leaves one more representation, its dimension must be $q-1$. Let us try to obtain it using induction from H. Let σ be a non-trivial irreducible representation of H, its dimension is automatically 1 . Then the dimension of the induced representation $\operatorname{Ind}_{H}^{G} \sigma$ is equal to $q-1$ as required. We claim that it is irreducible. Indeed, if ρ is a one-dimensional representation of G, then by Frobenius reciprocity, Theorem 6.7, we have

$$
\left(\operatorname{Ind}_{H}^{G} \sigma, \rho\right)_{G}=\left(\sigma, \operatorname{Res}_{H} \rho\right)_{H}=0
$$

since $\operatorname{Res}_{H} \rho$ is trivial. Therefore $\operatorname{Ind}_{H}^{G} \sigma$ is irreducible.
Exercise 10.1. Compute the character of this representation.
ExERCISE 10.2. Let G^{\prime} denote the commutator of G, namely the subgoup of G generated by $g h g^{-1} h^{-1}$ for all $g, h \in G$. Show that all one-dimensional representations of G are obtained by lifting from one-dimensional representations of G / G^{\prime}.

11. Some generalities about field extension

Lemma 11.1. If char $k=0$ and G is finite, then a representation $\rho: G \rightarrow \operatorname{GL}(V)$ is irreducible if and only if $\operatorname{End}_{G}(V)$ is a division ring.

Proof. In one direction it is Schur's Lemma. In the opposite direction if V is not irreducible, then $V=V_{1} \oplus V_{2}$ and the projectors p_{1} and p_{2} are intertwiners such that $p_{1} \circ p_{2}=0$.

For any extension F of k and any representation $\rho: G \rightarrow \operatorname{GL}(V)$ over k we denote by ρ_{F} the representation $G \rightarrow \mathrm{GL}\left(F \otimes_{k} V\right)$.

For any representation $\rho: G \rightarrow \mathrm{GL}(V)$ we denote by V^{G} the subspace of G invariants in V, i.e.

$$
V^{G}=\left\{v \in V \mid \rho_{s} v=v, \forall s \in G\right\} .
$$

Lemma 11.2. One has $\left(F \otimes_{k} V\right)^{G}=F \otimes_{k} V^{G}$.
Proof. The embedding $F \otimes_{k} V^{G} \subset\left(F \otimes_{k} V\right)^{G}$ is trivial. On the other hand, V^{G} is the image of the operator

$$
p=\frac{1}{|G|} \sum_{s \in G} \tau_{s},
$$

in particular $\operatorname{dim} V^{G}$ equals the rank of p. Since rank p does not depend on the base field, we have

$$
\operatorname{dim} F \otimes_{k} V^{G}=\operatorname{dim}\left(F \otimes_{k} V\right)^{G}
$$

Corollary 11.3. Let $\rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma: G \rightarrow \mathrm{GL}(W)$ be two representations over k. Then

$$
\operatorname{Hom}_{G}\left(F \otimes_{k} V, F \otimes_{k} W\right)=F \otimes \operatorname{Hom}_{G}(V, W)
$$

In particular,

$$
\operatorname{dim}_{k} \operatorname{Hom}_{G}(V, W)=\operatorname{dim}_{F} \operatorname{Hom}_{G}\left(F \otimes_{k} V, F \otimes_{k} W\right)
$$

Proof.

$$
\operatorname{Hom}_{G}(V, W)=\left(V^{*} \otimes W\right)^{G}
$$

\{cor11\}
Corollary 11.4. The formula

$$
\operatorname{dim} \operatorname{Hom}_{G}(V, W)=\left(\chi_{\rho}, \chi_{\sigma}\right)
$$

holds even if the field is not algebraically closed.
A representation $\rho: G \rightarrow \mathrm{GL}(V)$ over k is called absolutely irreducible if it remains irreducible after any extension of k. This property is equivalent to the egality $\left(\chi_{\rho}, \chi_{\rho}\right)=1$.

A field K is called splitting for a group G if every irreducible representation of G over K is absolutely irreducible. It is not difficult to see that for a finite group G, there exists a finite extension of \mathbb{Q} which is a splitting field for G.

12. Artin's theorem and representations over \mathbb{Q}

Let G be a finite group and ρ be a representation of G over \mathbb{Q}. Then the character χ_{ρ} is called a rational character. Note that $\chi_{\rho}(g) \in \mathbb{Z}$ since $\chi_{\rho}(g)$ is algebraic integer and rational. For a cyclic subgroup $H \subset G$ and a 1-dimensional character $\theta: H \rightarrow \mathbb{C}^{*}$ we denote by F_{H}^{θ} the the character of the induced representation $\operatorname{Ind}_{H}^{G} \theta$. For an element $g \in G$ we denote by $\langle g\rangle$ the cyclic subgroup generated by g.

Lemma 12.1. If χ is a rational character and $\langle g\rangle=\langle h\rangle$, then $\chi(g)=\chi(h)$.
Proof. Let $\chi=\chi_{\rho}$. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be eigenvalues of ρ_{g} counted with multiplicities. Then $\chi(g)=\varepsilon_{1}+\cdots+\varepsilon_{n}$. Assume that the order of $\langle g\rangle$ is m. Then $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are m-th roots of 1 and hence elements of cyclotomic extension $\mathbb{Q}(\zeta)$ where ζ is a primitive m-th root of 1 . Furthermore, $h=g^{p}$ where p is relatively prime to m and $\chi(h)=\varepsilon_{1}^{p}+\cdots+\varepsilon_{n}^{p}$. Let σ be the element of the Galois group of $\mathbb{Q}(\zeta)$ such that $\sigma(\zeta)=\zeta^{p}$. Then $\chi(h)=\sigma(\chi(g))$. Since $\chi(g) \in \mathbb{Z}$, we obtain $\chi(g)=\chi(h)$.

THEOREM 12.2. (Artin) Let χ be a rational character of G. There exist algebraic integers a_{1}, \ldots, a_{m}, cyclic subgroups H_{1}, \ldots, H_{m} and 1-dimensional characters θ_{i} : $H_{i} \rightarrow \mathbb{C}^{*}$ such that

$$
\chi=\sum_{i=1}^{m} \frac{a_{i}}{|G|} F_{H_{i}}^{\theta_{i}} .
$$

Proof. Let H be a cyclic subgroup of G. Define a function $T_{H}: H \rightarrow \mathbb{Z}$ by the formula

$$
T_{H}(x)=\left\{\begin{array}{l}
|H| \text { if }\langle x\rangle=H \\
0 \text { otherwise }
\end{array}\right.
$$

Exercise 12.3. Let $N(H)$ denote the normalizer of H in G. Show that

$$
\operatorname{Ind}_{H}^{G} T_{H}(x)=\left\{\begin{array}{l}
|N(H)| \text { if }\langle x\rangle \sim H \\
0 \text { otherwise }
\end{array}\right.
$$

Lemma 12.4. For a cyclic group H the function T_{H} is a linear combination of induced characters with algebraic integral coefficients.

Proof. We prove the statement by induction on the order of H. Assume that the statement is true for all proper subgroups of H. It follows easily from Exercise 12.3 that for any $x \in G$ we have

$$
\sum_{P \subset H} \operatorname{Ind}_{P}^{G} T_{P}(x)=|H|
$$

where summation is taken over all subgroups P of H. Hence we have

$$
T_{H}(x)=|H|-\sum_{P \neq H} \operatorname{Ind}_{P}^{G} T_{P}(x) .
$$

By the induction hypothesis $\operatorname{Ind}_{P}^{G} T_{P}(x)$ is a linear combination of induced characters for all proper subgroups P of H. Hence the same is true for T_{H}.

Let us choose the set H_{1}, \ldots, H_{m} of representatives of conjugacy classes of all cyclic subgroups of G and let $H_{i}=\left\langle g_{i}\right\rangle$. Define $\tau: G \rightarrow \mathbb{Z}$ by

$$
\tau:=|G| \sum_{j=1}^{m} \frac{\chi\left(g_{i}\right)}{\left|N\left(H_{i}\right)\right|} \operatorname{Ind}_{H}^{G} T_{H_{i}} .
$$

For any element $x \in G$ there exists exactly one index i such that $T_{H_{i}}(x)=\left|N\left(H_{i}\right)\right|$. For all other j we have $T_{H_{j}}(x)=0$. This implies $\tau(x)=|G| \chi\left(x_{i}\right)$. By Lemma 12.1 $\chi(x)=\chi\left(x_{i}\right)$. Hence $\chi=\frac{\tau}{|G|}$ and the proof of Theorem is complete by Lemma 12.4.

Proposition 12.5. Let G be a finite group. The number of irreducible representations of G over \mathbb{Q} equals the number of conjugacy classes of all cyclic subgroups.

Proof. Let m be the number of conjugacy classes of cyclic subgroups and q be the number of irreducible rational representations. By Lemma 12.1, $q \leq m$. On the other hand, let H_{1}, \ldots, H_{m} be all up to conjugacy cyclic subgroups of G. Then by Exercise 12.3 and Lemma 12.4, $\left\{\operatorname{Ind}_{H_{i}}^{G} T_{H_{i}}\right\}_{i=1, \ldots, m}$ is a linearly independent set in the space of rational characters. Hence $m \leq q$.

CHAPTER 3

Representations of compact groups

1. Compact groups

Let G be a group which is also a topological space. We say that G is a topological group if both the multiplication from $G \times G$ to G and the inverse from G to G are continuous maps. Naturally, we say that G is compact (respectively, locally compact) if it is a compact (resp., locally compact) topological space.

Examples.

- The circle

$$
S^{1}=\{z \in \mathbb{C}| | z \mid=1\}
$$

- The torus $T^{n}=S^{1} \times \cdots \times S^{1}$.

Note that in general, the direct product of two compact groups is compact.

- The unitary group

$$
U_{n}=\left\{X \in \mathrm{GL}_{n}(\mathbb{C}) \mid \bar{X}^{t} X=1_{n}\right\} .
$$

To see that U_{n} is compact, note that a matrix $X=\left(x_{i j}\right) \in U_{n}$ satisfies the equations $\sum_{j=1}^{n}\left|x_{i j}\right|^{2}=1$ for $i=1, \ldots, n$. Hence U_{n} is a closed subset of the product of n spheres of dimension $(2 n-1)$.

- The special unitary group

$$
S U_{n}=\left\{X \in U_{n} \mid \operatorname{det} X=1\right\} .
$$

- The orthogonal group

$$
O_{n}=\left\{x \in \mathrm{GL}_{n}(\mathbb{R}) \mid X^{t} X=1_{n}\right\} .
$$

- The special orthogonal group

$$
S O_{n}=\left\{X \in O_{n} \mid \operatorname{det} X=1\right\} .
$$

1.1. Haar measure. A measure $d g$ on a locally compact group G is called rightinvariant if, for every integrable function f on G and every h in G, one has:

$$
\int_{G} f(g h) d g=\int_{G} f(g) d g
$$

Similarly, a measure $d^{\prime} g$ on G is called left-invariant if for every integrable function f on G and every h in G, one has:

$$
\int_{G} f(h g) d^{\prime} g=\int_{G} f(g) d^{\prime} g .
$$

THEOREM 1.1. Let G be compact group. There exists a unique right-invariant measure $d g$ on G such that

$$
\int_{G} d g=1
$$

In the same way there exists a unique left-invariant measure $d^{\prime} g$ such that

$$
\int_{G} d^{\prime} g=1
$$

Moreover, $d g=d^{\prime} g$.
Definition 1.2. The measure $d g$ is called the Haar measure on G.
We do not give the proof of this theorem in general. In this sketch of proof, we assume general knowledge of submanifolds and of the notion of vector bundle. All examples we consider here are smooth submanifolds in $\mathrm{GL}_{k}(\mathbb{R})$ or $\mathrm{GL}_{k}(\mathbb{C})$.

Exercise 1.3. Assume that G is a subgroup of $\mathrm{GL}_{k}(\mathbb{R})$ or $\mathrm{GL}_{k}(\mathbb{C})$ and G which is also a closed submanifold, i.e. locally it is given by the equations $f_{1}=\cdots=f_{m}=0$ for some smooth functions f_{1}, \ldots, f_{m}. Show that G is a smooth submanifold in GL_{k} of some dimension p, i.e. at every point of $g \in G$ one can find functions h_{1}, \ldots, h_{p} such that G is defined by $h_{1}=\cdots=h_{p}=0$ in some neighbourhood of g and $d h_{1}(g), \ldots, d h_{p}(g)$ are linearly independent. Consider the map $m_{g}: G \rightarrow G$ given by left multiplication by $g \in G$. Then its differential $\left(m_{g}\right)_{*}: T_{e} G \rightarrow T_{g} G$ is an isomorphism between tangent spaces at e and g.

To define the invariant measure we just need to define a volume form on the tangent space at identity $T_{e} G$ and then use right (left) multiplication to define it on the whole group. More precisely, let $\gamma \in \Lambda^{\text {top }} T_{e}^{*} G$. Then the map

$$
g \mapsto \gamma_{g}:=m_{g^{-1}}^{*}(\gamma),
$$

where $m_{g}: G \rightarrow G$ is the right (left) multiplication by g and $m_{g^{-1}}^{*}$ is the induced differential map $\Lambda^{\mathrm{top}} T_{e}^{*} G \rightarrow \Lambda^{\mathrm{top}} T_{g}^{*} G$, is a section of the bundle $\Lambda^{\text {top }} T^{*} G$. This section is a right (left) invariant differential form of maximal degree on the group G, i.e. an invariant volume form. One can normalize γ to satisfy $\int_{G} \gamma=1$.

REmARK 1.4. If G is locally compact but not compact, there are still left-invariant and right-invariant measures on G, each is unique up to scalar multiplication, but the left-invariant ones are not necessarily proportional to the right-invariant ones. We speak of left-Haar measure or right-Haar measure.
1.2. Continuous representations. Consider a vector space V over \mathbb{C} equipped with a topology such that addition and multiplication by a scalar are continuous. We always assume that a topological vector space satisfies the following conditions
(1) for any $v \in V \backslash 0$ there exists a neighbourhood of 0 which does not contain v
(2) there is a basis of convex neighbourhoods of zero.

Topological vector spaces satisfying the above conditions are called locally convex. We do not go into the theory of such spaces. All we need to know is the fact that there is a non-zero continuous linear functional on a locally convex space.

Definition 1.5. A representation $\rho: G \rightarrow \mathrm{GL}(V)$ is called continuous if the map $G \times V \rightarrow V$ given by $(g, v) \mapsto \rho_{g} v$ is continuous. Two continuous representations are equivalent or isomorphic if there is a bicontinuous invertible intertwining operator between them. In this chapter we consider only continuous representations.

A representation $\rho: G \rightarrow \mathrm{GL}(V), V \neq\{0\}$ is called topologically irreducible if the only G-invariant closed subspaces of V are V and 0 .
1.3. Unitary representations. Recall that a Hilbert space is a vector space over \mathbb{C} equipped with a positive definite Hermitian form \langle,$\rangle , which is complete with$ respect to the topology defined by the norm

$$
\|v\|=\langle v, v\rangle^{1 / 2} .
$$

We will use the following facts about Hilbert spaces:
(1) A Hilbert space V has an orthonormal topological basis, i.e. an orthonormal system of vectors $\left\{e_{i}\right\}_{i \in I}$ such that $\bigoplus_{i \in I} \mathbb{C} e_{i}$ is dense in V. Two Hilbert spaces are isomorphic if and only if their topological orthonormal bases have the same cardinality.
(2) If V^{*} denotes the space of all continuous linear functionals on V, then we have an isomorphism $V^{*} \simeq V$ given by $v \mapsto\langle v, \cdot\rangle$.

Definition 1.6. A continuous representation $\rho: G \rightarrow \mathrm{GL}(V)$ is called unitary if V is a Hilbert space and

$$
\langle v, w\rangle=\left\langle\rho_{g} v, \rho_{g} w\right\rangle
$$

for any $v, w \in V$ and $g \in G$. If $U(V)$ denotes the group of all unitary operators in V, then ρ defines a homomorphism $G \rightarrow U(V)$.

The following is an important example of a unitary representation.
Regular representation. Let G be a compact group and $L^{2}(G)$ be the space of all complex valued functions φ on G such that

$$
\int|\varphi(g)|^{2} d g
$$

exists. Then $L^{2}(G)$ is a Hilbert space with respect to the Hermitian form

$$
\langle\varphi, \psi\rangle=\int_{G} \bar{\varphi}(g) \psi(g) d g .
$$

Moreover, the representation R of G in $L^{2}(G)$ given by

$$
R_{g} \varphi(h)=\varphi(h g)
$$

is continuous and the Hermitian form is G-invariant. This representation is called the regular reprensentation of G.
1.4. Linear operators in a Hilbert space. We will recall certain facts about linear operators in a Hilbert space. We only sketch the proofs hiding technical details in exercises. The enthusiastic reader is encouraged to supply those details and the less enthusiastic reader can find those details in textbooks on the subject, for instance [18].

Definition 1.7. A linear operator T in a Hilbert space is called bounded if there exists $C>0$ such that for any $v \in V$ we have $\|T v\| \leq C\|v\|$.

Exercise 1.8. Let $\mathcal{B}(V)$ denote the set of all bounded operators in a Hilbert space V.
(a) Check that $\mathcal{B}(V)$ is an algebra over \mathbb{C} with multiplication given by composition.
(b) Show that $T \in \mathcal{B}(V)$ if and only if the map $T: V \rightarrow V$ is continuous.
(c) Introduce the norm on $\mathcal{B}(V)$ by setting

$$
\|T\|=\sup _{\|v\|=1}\|T v\|
$$

Check that $\left\|T_{1} T_{2}\right\| \leq\left\|T_{1}\right\|\left\|T_{2}\right\|$ and $\left\|T_{1}+T_{2}\right\| \leq\left\|T_{1}\right\|+\left\|T_{2}\right\|$ for all $T_{1}, T_{2} \in \mathcal{B}(V)$ and that $\mathcal{B}(V)$ is complete in the topology defined by this norm. Thus, $\mathcal{B}(V)$ is a Banach algebra.

Theorem 1.9. Let $T \in \mathcal{B}(V)$ be invertible. Then T^{-1} is also bounded.
Proof. Consider the unit ball

$$
B:=\{x \in V \mid\|x\|<1\} .
$$

For any $k \in \mathbb{N}$ denote by S_{k} the closure of $T(k B)=k T(B)$ and let $U_{k}=V \backslash S_{k}$. Note that

$$
V=\bigcup_{k \in \mathbb{N}} k B .
$$

Since T is invertible, it is surjective, and therefore

$$
\bigcup_{k \in \mathbb{N}} S_{k}=V
$$

We claim that there exists k such that U_{k} is not dense. Indeed, otherwise there exists a sequence of embedded balls $B_{k} \subset U_{k}, B_{k+1} \subset B_{k}$, which has a common point by
completeness of V. This contradicts to the fact that the intersection of all U_{k} is empty. Then S_{k} contains a ball $x+\varepsilon B$ for some $x \in V$ and $\varepsilon>0$. It is not hard to see that for any $r>\frac{k}{\varepsilon}+\|x\|, S_{r}$ contains B.

Now we will prove the inclusion $B \subset T(2 r B)$ for r as above. Indeed, let $y \in B \subset$ S_{r}. There exists $x_{1} \in r B$ such that $\left\|y-T x_{1}\right\|<\frac{1}{2}$. Note that $y-T x_{1} \in \frac{1}{2} B \subset \frac{1}{2} S_{r}$. Then one can find $x_{2} \in \frac{r}{2} B$ such that $\left\|y-T x_{1}-T x_{2}\right\|<\frac{1}{4}$. Proceeding in this way we can construct a sequence $\left\{x_{n} \in \frac{1}{2^{n-1}} B\right\}$ such that $\left\|y-T\left(x_{1}+\cdots+x_{n}\right)\right\|<\frac{1}{2^{n}}$. Consider $w=\sum_{i=1}^{\infty} x_{i}$, which is well defined due to completeness of V. Then $w \in 2 r B$ and $T w=y$. That implies $B \subset T(2 r B)$.

Now we have $T^{-1} B \subset 2 r B$ and hence $\left\|T^{-1}\right\| \leq 2 r$.
Bounded operators have a nice spectral theory, see [18] for instance.
Definition 1.10. Let T be bounded. The spectrum $\sigma(T)$ of T is the subset of complex numbers λ such that $T-\lambda \mathrm{Id}$ is not invertible.

In a finite-dimensional Hilbert space $\sigma(T)$ is the set of eigenvalues of T. In the infinite-dimensional case a point of the spectrum is not necessarily an eigenvalue. We need the following fundamental result.

Theorem 1.11. If T is bounded, then $\sigma(T)$ is a non-empty closed bounded subset of \mathbb{C}.

Proof. The main idea is to consider the resolvent $\mathcal{R}(\lambda)=(T-\lambda \mathrm{Id})^{-1}$ as a function of λ. If T is invertible, then we have the decomposition

$$
\mathcal{R}(\lambda)=T^{-1}\left(\operatorname{Id}+T^{-1} \lambda+T^{-2} \lambda^{2}+\ldots\right),
$$

which converges for $|\lambda|<\frac{1}{\left\|T^{-1}\right\|}$. Thus, $\mathcal{R}(\lambda)$ is analytic in a neighbourhood of 0 . Using shift $\mathcal{R}(\lambda) \rightarrow \mathcal{R}(\lambda+c)$ we obtain that $\mathcal{R}(\lambda)$ is analytic in its domain which is $\mathbb{C} \backslash \sigma(T)$. The domain of $\mathcal{R}(\lambda)$ is an open set. Hence $\sigma(T)$ is closed.

Furthermore, we can write the series for $\mathcal{R}(\lambda)$ at infinity:

$$
\begin{equation*}
\{\text { eqIIIres }\} \quad \mathcal{R}(\lambda)=-\lambda^{-1}\left(\operatorname{Id}+\lambda^{-1} T+\lambda^{-2} T^{2}+\ldots\right) \tag{3.1}
\end{equation*}
$$

This series converges for $|\lambda|>\|T\|$. Therefore $\sigma(\lambda)$ is a subset of the circle $|\lambda| \leq\|T\|$. Hence $\sigma(T)$ is bounded.

Finally, (3.1) also implies $\lim _{\lambda \rightarrow \infty} \mathcal{R}(\lambda)=0$. Suppose that $\sigma(T)=\emptyset$, then $\mathcal{R}(\lambda)$ is analytic and bounded. By Liouville's theorem $\mathcal{R}(\lambda)$ is constant, which is impossible.

Definition 1.12. For any linear operator T in a Hilbert space V we denote by T^{*} the adjoint operator. Since $V^{*} \simeq V$, we can consider T^{*} as a linear operator in V such that for any $x, y \in V$

$$
\langle x, T y\rangle=\left\langle T^{*} x, y\right\rangle .
$$

An operator T is self-adjoint if $T^{*}=T$. A self-adjoint operator T defines on V a Hermitian form $\langle x, y\rangle_{T}=\langle x, T y\rangle$. We call T (semi)positive if this form is (semi)positive definite. For any operator X the operator $X^{*} X$ is semipositive self-adjoint.

Exercise 1.13. (a) If T is bounded, then T^{*} is bounded and $\sigma\left(T^{*}\right)$ is the complex conjugate of $\sigma(T)$.
(b) If T is bounded self-adjoint, then $\sigma(T) \subset \mathbb{R}$.

Lemma 1.14. Let T be a self-adjoint operator in a Hilbert space. Then $\left\|T^{2}\right\|=$ $\|T\|^{2}$.

Proof. For any bounded operator A the Cauchy-Schwartz inequality implies that for all $v \in V$

$$
\langle A v, v\rangle \leq\|A v\|\|v\| \leq\|A\|\|v\|^{2}
$$

For a self-adjoint T we have

$$
\left\langle T^{2} v, v\right\rangle=\|T v\|^{2}
$$

Therefore

$$
\left\|T^{2}\right\| \geq \sup _{\|v\|=1}\left\langle T^{2} v, v\right\rangle=\sup _{\|v\|=1}\|T v\|^{2}=\|T\|^{2} .
$$

On the other hand $\left\|T^{2}\right\| \leq\|T\|^{2}$. Hence $\left\|T^{2}\right\|=\|T\|^{2}$.
Lemma 1.15. Let T be a self-adjoint operator in a Hilbert space V such that $\sigma(T)=\{\mu\}$ is a single point. Then $T=\mu \mathrm{Id}$.

Proof. Without loss of generality we may assume $\mu=0$. Then the series (3.1) converges for all $\lambda \neq 0$. Therefore by the root test we have

$$
\lim _{n \rightarrow \infty} \sup \left\|T^{n}\right\|=0
$$

By Lemma 1.14 if $n=2^{k}$, then $\left\|T^{n}\right\|=\|T\|^{n}$. This implies $\|T\|=0$. Hence $T=0$.

Exercise 1.16. Let X be a self-adjoint bounded operator.
(a) If $f \in \mathbb{R}[x]$ is a polynomial with real coefficients, then $\sigma(f(X))=f(\sigma(X))$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Show that one can define $f(X)$ by approximating f by polynomials f_{n} on the interval $|x| \leq\|X\|$ and setting $f(X)=$ $\lim _{n \rightarrow \infty} f_{n}(X)$ and the result does not depend on the choice of approximation.
(c) For a continuous function f we still have $\sigma(f(X))=f(\sigma(X))$.

Definition 1.17. An operator T in a Hilbert space V is called compact if the closure of the image $T(S)$ of the unit sphere $S=\{x \in V \mid\|x\|=1\}$ is compact.

Clearly, any compact operator is bounded.
Exercise 1.18. Let $\mathcal{C}(V)$ be the subset of all compact operators in a Hilbert space V.
(a) Show that $\mathcal{C}(V)$ is a closed ideal in $\mathcal{B}(V)$.
(b) Let $\mathcal{F}(V)$ be the ideal in $\mathcal{B}(V)$ of all operators with finite-dimensional image. Prove that $\mathcal{C}(V)$ is the closure of $\mathcal{F}(V)$.

Lemma 1.19. Let A be a compact self-adjoint operator in V. Then

$$
\lambda:=\sup _{u \in S}\langle A u, u\rangle
$$

is either zero or an eigenvalue of A.
Proof. Consider the hermitian form $x \mapsto \lambda\langle x, x\rangle-\langle A x, x\rangle$ on V, it is positive therefore the Cauchy-Schwarz inequality gives

$$
\begin{equation*}
\{\operatorname{IIIS} \text { dh\{ma, ng }\}\}-\left.\langle A x, y\rangle\right|^{2} \leq(\lambda\langle x, x\rangle-\langle A x, x\rangle)(\lambda\langle y, y\rangle-\langle A y, y\rangle) \tag{3.2}
\end{equation*}
$$

Let $\left(x_{n}\right)$ be a sequence in S such that $\left\langle A x_{n}, x_{n}\right\rangle$ converges to λ. Since A is a compact operator, after extracting a subsequence we may assume that $A x_{n}$ converges to $z \in V$. By the inequality 3.2 , we get that $\left\langle\lambda x_{n}-A x_{n}, y\right\rangle$ tends to 0 uniformly in $y \in S$. Hence, $\left\|\lambda x_{n}-A x_{n}\right\|$ tends to 0 . Therefore, $\left(x_{n}\right)$ converges to $\frac{1}{\lambda} z$ and z is a eigenvector for A with eigenvalue λ, if $\lambda>0$.

1.5. Schur's lemma for unitary representations.

THEOREM 1.20. Let $\rho: G \rightarrow U(V)$ a topologically irreducible unitary representation of G and $T \in \mathcal{B}(V)$ be a bounded intertwining operator. Then $T=\lambda \operatorname{Id}$ for some $\lambda \in \mathbb{C}$.

Proof. First, by Theorem 1.11, the spectrum $\sigma(T)$ is not empty. Therefore by adding a suitable scalar operator we may assume that T is not invertible. Note that T^{*} is also an intertwiner, and therefore $S=T T^{*}$ is an interwiner as well. Moreover, S is not invertible. If $\sigma(S)=\{0\}$, then $S=0$ by Lemma 1.15. Then we claim that $\operatorname{Ker} T \neq 0$. Indeed, if T is injective, then $\operatorname{Im} T^{*} \subset \operatorname{Ker} T=0$. That implies $T^{*}=T=0$. Since $\operatorname{Ker} T$ is a closed G-invariant subspace of V, we obtain $T=0$.

Now we assume that $\sigma(S)$ consists of more than one point. We will use Exercise 1.16. One can always find two continuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f g(\sigma(S))=0$, but $f(\sigma(S)) \neq 0$ and $g(\sigma(S)) \neq 0$. Then Exercise 1.16(3) together with Lemma 1.15 implies $f(S) g(S)=0$. Both $f(S)$ and $g(S)$ are non-zero intertwiners. At least one of $\operatorname{Ker} f(S)$ and $\operatorname{Ker} g(S)$ is a proper non-zero G-invariant subspace of V. Contradiction.

Corollary 1.21. Let $\rho: G \rightarrow U(V)$ and $\rho^{\prime}: G \rightarrow U\left(V^{\prime}\right)$ be two topologically irreducible unitary representations and $T: V \rightarrow V^{\prime}$ be a continuous intertwining operator. Then either $T=0$ or there exists $c>0$ such that $c T: V \rightarrow V^{\prime}$ is an isometry of Hilbert spaces.

Proof. Let $T \neq 0$. By Theorem 1.20 we have $T^{*} T=T T^{*}=\lambda$ Id for some positive real λ. Set $c=\lambda^{-1 / 2}$ and $U=c T$. Then $U^{*}=U^{-1}$, hence U is an isometry.
\{thIIISchuruni

Corollary 1.22. Every topologically irreducible unitary representation of an abelian topological group G is one-dimensional.

1.6. Irreducible unitary representations of compact groups.

Proposition 1.23. Every non-zero unitary representation of a compact group G contains a non-zero finite dimensional invariant subspace.

Proof. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be an irreducible unitary representation. Choose $v \in V,\|v\|=1$. Define an operator $T: V \rightarrow V$ by the formula

$$
T x=\langle v, x\rangle v
$$

One can check easily that T is a semipositive self-adjoint operator of rank 1.
Define the operator

$$
Q x=\int_{G} \rho_{g} T\left(\rho_{g}^{-1} x\right) d g
$$

ExERCISE 1.24. Check $Q: V \rightarrow V$ is a compact semipositive intertwining operator.

Lemma 1.19 implies that Q has a positive eigenvalue λ. Consider $W=\operatorname{Ker}(Q-\lambda \mathrm{Id})$. Then W is an invariant subspace of V. Note that for any orthonormal system of vectors $e_{1}, \ldots, e_{n} \in W$, one has

$$
\sum_{i=1}^{n}\left\langle e_{i}, T e_{i}\right\rangle \leq 1
$$

Hence

$$
\sum_{i=1}^{n}\left\langle e_{i}, Q e_{i}\right\rangle=\sum_{i=1}^{n} \int_{G}\left\langle\rho_{g} e_{i}, T \rho_{g} e_{i}\right\rangle \leq 1
$$

That implies $\lambda n \leq 1$. Hence $\operatorname{dim} W \leq \frac{1}{\lambda}$.
Corollary 1.25. Every irreducible unitary representation of a compact group G is finite-dimensional.

Lemma 1.26. Every topologically irreducible representation of a compact group G is isomorphic to a subrepresentation of the regular representation in $L^{2}(G)$.

Proof. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be irreducible. Pick a non-zero continuous linear functional φ on V and define the map $\Phi: V \rightarrow L^{2}(G)$ which sends v to the matrix coefficient $f_{v, \varphi}(g)=\left\langle\varphi, \rho_{g} v\right\rangle$. The continuity of ρ and φ implies that $f_{v, \varphi}$ is a continuous function on G, therefore $f_{v, \varphi} \in L^{2}(G)$. Furthermore

$$
R_{g} f_{v, \varphi}(h)=f_{v, \varphi}(h g)=\left\langle\varphi, \rho_{h g} v\right\rangle=\left\langle\varphi, \rho_{h} \rho_{g} v\right\rangle=f_{\rho_{g} v, \varphi}(h) .
$$

Hence Φ is a continuous intertwining operator and the irreducibility of ρ implies $\operatorname{Ker} \Phi=0$. The bicontinuity assertion follows from Corollary 1.25 .

Corollary 1.27. Every topologically irreducible representation of a compact group G is equivalent to some unitary representation.

Corollary 1.28. Every irreducible continuous representation of a compact group G is finite-dimensional.

THEOREM 1.29. If $\rho: G \rightarrow G L(V)$ is a unitary representation, then for any closed invariant subspace $W \subset V$ there exists a closed invariant subspace $U \subset V$ such that $V=U \oplus W$.

Proof. Take $U=W^{\perp}$.
Let \widehat{G} denotes the set of isomorphism classes of irreducible unitary representations of G. This set is called the unitary dual of G.

Lemma 1.30. Let V be a unitary representation of a compact group G. Then it has a unique dense semi-simple G-submodule, namely $\oplus_{\rho \in \widehat{G}} \operatorname{Hom}_{G}\left(V_{\rho}, V\right) \otimes V_{\rho}$.

Proof. Let $M=\oplus_{\rho \in \widehat{G}} \operatorname{Hom}_{G}\left(V_{\rho}, V\right) \otimes V_{\rho}$, and \bar{M} denote the closure of M. We claim that $\bar{M}=V$. Indeed, if \bar{M}^{\perp} is not zero, then it contains an irreducible finitedimensional subrepresentation by Proposition 1.23, but any such representation is contained in M.

On the other hand, if N is a dense semisimple submodule of V, then N must contain all finite-dimensional irreducible subrepresentations of V. Therefore $N=$ M.

2. Orthogonality relations and Peter-Weyl Theorem

2.1. Matrix coefficients. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a unitary representation of a compact group G. The function $G \rightarrow \mathbb{C}$ defined by the formula

$$
f_{v, w}(g)=\left\langle w, \rho_{g} v\right\rangle .
$$

for v, w in V is called a matrix coefficient of the representation ρ.
Since ρ is unitary, one has:

$$
\left\{\text { IIIequ10 } \quad \quad f_{v, w}\left(g^{-1}\right)=\bar{f}_{w, v}(g)\right.
$$

Theorem 2.1. For every irreducible unitary representation $\rho: G \rightarrow \mathrm{GL}(V)$, one has:

$$
\left\langle f_{v, w}, f_{v^{\prime}, w^{\prime}}\right\rangle=\frac{1}{\operatorname{dim} \rho}\left\langle v, v^{\prime}\right\rangle\left\langle w^{\prime}, w\right\rangle
$$

Moreover, the matrix coefficients of two non-isomorphic representations of G are orthogonal in $L^{2}(G)$.

Proof. Take v and v^{\prime} in V. Define $T \in \operatorname{End}_{\mathbb{C}}(V)$ by

$$
T x:=\langle v, x\rangle v^{\prime}
$$

and let

$$
Q=\int_{G} \rho_{g} T \rho_{g}^{-1} d g
$$

As follows from Schur's lemma, since ρ is irreducible, Q is a scalar multiplication. Since

$$
\operatorname{tr} Q=\operatorname{tr} T=\left\langle v, v^{\prime}\right\rangle
$$

we obtain

$$
Q=\frac{\left\langle v, v^{\prime}\right\rangle}{\operatorname{dim} \rho} \operatorname{Id}
$$

Hence

$$
\left\langle w^{\prime}, Q w\right\rangle=\frac{1}{\operatorname{dim} \rho}\left\langle v, v^{\prime}\right\rangle\left\langle w^{\prime}, w\right\rangle .
$$

On the other hand,

$$
\begin{aligned}
\left\langle w^{\prime}, Q w\right\rangle & =\int_{G}\left\langle w^{\prime},\left\langle v, \rho_{g}^{-1} w\right\rangle \rho_{g} v^{\prime}\right\rangle d g=\int_{G} f_{w, v}\left(g^{-1}\right) f_{v^{\prime}, w^{\prime}}(g) d g= \\
& =\int_{G} \bar{f}_{v, w}(g) f_{v^{\prime}, w^{\prime}}(g) d g=\frac{1}{\operatorname{dim} \rho}\left\langle f_{v, w}, f_{v^{\prime}, w^{\prime}}\right\rangle
\end{aligned}
$$

If $f_{v, w}$ and $f_{v^{\prime}, w^{\prime}}$ are matrix coefficients of two non-isomorphic representations, then $Q=0$, and the calculation is even simpler.

Corollary 2.2. Let $\rho: G \rightarrow G L(V)$ and $\sigma: G \rightarrow G L(W)$ be two irreducible unitary representations, then $\left\langle\chi_{\rho}, \chi_{\sigma}\right\rangle=1$ if ρ is isomorphic to σ and $\left\langle\chi_{\rho}, \chi_{\sigma}\right\rangle=0$ otherwise.

Proof. Let v_{1}, \ldots, v_{n} be an orthonormal basis in V and w_{1}, \ldots, w_{m} be an orthonormal basis in W. Then

$$
\left\langle\chi_{\rho}, \chi_{\sigma}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{m}\left\langle f_{v_{i}, v_{i}}, f_{w_{j}, w_{j}}\right\rangle .
$$

Therefore the statement follows from Theorem 2.1.
Lemma 2.3. Let $\rho: G \rightarrow G L(V)$ be an irreducible unitary representation of G. Then the map $V \rightarrow \operatorname{Hom}_{G}\left(V, L^{2}(G)\right)$ defined by

$$
w \mapsto \varphi_{w}, \quad \varphi_{w}(v):=f_{v, w} \text { for all } v, w \in V
$$

is an isomorphism of vector spaces.

Proof. It is easy to see that $\varphi_{w} \in \operatorname{Hom}_{G}\left(V, L^{2}(G)\right)$. Moreover, the value of $\varphi_{w}(w)$ at e equals $\langle w, w\rangle$. Hence $\varphi_{w} \neq 0$ if $w \neq 0$. Thus, the map is injective. To check surjectivity note that $\operatorname{Hom}_{G}\left(V, L^{2}(G)\right)$ is the subspace of functions $f: G \times V \rightarrow \mathbb{C}$ satisfying the condition

$$
f(g h, v)=f\left(g, \rho_{h} v\right) \quad \text { for all } v \in V, g, h \in G
$$

For any such f there exists $w \in V$ such that $f(e, v)=\langle w, v\rangle$. The above condition implies $f(g, v)=\left\langle w, \rho_{g} v\right\rangle$, i.e. $f=\varphi_{w}$.

Theorem 2.4. (Peter-Weyl) Matrix coefficients of all irreducible unitary representations span a dense subspace in $L^{2}(G)$ for a compact group G.

Proof. We apply Lemma 1.30 to the regular representation of G. Let $\rho \in \widehat{G}$. Lemma 2.3 implies that $V_{\rho} \otimes \operatorname{Hom}_{G}\left(V_{\rho}, L^{2}(G)\right)$ coincides with the space of all matrix coefficients of ρ. Hence the span of matrix coefficients is the unique semisimple G-submodule in $L^{2}(G)$.
2.2. Convolution algebra. For a group G we define by $L^{1}(G)$ the set of all complex valued functions φ on G such that

$$
\|f\|_{1}:=\int_{G}|\varphi(g)| d g
$$

is finite.
Definition 2.5. The convolution product of two continuous complex valued functions φ and ψ on G is defined by the formula:

$$
\begin{equation*}
(\varphi * \psi)(g):=\int_{G} \varphi(h) \psi\left(h^{-1} g\right) d h \tag{3.4}
\end{equation*}
$$

ExERCISE 2.6. The following properties are easily checked:
(1) $\|\varphi * \psi\|_{1} \leq\|\varphi\|_{1}\|\psi\|_{1}$
(2) The convolution product extends uniquely as a continuous bilinear map $L^{1}(G) \times L^{1}(G) \rightarrow L^{1}(G)$.
(3) The convolution is an associative product.
(4) Let V be a unitary representation of G, show that we can see it as a $L^{1}(G)-$ module by setting $\varphi \cdot v:=\int_{G} \varphi(g) g v d g$.
\{IIIcorPW1\}
Corollary 2.7. Let G be a compact group and R denote the representation of $G \times G$ in $L^{2}(G)$ given by the formula

$$
R_{s, t} f(x)=f\left(s^{-1} x t\right) .
$$

Then

$$
L^{2}(G) \cong \widehat{\bigoplus}_{\rho \in \widehat{G}} V_{\rho}^{*} \boxtimes V_{\rho}
$$

where the direct sum is in the sense of Hilbert spaces.

Moreover, this isomorphism is actually an isomorphism of algebras (without unit) between $L^{2}(G)$ equipped with the convolution and $\widehat{\bigoplus}_{\rho \in \widehat{G}} \operatorname{End}\left(V_{\rho}\right)$.

Proof. For any $\rho \in \widehat{G}$ consider the map $\Phi_{\rho}: V_{\rho}^{*} \boxtimes V_{\rho} \rightarrow L^{2}(G)$ defined by

$$
\Phi_{\rho}(v \otimes w)(g)=\left\langle v, \rho_{g} w\right\rangle .
$$

It is easy to see that Φ_{ρ} defines an embedding of the irreducible $G \times G$-representation $\rho^{*} \boxtimes \rho$ in $L^{2}(G)$. Moreover, by orthogonality relation $\left\langle\operatorname{Im} \Phi_{\rho}, \operatorname{Im} \Phi_{\sigma}\right\rangle=0$ if ρ and σ are not isomorphic. The direct sum $\bigoplus_{\rho \in \widehat{G}} \operatorname{Im} \Phi_{\rho}$ coincides with the span of all matrix coefficients of all irreducible representations of G. Hence it is dense in $L^{2}(G)$. That implies the first statement. The final statement is clear by applying item (4) of Exercise 2.6.

REMARK 2.8. A finite group G is a compact group in discrete topology and $L^{2}(G)$ with convolution product is the group algebra $\mathbb{C}(G)$. Therefore Theorem 1.13 of Chapter 2 is a particular case of Corollary 2.7 when the ground field is \mathbb{C}.

Corollary 2.9. The characters of irreducible representations form an orthonormal basis in the subspace of class function in $L^{2}(G)$.

Proof. Let $\mathcal{C}(G)$ denote the subspace of class functions in $L^{2}(G)$, it is clearly the center of $L^{2}(G)$. On the other hand, the center of $\operatorname{End}\left(V_{\rho}\right)$ is \mathbb{C} and its image in $L^{2}(G)$ is $\mathbb{C} \chi_{\rho}\left(\chi_{\rho}\right.$ denotes as usual the character of $\left.\rho\right)$. The assertion is a direct consequence of Corollary 2.7.

ExERCISE 2.10. Let $r: G \rightarrow U(V)$ be a unitary representation of a compact group G and ρ be an irreducible representation with character χ_{ρ}. Then the linear operator

$$
P_{\rho}(x):=\operatorname{dim} \rho \int_{G} \chi_{\rho}\left(g^{-1}\right) r_{g} x d g
$$

is a projector onto the corresponding isotypic component.
EXERCISE 2.11. Let E be a faithful finite-dimensional representation of a compact group G. Show that all irreducible representations of G appear in $T(E) \otimes T\left(E^{*}\right)$ as subrepresentations. Hint: Note that G is a subgroup in $G L(E)$. Using Weierstrass theorem prove that matrix coefficient of E and E^{*} generate a dense subalgebra in $L^{2}(G)$ (with usual pointwise multiplication).

3. Examples

3.1. The circle. Let $\mathbb{T}=S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$, if $z \in S^{1}$, one can write $z=e^{i \theta}$ with θ in $\mathbb{R} / 2 \pi \mathbb{Z}$. The Haar measure on S^{1} is equal to $\frac{d \theta}{2 \pi}$. All irreducible representations of S^{1} are one-dimensional since S^{1} is abelian. They are given by the characters $\chi_{n}: S^{1} \rightarrow \mathbb{C}^{*}, \chi_{n}(\theta)=e^{i n \theta}, n \in \mathbb{Z}$. Hence $\widehat{S}^{1}=\mathbb{Z}$ and

$$
L^{2}\left(S^{1}\right)=\oplus_{n \in \mathbb{Z}} \mathbb{C} e^{i n \theta}
$$

This is a representation-theoretic explanation of the Parseval theorem, meaning that every square integrable periodic function is the sum (with respect to the L^{2} norm) of its Fourier series.
3.2. The group $S U_{2}$. Consider the compact group $G=S U_{2}$. Then G consists of all matrices

$$
\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right),
$$

satisfying the relations $|a|^{2}+|b|^{2}=1$. Thus, as a topological space, $S U_{2}$ is isomorphic to the 3-dimensional sphere S^{3}.

EXERCISE 3.1. Check that $S U_{2}$ is isomorphic to the multiplicative subgroup of quaternions with norm 1 by identifying the quaternion $a+b i+c j+d k=a+b i+j(c+d i)$ with the matrix $\left(\begin{array}{cc}a+b i & c+d i \\ -c+d i & a-d i\end{array}\right)$.

To find the irreducible representations of $S U_{2}$, consider the polynomial ring $\mathbb{C}[x, y]$, with the action of $S U_{2}$ given by the formula

$$
\rho_{g}(x)=a x+b y, \rho_{g}(y)=-\bar{b} x+\bar{a} y \text {, if } g=\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right) .
$$

Let ρ_{n} be the representation of G in the space $\mathbb{C}_{n}[x, y]$ of homogeneous polynomials of degree n. The monomials $x^{n}, x^{n-1} y, \ldots, y^{n}$ form a basis of $\mathbb{C}_{n}[x, y]$. Therefore $\operatorname{dim} \rho_{n}=n+1$. We claim that all ρ_{n} are irreducible and that every irreducible representation of $S U_{2}$ is isomorphic to ρ_{n} for some $n \geq 0$. We will show this by checking that the characters χ_{n} of ρ_{n} form an orthonormal basis in the Hilbert space of class functions on G.

Recall that every unitary matrix is diagonal in some orthonormal basis, therefore every conjugacy class of $S U_{2}$ intersects the diagonal subgroup. Moreover, $\left(\begin{array}{cc}z & 0 \\ 0 & \bar{z}\end{array}\right)$ and $\left(\begin{array}{ll}\bar{z} & 0 \\ 0 & z\end{array}\right)$ are conjugate. Hence the set of conjugacy classes can be identified with the quotient of S^{1} by the equivalence relation $z \sim \bar{z}$. Let $z=e^{i \theta}$, then

$$
\begin{equation*}
\{\text { IIIAeq(1才 })\} z^{n}+z^{n-2}+\cdots+z^{-n}=\frac{z^{n+1}-z^{-n-1}}{z-z^{-1}}=\frac{\sin (n+1) \theta}{\sin \theta} . \tag{3.5}
\end{equation*}
$$

First, let us compute the Haar measure for G.
ExErcise 3.2. Let $G=S U_{2}$.
(a) Using Exercise 3.1 show that the action of $G \times G$ given by the multiplication on the right and on the left coincides with the standard action of $S O(4)$ on S^{3}. Use it to prove that $S O(4)$ is isomorphic to the quotient of $G \times G$ by the two element subgroup $\{(1,1),(-1,-1)\}$.
(b) Prove that the Haar measure on G is proportional to the standard volume form on S^{3} invariant under the action of the orthogonal group $S O_{4}$.

More generally: let us compute the volume form on the n-dimensional sphere $S^{n} \subset$ \mathbb{R}^{n+1} which is invariant under the action $S O_{n+1}$. We use the spherical coordinates in \mathbb{R}^{n+1},

$$
\begin{aligned}
& x_{1}=r \cos \theta, x_{2}=r \sin \theta \cos \varphi_{1}, x_{3}=r \sin \theta \sin \varphi_{1} \cos \varphi_{2}, \\
& \ldots \\
& x_{n-1}=r \sin \theta \sin \varphi_{1} \sin \varphi_{2} \ldots \sin \varphi_{n-2} \cos \varphi_{n-1}, \\
& x_{n}=r \sin \theta \sin \varphi_{1} \sin \varphi_{2} \ldots \sin \varphi_{n-2} \sin \varphi_{n-1},
\end{aligned}
$$

where $r>0, \theta, \varphi_{1}, \ldots, \varphi_{n-2}$ vary in $[0, \pi]$ and $\varphi_{n-1} \in[0,2 \pi]$. The Jacobian relating spherical and Euclidean coordinates is equal to

$$
r^{n} \sin ^{n-1} \theta \sin ^{n-2} \varphi_{1} \ldots \sin \varphi_{n-2},
$$

thus when we restrict to the sphere $r=1$ we obtain the volume

$$
\sin ^{n-1} \theta \sin ^{n-2} \varphi_{1} \ldots \sin \varphi_{n-2} d \theta d \varphi_{1} \ldots d \varphi_{n-1}
$$

which is $S O_{n+1}$-invariant. It is not normalized.
Let us return to the case $G=S U_{2} \simeq S^{3}$. After normalization the invariant volume form is

$$
\frac{1}{2 \pi^{2}} \sin ^{2} \theta \sin \varphi_{1} d \theta d \varphi_{1} d \varphi_{2}
$$

The conjugacy class $C(\theta)$ of all matrices with eigenvalues $e^{i \theta}, e^{-i \theta}(\theta \in[0, \pi])$ is the set of points in S^{3} with spherical coordinates $\left(1, \theta, \varphi_{1}, \varphi_{2}\right)$: indeed, the minimal polynomial on \mathbb{R} of the quaternion with those coordinates is

$$
t^{2}-2 t \cos \theta+1
$$

which is also the characteristic polynomial of the corresponding matrix in SU_{2}, so it belongs to $C(\theta)$.

Hence, one gets that, for a class function ψ on G

$$
\int_{G} \psi(g) d g=\frac{1}{2 \pi^{2}} \int_{0}^{\pi} \psi(\theta) \sin ^{2} \theta d \theta \int_{0}^{\pi} \sin \varphi_{1} d \varphi_{1} \int_{0}^{2 \pi} d \varphi_{2}=\frac{2}{\pi} \int_{0}^{\pi} \psi(\theta) \sin ^{2} \theta d \theta
$$

Exercise 3.3. Prove that the functions χ_{n} form an orthonormal basis of the space $L^{2}([0, \pi])$ with the measure $\frac{2}{\pi} \sin ^{2} \theta d \theta$ and hence of the space of class functions on G.
3.3. The orthogonal group $G=S O_{3}$. Recall that $S U_{2}$ can be realized as the set of quaternions with norm 1. Consider the representation γ of $S U_{2}$ in the space of quaternions \mathbb{H} defined by the formula $\gamma_{g}(\alpha)=g \alpha g^{-1}$. One can see that the 3 -dimensional space \mathbb{H}_{im} of pure imaginary quaternions is invariant and $(\alpha, \beta)=$ $\operatorname{Re}(\alpha \bar{\beta})$ is an invariant positive definite scalar product on \mathbb{H}_{im}. Therefore ρ defines a homomorphism $\gamma: \mathrm{SU}_{2} \rightarrow \mathrm{SO}_{3}$.

Exercise 3.4. Check that $\operatorname{Ker} \gamma=\{1,-1\}$ and that γ is surjective. Hence $S O_{3} \cong$ $S U_{2} /\{1,-1\}$. Thus, we can see that as a topological space $S O_{3}$ is a 3-dimensional sphere with opposite points identified, or the real 3-dimensional projective space.

Therefore every representation of $S O_{3}$ can be lifted to the representations of $S U_{2}$, and a representation of $S U_{2}$ factors to the representation of $S O_{3}$ if and only if it is trivial on -1 . One can check easily that $\rho_{n}(-1)=1$ if and only if n is even. Thus, any irreducible representation of SO_{3} is isomorphic to $\rho_{2 m}$ for some $m>0$ and $\operatorname{dim} \rho_{2 m}=2 m+1$. Below we give an independent realization of irreducible representation of SO_{3}.
3.4. Harmonic analysis on a sphere. Consider the sphere S^{2} in \mathbb{R}^{3} defined by the equation

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1 .
$$

The action of $S O_{3}$ on S^{2} induces the representation of $S O_{3}$ in the space $L^{2}\left(S^{2}\right)$ of complex-valued square integrable functions on S^{2}. This representation is unitary. We would like to decompose it into a sum of irreducible representations of SO_{3}. We note first that the space $\mathbb{C}\left[S^{2}\right]$ obtained by restriction of the polynomial functions $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ to S^{2} is the invariant dense subspace in $L^{2}\left(S^{2}\right)$. Indeed, it is dense in the space of continuous functions on S^{2} by the Weierstrass theorem and the latter space is dense in $L^{2}\left(S^{2}\right)$.

Let us introduce the following differential operators in \mathbb{R}^{3} :
$e:=-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right), h:=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}+\frac{3}{2}, f:=\frac{1}{2}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}\right)$,
note that e, f, and h commute with the action of SO_{3} and satisfy the relations

$$
[e, f]=h,[h, e]=2 e,[h, f]=-2 f
$$

where $[a, b]=a b-b a$.
Let P_{n} be the space of homogeneous polynomial of degree n and $H_{n}=\operatorname{Ker} f \cap P_{n}$. The polynomials of H_{n} are called harmonic polynomials since they are annihilated by the Laplace operator f. For any $\varphi \in P_{n}$ we have

$$
h(\varphi)=\left(n+\frac{3}{2}\right) \varphi .
$$

If $\varphi \in H_{n}$, then

$$
f e(\varphi)=e f(\varphi)-h(\varphi)=-\left(n+\frac{3}{2}\right) \varphi
$$

and by induction

$$
f e^{k}(\varphi)=e f e^{k-1}(\varphi)-h e^{k-1}(\varphi)=-\left(n k+k(k-1)+\frac{3 k}{2}\right) e^{k-1} \varphi
$$

In particular, this implies that

$$
\begin{equation*}
\text { \{IIIequ12\} } \quad f e^{k}\left(H_{n}\right)=e^{k-1}\left(H_{n}\right) \tag{3.6}
\end{equation*}
$$

We will prove now that

$$
\begin{equation*}
P_{n}=H_{n} \oplus e\left(H_{n-2}\right) \oplus e^{2}\left(H_{n-4}\right)+\ldots \tag{3.7}
\end{equation*}
$$

by induction on n. Indeed, by the induction assumption

$$
P_{n-2}=H_{n-2} \oplus e\left(H_{n-4}\right)+\ldots
$$

Furthermore, (3.6) implies $f e\left(P_{n-2}\right)=P_{n-2}$. Hence $H_{n} \cap e P_{n-2}=0$. On the other hand, $f: P_{n} \rightarrow P_{n-2}$ is surjective, and therefore $\operatorname{dim} H_{n}+\operatorname{dim} P_{n-2}=\operatorname{dim} P_{n}$. Therefore

$$
\begin{equation*}
P_{n}=H_{n} \oplus e P_{n-2}, \tag{3.8}
\end{equation*}
$$

which implies (3.7). Note that after restriction to S^{2}, the operator e acts as the multiplication on $\frac{-1}{2}$.

Hence (3.7) implies that

$$
\mathbb{C}\left[S^{2}\right]=\bigoplus_{n \geq 0} H_{n}
$$

To calculate the dimension of H_{n} use (3.8)

$$
\operatorname{dim} H_{n}=\operatorname{dim} P_{n}-\operatorname{dim} P_{n-2}=\frac{(n+1)(n+2)}{2}-\frac{n(n-1)}{2}=2 n+1
$$

Finally, we will prove that the representation of SO_{3} in H_{n} is irreducible and isomorphic to $\rho_{2 n}$. Consider the subgroup $D \subset S_{3}$ consisting of all rotations about x_{3}-axis. Then D is the image under $\gamma: S U_{2} \rightarrow S O_{3}$ of a diagonal subgroup of $S U_{2}$. Let R_{θ} denotes the rotation by the angle θ.

ExERCISE 3.5. Let $V_{2 n}$ be the space of the representation $\rho_{2 n}$. Check that the set of eigenvalues of R_{θ} in the representation $V_{2 n}$ equals $\left\{e^{k \theta i} \mid-n \leq k \leq n\right\}$.

Let $\varphi=\left(x_{1}+i x_{2}\right)^{n}$. It is easy to see that $\varphi_{n} \in H_{n}$ and $R_{\theta}\left(\varphi_{n}\right)=e^{n \theta i} \varphi_{n}$. By Exercise 3.5 this implies that H_{n} contains a subrepresentation isomorphic to $\rho_{2 k}$ for some $k \geq n$. By comparing dimensions we see that this implies $H_{n}=V_{2 n}$. Thus, we obtain the following decompositions

$$
\mathbb{C}\left[S^{2}\right]=\bigoplus_{n \in \mathbb{N}} H_{n}, L^{2}\left(S^{2}\right)=\widehat{\bigoplus_{n \in \mathbb{N}}} H_{n}
$$

Now, we are able to prove the following geometrical theorem.
Theorem 3.6. A convex centrally symmetric solid in \mathbb{R}^{3} is uniquely determined by the areas of the plane cross-sections through the origin.

Proof. A convex solid B can be defined by an even continuous function on S^{2}. Indeed, for each unit vector v let

$$
\varphi(v)=\sup \left\{t^{2} \in \mathbb{R} \mid t v \in B\right\}
$$

Define a linear operator T in the space of all even continuous functions on S^{2} by the formula

$$
T \varphi(v)=\frac{1}{2} \int_{0}^{2 \pi} \varphi(w) d \theta
$$

where w runs the set of unit vectors orthogonal to v, and θ is the angular parameter on the circle $S^{2} \cap v^{\perp}$. Check that $T \varphi(v)$ is the area of the cross section by the plane v^{\perp}. We have to prove that T is invertible.

Obviously T commutes with the SO_{3}-action. Therefore T can be diagonalized by using Schur's lemma and the decomposition

$$
L^{2}(G)_{\text {even }}=\widehat{\bigoplus_{n \in \mathbb{N}}} H_{2 n}
$$

Indeed, T acts on $H_{2 n}$ as the scalar operator $\lambda_{n} I d$. We have to check that $\lambda_{n} \neq 0$ for all n. Consider again $\varphi_{2 n} \in H_{2 n}$. Then $\varphi_{2 n}(1,0,0)=1$ and

$$
T \varphi_{2 n}(1,0,0)=\frac{1}{2} \int_{0}^{2 \pi}(i y)^{2 n} d \theta=\frac{(-1)^{n}}{2} \int_{0}^{2 \pi} \sin ^{2 n} \theta d \theta
$$

here we take the integral over the circle $x_{2}^{2}+x_{3}^{2}=1$, and assume $x_{2}=\sin \theta, x_{3}=\cos \theta$. Since $T \varphi=\lambda_{n} \varphi$, we obtain

$$
\lambda_{n}=\frac{(-1)^{n}}{2} \int_{0}^{2 \pi} \sin ^{2 n} \theta d \theta \neq 0
$$

CHAPTER 4

Some results about unitary representations

In this chapter, we consider unitary representations of groups which are locally compact but no Conger compact. We do not intend to go very far in this deep subject, but we want to give three examples in order to show how the structure of the dual of the group changes.

1. Unitary representations of \mathbb{R}^{n} and Fourier transform

1.1. Unitary dual of a locally compact abelian group. Let G be a locally compact abelian group. Then by Corollary 1.22 of Chapter 3, every unitary representation of G is one-dimensional. Therefore the unitary dual \widehat{G} is the set of continuous homomorphisms $\rho: G \rightarrow S^{1}$. Moreover, \widehat{G} is an abelian group with multiplication defined by the tensor product.

For example, as we have seen in Section 3.1 Chapter 3, if $G=S^{1}$ is the circle, then \widehat{G} is isomorphic to \mathbb{Z}. In general, if G is compact, then \widehat{G} is discrete. If G is not compact, one can define a topology on \widehat{G} (by uniform convergence on compact sets) in such a way that the natural homomorphism $s: G \rightarrow \widehat{\widehat{G}}$, defined by $s(g)(\rho)=\rho(g)$, is an isomorphism of topological groups. This fact is usually called the Pontryagin duality.

Let us concentrate on the case when $G=V$ is a real vector space of finite dimension n. Let us fix an invariant volume form $d x$ on V. The unitary dual of V is isomorphic to the usual dual V^{*} via identification

$$
\rho_{\xi}(x)=e^{2 i \pi<\xi, x>} \text { for all } x \in V, \xi \in V^{*},
$$

where $\langle\xi, x>$ is the duality evaluation.
We immediately see that, in contrast with the compact case, ρ_{ξ} is no longer in $L^{2}(V)$. We still can try to write down the analogous of the formula giving the projector P_{ξ} from $L^{2}(V)$ onto the irreducible representation ρ_{ξ}, as in Exercise 2.10 Chapter 3: for $f \in L^{2}(V), y \in V$ and $\xi \in V^{*}$, let us set

$$
P_{\xi}(f)(y):=\int_{V} f(x+y) e^{-2 i \pi<\xi, x>} d x=\left(\int_{V} f(z) e^{-2 i \pi<\xi, z>} d z\right) \rho_{\xi}(y):
$$

the coefficient $\int_{V} f(z) e^{-2 i \pi<\xi, z>} d z$ is nothing but the value $\hat{f}(\xi)$ of the Fourier transform \hat{f}. However, the integral defining \hat{f} has no obvious meaning for $f \in L^{2}(V)$,
since $L^{2}(V)$ is not included in $L^{1}(V)$. In this section, we explain how to overcome this difficulty, see Plancherel theorem (Theorem 1.12).

We also would like to claim that every $f \in L^{2}(V)$ is in a certain sense the "sum of its projections", which leads to the equality

$$
f(x)=\int_{V} \hat{f}(\xi) e^{2 i \pi<\xi, x>} d \xi
$$

This formula expresses the involutivity of the Fourier transform, see Theorem 1.7 below.
1.2. Fourier transform: generalities. Let $L^{1}(V)$ be the set of integrable complex-valued functions on V.

Definition 1.1. Let $f \in L^{1}(V)$, the Fourier transform of f is the function on V^{*}

$$
\hat{f}(\xi):=\int_{V} f(x) e^{-2 i \pi<\xi, x>} d x
$$

REmark 1.2. (1) One checks that $\lim _{\xi \rightarrow \infty} \hat{f}(\xi)=0$ and that \hat{f} is continuous on V^{*}.
(2) Nevertheless, there is no reason for \hat{f} to belong to $L^{1}\left(V^{*}\right)$ (check on the characteristic function of an interval in \mathbb{R}).
(3) The Fourier transform of the convolution (see Definition 2.5 Chapter 3) of two functions is the product of the Fourier transforms of the two factors.
(4) (Adjunction formula for Fourier transforms) Let $f \in L^{1}(V)$ and $\varphi \in L^{1}\left(V^{*}\right)$, then

$$
\int_{V} f(x) \hat{\varphi}(x) d x=\int_{V^{*}} \hat{f}(\xi) \varphi(\xi) d \xi
$$

Exercise 1.3. Let $\gamma \in G L(V)$, show that the Fourier transform of the function $\gamma \cdot f$ defined by $(\gamma \cdot f)(x)=f\left(\gamma^{-1}(x)\right)$ is equal to $\operatorname{det}(\gamma)^{t} \gamma^{-1} \cdot \hat{f}$.

Let us consider the generalized Wiener algebra $\mathcal{W}(V)$ consisting of integrable functions on V whose Fourier transform is integrable on V^{*}.

Proposition 1.4. The subspace $\mathcal{W}(V) \subset L^{1}(V)$ is a dense subset (for the L^{1} norm).

Proof. Let Q be a positive definite quadratic form on V, denote by B its polarization and by Q^{-1} the quadratic form on V^{*} whose polarization is B^{-1}. Let $\operatorname{Disc}(Q)$ denote the discriminant of Q in a basis of V of volume 1 .

Lemma 1.5. The Fourier transform of the function $\phi: x \mapsto e^{-\pi Q(x)}$ on V is the function $\xi \mapsto \operatorname{Disc}(Q)^{-1 / 2} e^{-\pi Q^{-1}(\xi)}$ on V^{*}.

Proof. (of the lemma) One can reduce this lemma to the case $n=1$ by using an orthogonal basis for Q and Fubini's theorem. We just need to compute the Fourier transform of the function $\epsilon(x):=x \mapsto e^{-\pi x^{2}}$ on the line \mathbb{R}.

One has

$$
\hat{\epsilon}(\xi)=\int_{\mathbb{R}} e^{-\pi x^{2}-2 i \pi \xi x} d x=e^{-\pi \xi^{2}} \int_{\mathbb{R}} e^{-\pi(x+i \xi)^{2}} d x
$$

By complex integration, the integral factor in the far-right-hand side does not depend on ξ and its value for $\xi=0$ is the Gauss integral $\int_{\mathbb{R}} e^{-\pi x^{2}} d x=1$. Hence the lemma.

To finish the proof of proposition let us take Q such that $\operatorname{Disc}(Q)=1$. The lemma implies that ϕ belongs to $\mathcal{W}(V)$. For every $\lambda \in \mathbb{R}_{>0}$, we set $\phi_{\lambda}(x):=\lambda^{n} \phi(\lambda x)$.

Exercise 1.6. Check that $\phi_{\lambda}(x)$ is a positive-valued function and $\int_{V} \phi_{\lambda}(x) d x=$ 1. Prove that, when λ tends to infinity, $\phi_{\lambda}(x)$ converges uniformally to 0 in the complement of any neighbourhood of $0 \in V$.

Now take any function $f \in L^{1}(V)$. By Remark 1.2 the convolution product $f_{\lambda}:=f * \phi_{\lambda}$ belongs to $\mathcal{W}(V)$. By the exercise f_{λ} converges to f for the L^{1}-norm.

THEOREM 1.7. (Fourier inversion formula) Let $f \in \mathcal{W}(V)$, one has, for all $x \in V$:

$$
\hat{\hat{f}}(x)=f(-x)
$$

Proof. By Proposition 1.4 the subset of continuous bounded functions is dense in $\mathcal{W}(V)$. Hence it suffices to prove the statement for continuous bounded f. We use a slight extension of the adjunction formula (Remark 1.2, (4)): let $\lambda \in \mathbb{R}_{>0}$, one has, for all $f \in L^{1}(V)$ and $\varphi \in L^{1}\left(V^{*}\right)$,

If λ goes to 0 , the function $x \mapsto f(\lambda x)$ tends to $f(0)$ and remains bounded by $\|f\|_{\infty}:=\sup |f|$. By dominated convergence, we obtain the equality

$$
\begin{equation*}
f(0) \hat{\hat{\varphi}}(0)=\hat{\hat{f}}(0) \varphi(0) \tag{4.2}
\end{equation*}
$$

Using the function ϕ of Lemma 1.5 for φ, we know that $\hat{\hat{\phi}}=\phi$, thus $\hat{\hat{f}}(0)=f(0)$. We use the action of the additive group V on $\mathcal{W}(V)$ (translation) given by

$$
\tau_{y}(f):(x \mapsto f(x-y))
$$

and on $\mathcal{W}\left(V^{*}\right)$ (multiplication) given by

$$
\mu_{y}(\varphi): \xi \mapsto e^{-2 i \pi<\xi, y>} \varphi(\xi)
$$

for all $y \in V$.
Exercise 1.8. Check that
(1) $\widehat{\tau_{y}(f)}=\mu_{y}(\hat{f})$ for all $f \in L^{1}(V)$,
(2) $\widehat{\mu_{y}(\varphi)}=\tau_{-y}(\hat{\varphi})$ for all $\varphi \in L^{1}\left(V^{*}\right)$.

We apply the translation τ_{y} to f, Exercise 1.8 shows that $\widehat{\widehat{\tau_{y}(f)}}=\tau_{-y} \hat{f}$, hence the result.

Remark 1.9. Fourier inversion formula is equivalent to the following statement

$$
\begin{equation*}
\overline{\hat{\hat{f}}}=f \tag{4.3}
\end{equation*}
$$

where \bar{f} denotes the complex conjugate of f.
Corollary 1.10. The space $\mathcal{W}(V)$ is a dense subspace in $L^{2}(V)$.
Proof. By Theorem 1.7 and Remark 1.2, $\mathcal{W}(V)$ is a subset of the set $\mathcal{C}^{0}(V)$ of continuous functions on V which tend to 0 at infinity. For details see [28]. Therefore $\mathcal{W}(V)$ is included in $L^{2}(V)$. The proof of Proposition 1.4 can be adapted to prove the density of $\mathcal{W}(V)$ in $L^{2}(V)$ (using that $\phi \in L^{2}(V)$).

Corollary 1.11. The Fourier transform is an injective map from $L^{1}(V)$ to $\mathcal{C}^{0}\left(V^{*}\right)$.

Proof. We first notice that $\mathcal{W}(V)$ is dense in $\mathcal{C}^{0}(V)$ by the same argument as in the proof of the Proposition 1.4.

Hence, if $f \in L^{1}(V)$ is such that $\hat{f}=0$, to show that $f=0$ it is sufficient to prove that

$$
\int_{V} f(x) g(x) d x=0
$$

for any $g \in \mathcal{W}(V)$. By Theorem 1.7, g is the Fourier transform of $\xi \mapsto \hat{g}(-\xi)$ and by Remark 1.2(4), one has

$$
\int_{V} f(x) g(x) d x=\int_{V^{*}} \hat{f}(\xi) \hat{g}(-\xi) d \xi=0
$$

Theorem 1.12. (Plancherel) The Fourier transform extends to an isometry from $L^{2}(V)$ to $L^{2}\left(V^{*}\right)$.

Proof. Since $\mathcal{W}(V)$ is dense in $L^{2}(V)$, all we have to show is that for f and g in $\mathcal{W}(V)$, one has

$$
\begin{equation*}
\int_{V} \bar{f}(x) g(x) d x=\int_{V^{*}} \overline{\hat{f}}(\xi) \hat{g}(\xi) d \xi \tag{4.4}
\end{equation*}
$$

By Remark 1.2 (4), the right-hand side is equal to

$$
\int_{V} \hat{\hat{\hat{f}}}(x) g(x) d x
$$

But, by Remark 1.9 (4.3), $\hat{\hat{\hat{f}}}=\bar{f}$, QED.

Remark 1.13. By Plancherel's theorem, the Fourier transform maps $\mathcal{W}(V)$ to $\mathcal{W}\left(V^{*}\right)$ exchanging the roles of usual and convolution products.
1.3. The link between Fourier series and Fourier transform on \mathbb{R}. Let f be a function over the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$. The Fourier series of f is

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} c_{n}(f) e^{2 i \pi n x} \tag{4.5}
\end{equation*}
$$

where

$$
c_{n}:=\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t) e^{-2 i \pi n t} d t
$$

Now, for $\lambda \in \mathbb{R}_{>0}$, if g is a function defined over the interval $\left[-\frac{\lambda}{2}, \frac{\lambda}{2}\right]$, changing the variable by $y:=\lambda x$, the corresponding Fourier series is written

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}}\left(\int_{-\frac{\lambda}{2}}^{\frac{\lambda}{2}} \frac{1}{\lambda} g(u) e^{-2 i \pi n \frac{u}{\lambda}} d u\right) e^{2 i \pi n \frac{y}{\lambda}} . \tag{4.6}
\end{equation*}
$$

We consider that, formally, g is the sum of its Fourier series on $\left[-\frac{\lambda}{2}, \frac{\lambda}{2}\right]$.
Now if we consider g as a function defined on \mathbb{R} with compact support by extending by 0 outside the interval $\left[-\frac{\lambda}{2}, \frac{\lambda}{2}\right]$, we may interpret the n-th Fourier coefficient as $\frac{1}{\lambda} \hat{g}\left(\frac{n}{\lambda}\right)$ and the Fourier series as the sum

$$
\begin{equation*}
\frac{1}{\lambda} \sum_{n \in \mathbb{Z}} \hat{g}\left(\frac{n}{\lambda}\right) e^{2 i \pi \frac{n y}{\lambda}} \tag{4.7}
\end{equation*}
$$

Formally, this series is exactly the Riemann sum, corresponding to the partition of \mathbb{R} associated to the intervals $\left[\frac{n}{\lambda}, \frac{n+1}{\lambda}\right]$, of the infinite integral $\int_{\mathbb{R}} \hat{f}(t) e^{2 i \pi n t} d t$.

If now g is compactly supported and λ tends to $+\infty$, this formal expression of the sum suggests the equality

$$
g(t)=\int_{\mathbb{R}} \hat{g}(u) e^{2 i \pi t u} d u
$$

2. Heisenberg groups and the Stone-von Neumann theorem

2.1. The Heisenberg group and some examples of its unitary representations. Let V be a real vector space over of finite even dimension $n=2 g$ together with a non-degenerate symplectic form $\omega:(x, y) \mapsto(x \mid y)$. Let $\mathbb{T}=S^{1}$ be the group of complex numbers of modulus 1. We define the Heisenberg group H as the set theoretical product $\mathbb{T} \times V$ with the composition law

$$
(t, x)\left(t^{\prime}, x^{\prime}\right):=\left(t t^{\prime} e^{i \pi\left(x \mid x^{\prime}\right)}, x+x^{\prime}\right)
$$

The centre of H is \mathbb{T}, imbedded in H by $t \mapsto(t, 0)$. There is a non-split exact sequence

$$
1 \rightarrow \mathbb{T} \rightarrow H \rightarrow V \rightarrow 0
$$

The commutator map $(g, h) \mapsto g h g^{-1} h^{-1}$ of elements of H naturally factorises as the map $V \times V \rightarrow \mathbb{T}$

$$
(x, y) \mapsto e^{2 i \pi(x \mid y)}
$$

Exercise 2.1. Show that the formula

$$
r_{(t, x)} f(y):=t f(y-x) e^{i \pi(x \mid y)} \text { for all } t \in \mathbb{T}, x, y \in V, f \in L^{2}(V)
$$

defines a unitary representation r of the group H in the space $L^{2}(V)$.
Definition 2.2. Consider two maximal isotropic subspaces of V with trivial intersection. If we denote one of them by W, then the second one can be identified by ω with the dual space W^{*}. Since the restriction of ω to both W and W^{*} is zero, the map $x \mapsto(1, x)$ from V to H induces group homomorphisms on both W and W^{*}.

The Schrödinger representation σ of H in the Hilbert space $L^{2}(W)$ is defined by

$$
\sigma_{(t, w+\eta)} f(x)=t f(x-w) e^{2 i \pi(\eta \mid x)} \text { for all } t \in \mathbb{T}, x, w \in W, \eta \in W^{*}, f \in L^{2}(W)
$$

Exercise 2.3. Prove that σ is an irreducible unitary representation of H. To show irreducibility, it is sufficient to check that any bounded operator T in $L^{2}(W)$, commuting with the action of H, is a scalar multiplication. First, since T commutes with the action of W^{*}, it commutes also with multiplication by any continuous function with compact support. Making use of partitions of unity, show that this implies that T is the multiplication by some bounded measurable function g on W. Moreover, since T commutes with the action of W, the function g is invariant under translations, hence is a constant function.
2.2. The Stone-von Neumann theorem. The aim of this subection is to show

THEOREM 2.4. (Stone-von Neumann) Let ρ be a unitary representation of H such that $\rho_{t}=t \mathrm{Id}$ for all $t \in \mathbb{T}$. Then ρ is isomorphic to the Schrödinger representation.

Let \mathcal{H} be a Hilbert space together with an action ρ of the Heisenberg group H : we assume that the hypotheses of the theorem are satisfied by (ρ, \mathcal{H}). To simplify the notations, we identify $x \in V$ with $(1, x) \in H$, although it is not a group homomorphism. We set $\rho(x):=\rho_{(1, x)}$ for all $x \in V$. Then the condition that ρ is a representation is equivalent to

$$
\begin{equation*}
\rho(x) \rho(y)=e^{i \pi(x \mid y)} \rho(x+y) . \tag{4.8}
\end{equation*}
$$

We denote by \mathcal{A} the minimal closed subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ of bounded operators on \mathcal{H}, which contains the image ρ_{H}. Let $\mathcal{C}_{c}^{0}(V)$ be the space of compactly
supported continuous complex valued functions on V. For every $\varphi \in \mathcal{C}_{c}^{0}(V)$, set

$$
T_{\varphi}:=\int_{V} \varphi(x) \rho(x) d x
$$

where $d x$ is the Lebesgue measure on V. It is easy to see that $T_{\varphi} \in \mathcal{A}$. We have

$$
\begin{gathered}
T_{\varphi} T_{\psi}=\iint_{V \times V} \varphi(x) \psi(y) \rho(x) \rho(y) d x d y \\
T_{\varphi} T_{\psi}=\iint_{V \times V} \varphi(x) \psi(y) e^{i \pi(x \mid y)} \rho(x+y) d x d y \\
T_{\varphi} T_{\psi}=\iint_{V \times V} \varphi(x) \psi(u-x) e^{i \pi(x \mid u-x)} \rho(u) d x d u \\
T_{\varphi} T_{\psi}=T_{\varphi * \psi},
\end{gathered}
$$

where $\varphi * \psi$ is defined by the formula

$$
\begin{equation*}
\{\text { IVetoile }\} \quad \varphi * \psi(u)=\int_{V} \varphi(x) \psi(u-x) e^{i \pi(x \mid u-x)} d x \tag{4.9}
\end{equation*}
$$

Since clearly $\left\|T_{\varphi}\right\| \leq\|\varphi\|_{1}\left(=\int_{V}|\varphi(x)| d x\right)$, we get the following statements:

- The map $\varphi \mapsto T_{\varphi}$ extends by continuity to $L^{1}(V)$, the space of integrable complex valued functions on V.
- The product $(\varphi, \psi) \mapsto \varphi * \psi$ extends to a product $L^{1}(V) \times L^{1}(V) \rightarrow L^{1}(V)$
- The formula (4.9) remains valid for φ and ψ in $L^{1}(V)$ for almost every $u \in V$.

Lemma 2.5. The map $\varphi \mapsto T_{\varphi}$ is injective on $L^{1}(V)$.
Proof. Denote by N the kernel of this map. We notice the equality

$$
\rho(y) T_{\varphi} \rho(-y)=\int_{V} \varphi(x) \rho(y) \rho(x) \rho(-y) d x=\int_{V} \varphi(x) e^{2 i \pi(y \mid x)} \rho(x) d x .
$$

It shows that if $\varphi(x)$ is in N then $\varphi(x) e^{2 i \pi(y \mid x)}$ lies in N for every $y \in V$. For a, b in \mathcal{H}, consider the matrix coefficient function

$$
\chi_{a, b}(x)=<\rho(x) a, b>,
$$

where $<,>$ is the scalar product on \mathcal{H}. It is a continuous bounded function of $x \in V$. Moreover, for any x, there exists at least one coefficient function which doesn't vanish at x.

If φ belongs to N, we have

$$
\int_{V} \varphi(x) \chi_{a, b}(x) d x=0
$$

and therefore

$$
\int_{V} \varphi(x) \chi_{a, b}(x) e^{2 i \pi(x \mid y)} d x=0
$$

for all $y \in V$. This means that the Fourier transform of the function $\varphi \chi_{a, b} \in L^{1}(V)$ is identically zero, hence $\varphi \chi_{a, b}=0$ for all a, b, therefore $\varphi=0$.

We will also use the following equality:

$$
\begin{equation*}
T_{\varphi}^{*}=T_{\varphi^{*}}, \tag{4.10}
\end{equation*}
$$

with $\varphi^{*}(x):=\bar{\varphi}(-x)$.
Our ultimate goal is to construct a continuous intertwiner $\tau: L^{2}(V) \rightarrow \mathcal{H}$. The following observation is crucial for this construction.

Lemma 2.6. (a) For all $f \in \mathcal{C}_{c}^{0}(V)$ and $h \in H$, we have $T_{r_{h} f}=\rho_{h} T_{f}$.
(b) For any $u \in \mathcal{H}$, the map $\pi_{u}:=\mathcal{C}_{c}^{0}(V) \rightarrow \mathcal{H}$ defined by $f \mapsto T_{f} u$ is H equivariant.

Proof. It is sufficient to check (a) for $h=(1, y)$ with $y \in V$. Then using (4.8) and making the substitution $z=x-y$, we obtain

$$
\begin{gathered}
T_{r_{h} f}=\int_{V} f(x-y) \rho(x) e^{i \pi(y \mid x)} d x=\int_{V} f(x-y) \rho(y) \rho(x-y) d x= \\
=\rho(y) \int_{V} f(z) \rho(z) d z=\rho(y) T_{f}
\end{gathered}
$$

(b) follows immediately from (a).

Thus we have an equivariant map $\pi_{u}: \mathcal{C}_{c}^{0}(V) \rightarrow \mathcal{H}$. It remains to show that for a suitable choice of $u \in \mathcal{H}$ we are able to extend π_{u} to a continuous map $L^{2}(V) \rightarrow \mathcal{H}$.

Lemma 2.7. Let φ be a continuous bounded function on V which lies in the intersection $L^{1}(V) \cap L^{2}(V)$. Assume that T_{φ} is an orthogonal projection onto a line $\mathbb{C} \varepsilon_{\varphi}$ for some vector ε_{φ} in \mathcal{H} of norm 1. Then the $\operatorname{map} \pi_{\varepsilon_{\varphi}}: \mathcal{C}_{c}^{0}(V) \rightarrow \mathcal{H}$ extends to a continuous linear H-equivariant $\operatorname{map} \tau: L^{2}(V) \rightarrow \mathcal{H}$.

Proof. Observe that for any $f \in L^{2}(V)$ the convolution $f * \varphi$ lies in $L^{1}(V)$. Hence we can use

$$
T_{f} \varepsilon_{\varphi}=T_{f} T_{\varphi} \varepsilon_{\varphi}=T_{f * \varphi} \varepsilon_{\varphi} .
$$

The next step is to look for a function φ such that T_{φ} is an orthogonal projector of rank 1 .

Lemma 2.8. Let $P \in \mathcal{B}(\mathcal{H})$ be a non-zero self-adjoint bounded operator. Then P is a scalar multiple of an orthogonal projector of rank 1 if and only if, for any $x \in V$, we have

$$
\begin{equation*}
P \rho(x) P \in \mathbb{C} P \tag{4.11}
\end{equation*}
$$

Proof. We first note that if P is a multiple of an orthogonal projector of rank 1 , then clearly $P \rho(x) P \in \mathbb{C} P$ for all $x \in V$.

Let us assume now that P satisfies the latter condition. First, we have $P^{2}=\lambda P$ for some non-zero λ. Hence after normalization we can assume $P^{2}=P$. Hence P is a projector. It is an orthogonal projector since P is self-adjoint.

It remains to show that P has rank 1 . Let u be a non-zero vector in $P(\mathcal{H})$ and M be the span of $\rho(x) u$ for all $x \in V$. The assumption on P implies that M is included in $\mathbb{C} u \oplus \operatorname{Ker} P$. The fact that \mathcal{H} is irreducible implies that M is dense in \mathcal{H}. Hence we have $\mathcal{H}=\mathbb{C} u \oplus \operatorname{Ker} P$. Thus P has rank 1 .

Lemma 2.9. Let φ be an element in $L^{1}(V)$ such that $\varphi=\varphi^{*}$. Then T_{φ} is a multiple of an orthogonal projection on a line if and only if, for all $u \in V$, the function

$$
x \mapsto \varphi(u+x) \varphi(u-x)
$$

is its own Fourier transform.
Remark 2.10. A priori, the Fourier transform is defined on the dual V^{*} of V, but those spaces are identified through the symplectic form ω.

We will refer to this characterisation of φ as the functional equation.
Proof. We use Lemma 2.8. Let $v \in V$. We compute

$$
\begin{aligned}
& T_{\varphi} \rho(v) T_{\varphi}=\iint_{V \times V} \varphi(x) \varphi(y) \rho(x) \rho(v) \rho(y) d x d y \\
= & \iint_{V \times V} \varphi(x) \varphi(y) e^{i \pi((x \mid v)+(x \mid y)+(v \mid y))} \rho(x+v+y) d x d y \\
= & \iint_{V \times V} \varphi(x) \varphi(z-v-x) e^{i \pi((x \mid v)+(x \mid z)+(v \mid z))} \rho(z) d x d z .
\end{aligned}
$$

For almost every value of z, this operator is T_{ψ} for

$$
\psi(v, z)=\int_{V} \varphi(x) \varphi(z-v-x) e^{i \pi((x \mid v)+(x \mid z)+(v \mid z))} d x
$$

by Fubini's theorem (consider ψ as a function of the variable v when z is fixed). The relation (4.11) is equivalent to the fact that for every $v, \psi=C(v) \varphi$. So (4.11) is equivalent to:

$$
\int_{V} \varphi(x) \varphi(z-v-x) e^{i \pi((x \mid v)+(x \mid z)+(v \mid z))} d x=C(v) \varphi(z)
$$

In the left hand side, we set $x=-y$ and use $\varphi^{*}=\varphi$. Then we obtain

$$
\int_{V} \bar{\varphi}(y) \bar{\varphi}(v-z-y) e^{-i \pi((y \mid v)+(y \mid z)+(z \mid v))} d y=C(v) \varphi(z)=\bar{C}(z) \bar{\varphi}(v) .
$$

Hence
\{IVC $\}$

$$
\begin{equation*}
\frac{\varphi(z)}{\bar{C}(z)}=\frac{\bar{\varphi}(v)}{C(v)} \tag{4.12}
\end{equation*}
$$

so that $\frac{\varphi(z)}{\overline{C(z)}}$ does not depend on z, moreover it is equal to its complex conjugate: hence it belongs to \mathbb{R}. We set $D=\frac{\varphi(z)}{C(z)}$, and get $C(z)=D \varphi(-z)$.

Finally,

$$
\int_{V} \varphi(x) \varphi(z-v-x) e^{i \pi((x \mid v)+(x \mid z)+(v \mid z))} d x=D \varphi(-v) \varphi(z)
$$

Now we set $t:=x-\frac{1}{2}(z-v)$ and we get

$$
\int_{V} \varphi\left(\frac{z-v}{2}+t\right) \varphi\left(\frac{z-v}{2}-t\right) e^{i \pi(t \mid z+v)} d t=D \varphi(-v) \varphi(z)
$$

The left hand side is precisely the value at $\frac{z+v}{2}$ of the Fourier transform of $t \mapsto$ $\varphi\left(\frac{z-v}{2}+t\right) \varphi\left(\frac{z-v}{2}-t\right)$, the Fourier inversion formula implies $D^{2}=1$ and D is a positive real number as can be seen by setting $z=v$ in (4.12), hence the Lemma.

In order to find a non-trivial solution of the functional equation, we choose a positive definite quadratic form Q on V, denote by $B: V \rightarrow V^{*}$ the morphism induced by the polarization of Q. We recall (Lemma 1.5) that the Fourier transform of the function $z \mapsto e^{-\pi Q(z)}$ on V is the function $w \mapsto \operatorname{Disc}(Q)^{-\frac{1}{2}} e^{-\pi Q^{-1}(w)}$ on V^{*}. Let $\Omega: V \rightarrow V^{*}$ be the isomorphism induced by the symplectic form ω.

Lemma 2.11. The function $x \mapsto \psi(x)=e^{-\pi Q(x)}$ is its own Fourier transform if and only if one has

$$
\left(\Omega^{-1} B\right)^{2}=-I d_{V}
$$

Proof. Straightforward computation.
Lemma 2.12. The function

$$
\varphi(x):=e^{-\pi \frac{Q(x)}{2}}
$$

satisfies the functional equation of Lemma 2.9.
Proof. This is easily shown using the fact that $\varphi(u+x) \varphi(u-x)=\varphi^{2}(u) \varphi^{2}(x)$.

Now by application of Lemma 2.7 we obtain a bounded H-invariant linear operator $\tau: L^{2}(V) \rightarrow \mathcal{H}$. Consider the dual operator $\tau^{*}: \mathcal{H} \rightarrow L^{2}(V)$. The composition $\tau \tau^{*}$ is a bounded intertwiner in \mathcal{H}. Hence Theorem 1.20 in Chapter 3 implies that $\tau \tau^{*}=\lambda \operatorname{Id}_{\mathcal{H}}$ for some positive real λ, since $\tau \tau^{*}$ is positive and self-adjoint.

Next we will show that $\lambda=1$.
Lemma 2.13. We have $\tau^{*}\left(\varepsilon_{\varphi}\right)=\varphi$ and $\tau \tau^{*}=\operatorname{Id}_{\mathcal{H}}$.

Proof. Consider the operator $Y: L^{2}(V) \rightarrow L^{2}(V)$ defined by

$$
Y(f):=\varphi * f * \varphi
$$

Applying Lemma 2.5 and the relations $\varphi * \varphi=\varphi$ and $T_{\varphi} T_{f} T_{\varphi} \in \mathbb{C} T_{\varphi}$, we get that Y is the orthogonal projection on the line $\mathbb{C} \varphi$. Hence $Y(f)=\langle\varphi, f\rangle_{L^{2}(V)} \varphi$.

If f is orthogonal to $\tau^{*}\left(\varepsilon_{\varphi}\right)$, then

$$
\left\langle\tau^{*}\left(\varepsilon_{\varphi}\right), f\right\rangle_{L^{2}(V)}=\left\langle\varepsilon_{\varphi}, \tau(f)\right\rangle_{\mathcal{H}}=\left\langle\varepsilon_{\varphi}, T_{f}\left(\varepsilon_{\varphi}\right)\right\rangle_{\mathcal{H}}=0
$$

This is equivalent to $T_{\varphi} T_{f} T_{\varphi}=T_{Y(f)}=0$. Hence f is orthogonal to φ. We obtain that $\tau^{*}\left(\varepsilon_{\varphi}\right)=c \varphi$ for some $c \in \mathbb{C}$. But

$$
c=\langle c \varphi, \varphi\rangle_{L^{2}(V)}=\left\langle\tau^{*}\left(\varepsilon_{\varphi}\right), \varphi\right\rangle_{L^{2}(V)}=\left\langle\varepsilon_{\varphi}, \tau(\varphi)\right\rangle_{\mathcal{H}}=\left\langle\varepsilon_{\varphi}, \varepsilon_{\varphi}\right\rangle_{\mathcal{H}}=1
$$

The first assertion is proved.
Now

$$
\left\langle\tau \tau^{*}\left(\varepsilon_{\varphi}\right), \varepsilon_{\varphi}\right\rangle_{\mathcal{H}}=\left\langle\tau^{*}\left(\varepsilon_{\varphi}\right), \tau^{*}\left(\varepsilon_{\varphi}\right)\right\rangle_{L^{2}(V)}=\langle\varphi, \varphi\rangle_{L^{2}(V)}=1 .
$$

Hence the second assertion.
Thus, we have shown that an arbitrary irreducible unitary representation \mathcal{H} is equivalent to the subrepresentation of $L^{2}(V)$ generated by $\varphi(x)=e^{-\pi \frac{Q(x)}{2}}$. Therefore, the Stone-von Neumann theorem is proved.
2.3. Fock representation. Let us continue with a lovely avatar of this representation, the Fock representation. We would like to characterize the image $\tau^{*}(\mathcal{H})$ inside $L^{2}(V)$.

Just before Lemma 2.11, we chose a quadratic form Q on V such that $\left(\Omega^{-1} B\right)^{2}=$ $-I d_{V}$, and this equips V with a structure of complex vector space of dimension g for which $\Omega^{-1} B$ is the scalar multiplication by the imaginary unit i. We denote by J this complex structure and by V_{J} the corresponding complex space.

Furthermore $B+i \Omega: V_{J} \rightarrow V_{J}^{*}$ is a sesquilinear isomorphism, we denote by A the corresponding Hermitian form on V_{J}.

In this context, for a given $x \in V$ we have:

$$
\begin{equation*}
\left\{\operatorname{IVagt,i,qu(ly)}=\varphi(y-x) e^{i \pi(x \mid y)}=e^{-\pi \frac{Q(y-x)}{2}+i \pi(x \mid y)}=e^{-\pi\left(\frac{Q(x)+Q(y)}{2}-A(x, y)\right)}\right. \tag{4.13}
\end{equation*}
$$

which is the product of $\varphi(y)$ with a holomorphic function of $f(y)=e^{-\pi\left(\frac{Q(x)}{2}-A(x, y)\right)}$.
The Fock representation associated to the complex structure J is the subspace $\mathcal{F}_{J} \subset L^{2}(V)$ consisting of the products $f \varphi$ where φ was defined before and f is a holomorphic function on V_{J}. We have just proven that this space is stable under the H-action. Moreover, it is closed in $L^{2}(V)$ since holomorphy is preserved under uniform convergence on compact sets. Let us choose complex coordinates
$z=\left(z_{1}, \ldots, z_{g}\right)$ in V_{J} so that the Hermitiam product has the form $A(w, z)=\sum \bar{w}_{i} z_{i}$. The scalar product $(\cdot, \cdot)_{F}$ in \mathcal{F}_{J} is given by

$$
(f \varphi, g \varphi)_{F}=\int_{V} \bar{f}(z) g(z) e^{-\pi|z|^{2}} d \bar{z} d z
$$

where $|z|^{2}=\sum_{i=1}^{g}\left|z_{i}\right|^{2}$. If $\mathbf{m}=\left(m_{1}, \ldots, m_{g}\right) \in \mathbb{N}^{g}$ we denote by $z^{\mathbf{m}}$ the monomial function $z_{1}^{m_{1}} \ldots z_{g}^{m_{g}}$. Any analytic function $f(z)$ can be represented by a convergent series

$$
\begin{equation*}
f(z)=\sum_{\mathbf{m} \in \mathbb{N}^{g} g} a_{\mathbf{m}} z^{\mathbf{m}} \tag{4.14}
\end{equation*}
$$

Exercise 2.14. Check that if $f(z) \varphi \in \mathcal{F}_{J}$ then the series

$$
f(z) \varphi=\sum_{\mathbf{m} \in \mathbb{N}^{g}} a_{\mathbf{m}} z^{\mathbf{m}} \varphi
$$

is convergent in the topology defined by the norm in \mathcal{F}_{J}. Furthermore, prove that $\left\{z^{\mathbf{m}} \mid \mathbf{m} \in \mathbb{N}^{g}\right\}$ is an orthogonal topological basis of \mathcal{F}_{J}.

Lemma 2.15. The image $\tau^{*}(\mathcal{H})$ is equal to \mathcal{F}_{J}. Hence the representation of H in \mathcal{F}_{J} is irreducible.

Proof. Recall that $\tau^{*}\left(\varepsilon_{\varphi}\right)=\varphi$. Therefore taking into account (4.13) it is sufficient to show that the set $\left\{e^{-\pi A(x, y)} \varphi(y) \mid x \in V\right\}$ is dense in \mathcal{F}_{J}. Let $f \varphi \in \mathcal{F}_{J}$. Assume that

$$
\left(f(y) \varphi(y), e^{-\pi A(x, y)}\right)_{F}=0 \quad \text { for all } x \in V
$$

In the z-coordinates it amounts to saying that

$$
F(w)=\int_{V} \bar{f}(z) e^{\sum_{i=1}^{g} w_{i} z_{i}} e^{-\pi|z|^{2}} d \bar{z} d z
$$

is identically zero. Note that then the partial derivative

$$
\frac{\partial F}{\partial w_{i}}=\int_{V} z_{i} \bar{f}(z) e^{\sum_{i=1}^{g} w_{i} z_{i}} e^{-\pi|z|^{2}} d \bar{z} d z
$$

is also zero. Hence for every monomial z^{m} and $w \in V_{J}$ we have

$$
\int_{V} z^{\mathrm{m}} \bar{f}(z) e^{\sum_{i=1}^{g} w_{i} z_{i}} e^{-\pi|z|^{2}} d \bar{z} d z=0
$$

Consider the Taylor series (4.14). By Exercise 2.14 we have for any $w \in V_{J}$

$$
\int_{V} f(z) \bar{f}(z) e^{\sum_{i=1}^{g} w_{i} z_{i}} e^{-\pi|z|^{2}} d \bar{z} d z=0
$$

in particular,

$$
\int_{V} f(z) \bar{f}(z) d \bar{z} d z=0
$$

which implies $f(z)=0$. Hence the set $\left\{e^{-\pi A(x, y)} \varphi(y) \mid x \in V\right\}$ is dense in \mathcal{F}_{J}.

Exercise 2.16. Check that $f * \varphi \in \mathcal{F}_{J}$ for any $f \in L^{2}(V)$. Therefore the map $f \mapsto f * \varphi$ from $L^{2}(V)$ to $L^{2}(V)$ is an orthogonal projection onto \mathcal{F}_{J}.
2.4. Unitary dual of H. Now it is not hard to classify unitary irreducible representations of the Heisenberg group H. If ρ is an irreducible representation of H in a Hilbert space \mathcal{H}, then by Theorem 1.20 Chapter 3 , for every $t \in \mathbb{T}$ we have $\rho_{t}=\chi_{t} \operatorname{Id}_{\mathcal{H}}$ for some character $\chi \in \widehat{\mathbb{T}}$. In other words, using the description of $\widehat{\mathbb{T}}$, $\rho_{t}=t^{n} \operatorname{Id}_{\mathcal{H}}$ for some $n \in \mathbb{Z}$. Hence we have defined the map $\Phi: \widehat{H} \rightarrow \mathbb{Z}=\widehat{\mathbb{T}}$.

We know that the fiber $\Phi^{-1}(1)=\{\sigma\}$ is a single point due to the Stone-von Neumann theorem. We claim that for any $n \neq 0$ the fiber $\Phi^{-1}(n)$ is also a single point. Indeed, consider a linear transformation γ of V such that $\langle\gamma(x) \mid \gamma(y)\rangle=n\langle x \mid y\rangle$. Then we can define a homomorphism $\tilde{\gamma}: H \rightarrow H$ by setting $\tilde{\gamma}(t, x)=\left(t^{n}, \gamma(x)\right)$. We have the exact sequence of groups

$$
1 \rightarrow \mathbb{Z} / n \mathbb{Z} \rightarrow H \xrightarrow{\tilde{\mathfrak{q}}} H \rightarrow 1 .
$$

If ρ lies in the fiber over n, then $\operatorname{Ker} \rho \subset \operatorname{Ker} \tilde{\gamma}$. Hence $\rho=\tilde{\gamma} \circ \rho^{\prime}$, where ρ^{\prime} lies in $\Phi^{-1}(1)$. Thus, $\rho \simeq \tilde{\gamma} \circ \sigma$.

Finally, $\Phi^{-1}(0)$ consists of all representations which are trivial on \mathbb{T}. Therefore $\Phi^{-1}(0)$ coincides with the unitary dual of $V=H / \mathbb{T}$ and hence it is isomorphic to V^{*}.

3. Representations of $\mathrm{SL}_{2}(\mathbb{R})$

In this section we give a construction of all up to isomorphism unitary irreducible representations of the group $S L_{2}(\mathbb{R})$. We do not provide a proof that our list is complete and refer to $[\mathbf{1 8}]$ for this.
3.1. Geometry of $S L_{2}(\mathbb{R})$. In this section we use the notation

$$
G=\mathrm{SL}_{2}(\mathbb{R})=\left\{g \in \mathrm{GL}_{2}(\mathbb{R}) \mid \operatorname{det} g=1\right\} .
$$

ExERCISE 3.1. (a) Since $G=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d-b c=1\right\}$, topologically G can be described as a non-compact 3 -dimensional quadric in \mathbb{R}^{4}.
(b) Describe conjugacy classes in G.
(c) The only proper non-trivial normal closed subgroup of G is the center $\{1,-1\}$.

Let us start with the following observation.
Lemma 3.2. Let $\rho: G \rightarrow G L(V)$ be a unitary finite-dimensional representation of G. Then ρ is trivial.

Proof. Let $g=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then g^{k} is conjugate to g for every non-zero integer k. Hence $\operatorname{tr} \rho_{g}=\operatorname{tr} \rho_{g^{k}}$. Note that ρ_{g} is unitary and hence diagonalizable in V. Let
$\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of ρ_{g} (taken with muliplicities). Then for any $k \neq 0$ we have

$$
\lambda_{1}+\cdots+\lambda_{n}=\lambda_{1}^{k}+\cdots+\lambda_{n}^{k}
$$

Hence $\lambda_{1}=\cdots=\lambda_{n}=1$. Then $g \in \operatorname{Ker} \rho$. By Exercise 3.1 we have $G=\operatorname{Ker} \rho$.
Let K be the subgroup of matrices

$$
g_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
$$

The group K is a maximal compact subgroup of G, clearly K is isomorphic to $\mathbb{T}=S^{1}$. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a unitary representation of G in a Hilbert space then the restricted K-representation $\operatorname{Res}_{K} \rho$ splits into the sum of 1-dimensional representations of K. In particular, one can find $v \in V$ such that, for some $n, \rho_{g_{\theta}}(v)=e^{i n \theta} v$. We define the matrix coefficient function $f: G \rightarrow \mathbb{C}$ by the fomula

$$
f(g)=\left\langle v, \rho_{g} v\right\rangle .
$$

Then f satisfies the condition

$$
f\left(g g_{\theta}\right)=e^{i n \theta} f(g)
$$

Thus, one can consider f as a section of a line bundle on the space G / K (if $n=0$, then f is a function). Thus, it is clear that the space G / K is an important geometric object, on which the representations of G are "realized". To be a trifle more precise, consider the quotient $(G \times \mathbb{C}) / K$ where K acts on G by right multiplication and on \mathbb{C} by $e^{\text {in } \theta}$. It is a topological line bundle on G / K, and one can see f as a section of this bundle.

Consider the Lobachevsky plane

$$
H=\{z=x+i y \in \mathbb{C} \mid y>0\}
$$

equipped with the Riemannian metric defined by the formula $\frac{d x^{2}+d y^{2}}{y^{2}}$ and the corresponding volume form $\frac{d x d y}{y^{2}}$. Then G coincides with the group of rigid motions of H preserving orientation. The action of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$ on H is given by the formula

$$
z \mapsto \frac{a z+b}{c z+d} .
$$

Exercise 3.3. Check that G acts transitively on H, preserves the metric and the volume. Moreover, the stabilizer of $i \in H$ coincides with K. Thus, we identify H with G / K.
3.2. Discrete series. Those are the representations with matrix coefficients in $L^{2}(G)$. For $n \in \mathbb{Z}_{>1}$, let \mathcal{H}_{n}^{+}be the space of holomorphic densities on H, i.e. the set of formal expressions $\varphi(z)(d z)^{n / 2}$, where $\varphi(z)$ is a holomorphic function on H satisfying the condition that the integral

$$
\int_{H}|\varphi|^{2} y^{n-2} d z d \bar{z}
$$

is finite. Define a representation of G in \mathcal{H}_{n}^{+}by the formula

$$
\rho_{g}\left(\varphi(z)(d z)^{n / 2}\right)=\varphi\left(\frac{a z+b}{c z+d}\right) \frac{1}{(c z+d)^{n}}(d z)^{n / 2},
$$

and a Hermitian product on \mathcal{H}_{n} by the formula

$$
\begin{equation*}
\{\text { IVequ1 }\} \quad\left\langle\varphi(d z)^{n / 2}, \psi(d z)^{n / 2}\right\rangle=\int_{H} \bar{\varphi} \psi y^{n-2} d z d \bar{z} \tag{4.15}
\end{equation*}
$$

for $n>1$. For $n=1$ the product is defined by

$$
\begin{equation*}
\{\text { IVequ2 }\} \quad\left\langle\varphi(d z)^{n / 2}, \psi(d z)^{n / 2}\right\rangle=\int_{-\infty}^{\infty} \bar{\varphi} \psi d x \tag{4.16}
\end{equation*}
$$

in this case \mathcal{H}_{1}^{+}consists of all densities which converge to L^{2}-functions on the boundary (real line).

Exercise 3.4. Check that this Hermitian product is invariant.
To show that \mathcal{H}_{n}^{+}is irreducible it is convenient to consider the Poincaré model of the Lobachevsky plane using the conformal map

$$
w=\frac{z-i}{z+i}
$$

that maps H to the unit disk $|w|<1$. Then the group G acts on the unit disk by linear-fractional maps $w \mapsto \frac{a w+b}{b w+\bar{a}}$ for all complex a, b satisfying $|a|^{2}-|b|^{2}=1$, and K is defined by the condition $b=0$. If $a=e^{i \theta}$, then $\rho_{g_{\theta}}(w)=e^{2 i \theta} w$. The invariant volume form is $\frac{d w d \bar{w}}{1-\bar{w} w}$.

It is clear that $w^{k}(d w)^{n / 2}$ for all $k \geq 0$ form an orthogonal basis in \mathcal{H}_{n}^{+}, each vector $w^{k}(d w)^{n / 2}$ is an eigenvector with respect to K, namely

$$
\rho_{g_{\theta}}\left(w^{k}(d w)^{n / 2}\right)=e^{(2 k+n) i \theta} w^{k}(d w)^{n / 2} .
$$

It is easy to check now that \mathcal{H}_{n}^{+}is irreducible. Indeed, every invariant closed subspace M in \mathcal{H}_{n}^{+}has a topological basis consisting of eigenvectors of K, in other words $w^{k}(d w)^{n / 2}$ for all positive k must form a topological basis of M. Without loss of generality assume that M contains $(d w)^{n / 2}$, then by applying ρ_{g} one can get that $\frac{1}{(b w+a)^{n}}(d w)^{n / 2}$, and in Taylor series for $\frac{1}{(b w+a)^{n}}$ all elements of the basis appear with non-zero coefficients. That implies $w^{k}(d w)^{n / 2} \in M$ for all $k \geq 0$, hence $M=\mathcal{H}_{n}^{+}$.

One can construct another series \mathcal{H}_{n}^{-}by considering holomorphic densities in the lower half-plane $\operatorname{Re} z<0$.

Exercise 3.5. Check that all representations in the discrete series $\mathcal{H}_{n}^{ \pm}$are pairwise non-isomorphic.
3.3. Principal series. These representations are parameterized by a continuous parameter $s \in \mathbb{R} i(s \neq 0)$. Consider now the action of G on the real line by linear fractional transformations $x \mapsto \frac{a x+b}{c x+d}$. Let \mathcal{P}_{s}^{+}denotes the space of densities $\varphi(x)(d x)^{\frac{1+s}{2}}$ with G-action given by

$$
\rho_{g}\left(\varphi(x)(d x)^{\frac{1+s}{2}}\right)=\varphi\left(\frac{a x+b}{c x+d}\right)|c x+d|^{-s-1} .
$$

The Hermitian product given by

$$
\begin{equation*}
\langle\varphi, \psi\rangle=\int_{-\infty}^{\infty} \bar{\varphi} \psi d x \tag{4.17}
\end{equation*}
$$

is invariant. The property of invariance justify the choice of weight for the density as $(d x)^{\frac{1+s}{2}}(d x)^{\frac{1+\bar{s}}{2}}=d x$, thus the integration is invariant. To check that the representation is irreducible one can move the real line to the unit circle as in the example of discrete series and then use $e^{i k \theta}(d \theta)^{\frac{1+s}{2}}$ as an orthonormal basis in \mathcal{P}_{s}^{+}. Note that the eigen values of $\rho_{g_{\theta}}$ in this case are $e^{2 k i \theta}$ for all integer k.

The second principal series \mathcal{P}_{s}^{-}can be obtained if instead of densities we consider the pseudo densities which are transformed by the law

$$
\rho_{g}\left(\varphi(x)(d x)^{\frac{1+s}{2}}\right)=\varphi\left(\frac{a x+b}{c x+d}\right)|c x+d|^{-s-1} \operatorname{sgn}(c x+d) d x^{\frac{1+s}{2}} .
$$

3.4. Complementary series. Those are representations which do not appear in the regular representation $L^{2}(G)$. They can be realized as the representations in \mathcal{C}_{s} of all densities $\varphi(x)(d x)^{\frac{1+s}{2}}$ for real $0<s<1$ and have an invariant Hermitian product

$$
\begin{equation*}
\langle\varphi, \psi\rangle=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bar{\varphi}(x) \psi(y)|x-y|^{s-1} d x d y \tag{4.18}
\end{equation*}
$$

CHAPTER 5

On algebraic methods

et... plusieurs ratons laveurs. (J. Prévert, L'inventaire)
In which we put together all the facts in algebra coming to our mind for further use. We apologize for the kaleidoscopic outcome.

1. Introduction

Say a few words about infinite direct sums and products, talk about Zorn's lemma. Emphasize that we are now in full generality.

2. Semisimple modules and density theorem

2.1. Semisimplicity. Let R be a unital ring. We will use indifferently the terms R-module and module whenever the context is clear.

Definition 2.1. An R-module M is semisimple if for any submodule $N \subset M$ there exists a submodule N^{\prime} of M such that $M=N \oplus N^{\prime}$.

Recall that a non-zero R-module M is simple if any submodule of M is either M or 0 . Clearly, a simple module is semi-simple.

Exercise 2.2. Show that if M a semisimple R-module and if N is a quotient of M, then N is isomorphic to some submodule of M.

Lemma 2.3. Every submodule, every quotient of a semisimple R-module is semisimple.

Proof. Let N be a submodule of a semisimple module M, and let P be a submodule of N. By semisimplicity of M, there exists a submodule $P^{\prime} \subset M$ such that $M=P \oplus P^{\prime}$, then there exists an R-invariant projector $p: M \rightarrow P$ with kernel P^{\prime}.
The restriction of p to N defines the projector $N \rightarrow P$ and the kernel of this projector $M=P \oplus P^{\prime}$, then there exists an R-invariant projector $p: M \rightarrow P$ with kernel P^{\prime}.
The restriction of p to N defines the projector $N \rightarrow P$ and the kernel of this projector is the complement of P in N. Apply Exercise 2.2 to complete the proof.

For what comes next, it is essential that the ring R is unital. Indeed it is necessary to have this property to ensure that R has a maximal left ideal and this can be proved using Zorn's Lemma.

Lemma 2.4. Any semisimple R-module contains a simple submodule.

Proof. Let M be semisimple, $m \in M$. Let I be a maximal left ideal in R. Then $R m$ is semisimple by Lemma 2.3 and $R m=I m \oplus N$. We claim that N is simple. Indeed, every submodule of $R m$ is of the form $J m$ for some left ideal $J \subset R$. If N^{\prime} is a submodule of N, then $N^{\prime} \oplus I m=J m$ and hence $I \subset J$. But, by maximality of $I, J=I$ or R, therefore $N^{\prime}=0$ or N.
\{V1mV3\}
Lemma 2.5. Let M be an R-module. The following conditions are equivalent:
(1) M is semisimple;
(2) $M=\sum_{i \in I} M_{i}$ for a family of simple submodules M_{i} of M indexed by a set I;
(3) $M=\bigoplus_{j \in J_{0}} M_{j}$ for a family of simple submodules M_{j} of M indexed by a set J_{0}.

Proof. (1) \Rightarrow (2) Let $\left\{M_{i}\right\}_{i \in I}$ be the collection of all simple submodules of M. We want to show that $M=\sum_{i \in I} M_{i}$. Let $N=\sum_{i \in I} M_{i}$ and assume that N is a proper submodule of M. Then $M=N \oplus N^{\prime}$ by the semisimplicity of M. By Lemma 2.4, N^{\prime} contains a simple submodule which can not be contained in the family $\left\{M_{i}\right\}_{i \in I}$. Contradiction.

Let us prove $(2) \Rightarrow(3)$. We consider all possible families $\left\{M_{j}\right\}_{j \in J}$ of simple submodules of M such that $\sum_{j \in J} M_{j}=\oplus_{j \in J} M_{j}$. First, we note the set of such families satisfies the conditions of Zorn's lemma, namely that any totally ordered subset of such families has a maximal element, where the order is the inclusion order. To check this just take the union of all sets in a totally ordered subset. Hence there is a maximal subset J_{0} and the corresponding maximal family $\left\{M_{j}\right\}_{j \in J_{0}}$ which satisfies $\sum_{j \in J_{0}} M_{j}=\oplus_{j \in J} M_{j}$. We claim that the sum $M=\oplus_{j \in J_{0}} M_{j}$. Indeed, otherwise we would have a simple submodule M_{k} which does not belong to $\oplus_{j \in J_{0}} M_{j}$. But then $\sum_{j \in J_{0} \cup k} M_{j}=\oplus_{j \in J_{0} \cup k} M_{j}$ which contradicts maximality of J_{0}.

Finally, let us prove $(3) \Rightarrow(1)$. Let $N \subset M$ be a submodule and $S \subset J_{0}$ be a maximal subset such that $N \cap\left(\oplus_{j \in S} M_{j}\right)=0$ (Zorn's lemma once more). Let $M^{\prime}=N \oplus\left(\oplus_{j \in S} M_{j}\right)$. We claim that $M^{\prime}=M$. Indeed, otherwise there exists $k \in J_{0}$ such that M_{k} does not belong to M^{\prime}. Then $M_{k} \cap M^{\prime}=0$ by simplicity of M_{k}, and therefore $N \cap\left(\oplus_{j \in S \cup k} M_{j}\right)=0$. Contradiction.

ExERCISE 2.6. If R is a field, after noticing that an R-module is a vector space, show that every simple R-module is one-dimensional, and therefore, through the existence of bases, show that every module is semisimple.

Exercise 2.7. If $R=\mathbb{Z}$, then some R-modules are not semisimple, for instance \mathbb{Z} itself.
\{V1mV4\}
Lemma 2.8. Let M be a semisimple module. Then M is simple if and only if $\operatorname{End}_{R}(M)$ is a division ring.

Proof. In one direction this is Schur's lemma. In the opposite direction let $M=M_{1} \oplus M_{2}$ for some proper submodules M_{1} and M_{2} of M. Let p_{1}, p_{2} be the canonical projections onto M_{1} and M_{2} respectively. Then $p_{1} \circ p_{2}=0$ and therefore p_{1}, p_{2} can not be invertible.
2.2. Jacobson density theorem. Let M be any R-module. Set $K:=\operatorname{End}_{R}(M)$, then set $S:=\operatorname{End}_{K}(M)$. There exists a natural homomorphism $R \rightarrow S$. In general it is neither surjective nor injective. In the case when M is semisimple it is very close to being surjective.

Theorem 2.9. (Jacobson density theorem). Assume that M is semisimple. Then for any $m_{1}, \ldots, m_{n} \in M$ and $s \in S$ there exists $r \in R$ such that $r m_{i}=s m_{i}$ for all $i=1, \ldots, n$.

Proof. First let us prove the statement for $n=1$. We just have to show that $R m_{1}=S m_{1}$. The inclusion $R m_{1} \subset S m_{1}$ is obvious. We will prove the inverse inclusion. The semisimplicity of M implies $M=R m_{1} \oplus N$ for some submodule N of M. Let p be the projector $M \rightarrow N$ with kernel $R m_{1}$. Then $p \in K$ and therefore $p \circ s=s \circ p$ for every $s \in S$. Hence $\operatorname{Ker} p$ is S-invariant. So $S m_{1} \subset R m_{1}$.

For arbitrary n we use the following lemma.
Lemma 2.10. Let $\widehat{K}:=\operatorname{End}_{R}\left(M^{\oplus n}\right)$ and $\widehat{S}:=\operatorname{End}_{\widehat{K}}\left(M^{\oplus n}\right)$. Then \widehat{K} is isomorphic to the matrix ring $\operatorname{Mat}_{n}(K)$ and \widehat{S} is isomorphic to S. The latter isomorphism is given by the diagonal action

$$
s\left(m_{1}, \ldots, m_{n}\right)=\left(s m_{1}, \ldots, s m_{n}\right)
$$

Exercise 2.11. Adapt the proof of Lemma 1.12 Chapter 2 to check the above lemma.

Corollary 2.12. Let M be a semisimple R-module, which is finitely generated over K. Then the natural map $R \rightarrow \operatorname{End}_{K}(M)$ is surjective.

Proof. Let m_{1}, \ldots, m_{n} be generators of M over K, apply Theorem 2.9.
Corollary 2.13. Let R be an algebra over a field k, and $\rho: R \rightarrow \operatorname{End}_{k}(V)$ be an irreducible finite-dimensional representation of R. Then

- There exists a division ring D containing k such that $\rho(R) \cong \operatorname{End}_{D}(V)$.
- If k is algebraically closed, then $D=k$ and therefore ρ is surjective.

Proof. Apply Schur's lemma.
Exercise 2.14. Let V be an infinite-dimensional vector space over \mathbb{C} and R be the ring of linear operators in V of the form $k \mathrm{Id}+F$ for all linear operators F with finite-dimensional image. Check that R is a ring and V is a simple R-module. Then $K=\mathbb{C}, S$ is the ring of all linear operators in V and R is dense in S but R does not coincide with S.
\{VthV1\}
\{V1mV5\}
\{VcorV1\}
\{VcorV2\}

3. Wedderburn-Artin theorem

A ring R is called semisimple if every R-module is semisimple. For example, a group algebra $k(G)$, for a finite group G such that char k does not divide $|G|$, is semisimple by Maschke's Theorem 3.3.

Lemma 3.1. Let R be a semisimple ring. Then as a module over itself R is isomorphic to a finite direct sum of minimal left ideals.

Proof. Consider R as an R-module. By definition the simple submodules of R are exactly the minimal left ideals of R. Hence since R is semisimple we can write R as a direct sum $\oplus_{i \in I} L_{i}$ of minimal left ideals L_{i}. It remains to show that this direct sum is finite. Indeed, let $l_{i} \in L_{i}$ be the image of the identity element 1 under the projection $R \rightarrow L_{i}$. But R as a module is generated by 1 . Therefore $l_{i} \neq 0$ for all $i \in I$. Hence I is finite.

Corollary 3.2. A direct product of finitely many semisimple rings is semisimple.
ExERCISE 3.3. Let D be a division ring, and $R=\operatorname{Mat}_{n}(D)$ be a matrix ring over D.
(a) Let L_{i} be the subset of R consisting of all matrices which have zeros everywhere outside the i-th column. Check that L_{i} is a minimal left ideal of R and that $R=$ $L_{1} \oplus \cdots \oplus L_{n}$. Therefore R is semisimple.
(b) Show that L_{i} and L_{j} are isomorphic R-modules and that any simple R-module is isomorphic to L_{i}.
(c) Using Corollary 2.12 show that $F:=\operatorname{End}_{R}\left(L_{i}\right)$ is isomorphic to $D^{o p}$, and that R is isomorphic to $\operatorname{End}_{F}\left(L_{i}\right)$.

By the above exercise and Corollary 3.2 a direct product $\operatorname{Mat}_{n_{1}}\left(D_{1}\right) \times \cdots \times$ $\operatorname{Mat}_{n_{k}}\left(D_{k}\right)$ of finitely many matrix rings is semisimple. In fact any semisimple ring is of this form.

Theorem 3.4. (Wedderburn-Artin) Let R be a semisimple ring. Then there exist division rings D_{1}, \ldots, D_{k} such that R is isomorphic to a finite product of matrix rings

$$
\operatorname{Mat}_{n_{1}}\left(D_{1}\right) \times \cdots \times \operatorname{Mat}_{n_{k}}\left(D_{k}\right) .
$$

Furthermore, D_{1}, \ldots, D_{k} are unique up to isomorphism and this presentation of R is unique up to permutation of the factors.

Proof. Take the decomposition of Lemma 3.1 and combine isomorphic factors together. Then the following decomposition holds

$$
R=L_{1}^{\oplus n_{1}} \oplus \cdots \oplus L_{k}^{\oplus n_{k}}
$$

where L_{i} is not isomorphic to L_{j} if $i \neq j$. Set $J_{i}=L_{i}^{\oplus n_{i}}$. We claim that J_{i} is actually a two-sided ideal. Indeed Lemma 1.10 of Chapter 2 and simplicity of L_{i} imply that $L_{i} r$ is isomorphic to L_{i} for any $r \in R$ such that $L_{i} r \neq 0$. Thus, $L_{i} r \subset J_{i}$.

Now we will show that each J_{i} is isomorphic to a matrix ring. Let $F_{i}:=\operatorname{End}_{J_{i}}\left(L_{i}\right)$. The natural homomorphism $J_{i} \rightarrow \operatorname{End}_{F_{i}}\left(L_{i}\right)$ is surjective by Corollary 2.12. This homomorphism is also injective since $r L_{i}=0$ implies $r J_{i}=0$ for any $r \in R$. Then, since J_{i} is a unital ring $r=0$. On the other hand, F_{i} is a division ring by Schur's lemma. Threfore we have an isomorphism $J_{i} \simeq \operatorname{End}_{F_{i}}\left(L_{i}\right)$. By Exercise $1.7 L_{i}$ is a free F_{i}-module. Moreover, L_{i} is finitely generated over F_{i} as J_{i} is a sum of finitely many left ideals. Thus, by Exercise 3.3 (c), J_{i} is isomorphic to $\operatorname{Mat}_{n_{i}}\left(D_{i}\right)$ where $D_{i}=F_{i}^{o p}$.

The uniqueness of presentation follows easily from Krull-Schmidt theorem (Theorem 4.19) which we prove in the next section. Indeed, let S_{1}, \ldots, S_{k} be a complete list of non-isomorphic simple R-modules. Then both D_{i} and n_{i} are defined intrinsically, since $D_{i}^{o p} \simeq \operatorname{End}_{R}\left(S_{i}\right)$ and n_{i} is the multiplicity of the indecomposable module S_{i} in R.

4. Jordan-Hölder theorem and indecomposable modules

Let R be a unital ring.

4.1. Artinian and Noetherian modules.

Definition 4.1. We say that an R-module M is Noetherian or satisfies the ascending chain condition (ACC for short) if every increasing sequence

$$
M_{1} \subset M_{2} \subset \ldots
$$

of submodules of M stabilizes.
Similarly, we say that M is Artinian or satisfies the descending chain condition (DCC) if every decreasing sequence

$$
M_{1} \supset M_{2} \supset \ldots
$$

of submodules of M stabilizes.
ExErcise 4.2. Consider \mathbb{Z} as a module over itself. Show that it is Noetherian but not Artinian.

ExERCISE 4.3. (a) A submodule or a quotient of a Noetherian (respectively, Artinian) module is always Noetherian (resp. Artinian).
(b) Let

$$
0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0
$$

be an exact sequence of R-modules. Assume that both N and L are Noetherian (respectively, Artinian), then M is also Noetherian (respectively, Artinian).

Exercise 4.4. Let M be a semisimple module. Prove that M is Noetherian if and only if it is Artinian.

4.2. Jordan-Hölder theorem.

Definition 4.5. Let M be an R-module. A finite sequence of submodules of M

$$
M=M_{0} \supset M_{1} \supset \cdots \supset M_{k}=0
$$

such that M_{i} / M_{i+1} is a simple module for all $i=0, \ldots, k-1$ is called a Jordan-Hölder series of M.

Lemma 4.6. An R-module M has a Jordan-Hölder series if and only if M is both Artinian and Noetherian.

Proof. Let M be an R-module which is both Artinian and Noetherian. Then it is easy to see that there exists a finite sequence of properly included submodules of M

$$
M=M_{0} \supset M_{1} \supset \cdots \supset M_{k}=0
$$

which can not be refined. Then M_{i} / M_{i+1} is a simple module for all $i=0, \ldots, k-1$.
Conversely, assume that M has a Jordan-Hölder series

$$
M=M_{0} \supset M_{1} \supset \cdots \supset M_{k}=0
$$

We prove that M is both Noetherian and Artinian by induction on k. If $k=1$, then M is simple and hence both Noetherian and Artinian. For $k>1$ consider the exact sequence

$$
0 \rightarrow M_{1} \rightarrow M \rightarrow M / M_{1} \rightarrow 0
$$

and use Exercise 4.3 (b).
We say that two Jordan-Hölder series of M

$$
M=M_{0} \supset M_{1} \supset \cdots \supset M_{k}=0
$$

and

$$
M=N_{0} \supset N_{1} \supset \cdots \supset N_{l}=0
$$

are equivalent if $k=l$ and for some permutation s of indices $1, \ldots, k-1$ we have $M_{i} / M_{i+1} \cong N_{s(i)} / N_{s(i)+1}$.

Theorem 4.7. Let M be an R-module which is both Noetherian and Artinian. Let

$$
M=M_{0} \supset M_{1} \supset \cdots \supset M_{k}=0
$$

and

$$
M=N_{0} \supset N_{1} \supset \cdots \supset N_{l}=0
$$

be two Jordan-Hölder series of M. Then they are equivalent.

Proof. First note that if M is simple, then the statement is trivial. We will prove that if the statement holds for any proper submodule of M then it is also true for M. If $M_{1}=N_{1}$, then the statement is obvious. Otherwise, $M_{1}+N_{1}=M$, hence we have two isomorphisms $M / M_{1} \cong N_{1} /\left(M_{1} \cap N_{1}\right)$ and $M / N_{1} \cong M_{1} /\left(M_{1} \cap N_{1}\right)$, like the second isomorphism theorem for groups. Now let

$$
M_{1} \cap N_{1} \supset K_{1} \supset \cdots \supset K_{s}=0
$$

be a Jordan-Hölder series for $M_{1} \cap N_{1}$. This gives us two new Jordan-Hölder series of M

$$
M=M_{0} \supset M_{1} \supset M_{1} \cap N_{1} \supset K_{1} \supset \cdots \supset K_{s}=0
$$

and

$$
M=N_{0} \supset N_{1} \supset N_{1} \cap M_{1} \supset K_{1} \supset \cdots \supset K_{s}=0 .
$$

These series are obviously equivalent. By our assumption on M_{1} and N_{1} the first series is equivalent to $M=M_{0} \supset M_{1} \supset \cdots \supset M_{k}=0$, and the second one is equivalent to $M=N_{0} \supset N_{1} \supset \cdots \supset N_{l}=\{0\}$. Hence the original series are also equivalent.

Thus, we can now give two definitions:
Definition 4.8. First, we define the length $l(M)$ of an R-module M which satisfies ACC and DCC as the length of any Jordan-Hölder series of M. Note that we can easily see that if N is a proper submodule of M, then $l(N)<l(M)$.

Furthermore, this gives rise to a notion of finite length R-module.
Remark 4.9. Note that in the case of infinite series with simple quotients, we may have many non-equivalent series. For example, consider \mathbb{Z} as a \mathbb{Z}-module. Then the series

$$
\mathbb{Z} \supset 2 \mathbb{Z} \supset 4 \mathbb{Z} \supset \ldots
$$

is not equivalent to

$$
\mathbb{Z} \supset 3 \mathbb{Z} \supset 9 \mathbb{Z} \supset \ldots
$$

4.3. Indecomposable modules and Krull-Schmidt theorem. A module M is indecomposable if it is not zero and $M=M_{1} \oplus M_{2}$ implies $M_{1}=0$ or $M_{2}=0$.

Example 4.10. Every simple module is indecomposable. Furthermore, if a semisimple module M is indecomposable then M is simple.

Definition 4.11. An element $e \in R$ is called an idempotent if $e^{2}=e$.
Lemma 4.12. An R-module M is indecomposable if and only if every idempotent in $\operatorname{End}_{R}(M)$ is either 1 or 0 .

Proof. If M is decomposable, then $M=M_{1} \oplus M_{2}$ for some proper submodules M_{1} and M_{2}. Then the projection $e: M \rightarrow M_{1}$ with kernel M_{2} is an idempotent in $\operatorname{End}_{R} M$, which is neither 0 nor 1 . Conversely, any non-trivial idempotent $e \in$ $\operatorname{End}_{R} M$ gives rise to a decomposition $M=\operatorname{Ker} e \oplus \operatorname{Im} e$.

Exercise 4.13. Show that \mathbb{Z} is an indecomposable module over itself, although it is not simple.

Lemma 4.14. Let M and N be indecomposable R-modules, $\alpha \in \operatorname{Hom}_{R}(M, N)$, $\beta \in \operatorname{Hom}_{R}(N, M)$ be such that $\beta \circ \alpha$ is an isomorphism. Then α and β are isomorphisms.

Proof. We claim that $N=\operatorname{Im} \alpha \oplus \operatorname{Ker} \beta$. Indeed, since $\operatorname{Im} \alpha \cap \operatorname{Ker} \beta \subset \operatorname{Ker} \beta \circ \alpha$, we have $\operatorname{Im} \alpha \cap \operatorname{Ker} \beta=0$. Furthermore, for any $x \in N$ set $y:=\alpha \circ(\beta \circ \alpha)^{-1} \circ \beta(x)$ and $z=x-y$. Then $\beta(y)=\beta(x)$. One can write $x=y+z$, where $z \in \operatorname{Ker} \beta$ and $y \in \operatorname{Im} \alpha$.

Since N is indecomposable, $\operatorname{Im} \alpha=N$, $\operatorname{Ker} \beta=0$, hence N is isomorphic to M.

Lemma 4.15. Let M be an indecomposable R-module of finite length and $\varphi \in$ $\operatorname{End}_{R}(M)$, then either φ is an isomorphism or φ is nilpotent.

Proof. Since M is of finite length and $\operatorname{Ker} \varphi^{n}, \operatorname{Im} \varphi^{n}$ are submodules, there exists $n>0$ such that $\operatorname{Ker} \varphi^{n}=\operatorname{Ker} \varphi^{n+1}, \operatorname{Im} \varphi^{n}=\operatorname{Im} \varphi^{n+1}$. Then $\operatorname{Ker} \varphi^{n} \cap \operatorname{Im} \varphi^{n}=0$. The latter implies that the exact sequence

$$
0 \rightarrow \operatorname{Ker} \varphi^{n} \rightarrow M \rightarrow \operatorname{Im} \varphi^{n} \rightarrow 0
$$

splits. Thus, $M=\operatorname{Ker} \varphi^{n} \oplus \operatorname{Im} \varphi^{n}$. Since M is indecomposable, either $\operatorname{Im} \varphi^{n}=0$, $\operatorname{Ker} \varphi^{n}=M$ or $\operatorname{Ker} \varphi^{n}=0, \operatorname{Im} \varphi^{n}=M$. In the former case φ is nilpotent. In the latter case φ^{n} is an isomorphism and hence φ is also an isomorphism.

Lemma 4.16. Let M be as in Lemma 4.15 and $\varphi, \varphi_{1}, \varphi_{2} \in \operatorname{End}_{R}(M)$ such that $\varphi=\varphi_{1}+\varphi_{2}$. Then if φ is an isomorphism, at least one of φ_{1} and φ_{2} is also an isomorphism.

Proof. Without loss of generality we may assume that $\varphi=$ id (otherwise multiply by φ^{-1}). In this case φ_{1} and φ_{2} commute. If both φ_{1} and φ_{2} are nilpotent, then $\varphi_{1}+\varphi_{2}$ is nilpotent, but this is impossible as $\varphi_{1}+\varphi_{2}=\mathrm{id}$.

Corollary 4.17. Let M be as in Lemma 4.15. Let $\varphi=\varphi_{1}+\cdots+\varphi_{k} \in \operatorname{End}_{R}(M)$. If φ is an isomorphism then φ_{i} is an isomorphism at least for one i.

Exercise 4.18. Let M be of finite length. Show that M has a decomposition

$$
M=M_{1} \oplus \cdots \oplus M_{k}
$$

where all M_{i} are indecomposable.
Theorem 4.19. (Krull-Schmidt) Let M be an R-module of finite length. Consider two decompositions

$$
M=M_{1} \oplus \cdots \oplus M_{k} \quad \text { and } \quad M=N_{1} \oplus \cdots \oplus N_{l}
$$

such that all M_{i} and N_{j} are indecomposable. Then $k=l$ and there exists a permutation s of indices $1, \ldots, k$ such that M_{i} is isomorphic to $N_{s(i)}$.

Proof. We prove the statement by induction on k. The case $k=1$ is clear since in this case M is indecomposable.

Let

$$
p_{i}^{(1)}: M \rightarrow M_{i}, \quad p_{j}^{(2)}: M \rightarrow N_{j}
$$

denote the natural projections, and

$$
q_{i}^{(1)}: M_{i} \rightarrow M, \quad q_{j}^{(2)}: N_{j} \rightarrow N
$$

denote the injections. We have

$$
\sum_{j=1}^{l} q_{j}^{(2)} \circ p_{j}^{(2)}=\operatorname{id}_{M}
$$

hence

$$
\sum_{j=1}^{l} p_{1}^{(1)} \circ q_{j}^{(2)} \circ p_{j}^{(2)} \circ q_{1}^{(1)}=\operatorname{id}_{M_{1}}
$$

By Corollary 4.17 there exists j such that $p_{1}^{(1)} \circ q_{j}^{(2)} \circ p_{j}^{(2)} \circ q_{1}^{(1)}$ is an isomorphism. After permuting indices we may assume that $j=1$. Then Lemma 4.14 implies that $p_{1}^{(2)} \circ q_{1}^{(1)}$ is an isomorphism between M_{1} and N_{1}. Set

$$
M^{\prime}:=M_{2} \oplus \cdots \oplus M_{k}, \quad N^{\prime}:=N_{2} \oplus \cdots \oplus N_{l}
$$

Since M_{1} intersects trivially $N^{\prime}=\operatorname{Ker} p_{1}^{(2)}$ we have $M=M_{1} \oplus N^{\prime}$. But we also $M=M_{1} \oplus M^{\prime}$. Therefore M^{\prime} is isomorphic to N^{\prime}. By induction assumption the statement holds for $M^{\prime} \simeq N^{\prime}$. Hence the statement holds for M.

ExERCISE 4.20. Let $R=\mathbb{C}[x, y, z] /\left(x^{2}+y^{2}+z^{2}-1\right)$. Consider a homomorphism $\varphi: R \oplus R \oplus R \rightarrow R$ defined by

$$
\varphi(a, b, c)=x a+y b+z c
$$

Show that φ is surjective and the kernel of φ is not isomorphic to a free R-module of rank 2 . On the other hand

$$
R \oplus R \oplus R \simeq R \oplus \operatorname{Ker} \varphi,
$$

hence in this case the Krull-Schmidt theorem does not hold.

5. A bit of homological algebra

Homology groups initially come from topology, they compute some important invariants like the genus of a Riemann surface (which dates back from Riemann of course) and more generally Betti numbers of manifolds.

For a general exposition of the topic of homological algebra, see, for instance, [25], [19], [27] or [36].

Let R be a unital ring.
5.1. Complexes. Let $C_{\bullet}=\oplus_{i \geq 0} C_{i}$ be a graded R-module. An R-morphism f from C_{\bullet} to D_{\bullet} is of degree $k(k \in \mathbb{Z})$ if f maps C_{i} to D_{i+k} for all i. An R-differential on C_{\bullet} is an R-morphism d from C_{\bullet} to C_{\bullet} of degree -1 such that $d^{2}=0$.

An R-module C • together with a differential d is called a complex.
We usually represent C • the following way:

$$
\ldots \xrightarrow{d} C_{i} \xrightarrow{d} \ldots \xrightarrow{d} C_{1} \xrightarrow{d} C_{0} \rightarrow 0 .
$$

REmARK 5.1. It will be convenient to look at similar situations for an R-morphism δ of degree +1 on a graded R-module such that $\delta^{2}=0$. In this case, we will use upper indices $C^{i}\left(\right.$ instead of $\left.C_{i}\right)$ and represent the complex the following way:

$$
0 \rightarrow C^{0} \xrightarrow{\delta} C^{1} \xrightarrow{\delta} \ldots \xrightarrow{\delta} C^{i} \xrightarrow{\delta} \ldots
$$

Exercise 5.2. (Koszul complex) The following example is very important.
Let V be a finite-dimensional vector space over a field k and denote by V^{*} its dual space. By $S(V)=\bigoplus S^{i}(V)$ and $\Lambda(V)=\bigoplus \Lambda^{i}(V)$ we denote the symmetric and the exterior algebras of V respectively.

Choose a basis e_{1}, \ldots, e_{n} of V and let f_{1}, \ldots, f_{n} be the dual basis in V^{*}, i.e. $f_{i}\left(e_{j}\right)=\delta_{i j}$. For any $x \in V^{*}$ we define the linear derivation $\partial_{x}: S(V) \rightarrow S(V)$ given by $\partial_{x}(v):=x(v)$ for $v \in V$ and extend it to the whole $S(V)$ via the Leibniz relation

$$
\partial_{x}\left(u_{1} u_{2}\right)=\partial_{x}\left(u_{1}\right) u_{2}+u_{1} \partial_{x}\left(u_{2}\right) \quad \text { for all } \quad u_{1}, u_{2} \in S(V) .
$$

Now set $C^{k}:=S(V) \otimes \Lambda^{k}(V)$ and $C^{\bullet}:=S(V) \otimes \Lambda(V)$. Define $\delta: C^{\bullet} \rightarrow C^{\bullet}$ by

$$
\delta(u \otimes w):=\sum_{j=1}^{n} d_{f_{j}}(u) \otimes\left(e_{j} \wedge w\right) \quad \text { for all } \quad u \in S(V), w \in \Lambda(V)
$$

(a) Show that δ does not depend on the choice of basis in V.
(b) Prove that $\delta^{2}=0$, and therefore $\left(C^{\bullet}, \delta\right)$ is a complex. It is called the Koszul complex.
(c) Let $p(w)$ denote the parity of the degree of w if w is homogeneous in $\Lambda(V)$. For any $x \in V^{*}$ define the linear map $\partial_{x}: \Lambda(V) \rightarrow \Lambda(V)$ by setting $\partial_{x}(v):=x(v)$ for all $v \in V$ and extend it to the whole $\Lambda(V)$ by the \mathbb{Z}_{2}-graded version of the Leibniz relation

$$
\partial_{x}\left(w_{1} \wedge w_{2}\right)=\partial_{x}\left(w_{1}\right) \wedge w_{2}+(-1)^{p\left(w_{1}\right)} w_{1} \wedge \partial_{x}\left(w_{2}\right) \quad \text { for all } \quad w_{1}, w_{2} \in \Lambda(V)
$$

Check that one can construct a differential d of degree -1 on the Koszul complex by

$$
d(u \otimes w):=\sum_{j=1}^{n}\left(u e_{j}\right) \otimes \partial_{f_{j}}(w) \quad \text { for all } \quad u \in S(V), w \in \Lambda(V) .
$$

5.2. Homology and Cohomology. Since in any complex $d^{2}=0$, we have $\operatorname{Im} d \subset \operatorname{Ker} d$ (in every degree). The complex $\left(C_{\bullet}, d\right)$ is exact if $\operatorname{Im} d=\operatorname{Ker} d$. The key notion of homological algebra is defined below. This notion expresses how far a given complex is from being exact.

Definition 5.3. Let $\left(C_{\bullet}, d\right)$ be a complex of R-modules (with d of degree -1). Its i-th homology, $H_{i}\left(C_{\bullet}\right)$, is the quotient

$$
H_{i}\left(C_{\bullet}\right)=\left(\operatorname{Ker} d \cap C_{i}\right) /\left(\operatorname{Im} d \cap C_{i}\right) .
$$

A complex $\left(C_{\bullet}, d\right)$ is exact if and only if $H_{i}\left(C_{\bullet}\right)=0$ for all $i \geq 0$.
If $\left(C^{\bullet}, \delta\right)$ is a complex with a differential δ of degree +1 we use the term cohomology instead of homology and we consistently use upper indices in the notation:

$$
H^{i}\left(C^{\bullet}\right)=\left(\operatorname{Ker} \delta \cap C^{i}\right) /\left(\operatorname{Im} \delta \cap C^{i}\right) .
$$

Definition 5.4. Given two complexes $\left(C_{\bullet}, d\right)$ and $\left(C_{\bullet}^{\prime}, d^{\prime}\right)$, a homomorphism $f: C \bullet \rightarrow C_{\bullet}^{\prime}$ of R-modules of degree 0 which satisfies the relation $f \circ d=d^{\prime} \circ f$ is called a morphism of complexes.

Exercise 5.5. Let $f: C \bullet \rightarrow C^{\prime}$ be a morphism of complexes. Check that $f(\operatorname{Ker} d) \subset \operatorname{Ker} d^{\prime}$ and $f(\operatorname{Im} d) \subset \operatorname{Im} d^{\prime}$. Therefore f induces a homomorphism

$$
f_{*}: H_{i}\left(C_{\bullet}\right) \rightarrow H_{i}\left(C_{\bullet}^{\prime}\right)
$$

between homology groups of the complexes.
Let $\left(C_{\bullet}, d\right),\left(C_{\bullet}^{\prime}, d^{\prime}\right),\left(C_{\bullet}^{\prime \prime}, d^{\prime \prime}\right)$ be complexes and $f: C_{\bullet}^{\prime} \rightarrow C_{\bullet}^{\prime \prime}$ and $g: C_{\bullet} \rightarrow C_{\bullet}^{\prime}$ be morphisms such that the sequence

$$
0 \rightarrow C_{i} \xrightarrow{g} C_{i}^{\prime} \xrightarrow{f} C_{i}^{\prime \prime} \rightarrow 0
$$

is exact for all $i \geq 0$.
Exercise 5.6. (Snake Lemma) One can define a homomorphism $\delta: H_{i}\left(C_{\bullet}^{\prime \prime}\right) \rightarrow$ $H_{i-1}\left(C_{\bullet}\right)$ as follows. Let $x \in \operatorname{Ker} d^{\prime \prime} \cap C_{i}^{\prime \prime}$ and y be an arbitrary element in the preimage $f^{-1}(x) \subset C_{i}^{\prime}$. Check that $d^{\prime}(y)$ lies in the image of g. Pick up $z \in g^{-1}\left(d^{\prime}(y)\right) \subset C_{i-1}$. Show that $z \in \operatorname{Ker} d$. Moreover, show that for a different choice of $y^{\prime} \in f^{-1}(x) \subset C_{i}^{\prime}$ and of $z^{\prime} \in g^{-1}\left(d^{\prime}\left(y^{\prime}\right)\right) \subset C_{i-1}$ the difference $z-z^{\prime}$ lies in the image of $d: C_{i} \rightarrow C_{i-1}$. Thus, $x \mapsto z$ gives a well-defined map $\delta: H_{i}\left(C_{\bullet}^{\prime \prime}\right) \rightarrow H_{i-1}\left(C_{\bullet}\right)$.

Why is it called "snake lemma"? Look at the following diagram

In this diagram $\delta=g^{-1} \circ d^{\prime} \circ f^{-1}$ goes from the upper right to the lower left corners.

Theorem 5.7. (Long exact sequence). The following sequence

$$
\xrightarrow{\delta} H_{i}\left(C_{\bullet}\right) \xrightarrow{g_{*}} H_{i}\left(C_{\bullet}^{\prime}\right) \xrightarrow{f_{*}} H_{i}\left(C_{\bullet}^{\prime \prime}\right) \xrightarrow{\delta} H_{i-1}\left(C_{\bullet}\right) \xrightarrow{g_{*}} \ldots
$$

is actually an exact complex.
We skip the proof of this theorem. The enthusiastic reader might verify it as an exercise or read the proof in [25] or [36].

5.3. Homotopy.

Definition 5.8. Consider complexes $\left(C_{\bullet}, d\right),\left(C_{\bullet}^{\prime}, d^{\prime}\right)$ of R-modules and let f, g : $C_{\bullet} \rightarrow C_{\bullet}^{\prime}$ be morphisms. We say that f and g are homotopically equivalent if there exists a map $h: C_{\bullet} \rightarrow C_{\bullet}^{\prime}$ of degree 1 such that

$$
f-g=h \circ d+d^{\prime} \circ h .
$$

Lemma 5.9. If f and g are homotopically equivalent then $f_{*}=g_{*}$.
Proof. Let $\phi:=f-g$ and $x \in C_{i}$ such that $d x=0$. Then

$$
\phi(x)=h(d x)+d^{\prime}(h x)=d^{\prime}(h x) \in \operatorname{Im} d^{\prime} .
$$

Hence $f_{*}-g_{*}=0$.
We say that complexes C_{\bullet} and C_{\bullet}^{\prime} are homotopically equivalent if there exist $f: C_{\bullet} \rightarrow C_{\bullet}^{\prime}$ and $g: C_{\bullet}^{\prime} \rightarrow C_{\bullet}$ such that $f \circ g$ is homotopically equivalent to $\mathrm{id}_{C^{\prime}}$ and $g \circ f$ is homotopically equivalent to id_{C}. Lemma 5.9 implies that homotopically equivalent complexes have isomorphic homology.

Let $\left(C_{\bullet}, d\right)$ be a complex of R-modules and M be an R-module. Then we have a complex of abelian groups

$$
0 \rightarrow \operatorname{Hom}_{R}\left(C_{0}, M\right) \xrightarrow{\delta} \operatorname{Hom}_{R}\left(C_{1}, M\right) \xrightarrow{\delta} \ldots \xrightarrow{\delta} \operatorname{Hom}_{R}\left(C_{i}, M\right) \xrightarrow{\delta} \ldots,
$$

where $\delta: \operatorname{Hom}_{R}\left(C_{i}, M\right) \rightarrow \operatorname{Hom}_{R}\left(C_{i+1}, M\right)$ is defined by

$$
\begin{equation*}
\delta(\varphi)(x):=\varphi(d x) \quad \text { for all } \quad \varphi \in \operatorname{Hom}_{R}\left(C_{i}, M\right) \quad \text { and } \quad x \in C_{i+1} . \tag{5.1}
\end{equation*}
$$

Note that the differential δ on $\operatorname{Hom}_{R}\left(C_{\bullet}, M\right)$ has degree 1. The following Lemma will be used in the next section. The proof is straightforward and we leave it to the reader.

Lemma 5.10. Let $\left(C_{\bullet}, d\right)$ and $\left(C_{\bullet}^{\prime}, d^{\prime}\right)$ be homotopically equivalent complexes and M be an arbitrary R-module. Then the complexes $\left(\operatorname{Hom}_{R}\left(C_{\bullet}, M\right), \delta\right)$ and $\left(\operatorname{Hom}_{R}\left(C_{\bullet}^{\prime}, M\right), \delta^{\prime}\right)$ are also homotopically equivalent.

The following lemma is useful for calculating cohomology.
Lemma 5.11. Let $\left(C_{\bullet}, d\right)$ be a complex of R-modules and $h: C \bullet \rightarrow C$ be a map of degree 1. Set $f:=d \circ h+h \circ d$. Then f is a morphism of complexes. Furthermore, if $f: C_{i} \rightarrow C_{i}$ is an isomorphism for all $i \geq 0$, then C_{\bullet} is exact.

Proof. First, f has degree 0 and since $d^{2}=0$ we have

$$
d \circ f=d \circ h \circ d=f \circ d .
$$

Thus, f is a morphism of complexes.
Now let f be an isomorphism. Then $f_{*}: H_{i}\left(C_{\bullet}\right) \rightarrow H_{i}\left(C_{\bullet}\right)$ is also an isomorphism for all i. On the other hand, f is homotopically equivalent to 0 . Hence, by Lemma 5.9, $f_{*}=0$. Therefore $H_{i}\left(C_{\bullet}\right)=0$ for all i.

Exercise 5.12. Recall the Koszul complex $\left(C^{\bullet}, \delta\right)$ from Exercise 5.2. Assume the field k has characteristic zero. Show that $H^{i}\left(C^{\bullet}\right)=0$ for $i \geq 0$ and $H^{0}\left(C^{\bullet}\right)=k$.

Hint. For every $m \geq 0$ consider the subcomplex C_{m}^{\bullet} with graded components

$$
C_{m}^{i}:=S^{m-i}(V) \otimes \Lambda^{i}(V)
$$

Check that $d\left(C_{m}^{i}\right) \subset C_{m}^{i-1}, \delta\left(C_{m}^{i}\right) \subset C_{m}^{i+1}$ and that the relation

$$
d \circ \delta+\delta \circ d=m \mathrm{id}
$$

holds on C_{m}^{\bullet}. Then use Lemma 5.11 and the decomposition $C^{\bullet}=\bigoplus_{m \geq 0} C_{m}^{\bullet}$.

6. Projective modules

Let R be a unital ring.
6.1. Projective modules. An R-module P is projective if for any surjective morphism $\varphi: M \rightarrow N$ of R-modules and any morphism $\psi: P \rightarrow N$ there exists a morphism $f: P \rightarrow M$ such that $\psi=\varphi \circ f$.

Example 6.1. A free R-module F is projective. Indeed, let $\left\{e_{i}\right\}_{i \in I}$ be a set of generators of F. Define $f: F \rightarrow M$ by $f\left(e_{i}\right)=\varphi^{-1}\left(\psi\left(e_{i}\right)\right)$.

Lemma 6.2. Let P be an R-module, the following conditions are equivalent
(1) P is projective;
(2) There exists a free module F such that F is isomorphic to $P \oplus P^{\prime}$;
(3) Any exact sequence of R-modules

$$
0 \rightarrow N \rightarrow M \rightarrow P \rightarrow 0
$$

splits.

Proof. (1) \Rightarrow (3)
Consider the exact sequence

$$
0 \rightarrow N \rightarrow M \xrightarrow{\varphi} P \rightarrow 0 .
$$

Set $\psi=\operatorname{id}_{P}$. Since φ is surjective and P is projective, there exists $f: P \rightarrow M$ such that $\psi=\operatorname{id}_{P}=\varphi \circ f$.
$(3) \Rightarrow(2)$ Every module is a quotient of a free module. Therefore we just have to apply (3) to the exact sequence

$$
0 \rightarrow N \rightarrow F \rightarrow P \rightarrow 0
$$

for a free module F.
$(2) \Rightarrow(1)$ Choose a free module F such that $F=P \oplus P^{\prime}$. Let $\varphi: M \rightarrow N$ be a surjective morphism of R-modules and ψ_{\sim} a morphism $\psi: P \rightarrow N$. Now extend ψ to $\tilde{\psi}: F \rightarrow N$ such that the restriction of $\tilde{\psi}$ to P (respectively, P^{\prime}) is ψ (respectively, zero). There exists $f: F \rightarrow M$ such that $\varphi \circ f=\tilde{\psi}$. After restriction to P we get

$$
\varphi \circ f_{\left.\right|_{P}}=\tilde{\psi}_{\left.\right|_{P}}=\psi
$$

Exercise 6.3. Recall that a ring A is called a principal ring if A is commutative, has no zero divisors and every ideal of A is principal, i.e. generated by a single element.
(a) Let F be a free A-module. Show that every submodule of F is free. For finitely generated F this can be done by induction on the rank of F. In the infinite case one has to use transfinite induction, see [27](651).
(b) Let P be a projective A-module. Show that P is free.
\{Vexinj\}
Exercise 6.4. An injective R-module is a module I such that, for any injective homomorphism $i: X \rightarrow Y$ and any homomorphism $\varphi: X \rightarrow I$, there exists a homomorphism $\psi: Y \rightarrow I$ such that $\varphi=\psi \circ i$.
(a) Show that a module I is injective if and only if $\operatorname{Ext}^{1}(X, I)=0$ for any R-module X.

One can see analogy with projective modules. However, a free module is not injective in general. Thus, checking that every R-module has an injective resolution is harder, see for instance [22].
(b) Let A be an algebra over a field and P be a projective right A-module. Then P^{*} is a left A-module with action of A given by

$$
\langle a \varphi, x\rangle=\langle\varphi, a x\rangle
$$

for all $a \in A, x \in P$ and $\varphi \in P^{*}$. Show that P^{*} is injective.
ExErcise 6.5. Check that \mathbb{Q} is an injective \mathbb{Z}-module.

6.2. Projective cover.

Definition 6.6. Let M be an R-module. A submodule N of M is small if for any submodule $L \subset M$ such that $L+N=M$, we have $L=M$.

ExERCISE 6.7. Let $f: P \rightarrow M$ be a surjective morphism of modules such that Ker f is a small submodule of P. Assume that $f=f \circ \gamma$ for some homomorphism $\gamma: P \rightarrow P$. Show that γ is surjective.

Definition 6.8. Let M be an R-module. A projective cover of M is a projective R-module P equipped with a surjective morphism $f: P \rightarrow M$ such that $\operatorname{Ker} f \subset P$ is small.

Lemma 6.9. Let $f: P \rightarrow M$ and $g: Q \rightarrow M$ be two projective covers of M. Then there exists an isomorphism $\varphi: P \rightarrow Q$ such that $g \circ \varphi=f$.

Proof. The existence of φ such that $g \circ \varphi=f$ follows immediately from projectivity of P. Similarly, we obtain the existence of a homomorphism $\psi: Q \rightarrow P$ such that $f \circ \psi=g$. Therefore we have $g \circ \varphi \circ \psi=g$. By Exercise $6.7 \varphi \circ \psi$ is surjective. This implies surjectivity of $\varphi: P \rightarrow Q$. Since Q is projective we have an isomorphism $P \simeq Q \oplus \operatorname{Ker} \varphi$. Since $\operatorname{Ker} \varphi \subset \operatorname{Ker} f$, we have $P=Q+\operatorname{Ker} f$. Recall that $\operatorname{Ker} f \subset P$ is a small. Hence $P=Q$ and $\operatorname{Ker} \varphi=0$. Thus φ is an isomorphism.

6.3. Projective resolutions.

Definition 6.10. Let M be an R-module. A complex $\left(P_{\bullet}, d\right)$ of R-modules

$$
\ldots \xrightarrow{d} P_{i} \xrightarrow{d} \ldots \xrightarrow{d} P_{1} \xrightarrow{d} P_{0} \rightarrow 0
$$

such that P_{i} is projective for all $i \geq 0, H_{0}\left(P_{\bullet}\right)=M$ and $H_{i}\left(P_{\bullet}\right)=0$ for all $i \geq 1$, is called a projective resolution of M.

It is sometimes useful to see a projective resolution as the exact complex

$$
\cdots \rightarrow P_{i} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \xrightarrow{p} M \rightarrow 0,
$$

where $p: P_{0} \rightarrow M$ is the lift of the identity map between $H_{0}\left(P_{\bullet}\right)$ and M.
Exercise 6.11. Show that for every R-module M, there exists a resolution of M

$$
\cdots \rightarrow F_{i} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow 0
$$

such that all F_{i} are free. Such a resolution is called a free resolution.
This exercise immediately implies:
Proposition 6.12. Every R-module has a projective resolution.
Example 6.13. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k. Consider the simple R-module $M:=R /\left(x_{1}, \ldots, x_{n}\right)$. One can use the Koszul complex, introduced in Exercise 5.2, to construct a projective resolution of M. First, we identify R with the symmetric algebra $S(V)$ of the vector space $V=k^{n}$. Let P_{i} denote
\{Vsmallex\}
\{Vprojcover\}
the free R-module $R \otimes \Lambda^{i}(V)$ and recall $d: P_{i} \rightarrow P_{i-1}$ from Exercise 5.2 (c). Then $H_{0}\left(P_{\bullet}\right)=M$ and $H_{i}\left(P_{\bullet}\right)=0$ for $i \geq 1$. Hence $\left(P_{\bullet}, d\right)$ is a free resolution of M.

Lemma 6.14. Let $\left(P_{\bullet}, d\right)$ and $\left(P_{\bullet}, d^{\prime}\right)$ be two projective resolutions of an R-module M. Then there exists a morphism of complexes $f: P_{\bullet} \rightarrow P_{\bullet}^{\prime}$ such that $f_{*}: H_{0}\left(P_{\bullet}\right) \rightarrow$ $H_{0}\left(P_{\bullet}^{\prime}\right)$ induces the identity id_{M}. Moreover, f is unique up to homotopy equivalence.

Proof. We use an induction procedure to construct a morphism $f_{i}: P_{i} \rightarrow P_{i}^{\prime}$. For $i=0$, we denote by $p: P_{0} \rightarrow M$ and $p^{\prime}: P_{0}^{\prime} \rightarrow M$ the natural projections. Since P_{0} is projective there exists a morphism $f_{0}: P_{0} \rightarrow P_{0}^{\prime}$ such that $p^{\prime} \circ f_{0}=p$:

then we have $f(\operatorname{Ker} p) \subset \operatorname{Ker} p^{\prime}$. We construct $f_{1}: P_{1} \rightarrow P_{1}^{\prime}$ using the following commutative diagram:

The existence of f_{1} follows from projectivity of P_{1} and surjectivity of d^{\prime}.
We repeat the procedure to construct $f_{i}: P_{i} \rightarrow P_{i}$ for all i.
Suppose now that f and g are two morphisms satisfying the assumptions of the lemma. Let us prove that f and g are homotopically equivalent. Let $\varphi=f-g$. We have to prove the existence of maps $h_{i}: P_{i} \rightarrow P_{i+1}$ such that $h_{i} \circ d=d^{\prime} \circ h_{i+1}$. Let us explain how to construct h_{0} and h_{1} using the following diagram

Since the morphism $\varphi_{*}: H_{0}\left(P_{\bullet}\right) \rightarrow H_{0}\left(P_{\bullet}^{\prime}\right)$ is zero, we get $p^{\prime} \circ \varphi_{0}=0$, and hence $\operatorname{Im} \varphi_{0} \subset \operatorname{Im} d^{\prime}$. Recall that P_{0} is projective, therefore there exists $h_{0}: P_{0} \rightarrow P_{1}^{\prime}$ such that $d^{\prime} \circ h_{0}=\varphi_{0}$.

To construct the map h_{1}, set $\psi:=\varphi_{1}-h_{0} \circ d$. The relation

$$
d^{\prime} \circ h_{0} \circ d=\varphi_{0} \circ d=d^{\prime} \circ \varphi_{1}
$$

implies $d^{\prime} \circ \psi=0$. Since $H_{1}\left(P_{\bullet}^{\prime}\right)=0$, the image of ψ belongs to $d^{\prime}\left(P_{2}^{\prime}\right)$, and by projectivity of P_{1} there exists a morphism $h_{1}: P_{1} \rightarrow P_{2}^{\prime}$ such that

$$
d^{\prime} \circ h_{1}=\psi=\varphi_{1}-h_{0} \circ d .
$$

The construction of h_{i} for $i>1$ is similar to the one for $i=1$. The collection of the maps h_{i} gives the homotopy equivalence.

The following proposition expresses in what sense a projective resolution is unique.
Proposition 6.15. Let M be an R-module, and ($\left.P_{\bullet}, d\right),\left(P_{\bullet}^{\prime}, d^{\prime}\right)$ be two projective resolutions of M. Then $\left(P_{\bullet}, d\right)$ and $\left(P_{\bullet}^{\prime}, d^{\prime}\right)$ are homotopically equivalent.

Proof. By Lemma 6.14 there exist $f: P_{\bullet} \rightarrow P_{\bullet}^{\prime}$ and $g: P_{\bullet}^{\prime} \rightarrow P_{\bullet}$ such that $g \circ f$ is homotopically equivalent to $\operatorname{id}_{P_{\bullet}}$ and $f \circ g$ is homotopically equivalent to $\mathrm{id}_{P_{\bullet}^{\prime}}$.

6.4. Extensions.

\{VVdefext $\}$
Definition 6.16. Let M and N be two R-modules and P_{\bullet} be a projective resolution of M. Consider the complex of abelian groups

$$
0 \rightarrow \operatorname{Hom}_{R}\left(P_{0}, N\right) \xrightarrow{\delta} \operatorname{Hom}_{R}\left(P_{1}, N\right) \xrightarrow{\delta} \ldots,
$$

where δ is defined by (5.1). We define the i-th extension group $\operatorname{Ext}_{R}^{i}(M, N)$ as the i-th cohomology group of this complex. Lemma 5.10 ensures that $\operatorname{Ext}_{R}^{i}(M, N)$ does not depend on the choice of a projective resolution of M.

Exercise 6.17. Check that $\operatorname{Ext}_{R}^{0}(M, N)=\operatorname{Hom}_{R}(M, N)$.
Let us give an interpretation of $\operatorname{Ext}_{R}^{1}(M, N)$. Consider an exact sequence of R modules
(5.2) $\{$ Vexact $\}$

$$
0 \rightarrow N \xrightarrow{\alpha} Q \xrightarrow{\beta} M \rightarrow 0
$$

and a projective resolution

$$
\begin{equation*}
\{\text { Vres }\} \quad \ldots \xrightarrow{d} P_{2} \xrightarrow{d} P_{1} \xrightarrow{d} P_{0} \xrightarrow{\varphi} M \rightarrow 0 \tag{5.3}
\end{equation*}
$$

of M. Then by projectivity of P_{\bullet} there exist $\psi \in \operatorname{Hom}_{R}\left(P_{0}, Q\right)$ and $\gamma \in \operatorname{Hom}_{R}\left(P_{1}, N\right)$ which make the following diagram

commutative. Let δ be the differential of degree +1 in Definition 6.16. The commutativity of this diagram implies that $\gamma \circ d=0$ and hence $\delta(\gamma)=0$. The choice of ψ and γ is not unique. If we choose another pair $\psi^{\prime} \in \operatorname{Hom}_{R}\left(P_{0}, Q\right)$ and $\gamma^{\prime} \in \operatorname{Hom}_{R}\left(P_{1}, N\right)$, then there exists $\theta \in \operatorname{Hom}_{R}\left(P_{0}, N\right)$ such that $\psi^{\prime}-\psi=\alpha \circ \theta$ as in the diagram below

Furthermore, $\gamma^{\prime}-\gamma=\theta \circ d$ or, equivalently, $\gamma^{\prime}-\gamma=\delta(\theta)$. Thus, we can associate the class $[\gamma] \in \operatorname{Ext}_{R}^{1}(M, N)$ to the exact sequence (5.2).

Conversely, if we start with resolution (5.3) and a class $[\gamma] \in \operatorname{Ext}_{R}^{1}(M, N)$, we may consider some lift $\gamma \in \operatorname{Hom}_{R}\left(P_{1}, N\right)$. Then we can associate the following short exact sequence to $[\gamma]$

$$
0 \rightarrow P_{1} / \operatorname{Ker} \gamma \rightarrow P_{0} / d(\operatorname{Ker} \gamma) \rightarrow M \rightarrow 0
$$

The reader may check that this exact sequence splits if and only if $[\gamma]=0$.
Example 6.18 . Let R be $\mathbb{C}[x]$. Since \mathbb{C} is algebraically closed, every simple R module is one-dimensional over \mathbb{C} and isomorphic to $\mathbb{C}_{\lambda}:=\mathbb{C}[x] /(x-\lambda)$. It is easy to check

$$
0 \rightarrow \mathbb{C}[x] \xrightarrow{d} \mathbb{C}[x] \rightarrow 0
$$

where $d(1)=x-\lambda$ is a projective resolution of \mathbb{C}_{λ}. We can compute Ext ${ }^{\bullet}\left(\mathbb{C}_{\lambda}, \mathbb{C}_{\mu}\right)$. It amounts to calculating the cohomology of the complex

$$
0 \rightarrow \mathbb{C} \xrightarrow{\delta} \mathbb{C} \rightarrow 0
$$

where δ is the multiplication by $\mu-\lambda$. Hence

$$
\operatorname{Ext}_{R}^{0}\left(\mathbb{C}_{\lambda}, \mathbb{C}_{\mu}\right)=\operatorname{Ext}_{R}^{1}\left(\mathbb{C}_{\lambda}, \mathbb{C}_{\mu}\right)=\left\{\begin{array}{l}
0 \text { if } \lambda \neq \mu \\
\mathbb{C} \text { if } \lambda=\mu
\end{array}\right.
$$

Example 6.19. Let $R=\mathbb{C}[x] /\left(x^{2}\right)$. Then R has only one (up to isomorphism) simple module, which we denote \mathbb{C}_{0}. Then

$$
\ldots \xrightarrow{d} R \xrightarrow{d} R \rightarrow 0,
$$

where $d(1)=x$ is a projective resolution for \mathbb{C}_{0} and $\operatorname{Ext}^{i}\left(\mathbb{C}_{0}, \mathbb{C}_{0}\right)=\mathbb{C}$ for all $i \geq 0$.

7. Representations of artinian rings

7.1. Idempotents, nilpotent ideals and Jacobson radical. A (left or right) ideal N of a ring R is called nilpotent if there exists $p>0$ such that $N^{p}=0$. The smallest such p is called the degree of nilpotency of N. The following lemma is sometimes called "lifting of an idempotent".

Lemma 7.1. Let N be a left (or right) nilpotent ideal of R and take $r \in R$ such that $r^{2} \equiv r \bmod N$. Then there exists an idempotent $e \in R$ such that $e \equiv r$ $\bmod N$.

Proof. Let N be a left ideal. We prove the statement by induction on the degree of nilpotency $d(N)$. The case $d(N)=1$ is trivial. Let $d(N)>1$. Set $n=r^{2}-r$, then n belongs to N and $r n=n r$. Therefore we have

$$
(r+n-2 r n)^{2} \equiv r^{2}+2 r n-4 r^{2} n \quad \bmod N^{2}
$$

We set $s=r+n-2 r n$. Then we have

$$
s^{2} \equiv s \quad \bmod N^{2}, \quad s \equiv r \quad \bmod N .
$$

Since $d\left(N^{2}\right)<d(N)$, the induction assumption ensures that there exists an idempotent $e \in R$ such that $e \equiv s \bmod N^{2}$, hence $e \equiv r \bmod N$.

For an R-module M let

$$
\text { Ann } M=\{x \in R \mid x M=0\} .
$$

Definition 7.2. The Jacobson radical $\operatorname{rad} R$ of a ring R is the intersection of Ann M for all simple R-modules M.

Exercise 7.3. (a) Prove that $\operatorname{rad} R$ is the intersection of all maximal left ideals of R as well as the intersection of all maximal right ideals.
(b) Show that x belongs to rad R if and only if $1+r x$ is invertible for any $r \in R$.
(c) Show that if N is a nilpotent left ideal of R, then N is contained in $\operatorname{rad} R$.

Lemma 7.4. Let $e \in \operatorname{rad} R$ such that $e^{2}=e$. Then $e=0$.
Proof. By Exercise 7.3 (b) we have that $1-e$ is invertible. But $e(1-e)=0$ and therefore $e=0$.

7.2. The Jacobson radical of an Artinian ring.

Definition 7.5. A ring R is artinian if it satisfies the descending chain condition for left ideals.

A typical example of artinian ring is a finite-dimensional algebra over a field. It follows from the definition that any left ideal in an Artinian ring contains a minimal (non-zero) ideal.

Lemma 7.6. Let R be an artinian ring, $I \subset R$ be a left ideal. If I is not nilpotent, then I contains a non-zero idempotent.

Proof. Since R is Artinian, one can can find a minimal left ideal $J \subset I$ among all non-nilpotent ideals of I. Then $J^{2}=J$. We will prove that J contains a non-zero idempotent.

Let $L \subset J$ be some minimal left ideal such that $J L \neq 0$. Then there exists $x \in L$ such that $J x \neq 0$. By minimality of L we have $J x=L$. Therefore there exists $r \in J$ such that $r x=x$. Hence $\left(r^{2}-r\right) x=0$. Let $N=\{y \in J \mid y x=0\}$. Note that N is a proper left ideal of J and therefore N is nilpotent. Thus, we have $r^{2} \equiv r \bmod N$. By Lemma 7.1 there exists an idempotent $e \in R$ such that $e \equiv r \bmod N$, and we are done.

Theorem 7.7. If R is artinian then $\operatorname{rad} R$ is the unique maximal nilpotent ideal of R.

Proof. By Exercise 7.3 every nilpotent ideal of R lies in $\operatorname{rad} R$. It remains to show that $\operatorname{rad} R$ is nilpotent. Indeed, otherwise by Lemma 7.6, $\operatorname{rad} R$ contains a non-zero idempotent. This contradicts Lemma 7.4.

Lemma 7.8. An Artinian ring R is semisimple if and only if $\operatorname{rad} R=0$.
Proof. If R is semisimple and Artinian, then by Wedderburn-Artin theorem it is a direct product of matrix rings, which does not have non-trivial nilpotent ideals.

If R is Artinian with trivial radical, then by Lemma 7.6 every minimal left ideal L of R contains an idempotent e such that $L=R e$. Hence R is isomorphic to $L \oplus R(1-e)$. Therefore R is a direct sum of its minimal left ideals.

Corollary 7.9. If R is Artinian, then $R / \operatorname{rad} R$ is semisimple.
Proof. By Theorem 7.7 the quotient $\operatorname{ring} R / \operatorname{rad} R$ does not have non-zero nilpotent ideals. Hence it is semisimple by Lemma 7.8.

7.3. Modules over Artinian rings.

Lemma 7.10. Let R be an Artinian ring and M be an R-module. Then $M /(\operatorname{rad} R) M$ is the maximal semisimple quotient of M.

Proof. Since $R / \operatorname{rad} R$ is a semisimple ring and $M /(\operatorname{rad} R) M$ is an $R / \operatorname{rad} R$ module, we obtain that $M /(\operatorname{rad} R) M$ is semisimple. To prove maximality, observe that $\operatorname{rad} R$ acts by zero on any semisimple quotient of M.

Corollary 7.11. Assume that R is Artinian and M is an R-module. Consider the filtration (called the radical filtration)

$$
M \supset(\operatorname{rad} R) M \supset(\operatorname{rad} R)^{2} M \supset \cdots \supset(\operatorname{rad} R)^{k} M=0
$$

where k is the degree of nilpotency of $\operatorname{rad} R$. Then all quotients $(\operatorname{rad} R)^{i} M /(\operatorname{rad} R)^{i+1} M$ are semisimple R-modules. In particular, M always has a simple quotient.

Proposition 7.12. Let R be Artinian. Consider it as a module over itself. Then R is a finite length module. Hence R is a Noetherian ring.

Proof. Apply Corollary 7.11 to $M=R$. Then every quotient $(\operatorname{rad} R)^{i} /(\operatorname{rad} R)^{i+1}$ is a semisimple Artinian R-module. By Exercise $4.4(\operatorname{rad} R)^{i} /(\operatorname{rad} R)^{i+1}$ is a Noetherian R-module. Hence R is a Noetherian module over itself.

Let us apply the Krull-Schmidt theorem to an Artinian ring R considered as a left module over itself. Then R has a decomposition into a direct sum of indecomposable submodules

$$
R=L_{1} \oplus \cdots \oplus L_{n} .
$$

Recall that $\operatorname{End}_{R}(R)=R^{\mathrm{op}}$. Therefore the canonical projection on each component L_{i} is given by multiplication (on the right) by some idempotent element $e_{i} \in L_{i}$.

In other words R has a decomposition

$$
\begin{equation*}
R=R e_{1} \oplus \cdots \oplus R e_{n} \tag{5.4}
\end{equation*}
$$

Moreover, $e_{i} e_{j}=\delta_{i j} e_{i}$. Once more by Krull-Schmidt theorem this decomposition is unique up to multiplication by some invertible element on the right.

Definition 7.13. An idempotent $e \in R$ is called primitive if it can not be written $e=e^{\prime}+e^{\prime \prime}$ for some non-zero idempotents $e^{\prime}, e^{\prime \prime}$ such that $e^{\prime} e^{\prime \prime}=e^{\prime \prime} e^{\prime}=0$.

Exercise 7.14. Prove that the idempotent $e \in R$ is primitive if and only if $R e$ is an indecomposable R-module.

In the decomposition (5.4) the idempotents e_{1}, \ldots, e_{n} are primitive.
Lemma 7.15. Assume R is Artinian, $N=\operatorname{rad} R$ and $e \in R$ is a primitive idempotent. Then $N e$ is a unique maximal submodule of $R e$.

Proof. Due to Corollary 7.11 it is sufficient to show that $R e / N e$ is a simple R-module. Since e is primitive, the left ideal $R e$ is an indecomposable R-module. Assume that $R e / N e$ is not simple. Then $R e / N e=R e e_{1} \oplus R e e_{2}$ for some non-zero idempotent elements e_{1} and e_{2} in the quotient ring R / N. By Lemma 7.1 there exist idempotents $f_{1}, f_{2} \in R$ such that $f_{i} \equiv e_{i} \bmod N$. Then $R e=R f_{1} \oplus R f_{2}$ which contradicts indecomposability of $R e$.

Theorem 7.16. Assume R is Artinian.
(1) Every simple R-module S has a projective cover which is isomorphic to Re for some primitive idempotent $e \in R$.
(2) Let P be an indecomposable projective R-module. There exists a primitive idempotent $e \in R$ such that P is isomorphic to Re. Furthermore, P has a unique simple quotient.

Proof. Let S be a simple R-module. There exists a surjective homomorphism $f: R \rightarrow S$. Consider the decomposition (5.4). There exists $i \leq n$ such that the restriction of f on $R e_{i}$ is non-zero. By the simplicity of S the restriction $f: R e_{i} \rightarrow S$ is surjective. It follows from Lemma 7.15 that $R e_{i}$ is a projective cover of S.

Let P be an indecomposable projective module. By Lemma 7.10 the quotient $P /(\operatorname{rad} R P)$ is semisimple. Let S be a simple submodule of $P /(\operatorname{rad} R P)$. Then we have a surjection $f: P \rightarrow S$. Let $g: Q \rightarrow S$ be a projective cover of S. There exists a morphism $\varphi: P \rightarrow Q$ such that $f=g \circ \varphi$. Since Q has a unique simple quotient, the morphism φ is surjective. Then P is isomorphic to $Q \oplus \operatorname{Ker} \varphi$. The indecomposability of P implies that P is isomorphic to Q.

Example 7.17. Consider the group algebra $R=\mathbb{F}_{3}\left(S_{3}\right)$. First let us classify simple and indecomposable projective R-modules.

Let r be a 3 -cycle and s be a transposition. Since s and r generate S_{3}, one can see easily that the elements $r-1, r^{2}-1, s r-s$ and $s r^{2}-s$ span a nilpotent ideal
N, which turns out to be maximal. The quotient R / N is a semisimple R-module with two simple components L_{1} and L_{2}, where L_{1} (resp. L_{2}) is the trivial (resp. the sign) representation of S_{3}. Set $e_{1}=-s-1$ and $e_{2}=s-1$. Then e_{1}, e_{2} are primitive idempotents of R such that $1=e_{1}+e_{2}$ and $e_{1} e_{2}=0$. Hence R has exactly two indecomposable projective modules, namely $P_{1}=R e_{1}$ and $P_{2}=R e_{2}$. Those modules can be seen as induced modules

$$
R e_{1} \cong \operatorname{Ind}_{S_{2}}^{S_{3}}(\text { triv }), \quad R e_{2} \cong \operatorname{Ind}_{S_{2}}^{S_{3}}(\mathrm{sgn})
$$

Thus P_{1} is the 3 -dimensional permutation representation of S_{3}, and $P_{2}=P_{1} \otimes \operatorname{sgn}$.
Exercise 7.18. Compute explicitly the radical filtration of P_{1} and P_{2}. Show that

$$
P_{1} /(\operatorname{rad} R) P_{1} \simeq L_{1}, \quad(\operatorname{rad} R) P_{1} /(\operatorname{rad} R)^{2} P_{1} \simeq L_{2}, \quad(\operatorname{rad} R)^{2} P_{1} \simeq L_{1}
$$

and

$$
P_{2} /(\operatorname{rad} R) P_{2} \simeq L_{2}, \quad(\operatorname{rad} R) P_{2} /(\operatorname{rad} R)^{2} P_{2} \simeq L_{1}, \quad(\operatorname{rad} R)^{2} P_{2} \simeq L_{2}
$$

Now we will calculate the extension groups between the simple modules. The above exercise implies the following exact sequences

$$
0 \rightarrow L_{2} \rightarrow P_{2} \rightarrow P_{1} \rightarrow L_{1} \rightarrow 0, \quad 0 \rightarrow L_{1} \rightarrow P_{1} \rightarrow P_{2} \rightarrow L_{2} \rightarrow 0
$$

By gluing these sequences together we obtain a projective resolution for L_{1}

$$
\cdots \rightarrow P_{1} \rightarrow P_{2} \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{1} \rightarrow P_{2} \rightarrow P_{2} \rightarrow P_{1} \rightarrow 0
$$

and for L_{2}

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{1} \rightarrow P_{2} \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{1} \rightarrow P_{2} \rightarrow 0 .
$$

Using the following obvious relation

$$
\operatorname{Hom}\left(P_{i}, P_{j}\right)=\left\{\begin{array}{l}
\mathbb{F}_{3}, \text { if } i=j \\
0, \text { if } i \neq j
\end{array}\right.
$$

we obtain

$$
\operatorname{Ext}^{p}\left(L_{i}, L_{i}\right)=\left\{\begin{array}{l}
0, \quad \text { if } p \equiv 1,2 \quad \bmod 4, i=j \\
\mathbb{F}_{3}, \quad \text { if } p \equiv 0,3 \quad \bmod 4, i=j \\
0, \quad i f p \equiv 0,3 \quad \bmod 4, i \neq j \\
\mathbb{F}_{3}, \quad \text { if } p \equiv 1,2 \quad \bmod 4, i \neq j
\end{array}\right.
$$

ExERCISE 7.19. Let B_{n} denote the algebra of upper triangular $n \times n$ matrices over a field \mathbb{F}. Denote by $E_{i j}$ the elementary matrix. Show that $E_{i i}$ for $i=1, \ldots, n$, are primitive idempotents of B_{n}. Furthermore, show that B_{n} has n up to isomorphism simple modules L_{1}, \ldots, L_{n} associated with those idempotents and that the dimension of every L_{i} over \mathbb{F} is 1 . Finally check that

$$
\operatorname{Ext}^{p}\left(L_{i}, L_{j}\right)= \begin{cases}\mathbb{F}, & \text { if } i=j, p=0 \text { or } i=j+1, p=1 \\ 0, & \text { otherwise }\end{cases}
$$

8. Abelian categories

An abelian category is a generalization of categories of modules over a ring.
Let us start with definition of an additive category.
Definition 8.1. A category \mathcal{C} is called additive if for any pair of objects A, B,
(1) The set of morphisms $\operatorname{Hom}_{\mathcal{C}}(A, B)$ is an abelian group.
(2) There exist an object $A \oplus B$, called a direct sum, and a pair of morphisms $i_{A}: A \rightarrow A \oplus B$ and $i_{B}: B \rightarrow A \oplus B$ such that for any morphisms $\varphi: A \rightarrow M$ and $\psi: B \rightarrow M$ there exists a unique morphism $\tau: A \oplus B \rightarrow M$ such that $\tau \circ i_{A}=\varphi$ and $\tau \circ i_{B}=\psi$.
(3) There exist an object $A \times B$ called a direct product and a pair of morphisms $p_{A}: A \times B \rightarrow A$ and $i_{B}: A \times B \rightarrow B$ such that for any morphisms $\alpha: M \rightarrow A$ and $\beta: M \rightarrow M$ there exists a unique morphism $\theta: M \rightarrow A \times B$ such that $p_{A} \circ \theta=\alpha$ and $p_{B} \circ \theta=\beta$.
(4) The induced morphism $A \oplus B \rightarrow A \times B$ is an isomorphism.

Definition 8.2. An abelian category is an additive category \mathcal{C} such that, for every morphism $\varphi \in \operatorname{Hom}_{\mathcal{C}}(A, B)$
(1) There exist an object and a morphism $\operatorname{Ker} \varphi \xrightarrow{i} A$ such that for any morphism $\gamma: M \rightarrow A$ such that, $\varphi \circ \gamma=0$, there exists a unique morphism $\delta: M \rightarrow \operatorname{Ker} \varphi$ such that $\gamma=i \circ \delta$.
(2) There exist an object and morphism $B \xrightarrow{p} \operatorname{Coker} \varphi$ such that for any mor$\operatorname{phism} \tau: B \rightarrow M$ such that, $\tau \circ \varphi=0$, there exists a unique morphism $\sigma:$ Coker $\varphi \rightarrow M$ such that $\tau=\sigma \circ p$.
(3) There is an isomorphism Coker $i \rightarrow \operatorname{Ker} p$.

ExERCISE 8.3. Let R be a ring, show that the category of finitely generated R modules is abelian. Show that the category of projective R-modules is additive but not abelian in general. Finally show that the category of projective R-modules is abelian if and only if R is a semisimple ring.

In an abelian category we can define the image of a morphism, a quotient object, exact sequences, projective and injective objects. All the results of Sections 4, 5 and 6 can be generalized for abelian categories. If we want to define extension groups we have to assume the existence of projective covers.

Definition 8.4. Let \mathcal{C} be an abelian category. Its Grothendieck group $\mathcal{K}_{\mathcal{C}}$ is the abelian group defined by generators and relations in the following way. For every object M of \mathcal{C} there is one generator $[M]$. For every exact sequence

$$
0 \rightarrow N \rightarrow M \rightarrow K \rightarrow 0
$$

in \mathcal{C} we have the relation $[M]=[K]+[N]$.

Exercise 8.5. Let \mathcal{C} be the category of finite-dimensional vector spaces. Show that $\mathcal{K}_{\mathcal{C}}$ is isomorphic to \mathbb{Z}.

Exercise 8.6. Let G be a finite group and k be a field of characteristic 0 . Let \mathcal{C} be the category of finite-dimensional $k(G)$-modules. Then $\mathcal{K}_{\mathcal{C}}$ is isomorphic to the abelian subgroup of $\mathcal{C}(G)$ generated by the characters of irreducible representations. Furthermore, the tensor product equips $\mathcal{K}_{\mathcal{C}}$ with a structure of commutative ring.

CHAPTER 6

Symmetric groups, Schur-Weyl duality and positive self-adjoint Hopf algebras

This chapter was written with Laurent Gruson

Though this be madness, yet there is method in it (Hamlet, Act II scene 2)
In this chapter (from section 3), we will rely on a book by Andrei Zelevinsky, Representations of finite classical groups, a Hopf algebra approach, [37], which gives a very efficient axiomatisation of the essential properties of the representations of symmetric groups and general linear groups over finite fields. In this book lies the first appearance of the notion of categorification which has become an ubiquitous tool in representation theory. For the case of symmetric groups, the seminal work is due to Geissinger ([14]).

We will meet graded objects in what follows. Hence the word degree will be attached to the gradation (and not to the dimension of a representation) throughout this chapter.

1. Representations of symmetric groups

Consider the symmetric group S_{n}. In this section we classify irreducible representations of S_{n} over \mathbb{Q}. We will see that any irreducible representation over \mathbb{Q} is absolutely irreducible, in other words \mathbb{Q} is a splitting field for S_{n}. We will realize the irreducible representations of S_{n} as minimal left ideals in the group algebra $\mathbb{Q}\left(S_{n}\right)$.

Definition 1.1. A partition λ of n is a sequence of positive integers $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1} \geq \cdots \geq \lambda_{k}$ and $\lambda_{1}+\cdots+\lambda_{k}=n$. We use the notation $\lambda \vdash n$ when λ is a partition of n. Moreover, the integer k is called the length of the partition λ.

Remark 1.2. Recall that two permutations lie in the same conjugacy class of S_{n} if and only if there is a bijection between their sets of cycles which preserves the lengths. Therefore we can parametrize the conjugacy classes in S_{n} by the partitions of n.

Definition 1.3. To every partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ we associate a table, also denoted λ, consisting of n boxes with rows of length $\lambda_{1}, \ldots, \lambda_{k}$, it is called a Young diagram. A Young tableau $t(\lambda)$ is a Young diagram λ with entries $1, \ldots, n$ in its boxes such that every number occurs in exactly one box. We say that two Young tableaux have the same shape if they are obtained from the same Young diagram. The number of tableaux of shape λ equals $n!$.

Example 1.4. Let $n=7, \lambda=(3,2,1,1)$. The corresponding Young diagram is

and a possible example of tableau $t(\lambda)$ is

1	2	3
4	5	
6		
7		

Given a Young tableau $t(\lambda)$, we denote by $P_{t(\lambda)}$ the subgroup of S_{n} preserving the rows of $t(\lambda)$ and by $Q_{t(\lambda)}$ the subgroup of permutations preserving the columns.

Example 1.5. Consider the tableau $t(\lambda)$ from Example 1.4. Then $P_{t(\lambda)}$ is isomorphic to $S_{3} \times S_{2}$, which is the subgroup of S_{7} permuting $\{1,2,3\}$ and $\{4,5\}$, and $Q_{t(\lambda)}$ is isomorphic to $S_{4} \times S_{2}$ which permutes $\{1,4,6,7\}$ and $\{2,5\}$.

ExERCISE 1.6. Check that $P_{t(\lambda)} \cap Q_{t(\lambda)}=\{1\}$ for any tableau $t(\lambda)$.
Introduce the following elements in $\mathbb{Q}\left(S_{n}\right)$:

$$
a_{t(\lambda)}=\sum_{p \in P_{t}(\lambda)} p, b_{t(\lambda)}=\sum_{q \in Q_{t(\lambda)}}(-1)^{q} q, c_{t(\lambda)}=a_{t(\lambda)} b_{t(\lambda)},
$$

where $(-1)^{q}$ stands for $\epsilon(q)$.
The element $c_{t(\lambda)}$ is called a Young symmetrizer.
Theorem 1.7. Let $t(\lambda)$ be a Young tableau.
(1) The left ideal $\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$ is minimal, therefore it is a simple $\mathbb{Q}\left(S_{n}\right)$-module.
(2) Two $\mathbb{Q}\left(S_{n}\right)$-modules $\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$ and $\mathbb{Q}\left(S_{n}\right) c_{t^{\prime}(\mu)}$ are isomorphic if and only if $\mu=\lambda$.
(3) Every simple $\mathbb{Q}\left(S_{n}\right)$-module is isomorphic to $V_{t(\lambda)}:=\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$ for some Young tableau $t(\lambda)$.
(4) The representatiion $V_{t(\lambda)}$ is absolutely irreducible.

Remark 1.8. Note that assertion (3) of the Theorem follows from the first two, since the number of Young diagrams is equal to the number of conjugacy classes (see Remark 1.2).

Example 1.9. Consider the partition (of length 1) $\lambda=(n)$. Then the corresponding Young diagram consists of one row with n boxes. For any tableau $t(\lambda)$ we have $P_{t(\lambda)}=S_{n}, Q_{t(\lambda)}$ is trivial and therefore

$$
c_{t(\lambda)}=a_{t(\lambda)}=\sum_{s \in S_{n}} s
$$

The corresponding representation of S_{n} is trivial.
Example 1.10. Consider the partition $\lambda=(1, \ldots, 1)$ whose Young diagram consists of one column with n boxes. Then $Q_{t(\lambda)}=S_{n}, P_{t(\lambda)}$ is trivial and

$$
c_{t(\lambda)}=b_{t(\lambda)}=\sum_{s \in S_{n}}(-1)^{s} s
$$

Therefore the corresponding representation of S_{n} is the sign representation.
Example 1.11. Let us consider the partition $\lambda=(n-1,1)$ and the Young tableau $t(\lambda)$ which has entries $1, \ldots, n-1$ in the first row and n in the second row. Then $P_{t(\lambda)}$ is isomorphic to S_{n-1} and consists of all permutations which fix n, and $Q_{t(\lambda)}$ is generated by the transposition (1n). We have

$$
c_{t(\lambda)}=\left(\sum_{s \in S_{n-1}} s\right)(1-(1 n)) .
$$

Let E denote the permutation representation of S_{n}. Let us show that $\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$ is the $n-1$ dimensional simple submodule of E. Indeed, $a_{t(\lambda)} c_{t(\lambda)}=c_{t(\lambda)}$, therefore the restriction of $V_{t(\lambda)}$ to $P_{t(\lambda)}$ contains the trivial representation of $P_{t(\lambda)}$. Recall that the permutation representation can be obtained by induction from the trivial representation of S_{n-1} :

$$
E=\operatorname{Ind}_{P_{\lambda}}^{S_{n}} \text { triv }
$$

By Frobenius reciprocity $\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$ is a non-trivial submodule of E.
In the rest of this Section we prove Theorem 1.7.
First, let us note that S_{n} acts simply transitively on the set of Young tableaux of the same shape by permuting the entries, and for any $s \in S_{n}$ we have

$$
a_{s t(\lambda)}=s a_{t(\lambda)} s^{-1}, b_{s t(\lambda)}=s b_{t(\lambda)} s^{-1}, c_{s t(\lambda)}=s c_{t(\lambda)} s^{-1}
$$

Therefore if we have two tableaux $t(\lambda)$ and $t^{\prime}(\lambda)$ of the same shape, then

$$
\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}=\mathbb{Q}\left(S_{n}\right) c_{t^{\prime}(\lambda)} s^{-1}
$$

for some $s \in S_{n}$. Hence $\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$ and $\mathbb{Q}\left(S_{n}\right) c_{t^{\prime}(\lambda)}$ are isomorphic $\mathbb{Q}\left(S_{n}\right)$-modules.
In what follows we denote by V_{λ} a representative of the isomorphism class of $\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$ for some tableau $t(\lambda)$. As we have seen the isomorphism class does not depend on the tableau but only on its shape.

Exercise 1.12. Let $t(\lambda)$ be a Young tableau and $s \in S_{n}$. Show that if s does not belong to the set $P_{t(\lambda)} Q_{t(\lambda)}$, then there exist two entries i, j which lie in the same row of $t(\lambda)$ and in the same column of $s t(\lambda)$. In other words, the transposition ($i j$) lies in the intersection $P_{t(\lambda)} \cap Q_{s t(\lambda)}$. Hint: Assume the opposite, and check that one can find $s^{\prime} \in P_{t(\lambda)}$ and $s^{\prime \prime} \in Q_{s t(\lambda)}$ such that $s^{\prime \prime} t(\lambda)=s^{\prime} s t(\lambda)$.

Next, observe that for any $p \in P_{\lambda}$ and $q \in Q_{\lambda}$ we have

$$
p c_{t(\lambda)} q=(-1)^{q} c_{t(\lambda)} .
$$

Lemma 1.13. Let $t(\lambda)$ be a Young tableau and $y \in \mathbb{Q}\left(S_{n}\right)$. Assume that for all $p \in P_{t(\lambda)}$ and $q \in Q_{t(\lambda)}$ we have

$$
p y q=(-1)^{q} y
$$

Then $y=a c_{t(\lambda)}$ for some $a \in \mathbb{Q}$.
Proof. Let T be a set of representatives of the double cosets $P_{t(\lambda)} \backslash S_{n} / Q_{t(\lambda)}$. Then S_{n} is the disjoint union $\bigsqcup_{s \in T} P_{t(\lambda)} s Q_{t(\lambda)}$ and we can write y in the form

$$
\sum_{s \in T} d_{s} \sum_{p \in P_{t(\lambda)}, q \in Q_{t(\lambda)}}(-1)^{q} p s q=\sum_{s \in T} d_{s} a_{t(\lambda)} s b_{t(\lambda)} .
$$

It suffices to show that if $s \notin P_{t(\lambda)} Q_{t(\lambda)}$ then $a_{t(\lambda)} s b_{t(\lambda)}=0$. This follows from Exercise 1.12. Indeed, there exists a transposition τ in the intersection $P_{t(\lambda)} \cap Q_{s t(\lambda)}$. Therefore

$$
a_{t(\lambda)} s b_{t(\lambda)} s^{-1}=a_{t(\lambda)} b_{s t(\lambda)}=\left(a_{t(\lambda)} \tau\right)\left(\tau b_{s t(\lambda)}\right)=-a_{t(\lambda)} b_{s t(\lambda)}=0
$$

This lemma implies
Corollary 1.14. We have $c_{t(\lambda)} \mathbb{Q}\left(S_{n}\right) c_{t(\lambda)} \subset \mathbb{Q} c_{t(\lambda)}$.
Now we are ready to prove the first assertion of Theorem 1.7.
Lemma 1.15. The ideal $\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$ is a minimal left ideal of $\mathbb{Q}\left(S_{n}\right)$.
Proof. Consider a left ideal $W \subset \mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$. Then by Corollary 1.14 either $c_{t(\lambda)} W=\mathbb{Q} c_{t(\lambda)}$ or $c_{t(\lambda)} W=0$.

If $c_{t(\lambda)} W=\mathbb{Q} c_{t(\lambda)}$, then $\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)} W=\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$. Hence $W=\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$. If $c_{t(\lambda)} W=0$, then $W^{2}=0$. But $\mathbb{Q}\left(S_{n}\right)$ is a semisimple ring, hence $W=0$.

Note that Corollary 1.14 also implies that V_{λ} is absolutely irreducible (statement (4) in Theorem 1.7) because

$$
\operatorname{End}_{S_{n}}\left(\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}\right)=c_{t(\lambda)} \mathbb{Q}\left(S_{n}\right) c_{t(\lambda)} \simeq \mathbb{Q}
$$

Corollary 1.16. For every Young tableau $t(\lambda)$ we have $c_{t(\lambda)}^{2}=n_{\lambda} c_{t(\lambda)}$, where $n_{\lambda}=\frac{n!}{\operatorname{dim} V_{\lambda}}$.

Proof. By Corollary 1.14 we know that $c_{t(\lambda)}^{2}=n_{\lambda} c_{t(\lambda)}$ for some $n_{\lambda} \in \mathbb{Q}$. Moreover, there exists a primitive idempotent $e \in \mathbb{Q}\left(S_{n}\right)$ such that $c_{t(\lambda)}=n_{\lambda} e$. To find n_{λ} note that the trace of e in the regular representation equals $\operatorname{dim} V_{\lambda}$, and the trace of $c_{t(\lambda)}$ in the regular representation equals $n!$.

Exercise 1.17. Introduce the lexicographical order on partitions by setting $\lambda>\mu$ if there exists i such that $\lambda_{j}=\mu_{j}$ for all $j<i$ and $\lambda_{i}>\mu_{i}$. Show that if $\lambda>\mu$, then for any two Young tableaux $t(\lambda)$ and $t^{\prime}(\mu)$ there exist entries i and j which lie in the same row of $t(\lambda)$ and in the same column of $t^{\prime}(\mu)$.

Lemma 1.18. Let $t(\lambda)$ and $t^{\prime}(\mu)$ be two Young tableaux such that $\lambda<\mu$. Then $c_{t(\lambda)} \mathbb{Q}\left(S_{n}\right) c_{t^{\prime}(\mu)}=0$.

Proof. We have to check that $c_{t(\lambda)} s c_{t^{\prime}(\mu)} s^{-1}=0$ for any $s \in S_{n}$, which is equivalent to $c_{t(\lambda)} c_{s t^{\prime}(\mu)}=0$. Therefore it suffices to prove that $c_{t(\lambda)} c_{t^{\prime}(\mu)}=0$. By Exercise 1.17 there exists a transposition τ which belongs to the intersection $Q_{t(\lambda)} \cap P_{t^{\prime}(\mu)}$. Then, repeating the argument from the proof of Lemma 1.13, we obtain

$$
c_{t(\lambda)} c_{t^{\prime}(\mu)}=c_{t(\lambda)} \tau^{2} c_{t^{\prime}(\mu)}=-c_{t(\lambda)} c_{t^{\prime}(\mu)}
$$

Now we show the second statement of Theorem 1.7.
Lemma 1.19. Two irreducible representations V_{λ} and V_{μ} are isomorphic if and only if $\lambda=\mu$.

Proof. It suffices to show that if $\lambda \neq \mu$, then V_{λ} and V_{μ} are not isomorphic. Without loss of generality we may assume $\lambda<\mu$ and take some Young tableaux $t(\lambda)$ and $t^{\prime}(\mu)$. By Lemma 1.18 we obtain that $c_{t(\lambda)}$ acts by zero on V_{μ}. On the other hand, by Corollary 1.16, $c_{t(\lambda)}$ does not annihilate V_{λ}. Hence the statement.

By Remark 1.8 the proof of Theorem 1.7 is complete.
Remark 1.20. Note that in fact we have proved that if $\lambda \neq \mu$, then one has $c_{t(\lambda)} \mathbb{Q}\left(S_{n}\right) c_{t^{\prime}(\mu)}=0$ for any pair of tableaux $t(\lambda), t^{\prime}(\mu)$. Indeed, if $c_{t(\lambda)} \mathbb{Q}\left(S_{n}\right) c_{t^{\prime}(\mu)} \neq 0$, then

$$
\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)} \mathbb{Q}\left(S_{n}\right) c_{t^{\prime}(\mu)}=\mathbb{Q}\left(S_{n}\right) c_{t^{\prime}(\mu)} .
$$

But this is impossible since all the irreducible components of $\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)} \mathbb{Q}\left(S_{n}\right)$ are isomorphic to V_{λ}.

Lemma 1.21. Let $\rho: S_{n} \rightarrow \mathrm{GL}(V)$ be a finite-dimensional representation of S_{n}. Then the multiplicity of V_{λ} in V equals the rank of $\rho\left(c_{t(\lambda)}\right)$.

Proof. The rank of $c_{t(\lambda)}$ in V_{λ} is 1 and $c_{t(\lambda)} V_{\mu}=0$ for all $\mu \neq \lambda$. Hence the statement.

ExErcise 1.22. Let λ be a partition and χ_{λ} denote the character of V_{λ}.
(1) Prove that $\chi_{\lambda}(s) \in \mathbb{Z}$ for all $s \in S_{n}$.
(2) Prove that $\chi_{\lambda}(s)=\chi_{\lambda}\left(s^{-1}\right)$ for all $s \in S_{n}$ and hence V_{λ} is self-dual.
(3) For a tableau $t(\lambda)$ let $\bar{c}_{t(\lambda)}=b_{t(\lambda)} a_{t(\lambda)}$. Prove that $\mathbb{Q}\left(S_{n}\right) c_{t(\lambda)}$ and $\mathbb{Q}\left(S_{n}\right) \bar{c}_{t(\lambda)}$ are isomorphic $\mathbb{Q}\left(S_{n}\right)$-modules.
ExErcise 1.23. Let λ be a partition. We define the conjugate partition λ^{\perp} by setting λ_{i}^{\perp} to be equal to the length of the i-th column in the Young diagram λ. For
example, if $\lambda=$ \square , then $\lambda^{\perp}=$

Prove that for any partition λ, the representation $V_{\lambda \perp}$ is isomorphic to the tensor product of V_{λ} with the sign representation.

Since \mathbb{Q} is a splitting field for S_{n}, Theorem 1.7 provides classification of irreducible representations of S_{n} over any field of characteristic zero.

2. Schur-Weyl duality.

2.1. Dual pairs. We will start the following general statement.

Theorem 2.1. Let G and H be two groups and $\rho: G \times H \rightarrow$ GL (V) be a representation in a vector space V. Assume that V has a decomposition

$$
V=\bigoplus_{i=1}^{m} V_{i} \otimes \operatorname{Hom}_{G}\left(V_{i}, V\right)
$$

for some absolutely irreducible representations V_{1}, \ldots, V_{m} of G, and that the subalgebra generated by $\rho(H)$ equals $\operatorname{End}_{G}(V)$. Then every $W_{i}:=\operatorname{Hom}_{G}\left(V_{i}, V\right)$ is an absolutely irreducible representation of H and W_{i} is not isomorphic to W_{j} if $i \neq j$.

Proof. Since every V_{i} is an absolutely irreducible representation of G, we have

$$
\operatorname{End}_{G}(V)=\prod_{i=1}^{m} \operatorname{End}_{k}\left(W_{i}\right)
$$

By our assumption the homomorphism

$$
\rho: k(H) \rightarrow \prod_{i=1}^{m} \operatorname{End}_{k}\left(W_{i}\right)
$$

is surjective. Hence the statement.
Remark 2.2. In general, we say that G and H satisfying the conditions of Theorem 2.1 form a dual pair.

Example 2.3. Let k be an algebraically closed field, G be a finite group. Let ρ be the regular representation of G in $k(G)$ and σ be the representation of G in $k(G)$ defined by

$$
\sigma_{g}(h)=h g^{-1}
$$

for all $g, h \in G$. Then $k(G)$ has the structure of a $G \times G$-module and we have a decomposition

$$
k(G)=\bigoplus_{i=1}^{r} V_{i} \boxtimes V_{i}^{*}
$$

where V_{1}, \ldots, V_{r} are all (up to isomorphism) irreducible representations of G.
2.2. Duality between $G L(V)$ and S_{n}. Let V be a vector space over a field k of characteristic zero. Then V is an irreducible representation of the group $G L(V)$. We would like to understand $V^{\otimes n}$ as a $G L(V)$-module. Is it semisimple? If so, what are its simple components?

Let us define the representation $\rho: S_{n} \rightarrow \mathrm{GL}\left(V^{\otimes n}\right)$ by setting

$$
s\left(v_{1} \otimes \cdots \otimes v_{n}\right):=v_{s(1)} \otimes \cdots \otimes v_{s(n)}
$$

for all $v_{1}, \ldots, v_{n} \in V$ and $s \in S_{n}$. One can easily check that the actions of $G L(V)$ and S_{n} in the space $V^{\otimes n}$ commute. We will show that $G L(V)$ and S_{n} form a dual pair.

Theorem 2.4. (Schur-Weyl duality) Let $m=\operatorname{dim} V$ and $\Gamma_{n, m}$ denote the set of all Young diagrams λ with n boxes such that the number of rows of λ is not bigger than m. Then

$$
V^{\otimes n}=\bigoplus_{\lambda \in \Gamma_{n, m}} V_{\lambda} \otimes S_{\lambda}(V),
$$

where V_{λ} is the irreducible representation of S_{n} associated to λ and

$$
S_{\lambda}(V):=\operatorname{Hom}_{S_{n}}\left(V_{\lambda}, V^{\otimes n}\right)
$$

is an irreducible representation of $\mathrm{GL}(V)$. Moreover, $S_{\lambda}(V)$ and $S_{\mu}(V)$ are isomorphic if and only if $\lambda=\mu$.

Remark 2.5. If $\lambda \in \Gamma_{n, m}$ and $t(\lambda)$ is an arbitrary Young tableau of shape λ, then the image of the Young symmetrizer $c_{t(\lambda)}$ in $V^{\otimes n}$ is a simple $G L(V)$-module isomorphic to $S_{\lambda}(V)$.

Example 2.6. Let $n=2$. Then we have a decomposition $V \otimes V=S^{2}(V) \oplus \Lambda^{2}(V)$. Theorem 2.4 implies that $S^{2}(V)=S_{(2)}(V)$ and $\Lambda^{2}(V)=S_{(1,1)}(V)$ are irreducible representations of $G L(V)$. More generally, $S_{(n)}(V)$ is isomorphic to $S^{n}(V)$ and $S_{(1, \ldots, 1)}(V)$ is isomorphic to $\Lambda^{n}(V)$.

Let us prove Theorem 2.4.
Lemma 2.7. Let $\sigma: k(G L(V)) \rightarrow \operatorname{End}_{k}\left(V^{\otimes n}\right)$ be the homomorphism of algebras induced by the action of $G L(V)$ on $V^{\otimes n}$. Then

$$
\operatorname{End}_{S_{n}}\left(V^{\otimes n}\right)=\sigma(k(G L(V)))
$$

Proof. Let $E=\operatorname{End}_{k}(V)$. Then we have an isomorphism of algebras

$$
\operatorname{End}_{k}\left(V^{\otimes n}\right) \simeq E^{\otimes n} .
$$

We define the action of S_{n} on $E^{\otimes n}$ by setting

$$
s\left(X_{1} \otimes \cdots \otimes X_{n}\right):=X_{s(1)} \otimes \cdots \otimes X_{s(n)}
$$

for all $s \in S$ and $X_{1}, \ldots, X_{n} \in E$. Then $\operatorname{End}_{S_{n}}\left(V^{\otimes n}\right)$ coincides with the subalgebra of S_{n}-invariants in $E^{\otimes n}$, that is with the n-th symmetric power $S^{n}(E)$ of E. Therefore, it suffices to show that $S^{n}(E)$ is the linear span of $\sigma(g)$ for all $g \in G L(V)$.

We will need the following
Exercise 2.8. Let W be a vector space. Prove that for all $n \geq 2$, the following identity holds in the symmetric algebra $S(W)$:

$$
2^{n-1} n!x_{1} \ldots x_{n}=\sum_{i_{2}=0,1 ; \ldots ; i_{n}=0,1}(-1)^{i_{2}+\cdots+i_{n}}\left(x_{1}+(-1)^{i_{2}} x_{2}+\cdots+(-1)^{i_{n}} x_{n}\right)^{n} .
$$

Let us choose a basis $e_{1}, \ldots, e_{m^{2}}$ of E such that all non-zero linear combinations $a_{1} e_{1}+\cdots+a_{m^{2}} e_{m^{2}}$ with coefficients $a_{i} \in\{-n, \ldots, n\}$ belong to $G L(V)$. (The existence of such a basis follows from the density of $G L(V)$ in E for the Zariski topology.) By the above exercise, the set

$$
\left\{\left(a_{1} e_{i_{1}}+\cdots+a_{n} e_{i_{n}}\right)^{\otimes n} \mid a_{i}= \pm 1, i_{1}, \ldots i_{n} \leq m^{2}\right\}
$$

spans $S^{n}(E)$. On the other hand, every non-zero ($a_{1} e_{i_{1}}+\cdots+a_{n} e_{i_{n}}$) belongs to $G L(V)$. By construction, we have

$$
\left(a_{1} e_{i_{1}}+\cdots+a_{n} e_{i_{n}}\right)^{\otimes n}=\sigma\left(a_{1} e_{i_{1}}+\cdots+a_{n} e_{i_{n}}\right)
$$

hence $S^{n}(E)$ is the linear span of $\sigma(g)$ for $g \in G L(V)$.
Lemma 2.9. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ be a partition of n. Then $S_{\lambda}(V) \neq 0$ if and only if $\lambda \in \Gamma_{n, m}$.

Proof. Consider the tableau $t(\lambda)$ with entries $1, \ldots, n$ placed in increasing order from top to bottom of the Young diagram λ starting from the first column. For instance, for $\lambda=$\begin{tabular}{|l|}
\square

\square

 we consider the tableau $t(\lambda)=$

\hline 1 \& 3 \& 5

\hline 2 \& 4

\hline
\end{tabular} . By Remark 2.5 $S_{\lambda}(V) \neq 0$ if and only if $c_{t(\lambda)}\left(V^{\otimes n}\right) \neq 0$.

If $\lambda^{\perp}=\mu=\left(\mu_{1}, \ldots, \mu_{r}\right)$, then

$$
b_{t(\lambda)}\left(V^{\otimes n}\right)=\otimes_{i=1}^{r} \Lambda^{\mu_{i}}(V) .
$$

If λ is not in $\Gamma_{n, m}$, then $\mu_{1}>m$ and $b_{t(\lambda)}\left(V^{\otimes n}\right)=0$. Hence $c_{t(\lambda)}\left(V^{\otimes n}\right)=0$.
Let $\lambda \in \Gamma_{n, m}$. Choose a basis v_{1}, \ldots, v_{m} in V, then

$$
B:=\left\{v_{i_{1}} \otimes \cdots \otimes v_{i_{n}} \mid 1 \leq i_{1}, \ldots, i_{n} \leq m\right\}
$$

is a basis of $V^{\otimes n}$. Consider the particular basis vector

$$
u:=v_{1} \otimes \ldots v_{\mu_{1}} \otimes \cdots \otimes v_{1} \otimes \ldots v_{\mu_{r}} \in B
$$

One can easily see that, in the decomposition of $c_{t(\lambda)}(u)$ in the basis B, u occurs with coefficient $\prod_{i=1}^{p} \lambda_{i}$!. In particular, $c_{t(\lambda)}(u) \neq 0$. Hence the statement.

Lemma 2.7, Lemma 2.9 and Theorem 2.1 imply Theorem 2.4. Furthermore, Theorem 2.4 together with the Jacobson density theorem (Theorem 2.9 Chapter 5) implies the double centralizer property:

Corollary 2.10. Under the assumptions of Theorem 2.4 we have

$$
\operatorname{End}_{G L(V)}\left(V^{\otimes n}\right)=\rho\left(k\left(S_{n}\right)\right)
$$

Definition 2.11. Let λ be a partition of n. The Schur functor S_{λ} is the functor from the category of vector spaces to itself defined by

$$
V \mapsto S_{\lambda}(V)=\operatorname{Hom}_{S_{n}}\left(V_{\lambda}, V^{\otimes n}\right)
$$

Remark 2.12. Note that, if $n \geq 2$, the functor S_{λ} is not additive, namely if V and W are not zero,

$$
S_{\lambda}(V \oplus W) \neq S_{\lambda}(V) \oplus S_{\lambda}(W)
$$

The decomposition of $S_{\lambda}(V \oplus W)$ into simple $G L(V) \times G L(W)$-modules will be discussed later on (see subsection 8.3).

Schur-Weyl duality holds for an infinite-dimensional space in the following form.
Proposition 2.13. Let V be an infinite-dimensional vector space and Γ_{n} be the set of all partitions of n. Then we have the decomposition

$$
V^{\otimes n}=\bigoplus_{\lambda \in \Gamma_{n}} V_{\lambda} \otimes S_{\lambda}(V)
$$

each $S_{\lambda}(V)$ is a simple $G L(V)$-module and $S_{\lambda}(V)$ is not isomorphic to $S_{\mu}(V)$ if $\lambda \neq \mu$.
Proof. The existence of the decomposition is straightforward (consider the col-
tion of finite-dimensional subspaces of V. For any finite-dimensional subspace W
V, we have the embedding $S_{\lambda}(W) \hookrightarrow S_{\lambda}(V)$. Furthermore, $S_{\lambda}(W) \neq 0$ if and only
Proof. The existence of the decomposition is straightforward (consider the col-
lection of finite-dimensional subspaces of V). For any finite-dimensional subspace W
of V, we have the embedding $S_{\lambda}(W) \hookrightarrow S_{\lambda}(V)$. Furthermore, $S_{\lambda}(W) \neq 0$ if and only
Proof. The existence of the decomposition is straightforward (consider the col-
lection of finite-dimensional subspaces of V). For any finite-dimensional subspace W
of V, we have the embedding $S_{\lambda}(W) \hookrightarrow S_{\lambda}(V)$. Furthermore, $S_{\lambda}(W) \neq 0$ if and only if $\operatorname{dim} W \geq \lambda_{1}^{\perp}$. Hence $S_{\lambda}(V) \neq 0$ for all $\lambda \in \Gamma_{n}$.

Furthermore, $S_{\lambda}(V)$ is the union of $S_{\lambda}(W)$ for all finite-dimensional subspaces
$\subset V$. Since $S_{\lambda}(W)$ is a simple $G L(W)$-module when $\operatorname{dim} W$ is sufficiently large,
Furthermore, $S_{\lambda}(V)$ is the union of $S_{\lambda}(W)$ for all finite-dimensional subspaces
$W \subset V$. Since $S_{\lambda}(W)$ is a simple $G L(W)$-module when $\operatorname{dim} W$ is sufficiently large, we obtain that $S_{\lambda}(V)$ is a simple $G L(V)$-module.

To prove the last assertion we notice that Corollary 2.10 holds by the Jacobson density theorem (Theorem 2.9 Chapter 5), hence $S_{\lambda}(V)$ is not isomorphic to $S_{\mu}(V)$ if $\lambda \neq \mu$.

Schur-Weyl duality provides a link between tensor product of $G L(V)$-modules
and induction-restriction of representations of symmetric groups.

Definition 2.14. Let λ be a partition of p and μ a partition of q. Note that $S_{\lambda}(V) \otimes S_{\mu}(V)$ is a $G L(V)$-submodule of $V^{\otimes(p+q)}$, hence it is a semisimple $G L(V)$ module and can be written as a direct sum of simple factors $S_{\nu}(V)$, each occurring with some multiplicities. These multiplicities are called Littlewood-Richardson coefficients. More precisely, we define $N_{\lambda, \mu}^{\nu}$ as the function of three partitions λ, μ and ν given by

$$
N_{\lambda, \mu}^{\nu}:=\operatorname{dim} \operatorname{Hom}_{G L(V)}\left(S_{\nu}(V), S_{\lambda}(V) \otimes S_{\mu}(V)\right)
$$

Clearly, $N_{\lambda, \mu}^{\nu} \neq 0$ implies that ν is a partition of $p+q$.
Proposition 2.15. Let λ be a partition of p and μ a partition of $q, n=p+q$ and $\operatorname{dim} V \geq n$. Consider the injective homomorphism $S_{p} \times S_{q} \hookrightarrow S_{n}$ which sends S_{p} to the permutations of $1, \ldots, p$ and S_{q} to the permutations of $p+1, \ldots, n$. Then for any partition ν of n we have

$$
N_{\lambda, \mu}^{\nu}=\operatorname{dim} \operatorname{Hom}_{S_{n}}\left(V_{\nu}, \operatorname{Ind}_{S_{p} \times S_{q}}^{S_{n}}\left(V_{\lambda} \boxtimes V_{\mu}\right)\right)=\operatorname{dim} \operatorname{Hom}_{S_{p} \times S_{q}}\left(V_{\nu}, V_{\lambda} \boxtimes V_{\mu}\right) .
$$

Proof. Let us choose three tableaux $t(\nu), t^{\prime}(\lambda)$ and $t^{\prime \prime}(\mu)$. We use the identifications

$$
S_{\nu}(V) \simeq c_{t(\nu)}\left(V^{\otimes n}\right), S_{\lambda}(V) \simeq c_{t^{\prime}(\lambda)}\left(V^{\otimes p}\right), S_{\mu}(V) \simeq c_{t^{\prime \prime}(\mu)}\left(V^{\otimes q}\right)
$$

Since $V^{\otimes n}$ is a semisimple $G L(V)$-module, we have

$$
\operatorname{Hom}_{G L(V)}\left(c_{t^{\prime}(\lambda)}\left(V^{\otimes p}\right) \otimes c_{t^{\prime \prime}(\mu)}\left(V^{\otimes q}\right), c_{t(\nu)}\left(V^{\otimes n}\right)\right)=c_{t(\nu)} k\left(S_{n}\right) c_{t^{\prime}(\lambda)} c_{t^{\prime \prime}(\mu)}
$$

Now we use the isomorphism of S_{n}-modules

$$
\operatorname{Ind}_{S_{p} \times S_{q}}^{S_{n}}\left(V_{\lambda} \boxtimes V_{\mu}\right) \simeq k\left(S_{n}\right) c_{t^{\prime}(\lambda)} c_{t^{\prime \prime}(\mu)} .
$$

Then, by Lemma 1.21, we obtain

$$
N_{\lambda, \mu}^{\nu}=\operatorname{dim} \operatorname{Hom}_{S_{n}}\left(V_{\nu}, \operatorname{Ind}_{S_{p} \times S_{q}}^{S_{n}}\left(V_{\lambda} \boxtimes V_{\mu}\right)\right)=\operatorname{dim} c_{t(\nu)} k\left(S_{n}\right) c_{t^{\prime}(\lambda)} c_{t^{\prime \prime}(\mu)} .
$$

The second equality follows by Frobenius reciprocity (Chapter 2, Theorem 5.3).

3. Generalities on Hopf algebras

Let Z be a commutative unital ring.
Let A be a unital Z-algebra, we denote by $m: A \otimes A \rightarrow A$ the Z-linear multiplication. Since A is unital, there is an Z-linear map $e: Z \rightarrow A$. Moreover, we assume we are given two Z-linear maps $m^{*}: A \rightarrow A \otimes A$ (called the comultiplication) and $e^{*}: A \rightarrow Z$ (called the counit) such that the following axioms hold:

- (A) : the multiplication m is associative, meaning the following diagram is commutative

- $\left(A^{*}\right)$: the comultiplication is coassociative, namely the following diagram commutes:

$$
\begin{array}{ccccc}
& & m^{*} & & \\
& A & \longrightarrow & A \otimes A & \\
m^{*} & \downarrow & & \downarrow & i d_{A} \otimes m^{*} \\
& A \otimes A & \longrightarrow & A \otimes A \otimes A & \\
& & m^{*} \otimes i d_{A} & &
\end{array}
$$

Note that this is the transpose of the diagram of (A).

- (U): The fact that $e(1)=1$ can be expressed by the commutativity of the following diagrams:

$$
\begin{array}{lcccccccc}
& Z \otimes A & \simeq & A & & A \otimes Z & \simeq & A \\
& Z \otimes 1 & \downarrow & & \downarrow & & \\
& A \otimes A, & 1 \otimes e & \downarrow & & \downarrow & I d \\
& & \longrightarrow & A & & A \otimes A & \longrightarrow & A
\end{array}
$$

- $\left(U^{*}\right)$: similarly, the following diagrams commute
- (Antipode): there exists a Z-linear isomorphism $S: A \rightarrow A$ such that the following diagrams commute:

Definition 3.1. This set of data is called a Hopf algebra if the following property holds:
(H) : the map $m^{*}: A \rightarrow A \otimes A$ is a homomorphism of Z-algebras.
Moreover, if the antipode axiom is missing, then we call it a bialgebra.

Exercise 3.2. Show that if an antipode exists, then it is unique. Moreover, if S is a left antipode and S^{\prime} is a right antipode, then $S=S^{\prime}$.

Remark 3.3. Assume that A is a commutative Hopf algebra, for any commutative algebra B, set $X_{B}:=\operatorname{Hom}_{Z-a l g}(A, B)$, then the composition with m^{*} induces a map $X_{B} \times X_{B}=\operatorname{Hom}_{Z-a l g}(A \otimes A, B) \rightarrow X_{B}$ which defines a group law on X_{B}. This property characterizes commutative Hopf algebras.

Example 3.4. If M is a Z-module, then the symmetric algebra $S^{\bullet}(M)$ has a Hopf algebra structure, for the comultiplication m^{*} defined by: if Δ denotes the diagonal map $M \rightarrow M \oplus M$, then $m^{*}: S^{\bullet}(M \oplus M)=S^{\bullet}(M) \otimes S^{\bullet}(M)$ is the canonical morphism of Z-algebras induced by Δ.

Exercise 3.5. Find m^{*} when Z is a field and M is finite dimensional.
Definition 3.6. Let A be a bialgebra, an element $x \in A$ is called primitive if $m^{*}(x)=x \otimes 1+1 \otimes x$.

Exercise 3.7. Show that if k is a field of characteristic zero and if V is a finite dimensional k-vector space, then the primitive elements in $S^{\bullet}(V)$ are exactly the elements of V.

We say that a bialgebra A is connected graded if
(1) $A=\bigoplus_{n \in \mathbb{N}} A_{n}$ is a graded algebra;
(2) $m^{*}: A \rightarrow A \otimes A$ is a homomorphism of graded algebras, where the grading on $A \otimes A$ is given by the sum of gradings;
(3) $A_{0}=Z$;
(4) the counit $e^{*}: A \rightarrow Z$ is a homomorphism of graded rings.

Lemma 3.8. Let A be a graded connected bialgebra, $I=\bigoplus_{n>0} A_{n}$. Then for any $x \in I, m^{*}(x)=x \otimes 1+1 \otimes x+m_{+}^{*}(x)$ for some $m_{+}^{*}(x) \in I \otimes I$. In particular every element of A of degree 1 is primitive.

Proof. From the properties (3) and (4) we have that $I=\operatorname{Ker} e^{*}$. Write

$$
m^{*}(x)=y \otimes 1+1 \otimes z+m_{+}^{*}(x) .
$$

We have to check that $y=z=x$. But this immediately follows from the counit axiom.

Proposition 3.9. Let A be a connected graded bialgebra and \mathcal{P} be the set of primitive elements of A. Assume that $I^{2} \cap \mathcal{P}=0$. Then A is commutative and admits an antipode.

Proof. Let us prove first that A is commutative. Assume the opposite. Let $x \in A_{k}, y \in A_{l}$ be some homogeneous element of A such that $[x, y]:=x y-y x \neq 0$ and $k+l$ as small as possible. Then $m^{*}([x, y])=\left[m^{*}(x), m^{*}(y)\right]$. By minimality of
$k+l$, we have that $\left[m_{+}^{*}(x), m_{+}^{*}(y)\right]=0$, hence $[x, y]$ is primitive. On the other hand, $m^{*}([x, y]) \in I \otimes I$, hence $[x, y]=0$. Contradiction.

Next, let us prove the existence of an antipode. For every $x \in A_{n}$ we construct $S(x) \in A_{n}$ recursively. We set

$$
S(x):=-x \text { for } n=1, \quad S(x)=-x-m \circ(\operatorname{Id} \otimes S) \circ m_{+}^{*}(x) \text { for } n>1 .
$$

Exercise 3.10. Check that S satisfies the antipode axiom.

4. The Hopf algebra associated to the representations of symmetric groups

Let us consider the free \mathbb{Z}-module $\mathcal{A}=\oplus_{n \in \mathbb{N}} \mathcal{A}\left(S_{n}\right)$ where $\mathcal{A}\left(S_{n}\right)$ is freely generated by the characters of the irreducible representations (in \mathbb{C}-vector spaces) of the symmetric group S_{n}. (Note that since every S_{n}-module is semi-simple, $\mathcal{A}\left(S_{n}\right)$ is the Grothendieck group of the category S_{n}-mod of finite dimensional representations of S_{n}). It is a \mathbb{N}-graded module, where the homogeneous component of degree n is equal to $\mathcal{A}\left(S_{n}\right)$ if $n \geq 1$ and the homogeneous part of degree 0 is \mathbb{Z} by convention. Moreover, we equip it with a \mathbb{Z}-valued symmetric bilinear form, denoted $\langle;\rangle$, for which the given basis of characters is an orthonormal basis, and with the positive cone \mathcal{A}^{+} generated over the non-negative integers by the orthonormal basis.

In order to define the Hopf algebra structure on \mathcal{A}, we use the induction and restriction functors:

$$
\begin{gathered}
I_{p, q}:\left(S_{p} \times S_{q}\right)-\bmod \longrightarrow S_{p+q}-\bmod \\
R_{p, q}: S_{p+q}-\bmod \longrightarrow\left(S_{p} \times S_{q}\right)-\bmod
\end{gathered}
$$

Remark 4.1. Frobenius (see Theorem 5.3) observed that the induction functor is left adjoint to the restriction.

Since the restriction and induction functors are exact, they define maps in the Grothendieck groups. Moreover, the following lemma holds:

ExErcise 4.2. Show that we have a group isomorphism

$$
\mathcal{A}\left(S_{p} \times S_{q}\right) \simeq \mathcal{A}\left(S_{p}\right) \otimes_{\mathbb{Z}} \mathcal{A}\left(S_{q}\right)
$$

We deduce, from the collections of functors $I_{p, q}, R_{p, q}, p, q \in \mathbb{N}$, two maps:

$$
\begin{aligned}
& m: \mathcal{A} \otimes \mathcal{A} \longrightarrow \mathcal{A} \\
& m^{*}: \mathcal{A} \longrightarrow \mathcal{A} \otimes \mathcal{A}
\end{aligned}
$$

More explicitely, if $M($ resp $N)$ is an S_{p} (resp. S_{q}) module and if [M] (resp. [N]) denotes its class in the Grothendieck group,

$$
m([M] \otimes[N])=\left[I_{p, q}(M \otimes N)\right]
$$

and if P is an S_{n}-module,

$$
m^{*}([P])=\sum_{p+q=n}\left[R_{p, q}(P)\right] .
$$

Exercise 4.3. Show that m is associative and hence m^{*} is coassociative (use adjunction), m is commutative and m^{*} is cocommutative (use adjunction).

The tricky point is to show the following lemma:
Lemma 4.4. The map m^{*} is an algebra homomorphism.
Proof. (Sketch) We will use Theorem 7.4 Chapter 2 to compute

$$
\operatorname{Res}_{S_{p} \times S_{q}}^{S_{n}} \operatorname{Ind}_{S_{k} \times S_{l}}^{S_{n}} M \otimes N,
$$

where $p+q=k+l=n, M$ and N are representations of S_{k} and S_{l} respectively. The double cosets $S_{p} \times S_{q} \backslash S_{n} / S_{k} \times S_{l}$ are enumerated by quadruples $(a, b, c, d) \in \mathbb{N}^{4}$ satisfying $a+b=p, c+d=q, a+c=k, b+d=l$. So we have

$$
=\bigoplus_{a+b=p, c+d=q, a+c=k, b+d=l} \operatorname{Res}_{S_{p} \times S_{q}}^{S_{n}} \operatorname{Ind}_{S_{k} \times S_{l}}^{S_{n}} M \otimes N=
$$

and

$$
\operatorname{Res}_{S_{a} \times S_{b} \times S_{c} \times S_{d}}^{S_{k} \times S_{l}} M \otimes \operatorname{Res}_{S_{a} \times S_{c}}^{S_{k}} M \otimes \operatorname{Res}_{S_{b} \times S_{d}}^{S_{l}} N .
$$

If

$$
R_{a, c}(M) \otimes R_{b, d} N=\oplus_{i} A_{i} \otimes B_{i} \otimes C_{i} \otimes D_{i}
$$

then

$$
\begin{equation*}
R_{p, q} I_{k, l}(M \otimes N)=\sum_{a+b=p, c+d=q, a+c=k, b+d=l} \sum_{i} I_{a, b}\left(A_{i} \otimes C_{i}\right) \otimes I_{c, d}\left(B_{i} \otimes D_{i}\right) . \tag{6.1}
\end{equation*}
$$

The relation (6.1) is the condition

$$
m^{*} m(a, b)=\sum_{i, j} m\left(a_{i}, b_{j}\right) \otimes m\left(a^{i}, b^{j}\right)
$$

where $m^{*}(a)=\sum_{i} a_{i} \otimes a^{i}, m^{*}(b)=\sum_{j} b_{j} \otimes b^{j}$, in terms of homogeneous components.

The axiom (U) corresponds to the inclusion $\mathcal{A}_{0} \subset \mathcal{A}$ and $\left(U^{*}\right)$ is its adjoint, and finally the antipode of the class of a simple S_{n}-module [M] is the virtual module $(-1)^{n}[\varepsilon \otimes M]$, where ε is the sign representation of S_{n}.

Hence we have a structure of Hopf algebra on \mathcal{A}, and the following properties are easily checked:

- positivity: the cone \mathcal{A}^{+}is stable under multiplication (for m),
- self-adjointness: The maps m and m^{*} are mutually adjoint with respect to the scalar product on \mathcal{A} and the corresponding scalar product on $\mathcal{A} \otimes \mathcal{A}$.
\{VIPSH\}
Definition 4.5. A graded connected bialgebra A over \mathbb{Z} together with a homogeneous basis Ω, equipped with a scalar product \langle,$\rangle for which \Omega$ is orthonormal, which is positive (for the cone A^{+}generated over \mathbb{N} by Ω) and self-adjoint is called a positive self-adjoint Hopf algebra, PSH algebra for short.

Moreover, the elements of Ω are called basic elements of A.
REmARK 4.6. Note that a PSH algebra is automatically commutative and cocommutative Hopf algebra by Proposition 3.9.

We have just seen that:
Proposition 4.7. The algebra \mathcal{A} with the basis Ω given by classes of all irreducible representations is a PSH algebra.

Exercise 4.8. Show that for any a_{1}, \ldots, a_{n} in A, the matrix $\operatorname{Gram}\left(a_{1}, \ldots, a_{n}\right)=$ $\left(\left(a_{i j}\right)\right)$ such that $a_{i, j}:=\left\langle a_{i}, a_{j}\right\rangle$ (called the Gram matrix) is invertible in $M_{n}(\mathbb{Z})$ (i.e. the determinant is ± 1) if and only if the a_{i} 's form a basis of the sublattice of A generated by some subset of cardinal n of Ω. Note that if the Gram matrix is the identity, then, up to sign, the a_{i} 's belong to Ω.

Exercise 4.9. Assume H is a Hopf algebra with a scalar product and assume H is commutative and self-adjoint. Let x be a primitive element in H and consider the map

$$
d_{x}: H \longrightarrow H, y \mapsto \sum_{i}\left\langle y_{i}, x\right\rangle y^{i}
$$

where $m^{*}(y)=\sum_{i} y_{i} \otimes y^{i}$.

- Show that d_{x} is a derivation (for all a, b in $\left.H, d_{x}(a b)=a d_{x}(b)+d_{x}(a) b\right)$.
- Show that if x and y are primitive elements in H, then $d_{x}(y)=\langle y, x\rangle$.

5. Classification of PSH algebras part 1: decomposition theorem

In this section we classify PSH algebras following Zelevinsky, [37]. Let A be a PSH with the specified basis Ω and positive cone A^{+}. Let us denote by Π the set of basic primitive elements of A that is primitive elements belonging to Ω.

A multi-index α is a finitely supported function from Π to \mathbb{N}. For such an α we denote by π^{α} the monomial $\prod_{p \in \Pi} p^{\alpha(p)}$. We denote by M the set of such monomials.

For $a \in A$ we denote by $\operatorname{Supp}(a)$ (and call support of a) the set of basic elements which appear in the decomposition of a.

Lemma 5.1. The supports of π^{α} and π^{β} are disjoint whenever $\alpha \neq \beta$.
Proof. Since the elements of M belong to A^{+}, we just have to show that the scalar product $\left\langle\pi^{\alpha}, \pi^{\beta}\right\rangle$ is zero when $\alpha \neq \beta$. We prove this by induction on the total
degree of the monomial π^{α}. Write $\pi^{\alpha}=\pi_{1} \pi^{\gamma}$ for some π_{1} such that $\alpha\left(\pi_{1}\right) \neq 0$. Then (recall Exercise 4.9)

$$
\left\langle\pi^{\alpha}, \pi^{\beta}\right\rangle=\left\langle\pi^{\gamma}, d_{\pi_{1}}\left(\pi^{\beta}\right)\right\rangle .
$$

Since the total degree of π^{γ} is less than the degree of π^{α}, if the scalar product is not zero, we obtain by the induction assumption that $d_{\pi_{1}}\left(\pi^{\beta}\right)$ is a multiple of π^{γ}. This implies $\pi^{\beta}=\pi_{1} \pi^{\gamma}=\pi^{\alpha}$.

For every monomial $\pi^{\alpha} \in M$, denote by A^{α} the \mathbb{Z}-span of $\operatorname{Supp}\left(\pi^{\alpha}\right)$.
Lemma 5.2. For all $\pi^{\alpha}, \pi^{\beta}$ in M, one has:

$$
A^{\alpha} A^{\beta} \subset A^{\alpha+\beta}
$$

Proof. We consider the partial ordering \leq in A whose positive cone is A^{+}(i.e. $x \leq y$ if and only if $\left.y-x \in A^{+}\right)$. Note that if $0 \leq x \leq y$ then $\operatorname{Supp}(x) \subset \operatorname{Supp}(y)$. Therefore if we pick up ω in $\operatorname{Supp}\left(\pi^{\alpha}\right)$ and $\eta \in \operatorname{Supp}\left(\pi^{\beta}\right)$ then $\omega \eta \leq \pi^{\alpha+\beta}$, hence the result.

Let I be the ideal spanned by all elements of positive degree.
Exercise 5.3. (1) Show that if $x \in A$ is primitive, then $x \in I$.
(2) Show that if $x \in I$ then $m^{*}(x)-1 \otimes x-x \otimes 1$ belongs to $I \otimes I$.

Moreover, $x \in I$ is primitive if and only if x is orthogonal to I^{2}. Indeed for y and z in $I,\left\langle m^{*}(x)-1 \otimes x-x \otimes 1, y \otimes z\right\rangle=\langle x, y z\rangle$, hence the result by Exercise 5.3.

Lemma 5.4. One has:

$$
A=\bigoplus_{\pi^{\alpha} \in M} A^{\alpha}
$$

Proof. Assume the equality doesn't hold, then there exists an $\omega \in \Omega$ which does not belong to this sum. We choose such an ω with minimal degree k. Since ω is not primitive, it to I^{2} and therefore belongs to the support of some $\eta \eta^{\prime}$ with η, η^{\prime} belonging to Ω. Hence $k=k^{\prime}+k^{\prime \prime}$ where k^{\prime} (resp. $k^{\prime \prime}$) is degree of η (resp. η^{\prime}). By minimality of k, η and η^{\prime} lie in the direct sum, thus, by Lemma 5.2, a contradiction.

Lemma 5.5. Let π^{α} and π^{β} be elements in M which are relatively prime. Then the restriction of the multiplication induces an isomorphism $A^{\alpha} \otimes A^{\beta} \simeq A^{\alpha+\beta}$ given by a bijection between $\operatorname{Supp}\left(\pi^{\alpha}\right) \times \operatorname{Supp}\left(\pi^{\beta}\right)$ and $\operatorname{Supp}\left(\pi^{\alpha+\beta}\right)$.

Proof. We will prove that the Gram matrix (see Exercise 4.8)

$$
\operatorname{Gram}\left((\omega \eta)_{\omega \in \operatorname{Supp}\left(\pi^{\alpha}\right), \eta \in \operatorname{Supp}\left(\pi^{\beta}\right)}\right)
$$

is the identity. This will be enough since it implies that the products $\omega \eta$ are distinct elements of Ω (again, see Exercise 4.8), and they exhaust the support of $\pi^{\alpha+\beta}$ which belongs to their linear span.

Let ω_{1}, ω_{2} (resp. η_{1}, η_{2}) be elements of $\operatorname{Supp}\left(\pi^{\alpha}\right)$ (resp. $\operatorname{Supp}\left(\pi^{\beta}\right)$), one has

$$
\left\langle\omega_{1} \eta_{1}, \omega_{2} \eta_{2}\right\rangle=\left\langle m^{*}\left(\omega_{1} \eta_{1}\right), \omega_{2} \otimes \eta_{2}\right\rangle=\left\langle m^{*}\left(\omega_{1}\right) m^{*}\left(\eta_{1}\right), \omega_{2} \otimes \eta_{2}\right\rangle
$$

One has $m^{*}\left(\omega_{1}\right) \in \bigoplus_{\alpha^{\prime}+\alpha^{\prime \prime}=\alpha} A^{\alpha^{\prime}} \otimes A^{\alpha^{\prime \prime}}$ and $m^{*}\left(\eta_{1}\right) \in \bigoplus_{\beta^{\prime}+\beta^{\prime \prime}=\beta} A^{\beta^{\prime}} \otimes A^{\beta^{\prime \prime}}$ (this is just a transposed version of Lemma 5.2), hence

$$
m^{*}\left(\omega_{1}\right) m^{*}\left(\eta_{1}\right) \in \sum_{\alpha^{\prime}+\alpha^{\prime \prime}=\alpha, \beta^{\prime}+\beta^{\prime \prime}=\beta} A^{\alpha^{\prime}+\beta^{\prime}} \otimes A^{\alpha^{\prime \prime}+\beta^{\prime \prime}} .
$$

On the other hand, $\omega_{2} \otimes \eta_{2}$ belongs to $A^{\alpha} \otimes A^{\beta}$. We must understand in which cases $A^{\alpha^{\prime}+\beta^{\prime}} \otimes A^{\alpha^{\prime \prime}+\beta^{\prime \prime}}=A^{\alpha} \otimes A^{\beta}$ and this occurs if and only if $\alpha^{\prime}+\beta^{\prime}=\alpha, \alpha^{\prime \prime}+\beta^{\prime \prime}=\beta$. Since π^{α} and π^{β} are relatively prime, this occurs if and only if $\beta^{\prime}=0=\alpha^{\prime \prime}$.

The component of $m^{*}\left(\omega_{1}\right)$ in $A^{\alpha} \otimes A^{0}$ is $\omega_{1} \otimes 1$ and the component of $m^{*}\left(\eta_{1}\right)$ in $A^{0} \otimes A^{\beta}$ is $1 \otimes \eta_{1}$ (see Exercise 5.3), therefore

$$
\left\langle\omega_{1} \eta_{1}, \omega_{2} \eta_{2}\right\rangle=\left\langle\left(\omega_{1} \otimes 1\right)\left(1 \otimes \eta_{1}\right), \omega_{2} \otimes \eta_{2}\right\rangle=\left\langle\omega_{1} \otimes \eta_{1}, \omega_{2} \otimes \eta_{2}\right\rangle=\left\langle\omega_{1} \eta_{1}, \omega_{2} \eta_{2}\right\rangle
$$

Hence the result.
The following Theorem is a direct consequence of Lemmas 5.1, 5.2, 5.4, 5.5.
Theorem 5.6. (Zelevinsky's decomposition theorem). Let A be a PSH algebra with basis ω, and let Π be the set of basic primitive elements of A. For every $\pi \in \Pi$ we set $A_{\pi}:=\bigoplus_{n \in \mathbb{N}} A^{\pi^{n}}$. Then
(1) A_{π} is a PSH algebra and its unique basic primitive element is π,
(2) $A=\bigotimes_{\pi \in \Pi} A_{\pi}$.

Remark 5.7. In the second statement, the tensor product might be infinite: it is defined as the span of tensor monomials with a finite number of entries non-equal to 1 .

Definition 5.8. The rank of the PSH algebra A is the cardinal of the set Π of basic primitive elements in A.

6. Classification of PSH algebras part 2: unicity for the rank 1 case

By the previous section, understanding a PSH algebra is equivalent to understanding its rank one components. Therefore, we want to classify the rank one cases.

Let A be PSH algebra of rank one with marked basis Ω, and denote π its unique basic primitive element. We assume that we have chosen the graduation of A so that π is of degree 1 . We will construct a sequence $\left(e_{i}\right)_{i \in \mathbb{N}}$ of elements of Ω such that:
(1) $e_{0}=1, e_{1}=\pi$ and e_{n} is of degree n (it is automatically homogeneous since it belongs to Ω),
(2) $A \simeq \mathbb{Z}\left[e_{1}, e_{2}, \ldots, e_{n}, \ldots\right]$ as graded \mathbb{Z}-algebras,
(3) $m^{*}\left(e_{n}\right)=\sum_{i+j=n} e_{i} \otimes e_{j}$.

Actually, we will find exactly two such sequences and we will denote the second one $\left(h_{i}\right)_{i \in \mathbb{N}}$. The antipode map exchanges those two sequences.

We denote by d the derivation of A which is adjoint to the multiplication by π (see Exercise 4.9).

Lemma 6.1. There are exactly two elements in Ω of degree 2 and their sum is equal to π^{2}.

Proof. One has

$$
\left\langle\pi^{2}, \pi^{2}\right\rangle=\left\langle\pi, d\left(\pi^{2}\right)\right\rangle=2\langle\pi, \pi\rangle=2 .
$$

On the other hand, if we write π^{2} in the basis $\Omega, \pi^{2}=\sum_{\omega \in \Omega}\left\langle\pi^{2}, \omega\right\rangle \omega$, we get

$$
\left\langle\pi^{2}, \pi^{2}\right\rangle=\sum_{\omega \in \Omega}\left\langle\pi^{2}, \omega\right\rangle^{2},
$$

but $\left\langle\pi^{2}, \omega\right\rangle$ is a non negative integer, hence the result.
We will denote by e_{2} one of those two basic elements and h_{2} the other one. Furthermore, we set $e_{2}^{*}\left(\right.$ resp. $\left.h_{2}^{*}\right)$ to be the linear operator on A of degree -2 which is adjoint to the multiplication by e_{2} (resp. h_{2}).

Exercise 6.2. Show that the operator e_{2}^{*} satisfies the identities

$$
\begin{align*}
& m^{*}\left(e_{2}\right)=e_{2} \otimes 1+\pi \otimes \pi+1 \otimes e_{2} \tag{6.2}\\
& e_{2}^{*}(a b)=e_{2}^{*}(a) b+a e_{2}^{*}(b)+d(a) d(b) \tag{6.3}
\end{align*}
$$

Lemma 6.3. There is exactly one element e_{n} (resp. h_{n}) of degree n in Ω such that $h_{2}^{*}\left(e_{n}\right)=0$ (resp. $\left.e_{2}^{*}\left(h_{n}\right)=0\right)$. This element satisfies $d\left(e_{n}\right)=e_{n-1}$ (resp. $\left.d\left(h_{n}\right)=h_{n-1}\right)$.

Proof. We prove this for the sequence e_{n} by induction on n. The argument for h_{n} follows by symmetry. For $n=2, h_{2}^{*}\left(e_{2}\right)$ is the scalar product $\left\langle h_{2}, e_{2}\right\rangle$ which is zero because e_{2} and h_{2} are two distinct elements of Ω. We assume that the statement of the lemma holds for all $i<n$. If x is of degree n and satisfies $h_{2}^{*}(x)=0$, then $d(x)$ (which is of degree $n-1$) is proportional to e_{n-1} by the induction hypothesis, since h_{2}^{*} and d commute. The scalar is equal to $\left\langle d(x), e_{n-1}\right\rangle=\left\langle x, \pi e_{n-1}\right\rangle$ since d is the adjoint of the multiplication by π. As in Lemma 6.1, we prove next that $\left\langle\pi e_{n-1}, \pi e_{n-1}\right\rangle=2$: indeed $\left\langle\pi e_{n-1}, \pi e_{n-1}\right\rangle=\left\langle d\left(\pi e_{n-1}\right), e_{n-1}\right\rangle=\left\langle e_{n-1}+\pi e_{n-2}, e_{n-1}\right\rangle$ $=1+\left\langle\pi e_{n-2}, e_{n-1}\right\rangle=1+\left\langle e_{n-2}, d\left(e_{n-1}\right)\right\rangle=2$.

Therefore πe_{n-1} decomposes as the sum of two distinct basic elements $\omega_{1}+\omega_{2}$. Besides, using Exercise 6.2 equation (6.3), we have $h_{2}^{*}\left(\pi e_{n-1}\right)=e_{n-2}$. Since h_{2}^{*} is a positive operator (i.e. preserves $\left.A^{+}\right), h_{2}^{*}\left(\omega_{1}\right)+h_{2}^{*}\left(\omega_{2}\right)=e_{n-2}$ implies that one of the factors $h_{2}^{*}\left(\omega_{i}\right)(i=1$ or 2$)$ is zero, so that ω_{i} can be choosen for $x=e_{n}$.

Proposition 6.4. One has, for every $n \geq 1$,

$$
m^{*}\left(e_{n}\right)=\sum_{k=0}^{n} e_{k} \otimes e_{n-k}
$$

Proof. If ω belongs to Ω, we denote by ω^{*} the adjoint of the multiplication by ω. We just need to show that $\omega^{*}\left(e_{n}\right)=0$ except if $\omega=e_{k}$ for some $0 \leq k \leq n$, in which case $\omega^{*}\left(e_{n}\right)=e_{n-k}$.

Indeed, we can write $\pi^{k}=\sum_{\omega \in \Omega, \operatorname{deg}(\omega)=k} C_{\omega} \omega$ where the coefficients C_{ω} are positive integers, hence $d^{k}=\sum_{\omega \in \Omega, \operatorname{deg}(\omega)=k} C_{\omega} \omega^{*}$. Since $\sum_{\omega \in \Omega, \operatorname{deg}(\omega)=k} C_{\omega} \omega^{*}\left(e_{n}\right)=d^{k}\left(e_{n}\right)=$ e_{n-k}, all the terms in the sum are zero except one (by integrity of the coefficients). It remains to show that the non-zero term comes from the element e_{k} of Ω. But this is clear since $d^{n-k} e_{k}^{*}\left(e_{n}\right)=e_{k}^{*} d^{n-k}\left(e_{n}\right)=e_{k}^{*}\left(e_{k}\right)=1$.

ExErcise 6.5. (1) Show that for every $n \geq 0, e_{n}^{*}(a b)=\sum_{0 \leq k \leq n} e_{k}^{*}(a) e_{n-k}^{*}(b)$.
(2) We make the convention that $h_{-1}=0$. Prove the following equality for any positive integer n and i_{1}, \ldots, i_{r} non negative integers:

$$
\begin{equation*}
\{\text { vIEqcomult }\} \quad e_{r}^{*}\left(h_{i_{1}} \ldots h_{i_{r}}\right)=h_{i_{1}-1} \ldots h_{i_{r}-1} . \tag{6.4}
\end{equation*}
$$

Proposition 6.6. Let t be an indeterminate, the two formal series $\sum_{i \geq 0} e_{i} t^{i}$ and $\sum_{i \geq 0}(-1)^{i} h_{i} t^{i}$ are mutually inverse.

Proof. Since A is a graded bialgebra over \mathbb{Z}, we know ([11]) that it is equipped with a unique antipode S. Let us show that it exchanges e_{n} and $(-1)^{n} h_{n}$:

First, let us show that S is an isometry for the scalar product of A. Indeed, we have the following commutative diagram

where $e: \mathbb{Z} \rightarrow A$ is the unit of A (see section 3). By considering the adjoint of this diagram, we understand that S^{*} is also an antipode, and by uniqueness of the antipode, $S=S^{-1}=S^{*}$ hence S is an isometry and so for $\omega \in \Omega, S(\omega)= \pm \eta$, for some $\eta \in \Omega$ (ω and η have the same degree). Applying the diagram (6.5) to π, who is primitive, we check that $S(\pi)=-\pi$. In the same way, we obtain $S\left(\pi^{2}\right)=\pi^{2}$ and $\left(e_{2}\right)=h_{2}$. Since e_{n} is the unique basic element of degree n satisfying the relation $h_{2}^{*}\left(e_{n}\right)=0$, we have $S\left(e_{n}\right)= \pm h_{n}$ and the sign coincides is $(-1)^{n}$ since $S\left(\pi^{n}\right)=(-1)^{n} \pi^{n}$.

The diagram (6.5) implies that $\left(m \circ I d_{A} \otimes S \circ m^{*}\right)\left(e_{n}\right)=0$ for all $n \geq 1$. By Proposition 6.4, one has $m^{*}\left(e_{n}\right)=\sum_{0 \leq k \leq n} e_{k} \otimes e_{n-k}$ and so we have $\sum_{0 \leq k \leq n}(-1)^{n-k} e_{k} h_{n-k}=$ 0 . The result follows.

We will now use the definitions and notations for partitions introduced in Section 1. For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, we denote by e_{λ} the product $e_{\lambda}=e_{\lambda_{1}} \ldots e_{\lambda_{n}}$ and set a similar definition for h_{λ}. Note that in general, the elements e_{λ}, h_{λ} do not belong to Ω.

Definition 6.7. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ be two partitions of the same integer n. We say that λ is greater or equal than μ for the dominance order and denote it $\lambda \succeq \mu$ if, for every $k \leq \inf (r, s), \lambda_{1}+\ldots+\lambda_{k} \geq \mu_{1}+\ldots+\mu_{k}$.

Lemma 6.8. Let λ and μ be partitions of a given integer n, define $M_{\lambda, \mu}$ as the number of matrices with entries belonging to $\{0,1\}$ such that the sum of the entries in the i-th row (resp. column) is λ_{i} (resp. μ_{i}). Then one has:
(1) $\left\langle e_{\lambda}, h_{\mu}\right\rangle=M_{\lambda, \mu}$,
(2) $M_{\lambda, \lambda^{\perp}}=1$,
(3) $M_{\lambda, \mu} \neq 0$ implies $\lambda \preceq \mu^{\perp}$.

Proof. (Sketch) We write $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ and $\mu=\left(\mu_{1} \ldots \mu_{s}\right)$. By Exercise 6.5, we have

$$
e_{\lambda_{1}}^{*}\left(h_{\mu_{1}} \ldots h_{\mu_{s}}\right)=\sum_{\nu_{i}=0,1 \sum \nu_{i}=\lambda_{1}} h_{\mu_{1}-\nu_{1}} \ldots h_{\mu_{s}-\nu_{s}} .
$$

Next, we apply $e_{\lambda_{2}}^{*}$ to this sum, $e_{\lambda_{3}}^{*}$ to the result, and so on. We obtain:

$$
\left\langle e_{\lambda}, h_{\mu}\right\rangle=e_{\lambda}^{*}\left(h_{\mu}\right)=\sum_{\nu_{i j} \in\{0,1\}, \sum_{j} \nu_{i j}=\lambda_{i}} h_{\mu_{1}-\sum_{i} \nu_{1 i}} \ldots h_{\mu_{s}-\sum_{i} \nu_{s i}} .
$$

The terms in the sum of the right-hand side are equal to 0 except when $\mu_{i}=\sum_{j} \nu_{i j}$ for all i, in which case the value is 1 . The statement (1) follows.

For statement (2), we see easily that the only matrix $N=\left(\nu_{i, j}\right)$ with entries in $\{0,1\}$ such that $\sum_{j} \nu_{i j}=\lambda_{i}$ and $\sum_{i} \nu_{i j}=\lambda_{j}^{\perp}$ is the one such that the entries decrease along both the rows and the columns, hence the result.

Finally, consider a matrix $N=\left(\nu_{i j}\right)$ with entries in $\{0,1\}$ such that $\sum_{j} \nu_{i j}=\lambda_{i}$ and $\sum_{i} \nu_{i j}=\mu_{j}$. The sum $\lambda_{1}+\ldots+\lambda_{i}$ is the sum of the entries of the columns of index $\leq i$ of N. Furthermore, $\mu_{1}^{\perp}+\ldots+\mu_{i}^{\perp}$ is equal to $\sum_{j \leq i} j l_{j}$ where l_{j} is the number of rows of N which have sum j. It is easy to check that statement (3) follows.

Corollary 6.9. The matrix $\left(\left\langle e_{\lambda}, h_{\mu^{\perp}}\right\rangle\right)_{\lambda, \mu \vdash n}$ is upper triangular with 1 's on the diagonal. In particular, its determinant is equal to 1 .

Proposition 6.10. When λ varies along the partitions of n, the collection of e_{λ} 's is a basis of the homogeneous component of degree n, A_{n}, of A.

Proof. First we notice that every h_{i} is a polynomial with integral coefficients in the e_{j} 's. This follows immediately from Proposition 6.6. Therefore the base change matrix P from $\left(h_{\lambda}\right)_{\lambda \vdash n}$ to $\left(e_{\lambda}\right)_{\lambda \vdash n}$ has integral entries. Then the Gram matrix G_{e} of $\left(e_{\lambda}\right)_{\lambda \vdash n}$ satisfies the equality

$$
\left(\left\langle e_{\lambda}, h_{\mu}\right\rangle\right)_{\lambda, \mu \vdash n}=P^{t} G_{e},
$$

where P^{t} denotes the transposed P. The corollary 6.9 ensures that the left-hand side has determinant ± 1 (the corollary is stated for μ^{\perp} and $\mu \mapsto \mu^{\perp}$ is an involution which can produce a sign). Hence G_{e} has determinant ± 1 : we refer to Exercise 4.8 to ensure that the \mathbb{Z}-module generated by $\left(e_{\lambda}\right)_{\lambda \vdash n}$ has a basis contained in Ω. Since the support of e_{1}^{n} is the set of all $\omega \in \Omega$ of degree n, we conclude that $\left(e_{\lambda}\right)_{\lambda \vdash n}$ is a basis of A_{n}.

We deduce from the results of this section:
Theorem 6.11. (Zelevinsky) Up to isomorphism, there is only one rank one PSH algebra. It has only one non-trivial automorphism ι, which takes any homogeneous element x of degree n to $(-1)^{n} S(x)$ where S is the antipode.

Remark 6.12. The sets of algebraically independent generators $\left(e_{n}\right)$ and $\left(h_{n}\right)$ of the \mathbb{Z}-algebra A play symmetric roles, and they are exchanged by the automorphism ι of the theorem.

7. Bases of PSH algebras of rank one

Let A be a PSH algebra of rank one, with basis Ω and scalar product \langle,$\rangle , we will$ use the sets of generators $\left(e_{n}\right)$ and $\left(h_{n}\right)$. We keep all the notations of the preceding section.

We will first describe the primitive elements of A. We denote $A_{\mathbb{Q}}:=A \otimes \mathbb{Q}$.
Exercise 7.1. Consider the algebra $A[[t]]$ of formal power series with coefficients in A. Let $f \in A[[t]]$ such that $m^{*}(f)=f \otimes f$ and the constant term of f is 1 . Show that the logarithmic derivative $g:=\frac{f^{\prime}}{f}$ satisfies $m^{*}(g)=g \otimes 1+1 \otimes g$.

Proposition 7.2. (1) For every $n \geq 1$, there is exactly one primitive element of degree n, p_{n}, such that $\left\langle p_{n}, h_{n}\right\rangle=1$. Moreover, every primitive element of degree n is a integral multiple of p_{n}.
(2) In the formal power series ring $A_{\mathbb{Q}}[[t]]$, we have the following equality:

$$
\begin{equation*}
\{\text { VIEuler }\} \quad \exp \left(\sum_{n \geq 1} \frac{p_{n}}{n} t^{n}\right)=\sum_{n \geq 0} h_{n} t^{n} \tag{6.6}
\end{equation*}
$$

Proof. We first show that the set of primitive elements of degree n is a subgroup of rank 1. Indeed, we recall that the primitive elements form the orthogonal complement of I^{2} in I (see just below Exercise 5.3). Since all the elements $\left(h_{\lambda}\right)_{\lambda \vdash n}$ except h_{n} are in I^{2}, the conclusion follows. Moreover, A_{n} is its own dual with respect to the scalar product. Let denote by $\left(h^{\lambda}\right)_{\lambda \vdash n}$ the dual basis of $\left(h_{\lambda}\right)_{\lambda \vdash n}$. Clearly, h^{n} can be chosen as p_{n}. Hence statement (1).

Consider the formal series $H(t):=\sum_{n \geq 0} h_{n} t^{n} \in A[[t]]$, it satisfies the relation $m^{*}(H)=H \otimes H$ by Proposition 6.4, re-written in terms of h 's instead of e 's. Hence, using Exercise 7.1, we get $P(t):=\frac{H^{\prime}(t)}{H(t)}$ which satisfies $m^{*}(P)=P \otimes 1+1 \otimes P$. Hence all
the coefficients of P are primitive elements in A. Write $P(t)=\sum_{i \geq 1} \varpi_{i+1} t^{i}$. To prove statement (2), it remains to check that $\left\langle\varpi_{n}, h_{n}\right\rangle=1$. We have $P(t) H(t)=H^{\prime}(t)$, so when we compare the terms on both sides we get

$$
\begin{equation*}
\varpi_{n}+h_{1} \varpi_{n-1}+\ldots+h_{n-1} \varpi_{1}-n h_{n}=0 . \tag{6.7}
\end{equation*}
$$

By induction on n, this implies

$$
\varpi_{n}=(-1)^{n} h_{1}^{n}+\sum_{\lambda \vdash n, \lambda \neq(1, \ldots, 1)} c_{\lambda} h_{\lambda},
$$

where the c_{λ} 's are integers. Now, we compute the scalar product with e_{n} : we apply Lemma 6.8 and find that there is no contribution from the terms indexed by λ if $\lambda \neq(1, \ldots, 1)$. Therefore, $\left\langle\varpi_{n}, e_{n}\right\rangle=(-1)^{n}$. Finally, we use the automorphism ι of A to get the conclusion that $p_{n}=\varpi_{n}$ since $\iota\left(e_{n}\right)=h_{n}$ and $\iota\left(\varpi_{n}\right)=(-1)^{n} \varpi_{n}$ by Proposition 6.6.

For every partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, we set $p_{\lambda}=p_{\lambda_{1}} \ldots p_{\lambda_{r}}$. Let us compute their Gram matrix:

Proposition 7.3. The family $\left(p_{\lambda}\right)$ is an orthogonal basis of $A_{\mathbb{Q}}$ and one has

$$
\left\langle p_{\lambda}, p_{\lambda}\right\rangle=\prod_{j}\left(\lambda_{j}^{\perp}-\lambda_{j+1}^{\perp}\right)!\prod_{i} \lambda_{i} .
$$

Proof. Since p_{i} is primitive, the operator p_{i}^{*} is a derivation of A. Moreover, since p_{i} is of degree i, p_{i} and p_{j} are orthogonal when $i \neq j$. We compute $\left\langle p_{i}, p_{i}\right\rangle$: we use the formula (6.7) (recall that we proved that $\left.p_{n}=\varpi_{n} \forall n\right)$ and since $p_{i}^{*}\left(h_{r} p_{i-r}\right)=$ $p_{i}^{*}\left(h_{r}\right) p_{i-r}+h_{r} p_{i}^{*}\left(p_{i-r}\right)=0$ if $1 \leq r \leq i-1$, we obtain $p_{i}^{*}\left(p_{i}\right)=\left\langle p_{i}, p_{i}\right\rangle=\left\langle p_{i}, i h_{i}\right\rangle=i$ by Proposition 7.2.

To show that p_{λ} is orthogonal to p_{μ} if $\lambda \neq \mu$, we repeat the argument of the proof of Lemma 5.1.

Finally, we compute $\left\langle p_{i}^{r}, p_{i}^{r}\right\rangle$: we use the fact that p_{i}^{*} is a derivation such that $p_{i}^{*}\left(p_{i}\right)=i$, hence $\left\langle p_{i}^{r}, p_{i}^{r}\right\rangle=r!i^{r}$. This implies the formula giving $\left\langle p_{\lambda}, p_{\lambda}\right\rangle$ for any λ.

Now we want to compute the transfer matrices between the bases $\left(h_{\lambda}\right)$ (or $\left(e_{\lambda}\right)$) and Ω.

Lemma 7.4. Let λ be a partition, then the intersection of the supports $\operatorname{Supp}\left(e_{\lambda^{\perp}}\right)$ and $\operatorname{Supp}\left(h_{\lambda}\right)$ is of cardinal one. We will denote this element ω_{λ}.

Proof. By Lemma 6.8, one has $\left\langle e_{\lambda^{\perp}}, h_{\lambda}\right\rangle=1$ and, by the positivity of those elements, this implies the statement.

Our first goal is to express h_{λ} 's in terms of ω_{μ} 's. First, we compute $h_{i}^{*}\left(\omega_{\lambda}\right)$, and for this, we need to introduce some notations.

Let λ be a partition, or equivalently a Young diagram. We denote by $r(\lambda)$ (resp. $c(\lambda))$ the number of rows (resp columns) of λ.

We denote by \mathbf{R}_{i}^{λ} the set of all μ 's such that μ is obtained from λ by removing exactly i boxes, at most one in every row of λ. Similarly, \mathbf{C}_{i}^{λ} is the set of all μ 's such that μ is obtained from λ by removing exactly i boxes, at most one in every column of λ. In the specific case where $i=r(\lambda)$, there is only one element in the set \mathbf{R}_{i}^{λ} and this element will be denoted by λ^{\leftarrow}, it is the diagram obtained by removing the first column of λ, similarly, if $i=c(\lambda)$ the unique element of \mathbf{C}_{i}^{λ} will be denoted by λ^{\downarrow} and is the diagram obtained by suppressing the first row of λ.

Remark 7.5. Note that if $\mu \in \mathbf{C}_{i}^{\lambda}$, then $\mu^{\perp} \in \mathbf{R}_{i}\left(\lambda^{\perp}\right)$.
\{VIPieri\}
Theorem 7.6. (Pieri's rule) One has:

$$
h_{i}^{*}\left(\omega_{\lambda}\right)=\sum_{\mu \in \mathbf{C}_{i}^{\lambda}} \omega_{\mu},
$$

and

$$
e_{j}^{*}\left(\omega_{\lambda}\right)=\sum_{\mu \in \mathbf{R}_{j}^{\lambda}} \omega_{\mu} .
$$

We need several lemmas to show this statement.
\{VIPierriLemma
Lemma 7.7. One has, for all i, j in \mathbb{N},

$$
e_{i}^{*} \circ h_{j}=h_{j} \circ e_{i}^{*}+h_{j-1} \circ e_{i-1}^{*}
$$

Proof. From Exercise 6.5 statement (1), we obtain that

$$
e_{i}^{*}\left(h_{j} x\right)=e_{1}^{*}\left(h_{j}\right) e_{i-1}^{*}(x)+h_{j} e_{i}^{*}(x) \forall x \in A,
$$

hence the Lemma.
Lemma 7.8. Let p, q be two integers, let $a \in A$. Let us assume that $h_{i}^{*}(a)=0$ for $i>p$ and $e_{j}^{*}(a)=0$ for $j>q$, then

$$
h_{p}^{*} \circ e_{q}^{*}(a)=0
$$

and

$$
h_{p-1}^{*} \circ e_{q}^{*}(a)=h_{p}^{*} \circ e_{q-1}^{*}(a) .
$$

Proof. Using a transposed version of Proposition 6.6, we get:

$$
\sum_{i+j=n}(-1)^{j} h_{i}^{*} \circ e_{j}^{*}=0
$$

The lemma follows.
Lemma 7.9. One has:

$$
e_{r(\lambda)}^{*}\left(\omega_{\lambda}\right)=\omega_{\lambda \leftarrow}
$$

Proof. Applying Equation (6.4), we get

$$
e_{r(\lambda)}^{*}\left(h_{\lambda}\right)=h_{\lambda \leftarrow} .
$$

Since $e_{r(\lambda)}^{*}$ is a positive operator and $\omega_{\lambda}<h_{\lambda}$ by definition, we have $\operatorname{Supp}\left(e_{r(\lambda)}^{*}\left(\omega_{\lambda}\right)\right) \subset$ $\operatorname{Supp}\left(h_{\lambda \leftarrow}\right)$.

By definition of ω_{λ}, we know that $\left\langle e_{\lambda^{\perp}}, \omega_{\lambda}\right\rangle=1$, so we have $\left\langle e_{\left(\lambda^{\leftarrow}\right)^{\perp}}, e_{r(\lambda)}^{*}\left(\omega_{\lambda}\right)\right\rangle=1$. Therefore, $\omega_{\lambda^{\leftarrow}} \in \operatorname{Supp}\left(e_{r(\lambda)}^{*}\left(\omega_{\lambda}\right)\right)$.

It is sufficient to show now that $\left\langle e_{r(\lambda)}^{*}\left(\omega_{\lambda}\right), h_{\lambda^{\leftarrow}}\right\rangle=1$: let us compute:

$$
\left\langle e_{r(\lambda)}^{*}\left(\omega_{\lambda}\right), h_{\lambda^{\leftarrow}}\right\rangle=h_{\lambda^{\leftarrow}}^{*} e_{r(\lambda)}^{*}\left(\omega_{\lambda}\right),
$$

assume $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$,

$$
\begin{gathered}
\left\langle e_{r}^{*}\left(\omega_{\lambda}\right), h_{\lambda^{\leftarrow}}\right\rangle=h_{\lambda_{r}-1}^{*} \circ \ldots \circ h_{\lambda_{1}-1}^{*} \circ e_{r}^{*}\left(\omega_{\lambda}\right) \\
=h_{\lambda_{r}-1}^{*} \circ \ldots \circ h_{\lambda_{2}-1}^{*} \circ e_{r-1}^{*} \circ h_{\lambda_{1}}^{*}\left(\omega_{\lambda}\right)
\end{gathered}
$$

by Lemma 7.8 (the hypothesis is satisfied because for all $i>\lambda_{1}$ one has $h_{i}^{*}\left(e_{\lambda^{\perp}}\right)=0$ and for all $\left.j>r, e_{j}^{*}\left(h_{\lambda}\right)=0\right)$. We use the same trick repeatedly, the enthusiastic reader is encouraged to check that the hypothesis of Lemma 7.8 is satisfied at each step by induction. We finally obtain

$$
h_{\lambda^{\leftarrow}}^{*} \circ e_{r(\lambda)}^{*}\left(\omega_{\lambda}\right)=h_{\lambda}^{*}\left(\omega_{\lambda}\right)=1 .
$$

For every i in \mathbb{N} and for every partition λ, we set:

$$
h_{i}^{*}\left(\omega_{\lambda}\right)=\sum_{\mu} a_{\lambda, \mu}^{i} \omega_{\mu}
$$

which can also be written

$$
\begin{equation*}
h_{i} \omega_{\mu}=\sum_{\lambda} a_{\lambda, \mu}^{i} \omega_{\lambda} \tag{6.8}
\end{equation*}
$$

the Theorem 7.6 amounts to computing the coefficients $a_{\lambda, \mu}^{i}$.
Lemma 7.10. For $i>0$ and for every partitions λ and μ, one has

$$
a_{\lambda, \mu}^{i}=\left\{\begin{array}{ccc}
a_{\lambda \leftarrow, \mu \leftarrow}^{i} & \text { if } & r(\lambda)=r(\mu) \\
a_{\lambda \leftarrow, \mu \leftarrow}^{i-1} & \text { if } & r(\lambda)=r(\mu)+1 \\
0 & & \text { otherwise }
\end{array}\right.
$$

Remark 7.11. The first equality of Theorem 7.6 is obtained from this lemma by induction on $c(\lambda)$, the second one follows via the automorphism ι.

Proof. First, let us prove that if $a_{\lambda, \mu}^{i} \neq 0$, then $r(\lambda)=r(\mu)$ or $r(\lambda)=r(\mu)+1$.
Assume $r(\mu)>r(\lambda)$ and $a_{\lambda, \mu}^{i} \neq 0$: then we have $\omega_{\mu} \leq h_{i}^{*}\left(\omega_{\lambda}\right)$, therefore, applying Lemma 7.9, we get

$$
\omega_{\mu^{\leftarrow}}=e_{r(\mu)}^{*}\left(\omega_{\mu}\right) \leq e_{r(\mu)}^{*} \circ h_{i}^{*}\left(\omega_{\lambda}\right)=h_{i}^{*} \circ e_{r(\mu)}^{*}\left(\omega_{\lambda}\right)=0,
$$

which gives a contradiction.
Assume $r(\mu)<r(\lambda)-1$ and $a_{\lambda, \mu}^{i} \neq 0$: then applying the equation (6.8), we have $\omega_{\lambda} \leq h_{i} \omega_{\mu}$, therefore applying Lemma 7.9 and Lemma 7.7, we get

$$
\omega_{\lambda \leftarrow}=e_{r(\lambda)}^{*}\left(\omega_{\lambda}\right) \leq e_{r(\lambda)}^{*} \circ h_{i}\left(\omega_{\mu}\right)=h_{i} \circ e_{r(\lambda)}^{*}\left(\omega_{\mu}\right)+h_{i-1} \circ e_{r(\lambda)-1}^{*}\left(\omega_{\mu}\right)=0,
$$

which again gives a contradiction.
Next, we look at the case $r(\lambda)=r(\mu)$. We do a direct computation:

$$
h_{i}^{*}\left(\omega_{\lambda \leftarrow}\right)=e_{r(\lambda)}^{*} \circ h_{i}^{*}\left(\omega_{\lambda}\right)=\sum_{\mu} a_{\lambda, \mu}^{i} e_{r(\lambda)}^{*}\left(\omega_{\mu}\right)=\sum_{r(\lambda)=r(\mu)} a_{\lambda, \mu}^{i} \omega_{\mu \leftarrow}
$$

Finally, we assume $r(\lambda)=r(\mu)+1$. We apply Lemma 7.7,

$$
e_{r(\mu)+1}^{*}\left(h_{i} \omega_{\mu}\right)=h_{i-1} e_{r(\mu)}^{*}\left(\omega_{\mu}\right)=h_{i-1}\left(\omega_{\mu^{\leftarrow}}\right)=\sum_{\nu} a_{\nu, \mu^{\leftarrow}}^{i-1} \omega_{\nu} .
$$

On the other hand,

$$
e_{r(\mu)+1}^{*}\left(h_{i} \omega_{\mu}\right)=\sum_{\lambda} a_{\lambda, \mu}^{i} e_{r(\mu)+1}^{*}\left(\omega_{\lambda}\right)=\sum_{r(\lambda)=r(\mu)+1} a_{\lambda, \mu}^{i} \omega_{\lambda \leftarrow}
$$

Now we compare the coefficients and obtain that

$$
a_{\lambda, \mu}^{i}=a_{\lambda_{\leftarrow}, \mu^{\leftarrow}}^{i-1} .
$$

For a partition λ, we introduce the notion of semistandard tableau of shape λ : the Young diagram of shape λ is filled with entries wich are no longer distinct, with the condition that the entries are non decreasing along the rows and increasing along the columns of λ. For instance,

\[

\]

is a semistandard tableau.
To such a semistandard tableau, we associate its weight, which is the sequence m_{i} consisting of the numbers of occurences of the integer i in the tableau: in our example, $m_{1}=2, m_{2}=1, m_{3}=2, m_{4}=1$ and all the other m_{i} 's are zero.

Proposition 7.12. Let λ be a partition of n. Let m_{1}, \ldots, m_{r} be a sequence of non negative integers such that $m_{1}+\ldots+m_{r}=n$, then $\left\langle h_{m_{1}} \ldots h_{m_{r}}, \omega_{\lambda}\right\rangle$ is the number of semistandard tableaux of shape λ and weight m_{1}, \ldots, m_{r}.

Proof. We iterate Pieri's rule (see Theorem 7.6):

$$
\begin{aligned}
h_{m_{r}}^{*}\left(\omega_{\lambda}\right) & =\sum_{\mu \in \mathbf{C}_{m_{r}}^{\lambda}} \omega_{\mu} \\
\left(h_{m_{r-1}} h_{m_{r}}\right)^{*}\left(\omega_{\lambda}\right) & =\sum_{\mu_{1} \in \mathbf{C}_{m_{r}}^{\lambda}} \sum_{\mu_{2} \in \mathbf{C}_{m_{r-1}}^{\mu_{1}}} \omega_{\mu_{2}}
\end{aligned}
$$

and eventually

$$
\left\langle h_{m_{1}} \ldots h_{m_{r}}, \omega_{\lambda}\right\rangle=\left(h_{m_{1}} \ldots h_{m_{r-1}} h_{m_{r}}\right)^{*}\left(\omega_{\lambda}\right)=\sum_{\mu_{1} \in \mathbf{C}_{m_{1}}^{\lambda}} \sum_{\mu_{2} \in \mathbf{C}_{m_{2}}^{\mu_{1}}} \ldots \sum_{\mu_{r} \in \mathbf{C}_{m_{r}}^{\mu_{r-1}}} 1
$$

because $\omega_{\mu_{r}}=1$ due to the fact that $m_{1}+\ldots+m_{r}=n$.
The sequences μ_{1}, \ldots, μ_{r} indexing the sum in the right-hand side are in bijective correspondence with the semistandard tableaux of shape λ and weight m_{1}, \ldots, m_{r}, indeed given such a semistandard tableau, we set μ_{i} to be the union of the boxes filled with numbers $\leq i: \mu_{i}$ is a semistandard tableau. Hence the result.

REMARK 7.13. Since the product is commutative, $\left\langle h_{m_{1}} \ldots h_{m_{r}}, \omega_{\lambda}\right\rangle$ depends only on the non-increasing rearrangement μ of the sequence μ_{1}, \ldots, μ_{r}. Note that the partition μ we just obtained verifies $\lambda \succeq \mu$.

Definition 7.14. Let λ, μ be two partitions of n, we define the Kostka number $K_{\lambda \mu}$ to be the number of semistandard tableaux of shape λ and weight μ.

Theorem 7.15. (Jacobi-Trudi) For any partition λ of n, one has

$$
\omega_{\lambda}=\operatorname{Det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i, j \leq r(\lambda)}\right) .
$$

Proof. The theorem is proved by induction on n. For $n=1$ the statement is clear and we assume that the equality holds for all partitions μ of m with $m<n$.

We will use the automorphism H of the PSH algebra A defined by

$$
H\left(h_{i}\right)=\sum_{j \leq i} h_{j},
$$

(the automorphism H is the formal sum $\sum_{k \in \mathbb{N}} h_{k}^{*}$).
First, we notice that the linear map $H-I d: I \rightarrow A$ is injective: indeed this amounts to saying that its adjoint restricts to the surjective linear map

$$
\sum_{0 \leq j \leq n} A_{j} \longrightarrow A_{n}, \quad\left(a_{0}, \ldots, a_{n-1}\right) \mapsto a_{0} h_{n}+\ldots+a_{n-1} h_{1},
$$

and this assertion is clear since A the polynomial algebra $\mathbb{Z}\left[\left(h_{i}\right)_{i \in \mathbb{N}}\right]$.

Let us explain the induction step: we denote by ϖ_{λ} the determinant of the theorem. We know (Pieri's rule, Theorem 7.6) that $H\left(\omega_{\lambda}\right)=\sum_{i \geq 0, \mu \in \mathbf{C}_{i}^{\lambda}} \omega_{\mu}$, and we will show that $H\left(\varpi_{\lambda}\right)$, when λ varies, satisfies the same equality (with obvious changes of notations). This will conclude the proof since $H-I d: I \rightarrow A$ is injective.

Since H is an algebra homomorphism, we have

$$
H\left(\varpi_{\lambda}\right)\left(=H\left(\operatorname{Det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i, j \leq r(\lambda)}\right)\right)\right)=\operatorname{Det}\left(\left(H\left(h_{\lambda_{i}-i+j}\right)\right)_{1 \leq i, j \leq r(\lambda)}\right) .
$$

We know that $H\left(h_{\lambda_{i}-i+j}\right)=\sum_{k \leq \lambda_{i}} h_{k-i+j}$ by definition of H. Hence

$$
H\left(\varpi_{\lambda}\right)=\operatorname{Det}\left(\left(\sum_{k_{1} \leq \lambda_{1}, \ldots, k_{r} \leq \lambda_{r}} h_{k_{i}-i+j}\right)_{1 \leq i, j \leq r}\right) .
$$

We notice that, in this determinant, every entry is a partial sum of the entry which is just above it, we are led to substract the $i+1$ th row from the i th row for all i. This doesn't affect the value of the determinant, therefore we obtain the equality

$$
H\left(\varpi_{\lambda}\right)=\operatorname{Det}\left(\left(\sum_{\lambda_{2} \leq k_{1} \leq \lambda_{1}, \ldots, \lambda_{r} \leq k_{r-1} \leq \lambda_{r-1}, k_{r} \leq \lambda_{r}} h_{k_{i}-i+j}\right)_{1 \leq i, j \leq r}\right) .
$$

Since the determinant is a multilinear function of its rows, we deduce

$$
H\left(\varpi_{\lambda}\right)=\sum_{\lambda_{2} \leq k_{1} \leq \lambda_{1}, \ldots, \lambda_{r} \leq k_{r-1} \leq \lambda_{r-1}, k_{r} \leq \lambda_{r}} \operatorname{Det}\left(\left(h_{k_{i}-i+j}\right)_{1 \leq i, j \leq r}\right)
$$

Now each family of indices k_{1}, \ldots, k_{r} gives rise to a partition μ belonging to \mathbf{C}_{m}^{λ} for $m=n-k_{1}-\ldots-k_{r}$, from which we deduce the result.

8. Harvest

In the last four sections, we defined and classified PSH algebras and we obtained precise results in the rank one case. Now it is time to see why this was useful. In this section, we will meet two avatars of the rank one PSH algebra, namely \mathcal{A} of section 4, and the Grothendieck group of polynomial representations of the group $G L_{\infty}$: this interpretation will give us precious information concerning the representation theory in both cases. The final section of this chapter will be devoted to another very important application of PSH algebras, in infinite rank case, associated to linear groups over finite fields. We will only state the main results without proof and refer the reader to Zelevinsky's seminal book.
8.1. Representations of symmetric groups revisited. We use the notations of section 4 . We know by Proposition 4.7 that \mathcal{A} is a PSH algebra.

Proposition 8.1. The PSH algebra \mathcal{A} is of rank one with basic primitive element π, the class (in the Grothendieck group) of the trivial representation of the trivial group S_{1}.

Proof. Our goal is to show that every irreducible representation of $S_{n}(n \in$ $\mathbb{N} \backslash\{0\})$ appears in π^{n}. It is clear that π^{n} is the regular representation of S_{n}, hence the result.

Corollary 8.2. For any PSH algebra A of rank 1, together with a choice of indexation of the basis Ω by the partitions (there are two such choices conjugate by ι) the multiplication table of the ω_{λ} s is given by the Littlewood-Richardson coefficients (see Definition 2.14):

$$
\omega_{\mu} \omega_{\nu}=\sum_{\lambda} N_{\mu, \nu}^{\lambda} \omega_{\lambda} .
$$

By adjunction,

$$
m^{*}\left(\omega_{\lambda}\right)=\sum_{\mu, \nu} N_{\mu, \nu}^{\lambda} \omega_{\mu} \otimes \omega_{\nu} .
$$

The choice of π gives us gives us two isomorphisms between \mathcal{A} and A (one is obtained from the other by application of the automorphism ι). We choose the isomorphism which send h_{2} to the trivial representation of S_{2} (hence it sends e_{2} to the sign representation of S_{2}).

Let us give an interpretation of the different bases $\left(e_{\lambda}\right),\left(h_{\lambda}\right),\left(\omega_{\lambda}\right),\left(p_{\lambda}\right)$ in this setting.

Exercise 8.3. (1) Check that e_{i} corresponds to the sign representation of S_{i} and that h_{i} corresponds to the trivial representation of S_{i}.
(2) Show that ω_{λ} corresponds to the class of the irreducible representation V_{λ} defined in section 1.

REMARK 8.4. In the case of symmetric groups, the Grothendieck group is also the direct sum of \mathbb{Z}-valued class functions on S_{n} when n varies. See Chapter 1, associated with the fact that the characters of the symmetric groups take their values in \mathbb{Z}.

Exercise 8.5. (1) Show that the primitive element $\frac{p_{i}}{i}$ is the characteristic function of the circular permutation of S_{i}.
(2) Interpreting the induction functors involved, show that, for every partition λ, p_{λ} is the multiple of the characteristic function of the conjugacy class c_{λ} corresponding to λ by the coefficient $\frac{|\lambda|!}{\left|c_{\lambda}\right|}$.

The following Proposition is now clear:
Proposition 8.6. The character table of S_{n} is just the transfer matrix expressing the ω_{μ} 's in terms of $\frac{\left|c_{\lambda}\right|}{|\lambda|!} p_{\lambda}$'s when μ and λ vary along the partitions of n.

Our goal now is to prove the Hook formula:
Let λ be a partition, let $a=(i, j)$ be any every box in the Young diagram λ, we denote $h(a)$ the number of boxes $\left(i^{\prime}, j^{\prime}\right)$ of the Young diagram such that $i^{\prime}=i$ and $j^{\prime} \geq j$ or $i^{\prime} \geq i$ and $j^{\prime}=j: h(a)$ is called the hook length of a.

Theorem 8.7. (Hook formula) For every partition λ of n, the dimension of the S_{n}-module V_{λ} is equal to

$$
\operatorname{dim} V_{\lambda}=\frac{n!}{\prod_{a \in \lambda} h(a)}
$$

Proof. For any S_{n}-module V, let us denote by $r \operatorname{dim} V$ the reduced dimension of V that is the quotient $\frac{\operatorname{dim} V}{n!}$: this defines a ring homomorphism from \mathcal{A} to \mathbb{Q}, as one can easily see computing the dimension of an induced module.

We write $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$. Set $L_{i}=\lambda_{i}+r-i$ and consider the new partition consisting of $\left(L_{1}, \ldots, L_{r}\right):=L$. We apply Theorem 7.15 and notice that $\operatorname{rdim}\left(h_{p}\right)=$ $\frac{1}{p!}$: therefore one has

$$
r \operatorname{dim}\left(\omega_{\lambda}\right)=\operatorname{Det}\left(\left(\frac{1}{\left(L_{i}-r+j\right)!}\right)_{1 \leq i, j \leq r}\right) .
$$

Since $L_{i}!=\left(L_{i}-r+j\right)!P_{r-j}\left(L_{i}\right)$ where $P_{k}(X)$ is the polynomial $X(X-1) \ldots(X-$ $k+1$), the right-hand side becomes

$$
\frac{1}{L_{1}!\ldots L_{r}!} \operatorname{Det}\left(\left(P_{r-j}\left(L_{i}\right)\right)_{1 \leq i, j \leq r}\right) .
$$

Now P_{k} is a polynomial of degree k with leading coefficient 1 , hence this determinant is a Vandermonde determinant and is equal to $\prod_{1 \leq i<j \leq r}\left(L_{i}-L_{j}\right)$ and we get

$$
\operatorname{dim} V_{\lambda}=\frac{n!}{L_{1}!\ldots L_{r}!} \prod_{1 \leq i<j \leq r}\left(L_{i}-L_{j}\right)
$$

Noting that $\frac{L_{i}!}{\prod_{i<j}\left(L_{i}-L_{j}\right)}$ is product of the hook lengths of boxes of the i-th row of λ, we obtained the wanted Hook formula.

THEOREM 8.8. For every partition λ of n, the restriction of V_{λ} to S_{n-1} is the direct sum $\oplus_{\mu} V_{\mu}$ where the Young diagram of μ is obtained from the Young diagram of λ by deleting exactly one box.

Proof. This restriction is $h_{1}^{*}\left(\omega_{\lambda}\right)$. Hence the result.
Exercise 8.9. Compute the dimension of the S_{6}-module V_{λ} for $\lambda=(3,2,1)$. Calculate the restriction of V_{λ} to S_{5}.
8.2. Symmetric polynomials in infinitely many variables over \mathbb{Z}. Let R be a unital commutative ring, let us define the ring S_{R} of symmetric polynomials in a fixed infinite sequence $\left(X_{i}\right)_{i \in \mathbb{N}>0}$ of variables with coefficients in R. Recall that the symmetric group S_{n} acts on the polynomial ring $R\left[X_{1}, \ldots, X_{n}\right]$ by $\sigma\left(X_{i}\right):=X_{\sigma(i)}$, the ring of invariants consists of the symmetric polynomials in n variables. There is a surjective algebra homomorphism which preserves the degree

$$
\begin{gathered}
\psi_{n}: R\left[X_{1}, \ldots, X_{n+1}\right]^{S_{n+1}} \rightarrow R\left[X_{1}, \ldots, X_{n}\right]^{S_{n}} \\
P\left(X_{1}, \ldots, X_{n+1}\right) \mapsto P\left(X_{1}, \ldots, X_{n}, 0\right) .
\end{gathered}
$$

By definition, S_{R} is the projective limit of the maps $\left(\psi_{n}\right)_{n \in \mathbb{N}>0}$ in the category of graded rings.

In order to be more explicit, we need to introduce the ring of formal power series $R\left[\left[X_{1}, \ldots, X_{n}, \ldots\right]\right]$ consisting of (possibly infinite) formal linear combinations, with coefficients in $R, \sum_{\alpha} a_{\alpha} X^{\alpha}$, where α runs along multi-indices $\left(\alpha_{i}\right)_{i \geq 1}$ of integers with finite support. There is no difficulty in defining the product since, for any multi-index α, there are only finitely many ways of expressing α into a sum $\alpha_{1}+\alpha_{2}$. We set S_{∞} to be the groups of permutations of all positive integers generated by the transpositions. Then S_{R} is the subring of $R\left[\left[X_{1}, \ldots, X_{n}, \ldots\right]\right]$ whose elements are invariant under S_{∞} and such that the degrees of the monomials are bounded.

Let A be the PSH algebra of rank one.
Theorem 8.10. The map $\psi: A \rightarrow S_{\mathbb{Z}}$, given by, for all $a \in A$,

$$
\begin{equation*}
\psi(a)=\sum_{\alpha}\left\langle a, \prod_{i} h_{\alpha_{i}}\right\rangle X^{\alpha} \tag{6.9}
\end{equation*}
$$

is an algebra isomorphism.
Remark 8.11. We deduce immediately from the formula for ψ the following statements:
(1) $\psi\left(h_{n}\right)=\sum_{|\alpha|=n} X^{\alpha}$, where $|\alpha|:=\sum_{i} \alpha_{i}$ if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{i} \ldots\right)$,
(2) $\psi\left(e_{n}\right)=\sum_{\alpha=\left(\alpha_{1}, \ldots\right)} X^{\alpha}$, where every α_{i} is either 0 or 1 and $|\alpha|=n$,
(3) $\psi\left(p_{n}\right)=\sum_{i \geq 1} X_{i}^{n}$.

Finally, if we denote by h_{λ}^{\diamond} the dual basis of h_{λ} with respect to the scalar product on A, one has
(4) $\psi\left(h_{\lambda}^{\diamond}\right)=\sum_{\alpha} X^{\alpha}$ where α runs along the multi-indices whose non-increasing rearrangement is λ.

Proof. We follow the proof given in Zelevinsky's book, attributed to Bernstein. Let us first define the homomorphism ψ : we iterate the comultiplication $A \rightarrow A \otimes A$ and obtain an algebra homomorphism $\mu_{n}: A \rightarrow A^{\otimes n}$ for any n (one has $\mu_{2}=m^{*}$).

Furthermore, the counit ε induces a map $\varepsilon_{n}: A^{\otimes n+1} \rightarrow A^{\otimes n}$ such that the following diagram is commutative:

If B is a \mathbb{N}-graded commutative ring and t is an indeterminate, we can define a canonical homomorphistm $\beta_{B}: B \rightarrow B[t]$ by setting, for any $b \in B$ of degree k, $\beta_{B}(b):=b t^{k}$: thus we obtain a homomorphism $\beta_{A}^{\otimes n}: A^{\otimes n} \rightarrow A\left[X_{1}, \ldots, X_{n}\right]$. Note that, in order to obtain a homogeneous homomorphism, we have to forget the grading of A for the definition of the degree in $A\left[X_{1}, \ldots, X_{n}\right]$: in this algebra, the elements of A have degree 0 . Note also that the image of μ_{n} is always contained in $\left(A^{\otimes n}\right)^{S_{n}}$.
\{VIexodiag2\}
EXERCISE 8.12. Show that the following diagram is commutative (the symmetric group acts both on the set of variables and on the factors of $\left.A^{\otimes k}\right)$:

Let $a \in A$, by definition of μ_{n} one has

$$
\mu_{n}(a)=\sum_{\lambda_{1}, \ldots, \lambda_{n}}\left\langle a, \omega_{\lambda_{1}} \ldots \omega_{\lambda_{n}}\right\rangle \omega_{\lambda_{1}} \otimes \ldots \otimes \omega_{\lambda_{n}}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are partitions. Thus,

Lemma 8.13. There are exactly two positive algebra homomorphisms from A to \mathbb{Z}, conjugate up to ι (see Theorem 6.11) which transform the basic primitive element π into 1. One of them, denoted by δ, is such that $\delta\left(h_{i}\right)=1$ for all i and $\delta\left(\omega_{\lambda}\right)=0$ whenever ω_{λ} is not one of the h_{i} s.

Proof. Such a homomorphism maps π^{2} onto 1 , but $\pi^{2}=e_{2}+h_{2}$ and since it is positive, either e_{2} or h_{2} is sent to one 1 (and the other to 0). Since ι exchanges e_{2} and h_{2}, we can assume that h_{2} is sent to 1 (and e_{2} to 0). We denote this homomorphism by δ. Let ω be a basic element of degree n in A, distinct from h_{n}. By Lemma 6.3, $e_{2}^{*}(\omega) \neq 0$, hence $\omega \preceq e_{2} \pi^{n-2}$ and since $\delta\left(e_{2}\right)=0$ and δ is positive, $\delta(\omega)=0$. Then, since $\delta\left(\pi^{n}\right)=1$, we obtain $\delta\left(h_{n}\right)=1$, hence the Lemma.

Set $\psi_{n}=\delta^{\otimes n} \circ \beta_{A}^{\otimes n} \circ \mu_{n}: A \rightarrow \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$. Applying Lemma 8.13 and (6.12), we obtain

$$
\begin{equation*}
\{\text { VIpsin }\} \quad \psi_{n}(a)=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}}\left\langle a, h_{i_{1}} \ldots h_{i_{n}}\right\rangle X_{1}^{i_{1}} \ldots X_{n}^{i_{n}} \tag{6.13}
\end{equation*}
$$

Taking the projective limit, we get the morphism $\psi: A \rightarrow S_{\mathbb{Z}}$ we are looking for and the item (4) of Remark 8.11 ensures that ψ is an isomorphism.

We now compute $\psi\left(\omega_{\lambda}\right)$ for any partition λ, and more precisely $\psi_{n}(\lambda)$ for any $n \geq|\lambda|$.

We first introduce the following notation for the generalized Vandermonde determinant: let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ be a decreasing sequence of non-negative integers, we set $V_{\mu}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{det}\left(\left(X_{i}^{\mu_{j}}\right)_{1 \leq i, j \leq n}\right)$. Notice that $V_{(n-1, n-2, \ldots, 1,0)}\left(X_{1}, \ldots, X_{n}\right)$ is the usual Vandermonde determinant.

Proposition 8.14. One has

$$
\begin{equation*}
\psi_{n}\left(\omega_{\lambda}\right)=\frac{V_{\left(\lambda_{1}+n-1, \lambda_{2}+n-2, \ldots \lambda_{n}\right)}\left(X_{1}, \ldots, X_{n}\right)}{V_{(n-1, n-2, \ldots, 1,0)}\left(X_{1}, \ldots, X_{n}\right)} . \tag{6.14}
\end{equation*}
$$

Exercise 8.15. Show the Proposition. Hints: use the Jacobi-Trudi formula (see Theorem 7.15), the duality in the exterior algebra of $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]^{\lambda_{1}+n-1}$ (seen as a free $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$-module), and the linear relations

$$
\psi_{n}\left(e_{0}\right) X_{i}^{n+j}-\psi_{n}\left(e_{1}\right) X_{i}^{n+j-1}+\ldots+(-1)^{n} \psi_{n}\left(e_{n}\right) X_{i}^{j}=0
$$

(Vieta's formula) and

$$
e_{0} h_{n+j}-e_{1} h_{n+j-1}+\ldots+(-1)^{n} e_{n} h_{j}=0
$$

(see the end of the proof of Proposition 6.6).
8.3. Complex general linear group for an infinite countable dimensional vector space. Let V be an infinite countable dimensional complex vector space, we consider the group $G=G L(V)$. Denote by \mathcal{T} the full subcategory of the category of G-modules whose objects are submodules of direct sums of tensor powers of V. We saw in section 2 that \mathcal{T} is a semisimple category. The simple modules are indexed by partitions and we denote by $S_{\lambda}(V)$ the simple module associated to the partition λ. We denote by $K(\mathcal{T})$ the Grothendieck group of \mathcal{T}.

Our aim is to equip $K(\mathcal{T})$ with a structure of PSH algebra of rank one.
We define the multiplication: $m([M],[N])=[M \otimes N]$ for M and N in \mathcal{T} (recall that if $M \in \mathcal{T}$, we denote by $[M]$ its class in the Grothendieck group).

We define the scalar product: $\langle[M],[N]\rangle=\operatorname{dim} \operatorname{Hom}_{G}(M, N)$, and the grading: by convention, the degree of $V^{\otimes n}$ is n.

Finally we proceed to define the comultiplication m^{*}, and it is a trifle more tricky. Since V is infinite dimensional, we can choose an isomorphism $\varphi: V \rightarrow V \oplus V$. By
composition with φ, we obtain a group morphism $\Phi: G \times G$ to G,

$$
\Phi\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)=\varphi^{-1} \circ\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) \circ \varphi .
$$

We have two canonical projectors of $V \oplus V$ and we denote by V_{1} (resp. V_{2}) the image of the first (resp. second) one.

ExERCISE 8.16. Show that $V_{1}^{\otimes p} \otimes V_{2}^{\otimes q}$ is a semisimple $G \times G$-module and that its irreducible components are of the form $S_{\lambda}\left(V_{1}\right) \otimes S_{\mu}\left(V_{2}\right)$, where λ is a partition of p and μ is a partition of q.

Therefore, if we denote $\tilde{\mathcal{T}}$ the full sucategory of the category of $G \times G$-modules whose objects are submodules of direct sums of $V_{1}^{\otimes p} \otimes V_{2}^{\otimes q}$, then its Grothendieck group is isomorphic to $K(\mathcal{T}) \otimes K(\mathcal{T})$.

Hence, the restriction functor Res (with respect to the inclusion of $G \times G$ in G) maps the category \mathcal{T} to the category $\tilde{\mathcal{T}}$. Therefore it induces a linear map $m^{*}: K(\mathcal{T}) \rightarrow K(\mathcal{T}) \otimes K(\mathcal{T})$.

Theorem 8.17. The Grothendieck group $K(\mathcal{T})$, equipped the operations described above and the basis given by the classes of simple modules, is a PSH algebra of rank one, and the basic primitive element is the class of $V,[V]$.

Proof. The only axiom of the definition of PSH algebras which is not straightforward and needs to be checked is the self-adjointness, namely the fact that m and m^{*} are mutually adjoint with respect to the scalar product. For this, we have to find a functorial bijective map $\operatorname{Hom}_{G}(M \otimes N, P) \rightarrow \operatorname{Hom}_{G \times G}(M \otimes N, \operatorname{Res}(P))$ (where M, N, P are objects of $\mathcal{T})$. Since any G - module is the direct sum of its homogeneous components, we may asume that M, N, P are homogeneous of degree p, q, n respectively, with $n=p+q$.

For any object $W \in \mathcal{T}$ homogeneous of degree r, set $\Pi_{W}:=\operatorname{Hom}_{G}\left(V^{\otimes r}, W\right)$ which is an S_{r}-module; Schur-Weyl duality (see Proposition 2.13) can be reformulated in saying that there is a canonical isomorphism of G-modules $W \simeq \Pi_{W} \otimes_{\mathbb{C}\left(S_{r}\right)} V^{\otimes r}$. We set $M_{1}:=\Pi_{M} \otimes_{\mathbb{C}\left(S_{p}\right)} V_{1}^{\otimes p} \hookrightarrow M, N_{2}:=\Pi_{N} \otimes_{\mathbb{C}\left(S_{q}\right)} V_{2}^{\otimes q} \hookrightarrow N$.

Then we have an inclusion $M_{1} \otimes N_{2} \subset M \otimes N$, and the restriction defines a map $\operatorname{Hom}_{G}(M \otimes N, P) \rightarrow \operatorname{Hom}_{G \times G}\left(M_{1} \otimes N_{2}, \operatorname{Res}(P)\right)$. This is the functorial map we where looking for.

In order to show this map is bijective, it is enough (by the semisimplicity of the categories \mathcal{T} and $\tilde{\mathcal{T}}$) to check it for $M=V^{\otimes p}, N=V^{\otimes q}$ and $P=V^{\otimes n}$ with $p+q=n$ indeed, on one hand, one has:

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(V^{\otimes p} \otimes V^{\otimes q}, V^{\otimes n}\right)=\operatorname{dim} \operatorname{Hom}_{G \times G}\left(V_{1}^{\otimes p} \otimes V_{2}^{\otimes q}, V^{\otimes n}\right)=n!
$$

the first equality coming from the Schur-Weyl duality and the second equality comes from the formula

$$
V^{\otimes n} \simeq \oplus_{r=0}^{n}\left(V_{1}^{\otimes r} \otimes V_{2}^{\otimes(n-r)}\right)^{\oplus \cdot \frac{n!}{r!(n-r)!}}
$$

\{VIGrothGps \}

On the other hand, the map is injective because $V_{1}^{\otimes p} \otimes V_{2}^{\otimes q}$ spans the G-module $V^{\otimes n}$.

9. General linear groups over a finite field

This section is a summary without proofs of Chapter III, sections $9-11$ of Zelevinsky's book [37].

Let p be a prime and q a power of p. We denote by \mathbb{F}_{q} the finite field with q elements and by G_{n} the linear group $G L_{n}\left(\mathbb{F}_{q}\right)$. We consider, for every integer n, the category \mathcal{C}_{n} of G_{n}-modules over the complex numbers and we denote by \mathcal{K}_{n} the Grothendieck group of \mathcal{C}_{n}. We want to consider the collection of all G_{n} at the same time, so we set $A_{q}:=\oplus_{n \geq 0} \mathcal{K}_{n}$, where by convention $\mathcal{K}_{0}=\mathbb{Z}$.

As a \mathbb{Z}-module, A_{q} has a basis Ω consisting of the classes of all the irreducible modules over $G_{n}, n \geq 1$, and $1 \in \mathcal{K}_{0}$. There is a non-degenerate bilinear form on A_{q} which is defined by, for $[V],[W] \in \mathcal{K}_{n},\langle V, W\rangle=\operatorname{dim} \operatorname{Hom}_{G_{n}}(V, W)$ and $\left\langle\mathcal{K}_{m}, \mathcal{K}_{n}\right\rangle=0$ if $m \neq n$.

We equip A_{q} with a multiplication $\mu_{m, n}: \mathcal{K}_{m} \otimes \mathcal{K}_{n} \rightarrow \mathcal{K}_{m+n}$, which comes from the parabolic induction: let $P_{m, n}$ denote the subgroup of G_{m+n} :

$$
P_{m, n}=\left\{\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right), A \in G_{m}, C \in G_{n}\right\} .
$$

If $V \in \mathcal{C}_{m}$ and $W \in \mathcal{C}_{n}$, we extend the $G_{m} \times G_{n}$-module $V \otimes W$ into a $P_{m, n}$-module with trivial action of the normal subgroup of $P_{m, n}, U_{m, n}$,

$$
U_{m, n}=\left\{\left(\begin{array}{cc}
\mathrm{Id}_{m} & B \\
0 & \mathrm{Id}_{n}
\end{array}\right)\right\} .
$$

We then define a G_{m+n}-module by induction from $P_{m, n}$ to G_{m+n}, and this functor $I_{m, n}$ is called the parabolic induction. By definition, the class of this module is $\mu_{m, n}([V] \otimes[W])$.

Now we equip A_{q} with a comultiplication μ^{*}, defined over \mathcal{K}_{r} by the direct sum (for $m+n=r$) of the maps $\mu_{m, n}^{*}$ coming from the functor (called parabolic restriction) $R_{m, n}$ which is right-adjoint to $I_{m, n}$. The functor $R_{m, n}$ transforms the G_{r}-module M into the $G_{m} \times G_{n}$-module $\operatorname{Hom}_{U_{m, n}}(\mathbb{C}, M)$.

Theorem 9.1. (Zelevinsky) When equipped with μ, μ^{*}, the basis Ω and the scalar product defined above, A_{q} is a PSH algebra.

Remark 9.2.1) The proof of this theorem essentially follows the same lines as the proof of Proposition 4.7. Nevertheless, contrary to the symmetric case, the commutativity of the multiplication is not obvious (but is automatic, see Proposition 3.9).
2) In order to prove that the comultiplication is a ring homomorphism, Zelevinsky uses the identification (which follows from the Bruhat decomposition) between $P_{m, n} \backslash G_{m+n} / P_{m, n}$ and $\left(S_{m} \times S_{n}\right) \backslash S_{m+n} /\left(S_{m} \times S_{n}\right)$.

Contrary to the previous cases we studied, this PSH algebra is not of rank one. In order to decompose it, we need the following definition:

Definition 9.3. Let V be an irreducible module over G_{n}. If V is not a direct summand in any G_{n}-module obtained by (strict) parabolic induction, then V is called a cuspidal representation of G_{n}.

REmARK 9.4. (1) This amounts to saying that $[V] \in \mathcal{K}_{n}$ is a primitive element of A_{q}.
(2) We will call the integer n the cuspidal degree of V and denote it by $d(V)$.

We denote by Γ the set of classes in A_{q} of all cuspidal representations for all G_{n}. The following proposition is a direct consequence of Zelevinsky's decomposition theorem (Theorem 5.6):

Proposition 9.5. One has:

$$
A_{q}=\bigotimes_{\gamma \in \Gamma} A_{\gamma}
$$

where A_{γ} is the rank one PSH algebra with basic primitive element γ, which, as a \mathbb{Z}-module, is spanned by the supports of the powers of γ.

The table of characters of the group $G L_{n}\left(\mathbb{F}_{q}\right)$ is understood since the work of J. A. Green (J.A. Green, The characters of the finite general linear groups, Trans. AMS, 80 (1955) pp. 402-447). The problem is to understand the transition matrix, in the \mathbb{C}-vector space $A_{q} \otimes_{\mathbb{Z}} \mathbb{C}$, from the set Ω of characters of irreducible representations to the set Υ of characteristic functions of conjugacy classes in the collection of groups G_{n}. The multiplication of $A_{q} \otimes_{\mathbb{Z}} \mathbb{C}$ in the basis Υ is exactly the multiplication of the classical Hall algebra $\mathcal{H}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right)$:

An element $v \in \Upsilon$ of degree n is the isomorphism class of a $\mathbb{F}_{q}\left[t, t^{-1}\right]$-module of finite length: n is the dimension of the underlying \mathbb{F}_{q} vector space V and t is seen as an automorphism of V. The multiplication rule is given by $v_{1} v_{2}=\sum_{v \in \Upsilon} c_{v_{1}, v_{2}}^{v} v$, where, for a given $\mathbb{F}_{q}\left[t, t^{-1}\right]$-module M of isomorphism class v, the constant $c_{v_{1}, v_{2}}^{v}$ is the number of submodules $N \subset M$ of type v_{1} such that M / N is of type v_{2}.

This statement is an interpretation of parabolic induction in terms of conjugacy classes.

The Hall algebra $\mathcal{H}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right)$ is an infinite tensor product of local Hall algebras $\mathcal{H}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]_{\mathfrak{p}}\right)$ where \mathfrak{p} is a maximal ideal of $\mathbb{F}_{q}\left[t, t^{-1}\right]$ (which is automatically generated by a monic irreducible polynomial with non-zero constant term). This decomposition amounts to the equality $M=\oplus_{\mathfrak{p}} M_{\mathfrak{p}}$ for any torsion $\mathbb{F}_{q}\left[t, t^{-1}\right]$-module M of finite type.

Remark 9.6. The definition of local Hall algebras remains meaningful if we replace $\mathbb{F}_{q}\left[t, t^{-1}\right]_{\mathfrak{p}}$ by any discrete valuation ring \mathfrak{o}, with finite residue field k. This algebra $\mathcal{H}(\mathfrak{o})$ has a marked basis, the classes of \mathfrak{o}-modules of finite length, which can be indexed by partitions, we will abuse notation and denote the element associated
to the partition λ in this basis by v_{λ}. The multiplication table, that is the matrix of the product $\mathcal{H}(\mathfrak{o}) \otimes \mathcal{H}(\mathfrak{o}) \rightarrow \mathcal{H}(\mathfrak{o})$, is given by the family $g_{\lambda, \mu}^{\nu}(|k|)(\lambda, \mu, \nu$ vary among the partitions) where $g_{\lambda, \mu}^{\nu}(t)$ is the so-called Hall polynomial associated to the partitions λ, μ, ν; therefore $\mathcal{H}(\mathfrak{o})$ depends only on the cardinal of the residue field k.

Moreover, there is a scalar product $\langle,\rangle_{|k|}$ on $\mathcal{H}(\mathfrak{o})$ for which the basis $\left(v_{\lambda}\right)_{\lambda}$ is orthogonal and, if λ is a partition of $n,\left\langle v_{\lambda}, v_{\lambda}\right\rangle_{|k|}$ is the cardinal of the $G L_{n}(k)$-orbit of shape λ. We apologise for not giving a combinatorial formula for this cardinal but it is quite complicated to state and anyway we will use it only for small values of n.

This is the beginning of a long story told by I.G. Macdonald, in [24]
Hence we are now given two tensor decompositions of $A_{q} \otimes_{\mathbb{Z}} \mathbb{C}$, the one we just obtained and the one coming from Proposition 9.5 after tensorisation by \mathbb{C}. Understanding the character table is now theoretically "reduced" to understanding the composed maps

$$
\varphi_{\gamma, \mathfrak{p}}: A_{\gamma} \rightarrow A_{q} \rightarrow A_{q} \otimes_{\mathbb{Z}} \mathbb{C} \rightarrow \mathcal{H}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]_{\mathfrak{p}}\right)
$$

when the cuspidal representation γ and the maximal ideal \mathfrak{p} vary.
Note that $A_{q} \otimes_{\mathbb{Z}} \mathbb{C}$ is the algebra of central functions on the collection of groups G_{n}. Hence it comes with a hermitian scalar product and a comultiplication which is the complexification of μ^{*}. We carry them into the Hall algebra $\mathcal{H}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right)$. The resulting scalar product is obviously the tensor product of the family of scalar products $\langle,\rangle_{\mathbb{F}_{q}\left[t, t^{-1}\right] / \mathfrak{p}}$ when the prime ideal \mathfrak{p} varies. It is a formal consequence of those facts that the local Hall algebras are equipped with a comultiplication, which is adjoint to the given multiplication. Finally, we note that the projection morphism $\mathcal{H}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right) \rightarrow \mathcal{H}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]_{\mathfrak{p}}\right)$ is the orthogonal projection, and that the maps $\varphi_{\gamma, \mathfrak{p}}$ are morphisms of Hopf algebras.

Remark 9.7. This last fact is important, since we know that a graded Hopf algebra over \mathbb{C} is the symmetric algebra $S(P)$ of the graded vector space P consisting of its primitive elements, and a morphism of graded Hopf algebras $F: S\left(P_{1}\right) \rightarrow S\left(P_{2}\right)$ always restricts to a linear map $f: P_{1} \rightarrow P_{2}$ and therefore F is obtained from f after taking symmetric algebras.

In his book, Zelevinsky computes the maps $\varphi_{\gamma, \mathfrak{p}}$ for all γ and for $\mathfrak{p}=(t-1)$, which will be denoted by \mathfrak{q} in what follows. In other words, he computes the values of each character on every unipotent conjugacy class. Later on, Springer and Zelevinsky ([30]) were able to extend this description to every map $\varphi_{\gamma, \mathfrak{p}}$ (i.e. for every maximal ideal \mathfrak{p}).

Let us give an idea of Zelevinsky's argument.
We denote by $c \in \Gamma$ the trivial representation of G_{1} : it is a cuspidal representation. Since A_{c} is of rank one, it is isomorphic to A, and there a unique way of sending $h_{n} \in A$ on the trivial representation of G_{n}. We compute the map

$$
\varphi_{c, \mathfrak{q}}: A_{c} \rightarrow \mathcal{H}:=\mathcal{H}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]_{\mathfrak{q}}\right),
$$

starting from

$$
\varphi_{c, \mathfrak{q}}\left(h_{n}\right)=\sum_{v \text { unipotent }, \operatorname{deg}(v)=n} v .
$$

We use the multiplication table of the elements v in order to compute $\varphi_{c, \mathfrak{q}}\left(p_{n}\right)$ where p_{n} is the primitive element in A defined in Proposition 7.2. Zelevinsky gives the formula

$$
\varphi_{c, \mathfrak{q}}\left(p_{n}\right)=\sum_{\lambda \vdash n}(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{l(\lambda)-1}\right) v_{\lambda}^{\mathfrak{q}}
$$

where $l(\lambda)$ is the number of parts of λ and $v_{\lambda}^{\mathfrak{q}}$ is the unipotent basic element of shape λ (see [37], Theorem 10.3.(b)). This formula implies that $\varphi_{c, \mathfrak{q}}$ is injective and induces an isomorphism $A_{c} \otimes_{\mathbb{Z}} \mathbb{C} \simeq \mathcal{H}$ since the dimension of the spaces of homogeneous elements coincide (see Remark 9.7).

Remark 9.8. In other words, \mathcal{H} can be identified (as a Hopf algebra) with the algebra of symmetric polynomials in infinitely many variables over \mathbb{C}, but this idenfication is not compatible with the scalar products. We do not wish to make this identification in the long run, but let us proceed with it for a little while. Denote by $\langle,\rangle_{\mathcal{H}}$ the scalar product induced by the one of $A_{q} \otimes \mathbb{C}$. In the book [24], Chap. 3, Macdonald expresses the symmetric function $\frac{v_{\lambda}}{\left\langle v_{\lambda}, v_{\lambda}\right\rangle_{\mathcal{H}}}$, which corresponds to the unipotent conjugacy class of shape λ divided by the cardinnal of its stabilizer, as reciprocal Hall-Littlewood polynomials in the variable t specialized at $q, t^{n(\lambda)} P_{\lambda}\left(x ; t^{-1}\right)$. Here $n(\lambda)=\sum_{i \geq 0}\binom{\lambda_{i}^{\prime}}{2}$, where λ^{\prime} is the conjugate partition of λ and x is the set of variables. Hall-Littlewood polynomials are given by an explicit formula, see [24] Chap.3, formulae (2.1), (2.2); the degree in t of $P_{\lambda}(x ; t)$ is $\leq n(\lambda)$, and the transition matrix from the Schur polynomials $\left(\omega_{\lambda}\right)$ to $\left(v_{\lambda}\right)$ is upper unitriangular with respect to the dominant order on partitions. Tables are given pp. 239-241 (of Macdonald's book).

Remark 9.9. If we replace \mathcal{H} by any other Hall algebra over a discrete valuation ring \mathfrak{o} with the same residue field, then the result is unchanged if we replace $\sum_{v \text { unipotent, } \operatorname{deg}(v)=n} v$ by the sum of classes of \mathfrak{o}-modules of length n.

Fix $\gamma \in \Gamma$ a cuspidal representation, of cuspidal degree d, the map $\varphi_{\gamma, \mathfrak{q}}$ transforms primitive elements of A_{γ} into primitive elements of \mathcal{H}, we can identify A_{γ} (in two ways due to the automorphism ι) with the PSH A where the degree has been multiplied by d. Thus, we have $\varphi_{\gamma, \mathfrak{q}}\left(p_{n}\right)=\alpha_{n} \varphi_{c, \mathfrak{q}}\left(p_{d n}\right)$, for some constant α_{n}. If we change the identification (by applying ι), α_{n} is changed into $-\alpha_{n}$. Our problem amounts to computing the constants α_{n}.

In order to do that, we need to introduce the Gel'fand-Graev modules,[16], $\mathbb{G}_{n, \chi}$: we choose a non trivial additive character χ of the base field \mathbb{F}_{q}. Take U_{n} to be the unipotent subgroup of G_{n} consisting of upper triangular matrices with 1s on the
diagonal. We set $\mathbb{C}_{n, \chi}$ the 1-dimensional U_{n}-module such that, if $u=\left(\left(u_{i, j}\right)_{i, j}\right) \in U_{n}$, u acts on $\mathbb{C}_{n, \chi}$ by $\prod_{i} \chi\left(u_{i, i+1}\right)$. Then we set

$$
\mathbb{G}_{n, \chi}=\operatorname{Ind}_{U_{n}}^{G_{n}} \mathbb{C}_{n, \chi}
$$

Remark 9.10. The class of the Gel'fand-Graev module in the Grothendieck group does not depend on the choice of the characher χ. Indeed, if χ_{1} and χ_{2} are two nontrivial additive characters of \mathbb{F}_{q}, there is a unique $a \in \mathbb{F}_{q}^{*}$ such that $\chi_{2}=a \chi_{1}$. Therefore the diagonal matrix $\operatorname{Diag}(a, 1, \ldots, 1)=: D$ conjugates $\mathbb{C}_{n, \chi_{1}}$ and $\mathbb{C}_{n, \chi_{2}}$ as U_{n}-modules and thus the two induced modules are isomorphic.

For any fixed n, consider the linear form $\delta_{n}: \mathcal{K}_{n} \rightarrow \mathbb{Z}$ given by the scalar product with $\left[\mathbb{G}_{n, \chi}\right]$. Let $\delta: A_{q} \rightarrow \mathbb{Z}$ be the linear form which restricts to δ_{n} on \mathcal{K}_{n}.

By Remark 9.10, this map does not depend on the choice of χ.
Theorem 9.11. (Gel'fand-Gel'fand-Graev) The linear form δ is multiplicative and maps every cuspidal representation to 1.

We do not provide any outline of proof but we apply it to the problem of computing the constants α_{n}.

The first thing is that we can fix an identification between A_{γ} and the PSH algebra A in such a way that $\delta\left(e_{n}\right)=1$, for all n, hence $\delta\left(p_{n}\right)=(-1)^{n}$.

On the other hand, the complexification of δ factors through a linear form on \mathcal{H} since, by definition, δ vanishes on all conjugacy classes which are not unipotent. Therefore we get $\delta\left(\varphi_{c, \mathfrak{q}}\left(p_{d n}\right)\right)=(-1)^{d n}$ and $\delta\left(\varphi_{\gamma, \mathfrak{q}}\left(p_{n}\right)\right)=(-1)^{n}$, thus

Corollary 9.12. One has $\varphi_{\gamma, \mathfrak{q}}\left(p_{n}\right)=(-1)^{(d-1) n} \varphi_{c, \mathfrak{q}}\left(p_{d n}\right)$.
The reader should feel that this corollary allows to compute the values of the irreducible characters of G_{n} on unipotent conjugacy classes. Let us make this more precise.

Notation 9.13. For any family of partitions $\left(\lambda_{\gamma}\right)_{\gamma \in \Gamma}$, with $\sum_{\gamma \in \Gamma} d(\gamma)\left|\lambda_{\gamma}\right|=n$, we set

$$
\left[V_{\left(\lambda_{\gamma}\right)}\right]=\bigotimes_{\gamma \in \Gamma} \omega_{\lambda_{\gamma}}^{\gamma} .
$$

This notation is parallel to the following indexation of conjugacy classes in the union of all groups $G L_{n}\left(\mathbb{F}_{q}\right)$: we denote by \mathcal{X} the set of maximal ideals in $\mathbb{F}_{q}\left[t, t^{-1}\right]$, if $\mathfrak{p} \in \mathcal{X}$ we set $\mathrm{d}(\mathfrak{p})$ to be the degree of the corresponding residue field over \mathbb{F}_{q}, and we index Υ_{n} by the families of partitions $\left(\lambda_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{X}}$ such that $\sum_{\mathfrak{p}} \mathrm{d}(\mathfrak{p})\left|\lambda_{\mathfrak{p}}\right|=n$.

We thus obtain an indexation of all the irreducible representations of G_{n} for any n. We apologise for the intricate notations.

Let $\omega=\otimes_{\gamma \in \Gamma} \omega_{\lambda_{\gamma}}^{\gamma}$ be the class in A_{q} of an irreducible G_{n}-module (we have $\sum\left|\lambda_{\gamma}\right|=$ n), let v_{μ} be the characteristic function of the unipotent class in G_{n} of shape μ, we want to compute the scalar product $\left\langle\omega, v_{\mu}\right\rangle$. In this computation, we may replace ω by
its orthogonal projection in the Hall algebra \mathcal{H}, which is by definition $\Pi_{\gamma \in \Gamma} \varphi_{\gamma, \mathfrak{q}}\left(\omega_{\lambda \gamma}^{\gamma}\right)$. For each γ, we express $\omega_{\lambda_{\gamma}}^{\gamma}$ as a linear combination with rational coefficients of the Newton functions p_{ν}, where $|\nu|=\left|\lambda_{\gamma}\right|$; by Corollary 9.12, $\varphi_{\gamma, \mathfrak{q}}\left(\omega_{\lambda_{\gamma}}^{\gamma}\right)$ is expressed as a linear combination of $\varphi_{c, \mathfrak{q}}\left(p_{\nu^{\prime}}\right)$ with $\left|\nu^{\prime}\right|=d(\gamma)\left|\lambda_{\gamma}\right|$, and their product, when γ varies, is given as an explicit expression in terms of $\varphi_{c, \mathfrak{q}}\left(p_{i}\right), i \in \mathbb{N}$.

For instance, we obtain a dimension formula for a cuspidal representation γ of cuspidal degree d :

$$
\operatorname{dim} \gamma=\left(q^{d-1}-1\right)\left(q^{d-2}-1\right) \ldots(q-1)
$$

Remark 9.14. The basis $\left(\omega_{\lambda}\right)$ of \mathcal{H} is not orthogonal with respect to $\langle,\rangle_{\mathcal{H}}$, but the Newton polynomials p_{λ} are (see the proof of Lemma 5.5, and use the fact that the elements p_{n} are primitive and their degrees are all distinct).

Furthermore, Theorem 9.11 leads to a branching rule for the representations of $G L_{n}\left(\mathbb{F}_{q}\right)$.

Corollary 9.15. We fix the integer n and the character χ of \mathbb{F}_{q}. The Gel'fandGraev representation $\mathbb{G}_{n, \chi}$ is multiplicity-free.

An irreducible representation M satisfies $\delta([M])=0$ or 1 . Gel'fand-Graev call the representations such that $\delta([M])=1$ non-degenerate. Therefore the non-degenerate modules are the ones appearing in the decomposition of Gel'fand-Graev representations.

Corollary 9.16. Consider a family of non-negative integers $\left(k_{\gamma}\right)$ for $\gamma \in \Gamma$, of finite support. Set $\left[V_{\left(k_{\gamma}\right)}\right]:=\bigotimes_{\gamma \in \Gamma} \omega_{1^{k \gamma}}^{\gamma}$. Then every non-degenerate irreducible representation is isomorphic to a unique $V_{\left(k_{\gamma}\right)}$.

Our next goal is to state an analogous of Theorem 8.8 for the present situation.
We denote by Aff_{k} the group of affine transformations of the space \mathbb{F}_{q}^{k} and by $\mathcal{K}\left(\mathrm{Aff}_{k}\right)$ the Grothendieck group of the category of finite dimensional Aff_{k}-modules. We notice that Aff_{n-1} can be seen as the subgroup of G_{n} consisting of matrices with last row $(0, \ldots, 0,1)$.

By definition, Aff ${ }_{k}$ is the semi-direct product $\mathbb{F}_{q}^{k} \rtimes G_{k}$, and $\mathcal{K}\left(\mathrm{Aff}_{k}\right)$ can be determined using [29] 8.2, Prop. 25. One has

$$
\mathcal{K}\left(\mathrm{Aff}_{k}\right)=\mathcal{K}_{k} \oplus \mathcal{K}\left(\mathrm{Aff}_{k-1}\right)
$$

where \mathcal{K}_{k} is seen as a subgroup of $\mathcal{K}\left(\mathrm{Aff}_{k}\right)$ through the quotient map $\mathrm{Aff}_{k} \rightarrow G_{k}$. In order to define the map $\mathcal{K}\left(\mathrm{Aff}_{k-1}\right) \rightarrow \mathcal{K}\left(\mathrm{Aff}_{k}\right)$, we view Aff_{k-1} as the stabilizer in G_{k} of the character $(1, \ldots, 1, \chi)$ of the additive group \mathbb{F}_{q}^{k} and we use Serre's construction. This decomposition does not depend on the choice of χ.

Using induction, we immediately obtain that
\{VI-Newton\}
\{VIcor1GG\}
\{VIcor2GG\}

$$
\mathcal{K}\left(\mathrm{Aff}_{n-1}\right)=\bigoplus_{0 \leq i \leq n-1} \mathcal{K}_{i}
$$

We construct a ring homomorphism $D: A_{q} \rightarrow A_{q}$ as the composition map:

$$
A_{q} \xrightarrow{m^{*}} A_{q} \otimes A_{q} \xrightarrow{\mathrm{Id} \otimes \delta} A_{q} \otimes \mathbb{Z}=A_{q} .
$$

Proposition 9.17. (1) The restriction functor from G_{n} to Aff_{n-1} induces the $\operatorname{map} D-\mathrm{Id}: \mathcal{K}_{n} \rightarrow \mathcal{K}_{n-1} \oplus \ldots \oplus \mathcal{K}_{1} \simeq \mathcal{K}\left(\mathrm{Aff}_{n-1}\right)$.
(2) The induction functor from G_{n-1} to Aff $_{n-1}$ induces the map $D: \mathcal{K}_{n-1} \rightarrow$ $\mathcal{K}_{n-1} \oplus \ldots \oplus \mathcal{K}_{1} \simeq \mathcal{K}\left(\mathrm{Aff}_{n-1}\right)$.

We now apply Pieri's rule (Theorem 7.6) and Theorem 9.11. Recall the notations introduced just before Pieri's rule, and set \mathbf{R}^{λ} the union of all the \mathbf{R}_{i}^{λ}. We obtain the following result:

Theorem 9.18. (1) Let V be the irreducible G_{n}-module indexed by the family of partitions λ_{γ} (with $\sum_{\gamma} d(\gamma)\left|\lambda_{\gamma}\right|=n$), then the restriction of V to Aff_{n-1} can be expressed as the direct sum $\bigoplus V_{\left(\mu_{\gamma}\right)}$, with $\mu_{\gamma} \in \mathbf{R}^{\lambda_{\gamma}}$ and $\left(\mu_{\gamma}\right) \neq\left(\lambda_{\gamma}\right)$.
(2) Let W be an irreducible Aff n_{n-1}-module. Then there exists a family of partitions $\left(\mu_{\gamma}\right)_{\gamma \in \Gamma}$, with $\sum_{\gamma} d(\gamma)\left|\mu_{\gamma}\right|<n$, representing [W] in $\mathcal{K}\left(\operatorname{Aff}_{n-1}\right)$. Then the irreducible components of the image of W by the induction to G_{n} are labelled by the families of partitions $\left(\lambda_{\gamma}\right)$ such that $\mu_{\gamma} \in \mathbf{R}_{\lambda_{\gamma}}$ and $\sum_{\gamma} d(\gamma)\left|\lambda_{\gamma}\right|=n$, each with multiplicity one.

Remark 9.19. In the first statement, each $V_{\left(\mu_{\gamma}\right)}$ is an irreducible representation of G_{i} for some $i<n$ since $\sum_{\gamma} d(\gamma)\left|\mu_{\gamma}\right|<n$, hence it is a representation of Aff_{n-1}.

Our next goal is to state the main result of [30], which computes the maps $\varphi_{\gamma, \mathfrak{p}}$ for all maximal ideals \mathfrak{p}. The main difficulty resides in the construction of a bijection between the set Γ_{d} of cuspidal representations of cuspidal degree d and the set of conjugacy classes of primitive multiplicative characters of $\mathbb{F}_{q^{d}}$ under the action of the Frobenius automorphism $x \mapsto x^{q}$ of $\mathbb{F}_{q^{d}}$ (a multplicative character of $\mathbb{F}_{q^{d}}$ is primitive if it doesn't factorize through any norm map $\mathbb{F}_{q^{d}} \rightarrow \mathbb{F}_{q^{d^{\prime}}}$ where d^{\prime} is a strict divisor of $d)$. One of the tools is Brauer's theory of modular characters which we do not intend to explain in this book (nevertheless, this theory is developed in [29]).

Let $\gamma \in \Gamma_{d}$ a cuspidal representation, choose a multiplicative character ξ of $\mathbb{F}_{q^{d}}$ representing γ. Let \mathfrak{p} be a maximal ideal of $\mathbb{F}_{q}\left[t, t^{-1}\right]$, generated by a polynomial P of degree d. The graded group of primitive elements in A_{γ} has the natural basis $\left(p_{n, \gamma}\right)_{n \in \mathbb{N}}$, which is the image of the family $\left(p_{n}\right) \subset A$ by the map of the proof of Theorem 9.11; the degree of $p_{n, \gamma}$ is $n d$. Similarly, the graded vector space of primitive elements in the Hall algebra $\mathcal{H}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]_{\mathfrak{p}}\right)$ has the natural basis $\left(p_{n, \mathfrak{p}}\right)_{n \in \mathbb{N}}$, which is the image of the family $\left(p_{n}\right) \subset A$ by the isomorphism $A \otimes_{\mathbb{Z}} \mathbb{C} \rightarrow \mathcal{H}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]_{\mathfrak{p}}\right)$ (see remark 9.9); the degree of $p_{n, \mathfrak{p}}$ is $n \mathrm{~d}$.
\{VISZ $\}$
Theorem 9.20. (Springer-Zelevinsky) One has:

$$
\varphi_{\gamma, \mathfrak{p}}\left(p_{n, \gamma}\right)=(-1)^{n(d-1)}\left(\sum_{x, P(x)=0} \frac{1}{\alpha(x)} \xi\left(N_{\mathbb{F}_{q^{d}}(x) / \mathbb{F}_{q^{d}}}(x)\right)\right) p_{\frac{n d}{\mathrm{~d}}, \mathfrak{p}}
$$

where $\alpha(x)=\left[\mathbb{F}_{q^{d}}(x): \mathbb{F}_{q^{d}}\right]$ and N is the norm of field extensions. Note that the expression vanishes if d does not divide $n d$.

We want to test this compact formula with two examples of character tables: the cases of $G L_{3}\left(\mathbb{F}_{2}\right)$ and $G L_{2}\left(\mathbb{F}_{q}\right)$. The second example is developed in $[\mathbf{1 2}]$ with classical methods. For both cases we also refer Steinberg's thesis ([33]).

Example 9.21. Character table of $G L_{3}\left(\mathbb{F}_{2}\right)$.
In this case, there are lots of tremendous simplifications in the computations due to the small size of the base field \mathbb{F}_{2} and the uniqueness of the character of its multiplicative group. Thus we are able to give details which would necessitate more notations with a bigger base field.

The list of irreducible polynomials with non-zero constant term of degree ≤ 3 is $X+1, X^{2}+X+1, X^{3}+X+1, X^{3}+X^{2}+1$. We denote by j the chosen root of $X^{2}+X+1$ in \mathbb{F}_{4} and by y (resp. y^{-1}) the chosen root of $X^{3}+X+1$ (resp. $\left.X^{3}+X^{2}+1\right)$ in \mathbb{F}_{8}. Therefore, the list of conjugacy classes of cuspidal characters of degree ≤ 3 is parametrized by $\chi_{0}=c$, the trivial character of $\mathbb{F}_{2}^{*}, \chi_{j}$ (conjugate to $\chi_{j^{2}}$) character of \mathbb{F}_{4}^{*} and two non-conjugate characters of \mathbb{F}_{8}^{*}, η and $\bar{\eta}$.

The 6 conjugacy classes in $G L_{3}\left(\mathbb{F}_{2}\right)$ are $I d$, the Jordan block $J_{(2,1)}$, the maximal Jordan block $J_{(3)}, \operatorname{Diag}(j, 1)\left(j\right.$ is a 2×2 matrix, and we abuse notation), y and y^{-1}.

The northwest 3×3 block of the table is obtained with the table for $n=3$ in [24] p. 239, after taking the reciprocal polynomials evaluated at $t=2$ (see Remark 9.8).

The southwest 3×3 block is deduced from the northwest block after multiplication on the left by the matrix $M=\left(\begin{array}{ccc}-1 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1\end{array}\right)$: indeed, ${ }^{t} M$ is the matrix of the character table of the group S_{3}, taking the colums indexed by the partitions (21) and (twice) (3) because the image of $(1)_{\chi_{j}}(1)_{c}$ (resp. $(1)_{\eta}$ and $\left.(1)_{\bar{\eta}}\right)$ in \mathcal{H} is $p_{(21)}$ (resp. $\left.p_{(3)}\right)$.

The northeast 3×3 block comes from the composed homomorphism

$$
A_{c} \xrightarrow{m^{*}} A_{c} \otimes A_{c} \stackrel{\varphi_{c, X^{2}+X+1} \otimes \varphi_{c, X+1}}{\longrightarrow} \mathcal{H}_{X^{2}+X+1} \otimes \mathcal{H}_{X+1} .
$$

Finally, let us find the southeast 3×3 block: the northwest coefficient is trivially 1 , and since \mathbb{F}_{4} is not included in \mathbb{F}_{8} the other entries of the first line and the first column are 0 . The remaining 2×2 matrix is $\left(\begin{array}{cc}\beta & \bar{\beta} \\ \bar{\beta} & \beta\end{array}\right)$ where $\beta=\xi(x)+\xi\left(x^{2}\right)+\xi\left(x^{4}\right)$
in the notations of Theorem 9.20. We get $\beta=\frac{-1 \pm \sqrt{7}}{2}$, since $\xi(x)$ is a primitive 7-th root of 1 .

	$I d$	$J_{(2,1)}$	$J_{(3)}$	$\operatorname{Diag}(j, 1)$	y	y^{-1}
$(3)_{c}$	1	1	1	1	1	1
$(2,1)_{c}$	6	2	0	0	-1	-1
$(1,1,1)_{c}$	8	0	0	-1	1	1
$(1)_{\chi_{j}}(1)_{c}$	7	-1	-1	1	0	0
$(1)_{\eta}$	3	-1	1	0	$\frac{-1+i \sqrt{7}}{2}$	$\frac{-1-i \sqrt{7}}{2}$
$(1)_{\bar{\eta}}$	3	-1	1	0	$\frac{-1-i \sqrt{7}}{2}$	$\frac{-1+i \sqrt{7}}{2}$

Example 9.22. Character table of $G L_{2}\left(\mathbb{F}_{q}\right)$.
The irreducible representations of $G L_{2}\left(\mathbb{F}_{q}\right)$ give the basis Ω_{2} of the homogeneous component of degree 2 of the PSH algebra A_{q}, we use the notation 9.13 and check that they come in four families:

- if χ_{1}, χ_{2} are two distinct characters of \mathbb{F}_{q}^{*}, they belong to Ω_{1} and we denote by $\left.(1)_{\chi_{1}}(1)_{\chi_{2}}\right)$ their (commutative) product in Ω_{2}.
- if χ is a character of \mathbb{F}_{q}^{*}, one sees it as a cuspidal representation of $G L_{1}\left(\mathbb{F}_{q}\right)$ and the square of χ in A_{q} is the sum $e_{2, \chi}+h_{2, \chi}$ (of elements of Ω_{2}) according to the isomorphism $A \rightarrow A_{\chi}$. This gives clearly two families indexed by the partitions $(1,1)_{\chi}$ for $e_{2, \chi}$ and $(2)_{\chi}$ for $h_{2, \chi}$ (this one corresponds to the trivial representation if $\chi=1$).
- if η is a primitive character of $\mathbb{F}_{q^{2}}^{*}$, it corresponds by Theorem 9.20 to a cuspidal representation of $G L_{2}\left(\mathbb{F}_{q}\right)$, which we denote by $(1)_{\eta}$.
The conjugacy classes of $G L_{2}\left(\mathbb{F}_{q}\right)$ are indexed by Υ_{2}, they also come in four families, we indicate the cardinal of the corresponding orbits:
- if x_{1}, x_{2} are two dinstinct elements of \mathbb{F}_{q}^{*}, we denote by $\operatorname{Diag}\left(x_{1}, x_{2}\right)$ the class of the corresponding diagonal element in Υ_{2}, the cardinal of the orbit is $q^{2}+q$.
- if $x \in \mathbb{F}_{q}^{*}$, we denote by $\operatorname{Diag}(x, x)$ and $\operatorname{Jord}(x)$ the classes of the diagonal element and the Jordan block element in Υ_{2}, the cardinal of the orbits is 1 for $\operatorname{Diag}(x, x)$ and $q^{2}-1$ for $\operatorname{Jord}(x)$.
- if y is a primitive element in $\mathbb{F}_{q^{2}}^{*}$, we denote by $P_{\text {min,y }}$ its minimal polynomial on \mathbb{F}_{q} and get an element of Υ_{2}, the cardinal of the orbit is $q^{2}-q$.
The character table is the following (we used a different ordering in enumeration in order to be consistent with usual notations in character tables).

	$\operatorname{Diag}(x, x)$	$\operatorname{Diag}\left(x_{1}, x_{2}\right)$	$\operatorname{Jord}(x)$	$P_{\min , y}$
$(2)_{\chi}$	$\chi\left(x^{2}\right)$	$\chi\left(x_{1} x_{2}\right)$	$\chi\left(x^{2}\right)$	$\chi(N(y))$
$(1)_{\chi_{1}}(1)_{\chi_{2}}$	$(q+1) \chi_{1}(x) \chi_{2}(x)$	$\chi_{1}\left(x_{1}\right) \chi_{2}\left(x_{2}\right)+$ $+\chi_{1}\left(x_{2}\right) \chi_{2}\left(x_{1}\right)$	$\chi_{1}(x) \chi_{2}(x)$	0
$(1,1)_{\chi}$	$q \chi\left(x^{2}\right)$	$\chi\left(x_{1} x_{2}\right)$	0	$-\chi(N(y))$
$(1)_{\eta}$	$(q-1) \eta(x)$	0	$-\eta(x)$	$-\left(\eta(x)+\eta\left(x^{q}\right)\right)$

CHAPTER 7

Introduction to representation theory of quivers

Who killed Cock Robin? I, said the Sparrow, with my bow and arrow, I killed Cock Robin. (Nursery Rhyme)

In which we enter the "non-semisimple" woods: armed with quivers, we encounter tame and wild problems.

1. Representations of quivers

A quiver is an oriented graph. For example

is a quiver.
In this chapter we consider only finite quivers, namely quivers with finitely many vertices and arrows.

The underlying graph of a quiver Q is the graph obtained from Q by forgetting the orientation of the arrows.

If Q is a quiver, we denote by Q_{0} the set of vertices of Q and by Q_{1} the set of arrows of Q. In the example above, $Q_{0}=\{1,2,3\}$ and $Q_{1}=\{\alpha, \beta, \gamma, \delta, \varepsilon\}$.

A quiver Q^{\prime} is a subquiver of a quiver Q if $Q_{0}^{\prime} \subset Q_{0}$ and $Q_{1}^{\prime} \subset Q_{1}$.
For every arrow $\gamma \in Q_{1}: i \xrightarrow{\gamma} j$ we define $s(\gamma)=i$ as the source or tail of γ and $t(\gamma)=j$ as the target or head of γ. In the example the vertex 1 is the source of α and the target of β.

An oriented cycle is a subgraph with vertices $C_{0}:=\left\{s_{1}, \ldots, s_{r}\right\} \subset Q_{0}$ and arrows $C_{1}=\left\{\gamma_{1}, \ldots, \gamma_{r}\right\} \subset Q_{1}$ such that γ_{i} goes from s_{i} to s_{i+1} if $i<r$ and γ_{r} goes from s_{r} to s_{1}. In our example $\bullet^{\stackrel{\alpha}{\rightleftarrows}} \bullet^{2}$ is a oriented cycle. A loop is an arrow with the same head and tail. In our example, there is only one loop \bullet^{2}.

Definition 1.1. Fix a field k. Let Q be a quiver. Consider a k-vector space

$$
V=\bigoplus_{i \in Q_{0}} V_{i}
$$

and a collection of k-linear maps

$$
\rho=\left\{\rho_{\gamma}: V_{i} \rightarrow V_{j} \mid \gamma \in Q_{1}, s(\gamma)=i, t(\gamma)=j\right\} .
$$

Then (V, ρ) is called a representation of Q. The dimension of the representation (V, ρ) is the vector $d \in \mathbb{Z}^{Q_{0}}$ such that $d_{i}=\operatorname{dim} V_{i}$.

We sometimes use a diagram to visualize a representation of a quiver. For example, if Q is of shape

$$
\bullet^{1} \xrightarrow{\alpha} \bullet^{2} \stackrel{\beta}{\leftarrow} \bullet^{3},
$$

and if $V_{1}=k^{2}, V_{2}=k, V_{3}=k$ and $\rho_{\alpha}=0, \rho_{\beta}=\mathrm{id}$, we present it as the following diagram:

$$
k^{2} \xrightarrow{0} k \stackrel{\text { id }}{\leftarrow} k .
$$

Definition 1.2. Let (V, ρ) and (W, σ) be two representations of Q. A morphism of representations $\phi:(V, \rho) \rightarrow(W, \sigma)$ is a set of linear maps $\left\{\phi_{i}: V_{i} \rightarrow W_{i} \mid i \in Q_{0}\right\}$ such that the diagram

$$
\begin{array}{ccc}
V_{j} & \stackrel{\rho_{\gamma}}{\leftrightarrows} & V_{i} \\
\downarrow \phi_{j} & & \downarrow \phi_{i} \\
W_{j} & \stackrel{\sigma_{\gamma}}{\longleftarrow} & W_{i}
\end{array}
$$

is commutative for every $\gamma \in Q_{1}$, where $i=s(\gamma), j=t(\gamma)$.
We say that two representations (V, ρ) and (W, σ) of Q are isomorphic if there exists a morphism $\phi:(V, \rho) \rightarrow(W, \sigma)$ such that ϕ_{i} is an isomorphism for every $i \in Q_{0}$.

The direct sum $(V \oplus W, \rho \oplus \sigma)$ of two representations (V, ρ) and (W, σ) of a quiver Q is defined in the obvious way.

A representaion (W, σ) is a subrepresentation of (V, ρ) if for every $i \in Q_{0}$ there is an inclusion $W_{i} \subset V_{i}$ such that for every $\gamma \in Q_{1}$ with $s(\gamma)=i$, the restriction of ρ_{γ} to W_{i} coincides with σ_{γ}.

A representation (V, ρ) is irreducible if it does not have non-trivial proper subrepresentations and is indecomposable if it can not be written as a direct sum of two non-trivial subrepresentations.

Example 1.3. Consider the quiver $1 \xrightarrow{\gamma} 2$ and the representation (V, ρ) which corresponds to the diagram $k \xrightarrow{\text { id }} k$. Then (V, ρ) has only one non-trivial proper subrepresentation, namely the one given by the diagram $0 \xrightarrow{0} k$. Therefore (V, ρ) is indecomposable but not irreducible.

In many cases it is not difficult to classify irreducible representations of a given quiver. On the other hand, classifiying all indecomposable representations up to isomorphism is very hard. Many classical problems of linear algebra can be viewed as particular cases of this general problem. Let us see few examples.

Example 1.4. Let Q be the quiver of Example 1.3. A representation of Q can be seen as a pair of vector spaces V_{1} and V_{2} together with a linear map $\rho_{\gamma}: V_{1} \rightarrow V_{2}$. Let us fix the dimension $\left(d_{1}, d_{2}\right)$ and identify V_{1} with $k^{d_{1}}, V_{2}$ with $k^{d_{2}}$. Classifying the representations of Q of dimension $\left(d_{1}, d_{2}\right)$ is equivalent to the following problem of linear algebra. Consider the space of matrices of size $d_{2} \times d_{1}$. Then the linear groups $G L\left(d_{1}\right)$ and $G L\left(d_{2}\right)$ act on this space by multiplication on the left and on the right respectively. We would like to describe all the orbits for this action.

Consider a representation (V, ρ) of Q. Choose subspaces $W_{1} \subset V_{1}$ and $W_{2} \subset V_{2}$ such that $V_{1}=\operatorname{Ker} \rho_{\gamma} \oplus W_{1}$ and $V_{2}=\rho_{\gamma}\left(W_{1}\right) \oplus W_{2}$. Note that ρ_{γ} induces an isomorphism $\alpha: W_{1} \rightarrow \rho_{\gamma}\left(W_{1}\right)$. Then (V, ρ) is the direct sum of the subrepresentations Ker $\rho_{\gamma} \xrightarrow{0} 0,0 \xrightarrow{0} W_{2}$ and $W_{1} \xrightarrow{\alpha} \rho_{\gamma}\left(W_{1}\right)$. It is clear that the first representation can be written as a direct sum of several copies of $k \xrightarrow{0} 0$, the second one is a direct sum of several copies of $0 \xrightarrow{0} k$. These decompositions are not unique, they depend on the choice of basis in $\operatorname{Ker} \rho_{\gamma}$ and W_{2}. Finally the representation $W_{1} \xrightarrow{\alpha} \rho_{\gamma}\left(W_{1}\right)$ can be written as a direct sum of several copies of $k \xrightarrow{\text { id }} k$.

Therefore there are three (up to isomorphism) indecomposable representations of Q. Their dimensions are $(1,0),(0,1)$ and $(1,1)$. Furthermore, in every dimension there are finitely many non-isomorphic representations. Quivers with the latter property are called quivers of finite type.

Example 1.5. Consider the quiver Q with one vertex and one loop. Then a finite-dimensional representation of Q is a pair (V, T), where V is a finite-dimensional vector space and T is a linear operator in V. Isomorphism classes of representations of this quiver are the same as conjugacy classes of $n \times n$ matrices when n is the dimension of V. If k is algebraically closed, this classification problem amounts to describing Jordan canonical forms of $n \times n$ matrices. In particular, indecomposable representations correspond to matrices with one Jordan block.

If k is not algebraically closed, the problem of classifying conjugacy classes of matrices is more tricky. This example shows that representation theory of quivers depends very much on the base field.

Example 1.6. Consider the Kronecker quiver • • Classification of finitedimensional representations of this quiver is also a classical problem of linear algebra. It amounts to the classification of pairs of linear operators $S, T: V_{1} \rightarrow V_{2}$ up to multiplication by some $X \in G L\left(V_{1}\right)$ on the left and by some $Y \in G L\left(V_{2}\right)$ on the right. It is still possible to obtain this classification by brute force. We will solve this problem using general theory of quivers in the next chapter.

Example 1.7. Now let Q be the quiver with one vertex and two loops. Representation theory of Q is equivalent to classifying pairs of linear operators (T, S) in a vector space V up to conjugation. In contrast with all previous examples in this case the number of variables parametrizing indecomposable representations of dimension n grows as n^{2}. We call a pair (T, S) generic if T is diagonal in some basis e_{1}, \ldots, e_{n} with distinct eigenvalues and the matrix of S in this basis does not have any zero entry.

Exercise 1.8. Check that if (T, S) is generic and $W \subset V$ is both T-stable and S-stable, then $W=0$ or $W=V$. Thus, the corresponding representation of Q is irreducible.

Therefore every generic pair of operators (T, S) gives rise to an irreducible representation of Q. The eigenvalues of T give n distinct parameters. If T is diagonalized, we can conjugate S by linear operators diagonal in the eigenbasis of T. Thus, we have $n^{2}-n$ parameters for the choice of S.

The situation which appears in this example is refered to as wild. There is a precise definition of wild quivers and we refer the reader to Chapter 9 for further reading on this subject.

2. Path algebra

As in the case of groups, we can reduce the representation theory of a quiver to the representation theory of some associative ring. In the case of groups, this ring is the group algebra, while in the case of quivers it is the path algebra.

Definition 2.1. Let Q be a quiver. A path p is a sequence $\gamma_{1}, \ldots, \gamma_{k}$ of arrows such that $s\left(\gamma_{i}\right)=t\left(\gamma_{i+1}\right)$. Set $s(p)=s\left(\gamma_{k}\right), t(p)=t\left(\gamma_{1}\right)$. The number k of arrows is called the length of p.

Definition 2.2. Let $p_{1}=\gamma_{1}, \ldots, \gamma_{k}$ and $p_{2}=\delta_{1}, \ldots, \delta_{l}$ be two paths of Q. We define the product of p_{1} and p_{2} to be the path $\delta_{1}, \ldots, \delta_{l}, \gamma_{1}, \ldots \gamma_{k}$ if $t\left(\gamma_{1}\right)=s\left(\delta_{l}\right)$ and zero otherwise.

Next we introduce elements e_{i} for each vertex $i \in Q_{0}$ and define the product of e_{i} and e_{j} by the formula

$$
e_{i} e_{j}=\delta_{i j} e_{i} .
$$

For a path p, we set

$$
\begin{aligned}
& e_{i} p=\left\{\begin{array}{l}
p, \text { if } i=t(p) \\
0 \text { otherwise }
\end{array},\right. \\
& p e_{i}=\left\{\begin{array}{l}
p, \text { if } i=s(p) \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

The path algebra $k(Q)$ of Q is the vector space of k-linear combinations of all paths of Q and elements $\left\{e_{i}\right\}_{i \in Q_{0}}$, with the multiplication law obtained by extending of the product defined above by bilinearity.

Note that every $e_{i}, i \in Q_{0}$, is an idempotent in $k(Q)$ and that $\sum_{i \in Q_{0}} e_{i}=1$.
Example 2.3. Let Q be the quiver with one vertex and n loops then $k(Q)$ is the free associative algebra with n generators.

Exercise 2.4. Let Q be a quiver such that the underlying graph of Q does not contain any cycle or loop. Let $Q_{0}=\{1, \ldots, n\}$. Show that the path algebra $k(Q)$ is isomorphic to the subalgebra of the matrix algebra $\operatorname{Mat}_{n}(k)$ generated by the subset of elementary matrices $\left\{E_{i i} \mid i \in Q_{0}\right\}$, $\left\{E_{j i} \mid \gamma \in Q_{1}, s(\gamma)=i, t(\gamma)=j\right\}$.

In particular, show that the path algebra of the quiver
$\bullet \leftarrow \bullet \leftarrow \cdots \leftarrow \bullet$
is isomorphic to the algebra B_{n} of upper triangular matrices, see Example 7.19 Chapter 5 .

Lemma 2.5. Let Q be a quiver.
(1) The path algebra $k(Q)$ is generated by the idempotents $\left\{e_{i} \mid i \in Q_{0}\right\}$ and the paths $\left\{\gamma \mid \gamma \in Q_{1}\right\}$ of length 1.
(2) The algebra $k(Q)$ is finite-dimensional if and only if Q does not contain an oriented cycle.
(3) If Q is the disjoint union of two quivers Q^{\prime} and $Q^{\prime \prime}$, then $k(Q)$ is isomorphic to the direct product $k\left(Q^{\prime}\right) \times k\left(Q^{\prime \prime}\right)$.
(4) The path algebra has a natural \mathbb{Z}-grading

$$
k(Q)=\bigoplus_{n=0}^{\infty} k(Q)_{(n)},
$$

where $k(Q)_{(0)}$ is the span of the idempotents e_{i} for all $i \in Q_{0}$ and $k(Q)_{(n)}$ is the span of all paths of length n.
(5) For every vertex $i \in Q_{0}$ the element e_{i} is a primitive idempotent of $k(Q)$, and hence $k(Q) e_{i}$ is an indecomposable projective $k(Q)$-module.

Proof. The first four assertions are straightforward and we leave them to the reader as an exercise. Let us prove (5).

Let $i \in Q_{0}$. By Exercise 7.14 Chapter 5, proving (5) amounts to checking that if $\varepsilon \in k(Q) e_{i}$ is an idempotent such that $e_{i} \varepsilon=\varepsilon e_{i}=\varepsilon$, then $\varepsilon=e_{i}$ or $\varepsilon=0$. We use the grading of $k(Q)$ defined in (4). By definition, the left ideal $k(Q) e_{i}$ inherits this grading. Hence we can write

$$
k(Q) e_{i}=\bigoplus_{n=0}^{\infty} k(Q)_{(n)} e_{i},
$$

where $k(Q)_{(0)} e_{i}=k e_{i}$ and, for $n>0$, the graded component $k(Q)_{(n)} e_{i}$ is spanned by the paths of length n with source at i. We can write $\varepsilon=\varepsilon_{0}+\cdots+\varepsilon_{l}$ with $\varepsilon_{n} \in k(Q)_{(n)} e_{i}$. Since ε is an idempotent, we have $\varepsilon_{0}^{2}=\varepsilon_{0}$, which implies $\varepsilon_{0}=e_{i}$ or $\varepsilon_{0}=0$. In the latter case let ε_{p} be the first non-zero term in the decomposition of ε. Then the first non-zero term in the decomposition of ε^{2} has degree no less than $2 p$. This implies $\varepsilon=0$. If $\varepsilon_{0}=e_{i}$, consider the idempotent $e_{i}-\varepsilon$ and apply the above argument again.

Given a representation (V, ρ) of a quiver $Q, V=\bigoplus_{i \in Q_{0}} V_{i}$ one can equip V with a structure of $k(Q)$-module in the following way
(1) The idempotent e_{i} acts on V_{j} by $\delta_{i j} \operatorname{Id}_{V_{j}}$.
(2) For $\gamma \in Q_{1}$ and $v \in V_{i}$ we set $\gamma v=\rho_{\gamma}(v)$ if $i=s(\gamma)$ and zero otherwise.
(3) We extend this action for the whole $k(Q)$ using Lemma 2.5 (1).

Conversely, every $k(Q)$-module V gives rise to a representation ρ of Q when one sets $V_{i}=e_{i} V$.

This implies the following Theorem. ${ }^{1}$
THEOREM 2.6. The category of representations of Q over a field k is equivalent to the category of $k(Q)$-modules.

Exercise 2.7. Let Q be a quiver and $J(Q)$ be the ideal of $k(Q)$ generated by all arrows $\gamma \in Q_{1}$. Then the quotient $k(Q) / J$ is a semisimple commutative ring isomorphic to $k^{Q_{0}}$.

Exercise 2.8. Let Q^{\prime} be a subquiver of a quiver Q. Let $I\left(Q^{\prime}\right)$ be the ideal of $k(Q)$ generated by e_{i} for all $i \notin Q_{0}^{\prime}$ and by all $\gamma \notin Q_{1}^{\prime}$. Prove that $k\left(Q^{\prime}\right)$ is isomorphic to the quotient ring $k(Q) / I\left(Q^{\prime}\right)$.

Lemma 2.9. Let $A=\bigoplus_{i=0}^{\infty} A_{(i)}$ be a graded algebra and R be the Jacobson radical of A. Then
(1) R is a graded ideal, i.e. $R=\bigoplus_{i=0}^{\infty} R_{(i)}$, where $R_{(i)}=R \cap A_{(i)}$;
(2) If $u \in R_{(p)}$ for some $p>0$, then u is nilpotent.

Proof. Assume first that the ground field k is infinite. Let $t \in k^{*}$. Consider the automorphism φ_{t} of A such that $\varphi_{t}(u)=t^{p} u$ for all $u \in A_{(p)}$. Observe that $\varphi_{t}(R)=R$. Suppose that u belongs to R and write it as the sum of homogeneous components $u=u_{0}+\cdots+u_{n}$ with $u_{j} \in A_{(j)}$. We have to show that $u_{i} \in R$ for all $i=1, \ldots, n$. Indeed,

$$
\varphi_{t}(u)=u_{0}+t u_{1}+\cdots+t^{n} u_{n} \in R
$$

[^0]for all $t \in k^{*}$. Since k is infinite, this implies $u_{i} \in R$ for all i. If k is finite, consider the algebra $A \otimes_{k} \bar{k}$ and use the fact that $R \otimes_{k} \bar{k}$ is included in the radical of $A \otimes_{k} \bar{k}$.

Let $u \in R_{(p)}$. Then $1-u$ is invertible. Hence there exists $a_{i} \in A_{(i)}$, for some $i=1, \ldots, n$ such that

$$
\left(a_{0}+a_{1}+\cdots+a_{n}\right)(1-u)=1 .
$$

This relation implies $a_{0}=1$ and $a_{p j}=u^{j}$ for all $j>0$. Thus $u^{j}=0$ for sufficiently large j.

Let us call a path p of a quiver Q a one way path if there is no path from $t(p)$ to $s(p)$.

ExERCISE 2.10. The span of all one way paths of Q is a two-sided nilpotent ideal in $k(Q)$.

Lemma 2.11. The Jacobson radical of the path algebra $k(Q)$ is the span of all one way paths of Q.

Proof. Let N be the span of all one way paths. By Exercise $2.10 N$ is contained in the radical of $k(Q)$.

Assume now that y belongs to the radical of $k(Q)$. Exercise 2.7 implies that $y \in$ $J(Q)$ and moreover by Lemma $2.9(2)$ we may assume that y is a linear combination of paths of the same length. We want to prove that $y \in N$. Note that $e_{i} y e_{j}$ belongs to the radical for all $i, j \in Q_{0}$. Assume that the statement is false. Then there exist i and j such that $z:=e_{i} y e_{j}$ is not in N, in other words there exists a path u with source j and target i. Furthermore $z u$ is a linear combination of oriented cycles u_{1}, \ldots, u_{l} of the same length. By Lemma $2.9 u$ must be nilpotent. But it is clearly not nilpotent. Contradiction.

Lemma 2.11 implies the following
Proposition 2.12. Let Q be a quiver which does not contain oriented cycles. Then $k(Q) / \operatorname{rad} k(Q) \simeq k^{n}$, where n is the number of vertices. In particular, every simple $k(Q)$-module is one dimensional.

Proof. The assumption on Q implies that every path is a one way path. Hence the radical of $k(Q)$ is equal to $J(Q)$.

3. Standard resolution and consequences

3.1. Construction of the standard resolution. A remarkable property of path algebras is the fact that every module has a projective resolution of length at most 2:

Theorem 3.1. Let Q be a quiver, A denote the path algebra $k(Q)$ and V be an A-module. Recall that $V=\bigoplus_{i \in Q_{0}} V_{i}$. Then the following sequence of A-modules

$$
0 \rightarrow \bigoplus_{\gamma \in Q_{1}} A e_{t(\gamma)} \otimes V_{s(\gamma)} \stackrel{f}{\rightarrow} \bigoplus_{i \in Q_{0}} A e_{i} \otimes V_{i} \xrightarrow{g} V \rightarrow 0
$$

\{VIIexoneway \}
\{VIIradical\}
\{VIIbasic $\}$
where

$$
f\left(a e_{t(\gamma)} \otimes v\right)=a e_{t(\gamma)} \gamma \otimes v-a e_{t(\gamma)} \otimes \gamma v
$$

for all $\gamma \in Q_{1}, v \in V_{s(\gamma)}$, and

$$
g\left(a e_{i} \otimes v\right)=a v
$$

for any $i \in Q_{0}, v \in V_{i}$, is exact. Hence it is a projective resolution of V.
\{VIIremthm2\}
Remark 3.2. The structure of A-modules considered in the statement is defined by the action of A on the lefthand side of the tensor product.

Proof. The fact that f and g are morphisms of A-modules is left to the reader. First, let us check that $g \circ f=0$. Indeed,

$$
g\left(f\left(a e_{j} \otimes v\right)\right)=g\left(a e_{j} \gamma \otimes v-a e_{j} \otimes \gamma v\right)=a e_{j} \gamma v-a e_{j} \gamma v=0 .
$$

Since $V=\oplus_{i \in Q_{0}} V_{i}$ and $V_{i}=e_{i} V, g$ is surjective.
Now let us check that f is injective. To simplify notations we set

$$
X=\bigoplus_{\gamma \in Q_{1}} A e_{t(\gamma)} \otimes V_{s(\gamma)}, \quad Y=\bigoplus_{i \in Q_{0}} A e_{i} \otimes V_{i} .
$$

Consider the \mathbb{Z}-grading

$$
A \otimes V=\bigoplus_{p=0}^{\infty} A_{(p)} \otimes V
$$

Since all $A e_{i}$ for $i \in Q_{0}$ are homogeneous left ideals of A, there are induced gradings $X=\oplus_{p \geq 0} X_{(p)}$ and $Y=\oplus_{p \geq 0} Y_{(p)}$. Define $f_{0}: X \rightarrow Y$ and $f_{1}: X \rightarrow Y$ by

$$
f_{1}\left(a e_{t(\gamma)} \otimes v\right)=a e_{t(\gamma)} \gamma \otimes v, \quad f_{0}\left(a e_{t(\gamma)} \otimes v\right)=a e_{t(\gamma)} \otimes \gamma v
$$

Note that for any $p \geq 0$ we have $f_{1}\left(X_{(p)}\right) \subset X_{(p+1)}$ and $f_{0}\left(X_{(p)}\right) \subset X_{(p)}$. Moreover, it is clear from the definition that f_{1} is injective. Since $f=f_{1}-f_{0}$, we obtain that f is injective by a simple argument on gradings.

It remains to prove that $\operatorname{Im} f=\operatorname{Ker} g$.
Exercise 3.3. Show that for any $p>0$ and $y \in Y_{(p)}$ there exists $y^{\prime} \in Y_{(p-1)}$ such that $y^{\prime} \equiv y \bmod \operatorname{Im} f$. (Hint: it suffices to check the statement for $x=u \otimes v$ where $v \in V_{i}$ and u is a path of length p with source i).

The exercise implies that for any $y \in Y$ there exists $y_{0} \in Y_{(0)}$ such that $y \equiv y_{0}$ $\bmod \operatorname{Im} f$. Let $y \in \operatorname{Ker} g$, then $y_{0} \in \operatorname{Ker} g$. But g restricted to $Y_{(0)}$ is injective. Thus, $y_{0}=0$ and $y \in \operatorname{Im} f$.
3.2. Extension groups. Let X and Y be two $k(Q)$-modules. We define a linear map

$$
\begin{equation*}
d: \bigoplus_{i \in Q_{0}} \operatorname{Hom}_{k}\left(X_{i}, Y_{i}\right) \rightarrow \bigoplus_{\gamma \in Q_{1}} \operatorname{Hom}_{k}\left(X_{s(\gamma)}, Y_{t(\gamma)}\right) \tag{7.1}
\end{equation*}
$$

by the formula

$$
\begin{equation*}
d \phi(x)=\phi(\gamma x)-\gamma \phi(x) \tag{7.2}
\end{equation*}
$$

for any $\gamma \in Q_{1}, x \in X_{s(\gamma)}$ and $\phi \in \operatorname{Hom}_{k}\left(X_{t(\gamma)}, Y_{t(\gamma)}\right)$. Theorem 3.1 implies that $\operatorname{Ext}^{1}(X, Y)$ is isomorphic to the cokernel of the map d.

According to Section 6.4 Chapter 5, every non-zero $\psi \in \operatorname{Ext}^{1}(X, Y)$ induces a non-split exact sequence

$$
0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0
$$

In our situation we can describe the $k(Q)$-module structure on Z precisely. Indeed, consider $\psi \in \bigoplus_{\gamma \in Q_{1}} \operatorname{Hom}_{k}\left(X_{s(\gamma)}, Y_{t(\gamma)}\right)$ and denote by ψ_{γ} the component of $\psi \in$ $\operatorname{Hom}_{k}\left(X_{s(\gamma)}, Y_{t(\gamma)}\right)$. We set $Z_{i}=X_{i} \oplus Y_{i}$ for every $i \in Q_{0}$. Furthermore, for every $\gamma \in Q_{1}$ with source i and target j we set

$$
\gamma(x, y)=\left(\gamma x, \gamma y+\psi_{\gamma} x\right)
$$

Obviously we obtain an exact sequence of $k(Q)$-modules

$$
0 \rightarrow Y \xrightarrow{i} Z \xrightarrow{\pi} X \rightarrow 0
$$

where $i(y)=(0, y)$ and $\pi(x, y)=x$. This exact sequence splits if and only if there exists $\eta \in \operatorname{Hom}_{Q}(X, Z)$ such that $\pi \circ \eta=\mathrm{Id}$. Note that $\eta=\oplus_{i \in Q_{0}} \eta_{i}$ with $\eta_{i} \in$ $\operatorname{Hom}_{k}\left(X_{i}, Z_{i}\right)$ and for every $x \in X_{i}$ we have

$$
\eta_{i}(x)=\left(x, \phi_{i} x\right),
$$

for some $\phi_{i} \in \operatorname{Hom}_{k}\left(X_{i}, Y_{i}\right)$. The condition that η is a morphism of $k(Q)$-modules implies that for every arrow $\gamma \in Q_{1}$ with source i and target j we have

$$
\gamma\left(x, \phi_{i} x\right)=\left(\gamma x, \gamma \phi_{i} x+\psi_{\gamma} x\right)=\left(\gamma x, \phi_{j} \gamma x\right) .
$$

Hence we have

$$
\psi_{\gamma} x=\phi_{j} \gamma x-\gamma \phi_{i} x .
$$

If we write $\phi=\oplus_{i \in Q_{0}} \phi_{i}$, then the latter condition is equivalent to $\psi=d \phi$.
Note also that Theorem 3.1 implies the following.
Proposition 3.4. In the category of representations of Q one has

$$
\operatorname{Ext}^{i}(X, Y)=0 \text { for all } i \geq 2
$$

Corollary 3.5. Let

$$
0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0
$$

be a short exact sequence of representations of Q, then the maps

$$
\operatorname{Ext}^{1}(V, Z) \rightarrow \operatorname{Ext}^{1}(V, X), \operatorname{Ext}^{1}(Z, V) \rightarrow \operatorname{Ext}^{1}(Y, V)
$$

are surjective.

END OF EDITING IN NANCY

Proof. Follows from Proposition 3.4 and the long exact sequence for extension groups, Theorem 5.7 Chapter 5.

Lemma 3.6. If X and Y are indecomposable finite-dimensional $k(Q)$-modules and $\operatorname{Ext}^{1}(Y, X)=0$, then every non-zero $\varphi \in \operatorname{Hom}_{Q}(X, Y)$ is either surjective or injective.

Proof. Consider the exact sequences

$$
\begin{gather*}
0 \rightarrow \operatorname{Ker} \varphi \rightarrow X \xrightarrow{\beta} \operatorname{Im} \varphi \rightarrow 0, \tag{7.3}\\
0 \rightarrow \operatorname{Im} \varphi \xrightarrow{\delta} Y \rightarrow S \cong Y / \operatorname{Im} \varphi \rightarrow 0 . \tag{7.4}
\end{gather*}
$$

Note that both sequences do not split. Let $\psi \in \operatorname{Ext}^{1}(S, \operatorname{Im} \varphi)$ be an element associated to the sequence (7.4). By Corollary 3.5 and (7.3) we have a surjective map

$$
g: \operatorname{Ext}^{1}(S, X) \rightarrow \operatorname{Ext}^{1}(S, \operatorname{Im} \varphi)
$$

Let $\psi^{\prime} \in g^{-1}(\psi)$. Then ψ^{\prime} induces a non-split exact sequence

$$
0 \rightarrow X \xrightarrow{\alpha} Z \rightarrow S \rightarrow 0 .
$$

This exact sequence and the sequence (7.4) can be arranged in the following commutative diagram

$$
\begin{array}{llllllll}
0 & \rightarrow & X & \xrightarrow{\alpha} & Z & \rightarrow & S & \rightarrow \\
\downarrow^{\beta} & & \downarrow^{\gamma} & & \downarrow^{\text {Id }} & & \\
0 & \rightarrow & \operatorname{Im} \varphi & \xrightarrow{\delta} Y & \rightarrow & S & \rightarrow & 0
\end{array}
$$

here β and γ are surjective. We claim that the sequence

$$
\begin{equation*}
0 \rightarrow X \xrightarrow{\alpha+\beta} Z \oplus \operatorname{Im} \varphi \xrightarrow{\gamma-\delta} Y \rightarrow 0 \tag{7.5}
\end{equation*}
$$

is exact. Indeed, $\alpha+\beta$ is obviously injective and $\gamma-\delta$ is surjective. Furthermore, $\operatorname{dim} Z=\operatorname{dim} X+\operatorname{dim} S, \operatorname{dim} \operatorname{Im} \varphi=\operatorname{dim} Y-\operatorname{dim} S$. Therefore,

$$
\operatorname{dim}(Z \oplus \operatorname{Im} \varphi)=\operatorname{dim} X+\operatorname{dim} Y,
$$

and therefore $\operatorname{Ker}(\gamma-\delta)=\operatorname{Im}(\alpha+\beta)$.

By the assumption $\operatorname{Ext}^{1}(Y, X)=0$. Hence the exact sequence (7.5) splits, and we have an isomorphism

$$
Z \oplus \operatorname{Im} \varphi \cong X \oplus Y
$$

By the Krull-Schmidt theorem either $X \cong \operatorname{Im} \varphi$ and hence φ is injective or $Y \cong \operatorname{Im} \varphi$ and hence φ is surjective.
3.3. Canonical bilinear form and Euler characteristic. Let Q be a quiver and X be a finite-dimensional $k(Q)$-module. We use the notation $x=\operatorname{dim} X \in \mathbb{Z}^{Q_{0}}$ where $x_{i}=\operatorname{dim} X_{i}$ for every $i \in Q_{0}$.

We define the bilinear form on $\mathbb{Z}^{Q_{0}}$ by the formula

$$
\langle x, y\rangle:=\sum_{i \in Q_{0}} x_{i} y_{i}-\sum_{\gamma \in Q_{1}} x_{s(\gamma)} y_{t(\gamma)}=\operatorname{dim} \operatorname{Hom}_{Q}(X, Y)-\operatorname{dim} \operatorname{Ext}^{1}(X, Y),
$$

where the second equality follows from calculating Euler characteristic in (7.1). The symmetric form

$$
(x, y):=\langle x, y\rangle+\langle y, x\rangle
$$

is called the Tits form of the quiver Q. We also consider the corresponding quadratic form

$$
q(x):=\langle x, x\rangle .
$$

4. Bricks

Here we discuss further properties of finite-dimensional representations of a path algebra $k(Q)$. In the rest of this chapter we assume that the ground field k is algebraically closed and all representations are finite-dimensional.

Definition 4.1. A $k(Q)$-module X is a brick, if $\operatorname{End}_{Q}(X)=k$.
Exercise 4.2. If X is a brick, then X is indecomposable. If X is indecomposable and $\operatorname{Ext}^{1}(X, X)=0$, then X is a brick (by Lemma 3.6).

Example 4.3. Consider the quiver $\bullet \rightarrow \bullet$. Then every indecomposable representation is a brick.

For the Kronecker quiver • $\Rightarrow \bullet$ the representation $k^{2} \Rightarrow k^{2}$ with $\rho_{\gamma_{1}}=\mathrm{Id}$, $\rho_{\gamma_{2}}=\binom{01}{00}$ is not a brick because $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ with $\varphi_{1}=\varphi_{2}=\binom{01}{00}$ is a non-scalar element in $\operatorname{End}_{Q}(X)$.

Lemma 4.4. Let X be an indecomposable $k(Q)$-module which is not a brick. Then X contains a brick W such that $\operatorname{Ext}^{1}(W, W) \neq 0$.

Proof. We will prove the lemma by induction on the length l of X. The base case $l=1$ is trivial, since in this case X is irreducible and hence a brick by the Schur lemma.

Recall that if X is indecomposable and has finite length, then $\varphi \in \operatorname{End}_{Q}(X)$ is either an isomorphism or nilpotent. Therefore, since k is algebraically closed and
X is not a brick, the algebra $\operatorname{End}_{Q}(X)$ contains a non-zero nilpotent element. Let $\varphi \in \operatorname{End}_{Q}(X)$ be a non-zero operator of minimal rank. Then φ is nilpotent and $\operatorname{rk} \varphi^{2}<\operatorname{rk} \varphi$, hence $\varphi^{2}=0$.

Let $Y:=\operatorname{Im} \varphi, Z:=\operatorname{Ker} \varphi$. Clearly, $Y \subset Z$. Consider a decomposition

$$
Z=Z_{1} \oplus \cdots \oplus Z_{p}
$$

into a sum of indecomposable submodules. Denote by p_{i} the projection $Z \rightarrow Z_{i}$. Let i be such that $p_{i}(Y) \neq 0$. Set $\eta:=p_{i} \circ \varphi, Y_{i}:=p_{i}(Y)=\eta(Z)$. Note that by our assumption rk $\eta=\operatorname{rk} \varphi$, therefore Y_{i} is isomorphic to Y. Let $Y_{i}=p_{i}(Y)$. Then Ker $\eta=Z$ and $\operatorname{Im} \eta=Y_{i}$.

Note that the exact sequence

$$
0 \rightarrow Z \rightarrow X \xrightarrow{\eta} Y_{i} \rightarrow 0
$$

does not split since X is indecomposable. Let X_{i} be the quotient of X by the submodule $\oplus_{j \neq i} Z_{j}$ and $\pi: X \rightarrow X_{i}$ be the canonical projection. Then we have the exact sequence

$$
0 \rightarrow Z_{i} \rightarrow X_{i} \xrightarrow{\bar{\eta}} Y_{i} \rightarrow 0
$$

where $\bar{\eta}:=\eta \circ \pi^{-1}$ is well define since $\operatorname{Ker} \pi \subset \operatorname{Ker} \eta$. We claim that (7.6) does not split. Indeed, if it splits, then X_{i} decomposes into a direct sum $Z_{i} \oplus L$ for some submodule $L \subset X_{i}$ which is isomorphic to Y_{i}. But then $X=Z_{i} \oplus \pi^{-1}(L)$, which contradicts indecomposability of X.

Therefore we have shown that $\operatorname{Ext}^{1}\left(Y_{i}, Z_{i}\right) \neq 0$. Recall that Y_{i} is a submodule of Z_{i}. By Corollary 3.5 we have the surjection

$$
\operatorname{Ext}^{1}\left(Z_{i}, Z_{i}\right) \rightarrow \operatorname{Ext}^{1}\left(Y_{i}, Z_{i}\right)
$$

Hence $\operatorname{Ext}^{1}\left(Z_{i}, Z_{i}\right) \neq 0$.
The length of Z_{i} is less than the length of X. If Z_{i} is not a brick, then it contains a brick W by the induction assumption.

Corollary 4.5. Assume that Q is a quiver such that its Tits form is positive definite. Then every indecomposable representation X of Q is a brick with trivial $\operatorname{Ext}^{1}(X, X)$. Moreover, if $x=\operatorname{dim} X$, then $q(x)=1$.

Proof. Assume that X is not a brick, then it contains a brick Y such that $\operatorname{Ext}^{1}(Y, Y) \neq 0$. Then

$$
q(y)=\operatorname{dim} \operatorname{End}_{Q}(Y)-\operatorname{dim}_{\operatorname{Ext}^{1}}(Y, Y)=1-\operatorname{dim} \operatorname{Ext}^{1}(Y, Y) \leq 0
$$

but this is impossible. Therefore X is a brick. Then

$$
q(x)=\operatorname{dim} \operatorname{End}_{Q}(X)-\operatorname{dim} \operatorname{Ext}^{1}(X, X)=1-\operatorname{dim} \operatorname{Ext}^{1}(X, X) \geq 0
$$

By positivity of q we have $q(x)=1$ and $\operatorname{dim} \operatorname{Ext}^{1}(X, X)=0$.

5. Orbits in representation variety

Fix a quiver Q. For arbitrary $x \in \mathbb{N}^{Q_{0}}$ consider the space

$$
\operatorname{Rep}(x):=\prod_{\gamma \in Q_{1}} \operatorname{Hom}_{k}\left(k^{x_{s}(\gamma)}, k^{x_{t(\gamma)}}\right) .
$$

We can see every representation of Q of dimension x as a point $\rho \in \operatorname{Rep}(x)$ with components ρ_{γ} for every $\gamma \in Q_{1}$.

Let us consider the group

$$
G=\prod_{i \in Q_{0}} \mathrm{GL}\left(k^{x_{i}}\right)
$$

and define an action of G on $\operatorname{Rep}(x)$ by the formula

$$
g \rho_{\gamma}:=g_{t(\gamma)} \rho_{\gamma} g_{s(\gamma)}^{-1} \quad \text { for every } \quad \gamma \in Q_{1} .
$$

Two representations ρ and ρ^{\prime} of Q are isomorphic if and only if they belong to the same orbit of G. In other words we have a bijection between isomorphism classes of representations of Q of dimension x and G-orbits in $\operatorname{Rep}(x)$. For a representation X we denote by O_{X} the corresponding G-orbit in Rep (x).

Note that

$$
\operatorname{dim} \operatorname{Rep}(x)=\sum_{\gamma \in Q_{1}} x_{s(\gamma)} x_{t(\gamma)}, \quad \operatorname{dim} G=\sum_{i \in Q_{0}} x_{i}^{2},
$$

therefore

$$
\begin{equation*}
\{\text { equ30 }\} \quad \operatorname{dim} \operatorname{Rep}(x)-\operatorname{dim} G=-q(x) . \tag{7.6}
\end{equation*}
$$

Let us formulate without proof certain properties of G-action on $\operatorname{Rep}(x)$. They follow from the general theory of algebraic groups, see for instance Humphreys. We work in Zariski topology.

- Each orbit is open in its closure;
- if O and O^{\prime} are two distinct orbits and O^{\prime} belongs to the closure of O, then $\operatorname{dim} O^{\prime}<\operatorname{dim} O$;
- If (X, ρ) is a representation of Q, then $\operatorname{dim} O_{X}=\operatorname{dim} G-\operatorname{dim} \operatorname{Stab}_{X}$, where Stab $_{X}$ denotes the stabilizer of ρ.
\{VIIlm15\}
Lemma 5.1. For any representation (X, ρ) of dimension x we have

$$
\operatorname{dim} \operatorname{Stab}_{X}=\operatorname{dim~Aut}_{Q}(X)=\operatorname{dim} \operatorname{End}_{Q}(X)
$$

Proof. The condition that $\phi \in \operatorname{End}_{Q}(X)$ is not invertible is given by the polynomial equations

$$
\prod_{i \in Q_{0}} \operatorname{det} \phi_{i}=0
$$

Since $\operatorname{Aut}_{Q}(X)$ is not empty and open in $\operatorname{End}_{Q}(X)$, we obtain that $\operatorname{Aut}_{Q}(X)$ and $\operatorname{End}_{Q}(X)$ have the same dimension.

Corollary 5.2. If (X, ρ) is a representation of Q and $\operatorname{dim} X=x$, then
\{VIIcor16\} $\operatorname{codim} O_{X}=\operatorname{dim} \operatorname{Rep}(x)-\operatorname{dim} G+\operatorname{dim} \operatorname{Stab}_{X}=-q(x)+\operatorname{dim} \operatorname{End}_{Q}(X)=\operatorname{dim} \operatorname{Ext}^{1}(X, X)$.

Lemma 5.3. Let (Z, τ) be a nontrivial extension of (Y, σ) by (X, ρ), i.e. there is a non-split exact sequence

$$
0 \rightarrow X \rightarrow Z \rightarrow Y \rightarrow 0
$$

Then $O_{X \oplus Y}$ belongs to the closure of O_{Z} and $O_{X \oplus Y} \neq O_{Z}$.
Proof. Following Section 3.2 for every $i \in Q_{0}$ consider a decomposition $Z_{i}=$ $X_{i} \oplus Y_{i}$ such that for every $\gamma \in Q_{1}$ and $(x, y) \in X_{s(\gamma)} \oplus Y_{s(\gamma)}$

$$
\tau_{\gamma}(x, y)=\left(\rho_{\gamma}(x)+\psi_{\gamma}(y), \sigma_{\gamma}(y)\right)
$$

for some $\psi_{\gamma} \in \operatorname{Hom}\left(Y_{s(\gamma)}, X_{t(\gamma)}\right)$.
Next, for every $\lambda \in k \backslash 0$ define $g^{\lambda} \in G$ by setting for every $i \in Q_{0}$

$$
\left.g_{i}^{\lambda}\right|_{X_{i}}=\operatorname{Id}_{X_{i}},\left.\quad g_{i}^{\lambda}\right|_{Y_{i}}=\lambda \operatorname{Id}_{Y_{j}} .
$$

Then we have

$$
g^{\lambda} \tau_{\gamma}(x, y)=\left(\rho_{\gamma}(x)+\lambda \psi_{\gamma}(y), \sigma_{\gamma}(y)\right) .
$$

The latter formula makes sence even for $\lambda=0$ and $g^{0} \tau$ lies in the closure of $\left\{g^{\lambda} \tau \mid \lambda \in\right.$ $k \backslash 0\}$. Furthermore $g^{0} \tau$ is the direct sum $X \oplus Y$. Hence $O_{X \oplus Y}$ belongs to the closure of O_{Z}.

It remains to check that $X \oplus Y$ is not isomorphic to Z. This follows immediately from the inequality

$$
\operatorname{dim} \operatorname{Hom}_{Q}(Y, Z)<\operatorname{dim} \operatorname{Hom}_{Q}(Y, X \oplus Y)
$$

The following corollary is straightforward.
Corollary 5.4. If the orbit O_{X} is closed in $\operatorname{Rep}(x)$, then X is semisimple.
Corollary 5.5. Let (X, ρ) be a representation of Q and $X=\bigoplus_{j=1}^{m} X_{j}$ be a decomposition into the direct sum of indecomposable submodules. If O_{X} is an orbit of maximal dimension in $\operatorname{Rep}(x)$, then $\operatorname{Ext}^{1}\left(X_{i}, X_{j}\right)=0$ for all $i \neq j$.

Proof. If $\operatorname{Ext}^{1}\left(X_{i}, X_{j}\right) \neq 0$, then by Lemma 5.3 we can construct a representation (Z, τ) such that O_{X} is in the closure of O_{Z}. Then $\operatorname{dim} O_{X}<\operatorname{dim} O_{Z}$.

6. Coxeter-Dynkin and affine graphs

6.1. Definition and properties. Let Γ be a connected non-oriented graph with vertices Γ_{0} and edges Γ_{1}. We define the Tits form (\cdot, \cdot) on $\mathbb{Z}^{\Gamma_{0}}$ by

$$
(x, y):=\sum_{i \in \Gamma_{0}}(2-2 l(i)) x_{i} y_{i}-\sum_{(i, j) \in \Gamma_{1}} x_{i} y_{j}
$$

where $l(i)$ is the number of loops at i. If we equip all edges of Γ with orientation then the symmetric form coincides with the introduced earlier symmetric form of the corresponding quiver. We define the quadratic form q on $\mathbb{Z}^{\Gamma_{0}}$ by

$$
q(x):=\frac{(x, x)}{2}
$$

By $\left\{\epsilon_{i} \mid i \in \Gamma_{0}\right\}$ we denote the standard basis in $\mathbb{Z}^{\Gamma_{0}}$. If Γ does not have loops, then $\left(\epsilon_{i}, \epsilon_{i}\right)=2$ for all $i \in \Gamma_{0}$. If $i, j \in \Gamma_{0}$ and $i \neq j$, then $\left(\epsilon_{i}, \epsilon_{j}\right)$ equals minus the number of edges between i and j. The matrix of the form (\cdot, \cdot) in the standard basis is called the Cartan matrix of Γ.

Example 6.1. The Cartan matrix of $\bullet-\bullet$ is $\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$. The Cartan matrix of the loop is (0).

Definition 6.2. A connected graph Γ is called Coxeter-Dynkin if its Tits form (\cdot, \cdot) is positive definite and affine if (\cdot, \cdot) is positive semidefinite but not positive definite. If Γ is neither Coxeter-Dynkin nor affine, then we say that it is of indefinite type.

Remark 6.3. For affine graph Γ the form (\cdot, \cdot) is necessarily degenerate. Furthermore

$$
\begin{equation*}
\{\text { viIeqform }\} \quad \operatorname{Ker}(\cdot, \cdot)=\left\{x \in \mathbb{Z}^{Q_{0}} \mid(x, x)=0\right\} \tag{7.7}
\end{equation*}
$$

Lemma 6.4. (a) If Γ is affine then the kernel of (\cdot, \cdot) equals $\mathbb{Z} \delta$ for some $\delta \in \mathbb{N}^{\Gamma_{0}}$ with all $\delta_{i}>0$.
(b) If Γ is of indefinite type, then there exists $x \in \mathbb{N}^{\Gamma_{0}}$ such that $(x, x)<0$.

Proof. Let $x \in \mathbb{Z}^{Q_{0}}$. We define $\operatorname{supp} x$ to be the set of vertices $i \in Q_{0}$ such that $x_{i} \neq 0$. Let $|x|$ be defined by the condition $|x|_{i}=\left|x_{i}\right|$ for all $i \in Q_{0}$. Note that $\operatorname{supp} x=\operatorname{supp}|x|$ and by the definition of (\cdot, \cdot) we have

$$
\{\text { first }\} \quad(|x|,|x|) \leq(x, x)
$$

To prove (b) we just notice that if Γ is of indefinite type then there exists $x \in \mathbb{Z}^{Q_{0}}$ such that $(x, x)<0$. But then (7.8) implies $(|x|,|x|)<0$.

Now let us prove (a). Let $\delta \in \operatorname{Ker}(\cdot, \cdot)$ and $\delta \neq 0$. Then (7.8) and (7.7) imply that $|\delta|$ also lies in $\operatorname{Ker}(\cdot, \cdot)$. Next we prove that $\operatorname{supp} \delta=Q_{0}$. Indeed, otherwise we
can choose $i \in Q_{0} \backslash \operatorname{supp} \delta$ such that i is connected with at least one vertex in $\operatorname{supp} \delta$. Then $\left(\epsilon_{i}, \delta\right)<0$, therefore

$$
\left(\epsilon_{i}+2 \delta, \epsilon_{i}+2 \delta\right)=2+4\left(\epsilon_{i}, \delta\right)<0
$$

and Γ is not affine.
Finally let $\delta^{\prime}, \delta \in \operatorname{Ker}(\cdot, \cdot)$. Since $\operatorname{supp} \delta=\operatorname{supp} \delta^{\prime}=Q_{0}$, one can find $a, b \in \mathbb{Z}$ such that $\operatorname{supp}\left(a \delta+b \delta^{\prime}\right) \neq Q_{0}$. Then by above $a \delta+b \delta^{\prime}=0$. Hence $\operatorname{Ker}(\cdot, \cdot)$ is one-dimensional and the proof of (a) is complete.

Note that (a) implies the following
\{subgraph
Corollary 6.5. Let Γ be Coxeter-Dynkin or affine. Any proper connected subgraph of Γ is Coxeter-Dynkin.

Definition 6.6. A non-zero vector $x \in \mathbb{Z}^{Q_{0}}$ is called a root if $q(x) \leq 1$. Note for every $i \in Q_{0}, \epsilon_{i}$ is a root. It is called a simple root.

Exercise 6.7. Let Γ be a connected graph. Show that the number of roots is finite if and only if Γ is a Coxeter-Dynkin graph.

Lemma 6.8. Let Γ be Coxeter-Dynkin or affine. If x is a root, then either all $x_{i} \geq 0$ or all $x_{i} \leq 0$.

Proof. Assume that the statement is false. Let

$$
I^{+}:=\left\{i \in Q_{0} \mid x_{i}>0\right\}, \quad I^{-}:=\left\{i \in Q_{0} \mid x_{i}<0\right\}, \quad x^{ \pm}=\sum_{i \in I^{ \pm}} x_{i} \epsilon_{i} .
$$

Then $x=x^{+}+x^{-}$and $\left(x^{+}, x^{-}\right) \geq 0$. Furthermore, since Γ is Coxeter-Dynkin or affine, we have $q\left(x^{ \pm}\right)>0$. Therefore

$$
q(x)=q\left(x^{+}\right)+q\left(x^{-}\right)+\left(x^{+}, x^{-}\right)>1 .
$$

We call a root x positive (resp. negative) if $x_{i} \geq 0\left(\right.$ resp. $\left.x_{i} \leq 0\right)$ for all $i \in Q_{0}$.
6.2. Classification. The following are all Coxeter-Dynkin graphs (below n is the number of vertices).

The affine graphs, except the loop - , are obtained from the Coxeter-Dynkin graphs by adding a vertex (see Corollary 6.5). Here they are.

For $n>1, \tilde{A}_{n}$ is a cycle with $n+1$ vertices. In this case $\delta=(1, \ldots, 1)$.
In what follows the numbers are the coordinates of δ.

The proof that the above classification is complete is presented below in the exercises.
\{exVIID1\}
Exercise 6.9. Check that $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$ are Coxeter-Dynkin using the Sylvester criterion and the fact that every subgraph of a Coxeter-Dynkin graph is CoxeterDynkin. One can calculate the determinant of a Cartan matrix inductively. It is $n+1$ for $A_{n}, 4$ for $D_{n}, 3$ for $E_{6}, 2$ for E_{7} and 1 for E_{8}.

Exercise 6.10. Check that the Cartan matrices of $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}$ have corank 1 and every proper connected subgraph is Coxeter-Dynkin. Conclude that these graphs are affine.

Exercise 6.11. Let Γ be a Coxeter-Dynkin graph. Using Corollary 6.5 prove that Γ does not have loops, cycles and multiple edges. Prove that Γ has no vertices of degree 4 and at most one vertex of degree 3 .

Exercise 6.12. Let a Coxeter-Dynkin graph Γ have a vertex of degree 3. Let p, q and r be the lengths of "legs" coming from this vertex. Prove that $\frac{1}{p}+\frac{1}{q}+\frac{1}{s}>1$. Use this to complete classification of Coxeter-Dynkin graphs.

Exercise 6.13. Complete classification of affine graphs using Corollary 6.5, Exercise 6.10 and Exercise 6.12.

7. Quivers of finite type and Gabriel's theorem

Recall that a quiver is of finite type if it has finitely many isomorphism classes of indecomposable representations.

ExErcise 7.1. Prove that a quiver is of finite type if and only if all its connected components are of finite type.
\{exVIID2\}
\{exVIID3\}
\{exVIID4\}
\{exVIID5\}
\{thVIIGabriel\}

Theorem 7.2. (Gabriel) Let Q be a connected quiver and Γ be its underlying graph. Then
(1) The quiver Q has finite type if and only if Γ is a Coxeter-Dynkin graph.
(2) Assume that Γ is a Coxeter-Dynkin graph and (X, ρ) is an indecomposable representation of Q. Then $\operatorname{dim} X$ is a positive root.
(3) If Γ is a Coxeter-Dynkin graph, then for every positive root $x \in \mathbb{Z}^{Q_{0}}$ there is exactly one indecomposable representation of Q of dimension x.

Proof. Let us first prove that if Q is of finite type then Γ is a Coxeter-Dynkin graph. Indeed, if Q is of finite type, then for every $x \in \mathbb{N}^{Q_{0}}, \operatorname{Rep}(x)$ has finitely many G-orbits. Therefore $\operatorname{Rep}(x)$ must contain an open orbit. Assume that Q is not Coxeter-Dynkin. Then there exists a non-zero $x \in \mathbb{Z}^{Q_{0}}$ such that $q(x) \leq 0$. Let $O_{X} \subset \operatorname{Rep}(x)$ be an open orbit. Then $\operatorname{codim} O_{X}=0$. But by Corollary 5.2
(7.9) $\left\{\right.$ equ91\} $\quad \operatorname{codim} O_{X}=\operatorname{dim} \operatorname{End}_{Q}(X)-q(x)>0$.

This is a contradiction.

Now assume that Γ is Coxeter-Dynkin. To show that Q is of finite type it suffices to prove assertions (2) and (3).

Note that (2) follows from Corollary 4.5.
Suppose that x is a positive root. Let (X, ρ) be a representation of Q such that $\operatorname{dim} O_{X}$ in $\operatorname{Rep}(x)$ is maximal. Let us prove that X is indecomposable. Indeed, let $X=X_{1} \oplus \cdots \oplus X_{s}$ be a sum of indecomposable bricks. Then by Corollary 5.5 $\operatorname{Ext}^{1}\left(X_{i}, X_{j}\right)=0$. Therefore $q(x)=s=1$ and X is indecomposable.

Finally, if (X, ρ) is an indecomposable representation of Q, then (7.9) implies that O_{X} is an open orbit in $\operatorname{Rep}(x)$. By irreducibility, $\operatorname{Rep}(x)$ has at most one open orbit. Hence (3) is proved.

Remark 7.3. Gabriel's theorem implies that the propery of a quiver to be of finite type depends only on the underlying graph and does not depend on orientation.

Remark 7.4. Theorem 7.2 does not provide an algorithm for finding all indecomposable representations of quivers with Coxeter-Dynkin underlying graphs. We give such algorithm in the next chapter using the reflection functor.

Exercise 7.5. Let Q be a quiver whose underlying graph is A_{n}. Check that the positive roots are in bijection with connected subgraphs of A_{n}. For each positive root x give a precise construction of an indecomposable representation of dimension x.

CHAPTER 8

Representations of Dynkin and affine quivers

1. Reflection functors

For a quiver Q we denote by $\bmod _{Q}$ the category of representations of Q. Let i be a vertex of Q. We denote by $Q_{+}(i)$ the set of all arrows of Q with target i and by $Q_{-}(i)$ the set of all arrows of Q with source i. We say that a vertex $i \in Q_{0}$ is $(+)$-admissible if $Q_{-}(i)=\emptyset$ and $(-)$-admissible if $Q_{+}(i)=\emptyset$. By $\sigma_{i}(Q)$ we denote the quiver obtained from Q by inverting all arrows belonging to $Q_{+}(i) \cup Q_{-}(i)$. Note that we have

$$
\sigma_{i}(Q)_{-}(i)=Q_{+}(i), \quad \sigma_{i}(Q)_{+}(i)=Q_{-}(i)
$$

Let $i \in Q_{0}$ be a $(+)$-admissible vertex and $Q^{\prime}:=\sigma_{i}(Q)$. Let us introduce the reflection functor $F_{i}^{+}: \bmod _{Q} \rightarrow \bmod _{Q^{\prime}}$. For every representation (X, ρ) of Q we define $\left(X^{\prime}, \rho^{\prime}\right):=F_{i}^{+}(X, \rho)$ as follows. If $j \neq i$, then we set $X_{j}^{\prime}:=X_{j}$. If $\gamma \notin Q_{+}(i)$, then we set $\rho_{\gamma}^{\prime}:=\rho_{\gamma}$. Next we consider the map

$$
h=\sum_{\gamma \in Q_{+}(i)} \rho_{\gamma}: \bigoplus_{\gamma \in Q_{+}(i)} X_{s(\gamma)} \rightarrow X_{i}
$$

and set $X_{i}^{\prime}:=\operatorname{Ker} h$. Finally for every $\gamma \in Q_{-}^{\prime}(i)$ we define $\rho_{\gamma}^{\prime}: X_{i}^{\prime} \rightarrow X_{t(\gamma)}$ to be the restriction of the canonical projection Ker $h \rightarrow X_{t(\gamma)}$. One defines the action of F_{i}^{+} on morphisms in the natural way.

If $i \in Q_{0}$ is a $(-)$-admissible vertex, we define the reflection functor F_{i}^{-}from the category of representations of Q to the category of representations of $Q^{\prime}:=\sigma_{i}(Q)$ in the following way. We set $\left(X^{\prime}, \rho^{\prime}\right)=F_{i}^{-}(X, \rho)$, where $X_{j}^{\prime}=X_{j}$ for all $j \neq i, \rho_{\gamma}^{\prime}=\rho_{\gamma}$ for all $\gamma \notin Q_{-}(i), X_{i}^{\prime}:=\operatorname{Coker} \widetilde{h}$, where

$$
\widetilde{h}=\sum_{\gamma \in Q_{-}(i)} \rho_{\gamma}: X_{i} \rightarrow \bigoplus_{\gamma \in Q_{-}(i)} X_{t(\gamma)},
$$

and for every $\gamma \in Q_{+}^{\prime}(i), \rho_{\gamma}^{\prime}: X_{s(\gamma)} \rightarrow X_{i}^{\prime}$ is the composition

$$
X_{s(\gamma)} \hookrightarrow \bigoplus_{\gamma \in Q_{-}(i)} X_{s(\gamma)} \rightarrow X_{i}^{\prime}
$$

Example 1.1. Let Q be the quiver $\bullet \rightarrow \bullet$. Then $\sigma_{1}(Q)=\sigma_{2}(Q)=Q^{o p}$. If (X, ρ) is the representation presented by the diagram $k \rightarrow 0, F_{1}^{-}(X, \rho)$ is the zero representation and $F_{2}^{+}(X, \rho)$ is presented by the diagram $k \stackrel{\text { id }}{\leftarrow} k$.

ExERCISE 1.2. Let Q be a quiver. Denote by $Q^{\text {op }}$ the quiver with the same set of vertices and with all arrows reversed. Define a contravariant duality functor $D: \bmod _{Q} \rightarrow \bmod _{Q^{o p}}$ by setting

$$
D\left(X_{j}\right)=X_{j}^{*}\left(j \in Q_{0}\right), \quad D\left(\rho_{\gamma}\right)=\rho_{\gamma}^{*}\left(\gamma \in Q_{1}\right)
$$

Show that if $i \in Q_{0}$ is $(+)$-admissible then

$$
D \circ F_{i}^{+}=F_{i}^{-} \circ D
$$

Exercise 1.3. Let $i \in Q_{0}$ and denote by $\left(L_{i}, \rho_{i}\right)$ the irreducible representation of Q which has k in the vertex i and zero in all other vertices. If i is (+)-admissible, then $F_{i}^{+}\left(L_{i}\right)=0$ and if i is $(-)$-admissible, then $F_{i}^{-}\left(L_{i}\right)=0$.

Let $Q^{\prime}=\sigma_{i}(Q), X$ be a representation of Q^{\prime} and Y be a representation of Q, set $X^{\prime}=F_{i}^{-} X$ and $Y^{\prime}=F_{i}^{+} Y$. Let $\eta \in \operatorname{Hom}_{Q}\left(X, Y^{\prime}\right)$, we define $\chi \in \operatorname{Hom}_{Q^{\prime}}\left(X^{\prime}, Y\right)$ by setting $\chi_{j}=\eta_{j}$ for $j \neq i$ and deducing χ_{i} from the following commutative diagram

$$
\begin{array}{rllllll}
& X_{i} & \xrightarrow{\tilde{h}} \underset{\downarrow^{\prime}}{\oplus X_{j}} & \xrightarrow{h} & X_{i}^{\prime} & \rightarrow 0 \\
& \downarrow^{\eta_{i}} & & \downarrow \oplus \eta_{j} & & \downarrow^{\chi_{i}} & \\
0 \rightarrow & Y_{i}^{\prime} & \xrightarrow{\tilde{h}} \oplus Y_{j}^{\prime} & \xrightarrow{h} & Y_{i}
\end{array}
$$

Note that χ_{i} is uniquely determined by η. Similarly, for each $\chi \in \operatorname{Hom}_{Q}\left(X^{\prime}, Y\right)$, one can define $\eta \in \operatorname{Hom}_{Q^{\prime}}\left(X, Y^{\prime}\right)$. A routine check now proves the following

Lemma 1.4. Let $Q^{\prime}=\sigma_{i}(Q), X$ be a representation of Q^{\prime} and Y be a representation of Q, then

$$
\operatorname{Hom}_{Q}\left(F_{i}^{-} X, Y\right) \cong \operatorname{Hom}_{Q^{\prime}}\left(X, F_{i}^{+} Y\right) .
$$

This means that the functors F_{i}^{+}and F_{i}^{-}are mutually adjoint and it implies:
Lemma 1.5. The functor F_{i}^{+}is left exact and the functor F_{i}^{-}is right exact.
Proof. Indeed, let $X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0$ be an exact sequance of $k\left(Q^{\prime}\right)$-modules and let Y be a $k(Q)$-module. The sequence

$$
0 \rightarrow \operatorname{Hom}_{Q^{\prime}}\left(X^{\prime \prime}, F_{i}^{+}(Y)\right) \rightarrow \operatorname{Hom}_{Q^{\prime}}\left(X, F_{i}^{+}(Y)\right) \rightarrow \operatorname{Hom}_{Q^{\prime}}\left(X^{\prime}, F_{i}^{+}(Y)\right)
$$

is exact since Hom is left-exact, and is isomorphic to

$$
0 \rightarrow \operatorname{Hom}_{Q}\left(F_{i}^{-}\left(X^{\prime \prime}\right), Y\right) \rightarrow \operatorname{Hom}_{Q}\left(F_{i}^{-}(X), Y\right) \rightarrow \operatorname{Hom}_{Q}\left(F_{i}^{-}\left(X^{\prime}\right), Y\right)
$$

Since Y is arbitrary, this implies the exactness of the sequence

$$
F_{i}^{-}\left(X^{\prime}\right) \rightarrow F_{i}^{-}(X) \rightarrow F_{i}^{-}\left(X^{\prime \prime}\right) \rightarrow 0
$$

The left exactness of F_{i}^{+}can be proven similarly.
Theorem 1.6. Let (X, ρ) be an indecomposable representation of Q.
(1) If i is a $(+)$-admissible vertex of Q then $\left(X^{\prime}, \rho^{\prime}\right):=F_{i}^{+}(X, \rho)$ is either indecomposable or zero. Furthermore, $F_{i}^{+}(X, \rho)$ is zero if and only if X is isomorphic to the irreducible representation $\left(L_{i}, \rho_{i}\right)$ (notation of Exercise 1.3).
(2) If (X, ρ) is not isomorphic to $\left(L_{i}, \rho_{i}\right)$, then

$$
\operatorname{dim} X_{i}^{\prime}=-\operatorname{dim} X_{i}+\sum_{\gamma \in Q_{+}(i)} \operatorname{dim} X_{s(\gamma)}
$$

and $F_{i}^{-}\left(X^{\prime}, \rho^{\prime}\right)$ is isomorphic to (X, ρ).
Proof. Note that if (X, ρ) is not isomorphic to $\left(L_{i}, \rho_{i}\right)$, then h must be surjective by the indecomposability of (X, ρ). This implies the dimension formula. Furthermore, we have the following exact sequence

$$
\begin{equation*}
\text { \{VIIIequ2\} } 0 \rightarrow X_{i}^{\prime} \xrightarrow{\tilde{h}} \bigoplus_{\gamma \in Q_{+}(i)} X_{s(\gamma)} \xrightarrow{h} X_{i} \rightarrow 0 \tag{8.1}
\end{equation*}
$$

and thus we have an isomorphism

$$
\left(F_{i}^{-} X^{\prime}\right)_{i}=\operatorname{Coker} \widetilde{h} \cong X_{i} .
$$

Observe also that \widetilde{h} is injective by definition, hence ($X^{\prime}, \rho^{\prime}$) is indecomposable.
Recall the functor $D: \operatorname{Rep} Q \rightarrow \operatorname{Rep} Q^{\mathrm{op}}$, from Exercise 1.2: the second statement of the Theorem follows from the equality $D \circ F_{i}^{+}=F_{i}^{-} \circ D$ and the exactness of D.

Exercise 1.7. (1) Show that F_{i}^{+}(resp. F_{i}^{-}) define surjective maps $\operatorname{Hom}_{Q}\left(X, X^{\prime}\right) \rightarrow$ $\operatorname{Hom}_{Q^{\prime}}\left(F_{i}^{+}(X), F_{i}^{+}\left(X^{\prime}\right)\right)\left(\right.$ resp. $\left.\operatorname{Hom}_{Q^{\prime}}\left(Y, Y^{\prime}\right) \rightarrow \operatorname{Hom}_{Q}\left(F_{i}^{-}(Y), F_{i}^{-}\left(Y^{\prime}\right)\right)\right)$.
(2) Deduce from Lemma 1.4 that there is a canonical direct injection $\varphi: F_{i}^{-} F_{i}^{+}(X) \rightarrow$ X and a natural direct surjection $\psi: Y \rightarrow F_{i}^{+} F_{i}^{-}(Y)$.

2. Reflection functors and change of orientation.

Lemma 2.1. Let Γ be a connected graph without cycles, Q and Q^{\prime} be two quivers on Γ. Then there exists an enumeration of the vertices of Γ by the set $[1, \ldots, k]$ such that $Q^{\prime}=\sigma_{k} \circ \cdots \circ \sigma_{1}(Q)$ and every i is a $(+)$-admissible vertex for $\sigma_{i-1} \circ \cdots \circ \sigma_{1}(Q)$.

Proof. It is sufficient to prove the statement when Q and Q^{\prime} differ by one arrow $\gamma \in Q_{1}$. After removing γ, Q splits in two connected components; let $Q^{\prime \prime}$ be the component which contains $t(\gamma)$. Since $Q^{\prime \prime}$ does not contain any cycle, it is possible to enumerate its vertices in such a way that if $i \rightarrow j \in Q_{1}^{\prime \prime}$, then $i>j$. Let k be the cardinal of $Q_{0}^{\prime \prime}$, then one can check that $Q^{\prime}=\sigma_{k} \circ \cdots \circ \sigma_{1}(Q)$ and that i is a $(+)$-admissible vertex for $\sigma_{i-1} \circ \cdots \circ \sigma_{1}(Q)$.

Theorem 2.2. Let i be a (+)-admissible vertex for Q and $Q^{\prime}=\sigma_{i}(Q)$. Then F_{i}^{+} and F_{i}^{-}establish a bijection between the indecomposable representations of Q which are not isomorphic to L_{i} and the indecomposable representations of Q^{\prime} which are not
isomorphic to L_{i}^{\prime}, where by L_{i}^{\prime} we denote the corresponding irreducible representation of Q^{\prime}.

Theorem 2.2 follows from Theorem 1.6. Together with Lemma 2.1 it allows to change the orientation on any quiver without cycles.

3. Weyl group and reflection functors.

Given any graph Γ without loops, one can associate to it a certain linear group, which is called the Weyl group of Γ. We denote by $\epsilon_{1}, \ldots, \epsilon_{n}$ vectors in the standard basis of $\mathbb{Z}^{\Gamma_{0}}, \epsilon_{i}=\operatorname{dim} L_{i}$ corresponds to the vertex i. These vectors are called simple roots. For each simple root ϵ_{i}, put

$$
r_{i}(x)=x-\frac{2\left(x, \epsilon_{i}\right)}{\left(\epsilon_{i}, \epsilon_{i}\right)} \epsilon_{i} .
$$

One can check that r_{i} preserves the scalar product and $r_{i}^{2}=i d$. The linear transformation r_{i} is called a simple reflection. Note that r_{i} also preserves the lattice generated by simple roots. Hence r_{i} maps roots to roots. If Γ is Dynkin, the scalar product is positive-definite, and r_{i} is the reflection across the hyperplane orthogonal to ϵ_{i}. The Weyl group W is the group generated by r_{1}, \ldots, r_{n}. For a Dynkin diagram W is finite (since the number of roots is finite).

Example 3.1. Let $\Gamma=A_{n}$. Let $\varepsilon_{1}, \ldots, \varepsilon_{n+1}$ be an orthonormal basis in \mathbb{R}^{n+1}. Then one can take the roots of Γ to be $\varepsilon_{i}-\varepsilon_{j}$, simple roots to be $\varepsilon_{1}-\varepsilon_{2}, \varepsilon_{2}-\varepsilon_{3}, \ldots, \varepsilon_{n}-$ $\varepsilon_{n+1}, r_{i}\left(\varepsilon_{j}\right)=0$ if $j \neq i, i+1$, and $r_{i}\left(\varepsilon_{i}\right)=\varepsilon_{i+1}$. Therefore W is isomorphic to the permutation group S_{n+1}.

One can check by direct calculation, that Theorem 1.6 (2) implies
Lemma 3.2. If X is an indecomposable representation of Q and the dimension vector x of X is such that $x \neq \epsilon_{i}$, then $\operatorname{dim} F_{i}^{ \pm} X=r_{i}(x)$.

The element $c=r_{n} \ldots r_{1} \in W$ is called a Coxeter transformation. It depends on the enumeration of simple roots.

Example 3.3. In the case $\Gamma=A_{n}$ a Coxeter element is always a cycle of length $n+1$.

Lemma 3.4. If $c(x)=x$, then $\left(x, \epsilon_{i}\right)=0$ for all i. In particular, for a Dynkin graph, $c(x)=x$ implies $x=0$.

Proof. By definition,

$$
c(x)=x+a_{1} \epsilon_{1}+\cdots+a_{n} \epsilon_{n}, a_{i}=-\frac{2\left(\epsilon_{i}, x+a_{1} \epsilon_{1}+\ldots a_{i-1} \epsilon_{i-1}\right)}{\left(\epsilon_{i}, \epsilon_{i}\right)}
$$

The condition $c(x)=x$ implies all $a_{i}=0$. Hence $\left(x, \epsilon_{i}\right)=0$ for all i.

4. Coxeter functors.

Let Q be a graph without oriented cycles. We call an enumeration of vertices admissible if $i>j$ for any arrow $i \rightarrow j$. Such an enumeration always exists. One can easily see that every vertex i is a $(+)$-admissible for $\sigma_{i-1} \circ \cdots \circ \sigma_{1}(Q)$ and (-)admissible for $\sigma_{i+1} \circ \cdots \circ \sigma_{n}(Q)$. Furthermore,

$$
Q=\sigma_{n} \circ \sigma_{n-1} \circ \cdots \circ \sigma_{1}(Q)=\sigma_{1} \circ \cdots \circ \sigma_{n}(Q)
$$

We define the Coxeter functors $\Phi^{ \pm}: \bmod _{Q} \rightarrow \bmod _{Q}$ by:

$$
\Phi^{+}:=F_{n}^{+} \circ \cdots \circ F_{2}^{+} \circ F_{1}^{+}, \Phi^{-}:=F_{1}^{-} \circ F_{2}^{-} \circ \cdots \circ F_{n}^{-} .
$$

Lemma 4.1. (1) One has: $\operatorname{Hom}_{Q}\left(\Phi^{-} X, Y\right) \cong \operatorname{Hom}_{Q}\left(X, \Phi^{+} Y\right)$;
(2) if X is indecomposable and $\Phi^{+} X \neq 0$, then $\Phi^{-} \Phi^{+} X \cong X$;
(3) if X is indecomposable of dimension x and $\Phi^{+} X \neq 0$, then $\operatorname{dim} \Phi^{+} X=c(x)$;
(4) if Q is Dynkin, then, for any indecomposable X, there exists k such that $\left(\Phi^{+}\right)^{k} X=0$.

Proof. (1) follows from Lemma 1.4, (2) follows from Theorem 1.6, (3) follows from Lemma 3.2. Let us prove (4). Since W is finite, c has finite order h. It is sufficient to show that for any x there exists k such that $c^{k}(x)$ is not positive. Assume that this is not true. Then $y=x+c(x)+\cdots+c^{h-1}(x)>0$ is c invariant. Contradiction with Lemma 3.4.

Lemma 4.2. The functors $\Phi^{ \pm}$do not depend on the choice of admissible enumeration.

Proof. Note that if i and j are distinct and both $(+)$ (resp. (-))-admissible, then $F_{i}^{+} \circ F_{j}^{+}=F_{j}^{+} \circ F_{i}^{+}$(resp. $\left.F_{i}^{-} \circ F_{j}^{-}=F_{j}^{-} \circ F_{i}^{-}\right)$. If a sequence i_{1}, \ldots, i_{n} gives another admissible enumeration of vertices, and $i_{k}=1$, then 1 is distinct from i_{1}, \ldots, i_{k-1}, hence

$$
F_{1}^{+} \circ F_{i_{k-1}}^{+} \circ \cdots \circ F_{i_{1}}^{+}=F_{i_{k-1}}^{+} \circ \cdots \circ F_{i_{1}}^{+} \circ F_{1}^{+} .
$$

We then proceed by induction. The proof is similar for Φ^{-}.
In what follows we usually assume that our enumeration of vertices is admissible.
Corollary 4.3. Let Q be a Dynkin quiver, X be an indecomposable representation of dimension x, and k be the minimal number such that $c^{k+1}(x)$ is not positive. There exists a unique vertex i such that

$$
x=c^{-k} r_{1} \ldots r_{i-1}\left(\epsilon_{i}\right), X \cong\left(\Phi^{-}\right)^{k} \circ F_{1}^{-} \circ \cdots \circ F_{i-1}^{-}\left(L_{i}^{\prime}\right),
$$

where L_{i}^{\prime} is the simple $k\left(Q^{\prime}\right)$-module for $Q^{\prime}:=\sigma_{i-1} \ldots \sigma_{1}(Q)$. In particular, x is a positive root and for each positive root x, there is a unique (up to isomorphism) indecomposable representation of dimension x.

Proof. Follows from Theorem 1.6 and Lemma 3.2.

5. Further properties of Coxeter functors

Here we assume again that Q is a quiver without oriented cycles or loops and the enumeration of vertices is admissible. We discuss the properties of the bilinear form \langle,$\rangle . Since we plan to change the orientation of Q$ we use a subindex \langle,\rangle_{Q}, where it is needed to avoid ambiguity.

Lemma 5.1. Let i be a $(+)$-admissible vertex, $Q^{\prime}=\sigma_{i}(Q)$, and $\langle,\rangle_{Q},\langle,\rangle_{Q^{\prime}}$ the corresponding bilinear forms. Then

$$
\left\langle r_{i}(x), y\right\rangle_{Q^{\prime}}=\left\langle x, r_{i}(y)\right\rangle_{Q} .
$$

Proof. It suffices to check the formula for a subquiver containing i and all its neighbors. Let $x^{\prime}=r_{i}(x)$ and $y^{\prime}=r_{i}(y)$. Then

$$
\begin{gathered}
x_{i}^{\prime}=-x_{i}+\sum_{i \neq j} x_{j}, y_{i}^{\prime}=-y_{i}+\sum_{i \neq j} y_{j}, \\
\left\langle x^{\prime}, y\right\rangle_{Q^{\prime}}=x_{i}^{\prime} y_{i}-x_{i}^{\prime} \sum_{i \neq j} y_{j}+\sum_{i \neq j} x_{j} y_{j}=-x_{i}^{\prime} y_{i}^{\prime}+\sum_{i \neq j} x_{j} y_{j}, \\
\left\langle x, y^{\prime}\right\rangle_{Q}=x_{i} y_{i}^{\prime}-y_{i}^{\prime} \sum_{i \neq j} x_{j}=-x_{i}^{\prime} y_{i}^{\prime}+\sum_{i \neq j} x_{j} y_{j} .
\end{gathered}
$$

Corollary 5.2. Let X be an indecomposable $k(Q)$-module, and Y be an $k\left(Q^{\prime}\right)$ module, where $Q^{\prime}=\sigma_{i}(Q)$ for some (-)-admissible vertex i of Q. Assume that $F_{i}^{-} X \neq 0$ and $F_{i}^{+} Y \neq 0$. Then

$$
\operatorname{Ext}_{Q}^{1}\left(X, F_{i}^{+} Y\right)=\operatorname{Ext}_{Q^{\prime}}^{1}\left(F_{i}^{-} X, Y\right) .
$$

Proof. Let x and y be the dimensions of X and Y respectively. Then $r_{i}(x)=$ $\operatorname{dim} F_{i}^{+}(X)$ and $r_{i}(y)=\operatorname{dim} F_{i}^{-}(X)$ and we have $\left\langle r_{i}(x), y\right\rangle_{Q^{\prime}}=\left\langle x, r_{i}(y)\right\rangle_{Q}$. Recall that

$$
\left\langle x, r_{i}(y)\right\rangle_{Q}=\operatorname{dim} \operatorname{Hom}_{Q}\left(X, F_{i}^{+} Y\right)-\operatorname{dim} \operatorname{Ext}_{Q}^{1}\left(X, F_{i}^{+} Y\right)
$$

and

$$
\left\langle r_{i}(x), y\right\rangle_{Q^{\prime}}=\operatorname{dim} \operatorname{Hom}_{Q^{\prime}}\left(F_{i}^{-} X, Y\right)-\operatorname{dim} \operatorname{Ext}_{Q^{\prime}}^{1}\left(F_{i}^{-} X, Y\right) .
$$

Now the statement follows from Lemma 1.4.
Corollary 5.3. For a Coxeter element c we have

$$
\left\langle c^{-1}(x), y\right\rangle_{Q}=\langle x, c(y)\rangle_{Q} .
$$

If X and Y are two indecomposable representations of Q and $\Phi^{+} Y \neq 0, \Phi^{-} X \neq 0$ then

$$
\operatorname{Ext}_{Q}^{1}\left(X, \Phi^{+} Y\right)=\operatorname{Ext}_{Q}^{1}\left(\Phi^{-} X, Y\right)
$$

Let $A=k(Q)$ be the path algebra. Recall that any indecomposable projective module is isomorphic to $A e_{i}$ for some vertex i of Q.

Lemma 5.4. Let j be a (-)-admissible vertex of a quiver $Q, Q^{\prime}:=\sigma_{j}(Q)$ and $A^{\prime}:=k\left(Q^{\prime}\right)$. Then $F_{j}^{-}\left(A e_{i}\right) \simeq A^{\prime} e_{i}$ for all $i \neq j$.

Proof. First we show that $F_{j}^{-}\left(A e_{i}\right)$ is projective. It suffice to check that

$$
\operatorname{Ext}_{Q^{\prime}}^{1}\left(F_{j}^{-}\left(A e_{i}\right), L_{k}^{\prime}\right)=0
$$

for all vertices k of Q^{\prime}. Indeed, if $k \neq j$ we have

$$
\operatorname{Ext}_{Q^{\prime}}^{1}\left(F_{j}^{-}\left(A e_{i}\right), L_{k}^{\prime}\right)=\operatorname{Ext}_{Q}^{1}\left(A e_{i}, F_{j}^{+} L_{k}^{\prime}\right)=0
$$

Now let us consider the case $k=j$. We have

$$
\operatorname{Hom}_{Q^{\prime}}\left(F_{j}^{-}\left(A e_{i}\right), L_{j}^{\prime}\right)=\operatorname{Hom}_{Q}\left(A e_{i}, F_{j}^{+} L_{j}^{\prime}\right)=0
$$

and

$$
\operatorname{Ext}_{Q}^{1}\left(A e_{i}, L_{j}\right)=0
$$

since $A e_{i}$ is a projective $k(Q)$-module. Let $x:=\operatorname{dim} A e_{i}$. Taking into account that $\operatorname{dim} L_{j}=\epsilon_{j}$ and $r_{j}\left(\epsilon_{j}\right)=-\epsilon_{j}$ we have

$$
\operatorname{dim} \operatorname{Ext}_{Q^{\prime}}^{1}\left(F_{j}^{-}\left(A e_{i}\right), L_{j}^{\prime}\right)=-\left\langle r_{j}(x), \epsilon_{j}\right\rangle_{Q^{\prime}}=\left\langle x, \epsilon_{j}\right\rangle_{Q}=\operatorname{dim} \operatorname{Hom}_{Q}\left(A e_{i}, L_{j}\right)=0
$$

To finish the proof we observe that $F_{j}^{+} L_{i}^{\prime}=L_{i}$ if i is not adjacent to j and $F_{j}^{+} L_{i}^{\prime}$ is indecomposable with simple subquotients L_{j} and L_{i} if i is adjacent to j. Therefore we obtain

$$
\operatorname{dim} \operatorname{Hom}_{Q^{\prime}}\left(F_{j}^{-}\left(A e_{i}\right), L_{i}^{\prime}\right)=\operatorname{dim} \operatorname{Hom}_{Q}\left(A e_{i}, F_{j}^{+} L_{i}^{\prime}\right)=1
$$

which implies that $F_{j}^{-}\left(A e_{i}\right)$ is the projective cover of L_{i}^{\prime}. Therefore $F_{j}^{-}\left(A e_{i}\right) \simeq$ $A^{\prime} e_{i}$.
\{VIIIlm12\}
Lemma 5.5. Let Q be a quiver with admissible enumeration of vertices, i be a vertex of Q and $Q^{\prime}:=\sigma_{i-1} \ldots \sigma_{1}(Q)$. One has:
(1) $A e_{i} \simeq F_{1}^{-} \circ \cdots \circ F_{i-1}^{-} L_{i}^{\prime}$;
(2) $F_{i-1}^{+} \circ \cdots \circ F_{1}^{+}\left(A e_{i}\right) \cong L_{i}^{\prime}$;
(3) $F_{i}^{+} \circ \cdots \circ F_{1}^{+}\left(A e_{i}\right)=0$.

Proof. The first assertion follows from Lemma 5.4 by induction on i. The second is a consequence of Theorem 1.6 and the last one is an immediate consequence of (2) since $F_{i}^{+} L_{i}^{\prime}=0$.

Corollary 5.6. For every projective $k(Q)$-module $P, \Phi^{+} P=0$. Similarly for every injective $k(Q)$-module $I, \Phi^{+} I=0$.

Proof. The first statement follows from Lemma 5.5 (3) immediately. The analogous statement for an injective module follows by duality.

Lemma 5.7. For all $x, y \in \mathbb{Z}^{Q_{0}}$ one has
\{VIIIcoxeq\}

$$
\langle y, x\rangle+\langle x, c(y)\rangle=0 .
$$

Proof. Denote by P_{j} the projective cover of L_{j} (recall that $P_{j}=A e_{j}$) and let $p_{j}:=\operatorname{dim} P_{j}$. Furthermore, let I_{j} be the injective hull of L_{j} and $i_{j}:=\operatorname{dim} I_{j}$. Using Lemma 5.5 (1) we have

$$
p_{j}=r_{1} \ldots r_{j-1}\left(\epsilon_{j}\right), \quad c\left(p_{j}\right)=r_{n} \ldots r_{j}\left(\epsilon_{j}\right)=-r_{n} \ldots r_{j+1}\left(\epsilon_{j}\right) .
$$

On the other hand, the statement dual to Lemma 5.5 (1) implies

$$
I_{j} \simeq F_{n}^{+} \circ \cdots \circ F_{j+1}^{+} L_{j}^{\prime}, \quad i_{j}=r_{n} \ldots r_{j+1}\left(\epsilon_{j}\right)
$$

Thus, we obtain $c\left(p_{j}\right)=-i_{j}$. For any representation X of Q of dimension x we have

$$
\left\langle p_{j}, x\right\rangle_{Q}=\operatorname{dim} \operatorname{Hom}_{Q}\left(P_{j}, X\right)=\left[X: L_{j}\right]=\operatorname{dim} \operatorname{Hom}_{Q}\left(X, I_{j}\right)=\left\langle x, i_{j}\right\rangle_{Q}
$$

Thus we obtain

$$
\left\langle p_{j}, x\right\rangle_{Q}=-\left\langle x, c\left(p_{j}\right)\right\rangle_{Q}
$$

Since p_{1}, \ldots, p_{n} form a basis of $\mathbb{Z}^{Q_{0}}$, the statement follows.

6. Affine root systems

We now proceed to description of indecomposable representations of affine quivers. Let Γ be an affine Dynkin graph. As we have seen in Chapter 7 the kernel of the bilinear symmetric form q in $\mathbb{Z}^{Q_{0}}$ is one-dimensional and after removing one vertex from Γ we obtain a Dynkin graph. We enumerate vertices of Γ by numbers $0,1, \ldots, n$ in such a way that removing the vertex number zero gives a Dynkin graph Γ^{0}. If we denote by δ the minimal positive isotropic element in $\mathbb{Z}^{Q_{0}}$ then

$$
\delta=\epsilon_{0}+a_{1} \epsilon_{1}+\cdots+a_{n} \epsilon_{n} .
$$

We call a root α of an affine graph Γ real if $q(\alpha)=1$ and imaginary if $q(\alpha)=0$.
Lemma 6.1. (1) All the imaginary roots are proportional to δ;
(2) The real roots can be written as $\alpha+m \delta$ for some root α of Γ^{0};
(3) Every positive real root can be obtained from a simple root by the action of the Weyl group W.

Remark 6.2. Observe that δ is fixed by any element of the Weyl group.
Proof. (1) follows from Lemma 6.4 (a) Chapter 7.
To show (2) consider the projection $p: \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}^{n}=\operatorname{span}\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ with kernel $\mathbb{Z} \delta$. Since $q(\alpha)=q(\alpha+m \delta)$ the projection p maps a root of Γ to a root of Γ^{0} and every vector in the preimage $p^{-1}(\alpha)$ is a root.

Let us prove (3). Let $\alpha=\sum_{i=1}^{n} b_{i} \epsilon_{i}$ be a positive root. We set $|\alpha|:=\sum_{i=1}^{n} b_{i}$ and prove the statement by induction on $|\alpha|$. The case $|\alpha|=1$ is clear since then $\alpha=\epsilon_{i}$ for some i. Let $|\alpha|>1$. Since $(\alpha, \alpha)>0$ there exists j such that $\left(\alpha, \epsilon_{j}\right)>0$.

Then $\beta:=r_{j}(\alpha)=\alpha+c \epsilon_{j}$ for some $c>0$. Hence β is a positive real root and $|\beta|<|\alpha|$. By the induction assumption $\beta=w\left(\epsilon_{i}\right)$ for some i and some $w \in W$. Hence $\alpha=r_{j} w\left(\epsilon_{i}\right)$.

Example 6.3. Consider the affine graph $\tilde{A}_{1}: \square$
In this case $\delta=\epsilon_{0}+\epsilon_{1}$. All imaginary positive roots are of the form (m, m) where $m \in \mathbb{Z}_{>0}$, the positive real roots are of the form $(m, m+1)$ or $(m+1, m)$ for some $m \in \mathbb{N}$. The Weyl group is infinite with generators r_{0}, r_{1}. Consider the Coexeter element $c:=r_{1} r_{0}$. Then c generates the infinite cyclic normal subgroup in W. One can easily check that

$$
\begin{aligned}
& c(m, m+1)=(m+2, m+3)=(m, m+1)+2 \delta \\
& c(m+1, m)=(m-1, m-2)=(m+1, m)-2 \delta
\end{aligned}
$$

6.1. Representations of the Kronecker quiver. In this subsection we use the Coxeter functors to classify indecomposable representations of the Kronecker quiver Q

$$
\bullet \rightrightarrows \bullet
$$

The only admissible enumeration of vertices is $1 \rightrightarrows 0$. Let X be an indecomposable representation of Q of dimension $x=(n, m)$. It is given by a pair of linear operators $A, B: k^{m} \rightarrow k^{n}$.

We will show first that x is a root. Indeed, one can check that $c(n, m)=x+$ $2(m-n) \delta$. Therefore if $m>n$, then $c^{-s}(x)<0$ for sufficiently large s, and if $m<n$ then $c^{s}(x)<0$ for sufficiently large s. Since $\operatorname{dim} \Phi^{+} X=c(x)$ and $\operatorname{dim} \Phi^{-} X=c^{-1}(x)$, we know that in the former case $\left(\Phi^{-}\right)^{s} X=0$ and in the latter case $\left(\Phi^{+}\right)^{s} X=0$ for sufficiently large s.

Consider the case $m>n$. Then we have the following two possibilities:
(1) $F_{1}^{-} \circ\left(\Phi^{-}\right)^{s}(X)=0$ and $\left(\Phi^{-}\right)^{s} X \neq 0$. Then $\left(\Phi^{-}\right)^{s} X \simeq L_{1}$ and hence $X \simeq\left(\Phi^{+}\right)^{s} L_{1}$.
(2) $\left(\Phi^{-}\right)^{s} X=0$ and $F_{0}^{-} \circ\left(\Phi^{-}\right)^{s-1}(X) \neq 0$. Then $F_{0}^{-} \circ\left(\Phi^{-}\right)^{s-1}(X) \simeq L_{1}^{\prime}$ and hence $X \simeq\left(\Phi^{+}\right)^{s-1} \circ F_{0}^{+}\left(L_{1}^{\prime}\right)$, where L_{1}^{\prime} is the irreducible representation of $Q^{\prime}=\sigma_{0}(Q)=Q^{o p}$.
Similarly in the case $m<n$ we obtain two possibilities:
(1) $F_{0}^{+} \circ\left(\Phi^{+}\right)^{s}(X)=0$ and $\left(\Phi^{+}\right)^{s} X \neq 0$. Then $\left(\Phi^{+}\right)^{s} X \simeq L_{0}$ and hence $X \simeq\left(\Phi^{-}\right)^{s} L_{0}$.
(2) $\left(\Phi^{+}\right)^{s} X=0$ and $F_{1}^{+} \circ\left(\Phi^{+}\right)^{s-1}(X) \neq 0$. Then $\left(\Phi^{+}\right)^{s-1} X \simeq L_{0}^{\prime}$ and hence $X \simeq\left(\Phi^{-}\right)^{s-1} \circ F_{1}^{-}\left(L_{0}^{\prime}\right)$, where as in the previous case L_{0}^{\prime} is the irreducible representation of $Q^{\prime}=\sigma_{0}(Q)=Q^{o p}$.
It follows that x is either (m, m) and x is an imaginary root or $(m, m \pm 1)$ and x is a real root. Moreover, the above arguments imply that for every real positive root x there exists exactly one up to isomorphisn indecomposable representation X of dimension x. We can describe this X precisely in terms of linear operators
$A, B: k^{m} \rightarrow k^{n}$. If $n=m+1$ we can set $A=\left(I_{m}, 0\right), B=\left(0, I_{m}\right)$ and if $m=n+1$ we set $A=\left(I_{m}, 0\right)^{t}, B=\left(0, I_{m}\right)^{t}$, where M^{t} stands for the transposed matrix of M and I_{m} is the identity $m \times m$-matrix.

It remains to classify indecomposable representations of dimension $x=(m, m)$. We will prove that, for every $m>0$, there is a one-parameter family of representations of dimension (m, m) enumerated by $t \in \mathbb{P}^{1}:=\mathbb{P}^{1}(k)$. In the case $x=(1,1)=\delta$, the indecomposable representations of dimension δ are in bijection with pairs $(a, b) \in$ $k^{2} \backslash(0,0)$. We denote the corresponding representation by $X_{(a: b)}$. It is easy to see that two representations $X_{(a: b)}$ and $X_{\left(a^{\prime}: b^{\prime}\right)}$ are isomorphic if and only if $(a, b)=\lambda\left(a^{\prime}, b^{\prime}\right)$ for some invertible $\lambda \in k$. Thus, indecomposable representations of dimension δ form the family

$$
\left\{X_{(a: b)} \mid(a: b) \in \mathbb{P}^{1}\right\} .
$$

Note that $\langle\delta, \delta\rangle_{Q}=0$ implies

$$
\operatorname{Ext}_{Q}^{1}\left(X_{(a: b)}, X_{(c: d)}\right)=\operatorname{Hom}_{Q}\left(X_{(a: b)}, X_{(c: d)}\right)=0
$$

if $(a: b)$ and $(c: d)$ are two distinct points in \mathbb{P}^{1}.
Exercise 6.4. Let X be a representation of dimension (m, m). Show by induction on m that $\operatorname{Hom}_{Q}\left(X_{(a: b)}, X\right) \neq 0$ for at most m points $(a: b) \in \mathbb{P}^{1}$.

The exercise implies that one can find $t \in k$ such that $\operatorname{Hom}_{Q}\left(X_{(1: t)}, X\right) \neq 0$. In terms of the linear operators $A, B: k^{m} \rightarrow k^{m}$, this is equivalent to the invertibility of the operator $t A-B$. Use this operator to identify the components X_{0} and X_{1}. Every A-stable subspace of k^{m} is also B-stable. Hence the indecomposability of X implies that there exists $(a, b) \in k^{2} \backslash(0,0)$ such that $A=a I_{m}+J_{m}$ and $B=b I_{m}+J_{m}$ where J_{m} is the nilpotent Jordan block of size $m \times m$. We denote the corresponding representation $X_{(a: b)}^{(m)}$. It is obvious that the isomorphism class of $X_{(a: b)}^{(m)}$ depends only on the point $(a: b) \in \mathbb{P}^{1}$. Finally we observe that

$$
\operatorname{Hom}_{Q}\left(X_{(c: d)}, X_{(a: b)}^{(m)}\right)=\left\{\begin{array}{l}
0 \text { if }(a: b) \neq(c: d) \\
k \text { if }(a: b)=(c: d)
\end{array} .\right.
$$

This implies that $X_{(a: b)}^{(m)}$ and $X_{(c: d)}^{(m)}$ are not isomorphic when $(a: b)$ and $(c: d)$ are distinct in \mathbb{P}^{1}.

One may get an impression from the above example that any indecomposable representation whose dimension is given by a real root is annihilated by some power of one of the Coxeter functors. This is not true in general as one can see from the following exercise.

Exercise 6.5. Consider the quiver Q

Let $\alpha:=\epsilon_{0}+\epsilon_{1}+\epsilon_{2}$. Check that α is a root, $c(\alpha)=\epsilon_{3}+\epsilon_{1}+\epsilon_{4}$ and $c^{2}(\alpha)=\alpha$. Therefore for any indecomposable X of dimension α we have an isomorphism $\left(\Phi^{+}\right)^{2} X \simeq X$.

7. Preprojective and preinjective representations.

We assume in this section that Q is a quiver with fixed admissible enumeration of vertices.

An indecomposable representation X is called preprojective ${ }^{1}$ if $\left(\Phi^{+}\right)^{s} X=0$ for some s, preinjective if $\left(\Phi^{-}\right)^{s}(X)=0$ for some s and regular if it is neither preprojective nor preinjective.

Example 7.1. For the Kronecker quiver, an indecomposable representation is preprojective if its dimension is $(m, m+1)$, preinjective if the dimension is $(m+1, m)$ and regular if the dimension is (m, m).

Lemma 7.2. If X is preprojective, then $X=\left(\Phi^{-}\right)^{s} P$ for some projective P. If X is preinjective, then $X=\left(\Phi^{+}\right)^{s} I$ for some injective I.

Proof. Suppose $\left(\Phi^{+}\right)^{s} X \neq 0$, and $\left(\Phi^{+}\right)^{s+1} X=0$. Then

$$
F_{i-1}^{+} \ldots F_{1}^{+}\left(\Phi^{+}\right)^{s} X=L_{i}^{\prime}, X \cong\left(\Phi^{-}\right)^{s} F_{1}^{-} \ldots F_{i-1}^{-}\left(L_{i}^{\prime}\right)
$$

as in Corollary 4.3. Therefore, by Lemma 5.5, we have an isomorphism

$$
X \cong\left(\Phi^{-}\right)^{s}\left(A e_{i}\right)
$$

The proof for preinjective follows from duality.
Corollary 7.3. If X is indecomposable preprojective or preinjective, then $\operatorname{dim} X$ is a real root.

Proof. It follows from the proof of Lemma 7.2 that $\operatorname{dim} X=w\left(\epsilon_{i}\right)$ for some i and some $w \in W$.

Lemma 7.4. If X, Y are indecomposable and X is preprojective, Y is not, then $\operatorname{Hom}_{Q}(Y, X)=\operatorname{Ext}_{Q}^{1}(X, Y)=0$. If X is preinjective, Y is not, then $\operatorname{Hom}_{Q}(X, Y)=$ $\operatorname{Ext}_{Q}^{1}(Y, X)=0$.

[^1]Proof. Let X be preprojective. Then $X=\left(\Phi^{-}\right)^{s} P$ for some projective P and

$$
\operatorname{Ext}_{Q}^{1}\left(\left(\Phi^{-}\right)^{s} P, Y\right)=\operatorname{Ext}_{Q}^{1}\left(P,\left(\Phi^{+}\right)^{s} Y\right)=0
$$

by Corollary 5.3. On the other hand,

$$
\left(\Phi^{+}\right)^{s+1} X=0, Y \cong\left(\Phi^{-}\right)^{s+1}\left(\Phi^{+}\right)^{s+1} Y
$$

and

$$
\operatorname{Hom}_{Q}\left(X,\left(\Phi^{-}\right)^{s+1}\left(\Phi^{+}\right)^{s+1} Y\right)=\operatorname{Hom}_{Q}\left(\left(\Phi^{+}\right)^{s+1} X,\left(\Phi^{+}\right)^{s+1} Y\right)=0
$$

For preinjective use duality.
From now on we assume that Q is affine. Note that if X is indecomposable and $x:=\operatorname{dim} X=m \delta$, then $c(x)=x$ and hence X is isomorphic to $\Phi^{+} X$. Therefore X is regular.

Define the defect of X by

$$
\operatorname{def}(X)=\langle\delta, x\rangle_{Q}=-\langle x, c(\delta)\rangle_{Q}=-\langle x, \delta\rangle_{Q}
$$

We write $x \leq y$ if $y-x \in \mathbb{Z}_{\geq 0}^{n}$
Lemma 7.5. If $x<\delta$ and X is indecomposable of dimension x, then X is a brick, x is a root and $\operatorname{Ext}_{Q}^{1}(X, X)=0$.

Proof. If X is not a brick, then there is a brick $Y \subset X$ such that $\operatorname{Ext}^{1}(Y, Y) \neq 0$, see Lemma 4.4 of Chapter 7. But then $q(y) \leq 0$, which is impossible as $y<\delta$. Hence X is a brick. Since $q(x)>0$, we have $\operatorname{Ext}^{1}(X, X)=0$ and $q(x)=1$.

Lemma 7.6. There exists an indecomposable representation of dimension δ.
Proof. Pick an orbit O_{Z} in $\operatorname{Rep}(\delta)$ of maximal dimension. Then by Corollary 5.5 of Chapter $7, Z=X_{1} \oplus \cdots \oplus X_{p}$, where X_{i} are indecomposable and Ext ${ }^{1}\left(X_{i}, X_{j}\right)=0$ if $i \neq j$. If $p>1$, then $q(z)>0$ which is impossible.

Lemma 7.7. If X is regular, then there exists $m>0$ such that $c^{m}(x)=x$.
Proof. From the description of affine root system (Lemma 6.1) we know that that W-orbits on $\mathbb{Z}^{Q_{0}} / \mathbb{Z} \delta$ are finite. Therefore one can find m such that $c^{m}(x)=x+l \delta$ for some $l \in \mathbb{Z}$. If $l \neq 0$, then $c^{d}(x)=x+l d \delta$. Hence there exists $d \in \mathbb{Z}$ such that $c^{d}(x)<0$. That contradicts regularity of X.

Theorem 7.8. Let X be indecomposable.
(1) If X is preprojective, then $\operatorname{def}(X)<0$;
(2) If X is regular, then $\operatorname{def}(X)=0$;
(3) If X is preinjective, then $\operatorname{def}(X)>0$.

Proof. Let X be preprojective, Z be an indecomposable representation of dimension δ constructed in Lemma 7.6. Then $\operatorname{Ext}_{Q}^{1}(X, Z)=0$ by Lemma 7.4. On the other hand, $X=\left(\Phi^{-}\right)^{s} A e_{i}$. Therefore

$$
\operatorname{Hom}_{Q}(X, Z)=\operatorname{Hom}_{Q}\left(\left(\Phi^{-}\right)^{s} A e_{i}, Z\right)=\operatorname{Hom}_{Q}\left(A e_{i},\left(\Phi^{+}\right)^{s} Z\right) \neq 0
$$

and hence $\langle x, \delta\rangle=\operatorname{dim} \operatorname{Hom}_{Q}(X, Z)>0$. For preinjective X the proof follows by duality.

Finally, let X be regular. Assume $\operatorname{def}(X) \neq 0$, say $\operatorname{def}(X)>0$. Since x is regular $c^{p}(x)=x$ for some p. Then $y=x+c(x)+\cdots+c^{p-1}(x)$ is c-invariant, therefore $x+c(x)+\cdots+c^{p-1}(x)=m \delta$ by Lemma 3.4. But for all integer l we have

$$
\left\langle\delta, c^{l}(x)\right\rangle=\left\langle c^{-l}(\delta), x\right\rangle=\langle\delta, x\rangle>0
$$

hence $\langle\delta, m \delta\rangle>0$. But $\langle\delta, \delta\rangle=q(\delta)=0$. Contradiction.

8. Regular representations

8.1. Abelian category of regular representations. In this section we again assume that Q is an affine quiver. We say that a representation of Q is regular if it is a direct sum of indecomposable regular representations.

Proposition 8.1. Let X and Y be regular representations of Q and $\varphi \in \operatorname{Hom}_{Q}(X, Y)$. Then $\operatorname{Ker} \varphi$ and Coker φ are regular. In other words, the full subcategory of regular representations of an affine quiver Q is abelian.

Proof. Consider the exact sequence

$$
0 \rightarrow \operatorname{Ker} \varphi \rightarrow X \xrightarrow{\varphi} Y \rightarrow \operatorname{Coker} \varphi \rightarrow 0 .
$$

Then

$$
\operatorname{dim} \operatorname{Ker} \varphi-\operatorname{dim} X+\operatorname{dim} Y-\operatorname{dim} \operatorname{Coker} \varphi=0
$$

and therefore by Theorem 7.8

$$
\operatorname{def}(\operatorname{Ker} \varphi)=\operatorname{def}(\operatorname{Coker} \varphi)
$$

Assume that $\operatorname{Ker} \varphi$ is not regular. Lemma 7.4 implies that for any preinjective W,

$$
\operatorname{Hom}_{Q}(W, \operatorname{Ker} \varphi) \hookrightarrow \operatorname{Hom}_{Q}(W, X)=0
$$

Therefore any non-regular indecomposable direct summand of $\operatorname{Ker} \varphi$ is preprojective. Hence

$$
\operatorname{def}(\operatorname{Ker} \varphi)=\operatorname{def}(\operatorname{Coker} \varphi)<0
$$

Therefore Coker φ has an indecomposable preprojective direct summand U. However, Lemma 7.4 implies $\operatorname{Hom}_{Q}(Y, U)=0$. Using the embedding

$$
\operatorname{Hom}_{Q}(Y, \operatorname{Coker} \varphi) \hookrightarrow \operatorname{Hom}_{Q}(Y, U)
$$

we obtain $\operatorname{Hom}_{Q}(Y, \operatorname{Coker} \varphi)=0$, which is a contradiction.
The proof that Coker φ is regular is similar.

Lemma 8.2. Let

$$
0 \rightarrow X \rightarrow Z \rightarrow Y \rightarrow 0
$$

be an exact sequence of $k(Q)$-modules. If X and Y are regular, then Z is also regular.
Proof. Suppose that Z has a preprojective direct summand Z_{i}. Then we have an exact sequence

$$
\operatorname{Hom}_{Q}\left(Y, Z_{i}\right)=0 \rightarrow \operatorname{Hom}_{Q}\left(Z, Z_{i}\right) \rightarrow \operatorname{Hom}_{Q}\left(X, Z_{i}\right)=0,
$$

which is a contradiction.
Similarly one can show that Z could not have preinjective direct summand.
A regular representation X is called regular simple if X has no proper non-trivial regular subrepresentations.

Exercise 8.3. Show that a regular simple representation X is a brick, hence $q(x) \leq 1$. In particular, $\operatorname{dim} X$ is a root.

Exercise 8.4. Prove that any regular simple representation of the Kronecker quiver is isomorphic to $X_{(a: b)}$ for some $(a: b) \in \mathbb{P}^{1}$.

Exercise 8.5. Check that the following analogue of Jordan-Hölder theorem holds.

Let Y be a regular representation of Q. There exists a filtration

$$
0=\mathcal{F}^{0}(Y) \subset \mathcal{F}^{1}(Y) \subset \cdots \subset \mathcal{F}^{k}(Y)=Y
$$

such that $Y_{i}=\mathcal{F}^{i}(Y) / \mathcal{F}^{i-1}(Y)$ are simple for all $i>0$. Furthemore, two such filtrations give the same set of regular simple subquotients counting with multiplicities. Therefore for any regular X and any regular simple S the regular multiplicity $[X: S]_{r}$ is well defined.
8.2. A one-parameter family of indecomposable representations of dimension δ. Recall the enumeration of vertices of Q introduced in Section 6. (It may be not admissible.) Let $P:=A e_{0}$ be the projective cover of L_{0} and $p:=\operatorname{dim} P$. Since P is obtained by application of a sequence of reflection functors from the irreducible representation L_{0}^{\prime} for a suitable Q^{\prime}, we know that p is a real root. Furthermore, if Z is a representation of dimension δ, then

$$
\operatorname{Ext}_{Q}^{1}(P, Z)=0, \quad \operatorname{dim} \operatorname{Hom}_{Q}(P, Z)=\left[Z: L_{0}\right]=1
$$

and we obtain that $\langle p, \delta\rangle_{Q}=1$.
Since $r:=p+\delta$ is a real root, using reflection functors we can construct an indecomposable representation R of dimension r. Then we have

$$
\langle r, \delta\rangle_{Q}=1, \quad\langle r, p\rangle_{Q}=0, \quad\langle p, r\rangle_{Q}=2
$$

Since $\operatorname{Ext}^{1}(P, R)=0, \operatorname{Hom}_{Q}(P, R)=k^{2}$.
\{VIIIlm23\}
Lemma 8.6. Let $\theta \in \operatorname{Hom}_{Q}(P, R)$. If $\theta \neq 0$, then θ is injective.
Proof. Recall that both P and R are preprojective of defect -1 . Let W be an indecomposable summand of $\operatorname{Ker} \theta$. Then $\operatorname{Hom}_{Q}(W, P) \neq 0$ and hence W is preprojective. Similarly, every indecomposable summand of $\operatorname{Im} \theta \subset R$ is preprojective. Assume that both $\operatorname{Ker} \theta$ and $\operatorname{Im} \theta$ are not zero, then they both have negative defect. But

$$
-1=\operatorname{def}(P)=\operatorname{def}(\operatorname{Ker} \theta)+\operatorname{def}(\operatorname{Im} \theta),
$$

and we obtain a contradiction.
Exercise 8.7.
(1) Let $\eta \in \operatorname{Hom}_{Q}(R, P)$. Prove that if $\eta \neq 0$ then η is surjective.
(2) Show that $\operatorname{Hom}_{Q}(R, P)=\operatorname{Ext}_{Q}^{1}(R, P)=0$.

Lemma 8.8. Let $\theta \in \operatorname{Hom}_{Q}(P, R), \theta \neq 0$. Then $Z_{\theta}=\operatorname{Coker} \theta$ is regular indecomposable.

Proof. Consider the exact sequence

$$
0 \rightarrow P \xrightarrow{\theta} R \rightarrow Z_{\theta} \rightarrow 0
$$

The corresponding long exact sequence

$$
0=\operatorname{Hom}_{Q}(R, P) \rightarrow \operatorname{Hom}_{Q}(R, R) \rightarrow \operatorname{Hom}_{Q}\left(R, Z_{\theta}\right) \rightarrow \operatorname{Ext}_{Q}^{1}(R, P)=0
$$

provides an isomorphism $\operatorname{Hom}_{Q}\left(R, Z_{\theta}\right) \simeq \operatorname{Hom}_{Q}(R, R)$.
Next we will show that R is a brick. Indeed, otherwise R would contain a brick Z with non-trivial self-extension. Then $\operatorname{dim} Z=\delta$ and Z is regular. But then $\operatorname{Hom}_{Q}(Z, R) \neq 0$ which is impossible as R is preprojective.

Thus, we have $\operatorname{Hom}_{Q}\left(R, Z_{\theta}\right)=k$. Furthermore, the embedding $\operatorname{End}_{Q}\left(Z_{\theta}\right) \hookrightarrow$ $\operatorname{Hom}_{Q}\left(R, Z_{\theta}\right)$ implies $\operatorname{End}_{Q}\left(Z_{\theta}\right)=k$. Therefore Z_{θ} is indecomposable. Furthermore, $\operatorname{def}\left(Z_{\theta}\right)=0$, hence Z_{θ} is regular.

Lemma 8.9. If Z_{θ} is isomorphic to Z_{τ}, then $\theta=c \tau$ for some $c \in k^{*}$.
Proof. Let π_{ξ} denote the natural projection $R \rightarrow Z_{\xi}$. Preprojectivity of R implies that $\operatorname{Ext}_{Q}^{1}(R, Z)=0$ for all regular Z. Therefore $\operatorname{Ext}_{Q}^{1}(R, \cdot)$ is exact on the category of regular representation. Thus, if $\varphi: Z_{\theta} \rightarrow Z_{\tau}$ is an isomorphism then there exists $\gamma: R \rightarrow Z_{\tau}$ such that $\pi_{\tau}=\gamma \pi_{\theta}$. Therefore $\operatorname{Ker} \pi_{\theta}=\operatorname{Ker} \pi_{\tau}$ and hence $\theta(P)=\tau(P)$. Since P is projective, we have $\tau=\theta \varphi$ for some $\varphi \in \operatorname{Aut}_{Q}(P)$. Since P is a brick, $\varphi=c \operatorname{Id}_{P}$.

8.3. Properties of regular simple representations.

Lemma 8.10. Let X be regular indecomposable of dimension x such that $x_{0} \neq 0$. Then there exists $\theta \in \operatorname{Hom}_{Q}(P, R)$ such that $\operatorname{Hom}_{Q}\left(Z_{\theta}, X\right) \neq 0$.

Proof. First note that

$$
\operatorname{dim} \operatorname{Hom}_{Q}(P, X)=x_{0}=\operatorname{dim} \operatorname{Hom}_{Q}(R, X)
$$

since $\langle p, x\rangle=\langle r, x\rangle=x_{0}$.
Every $\theta \in \operatorname{Hom}_{Q}(P, R)$ induces the linear map

$$
\theta^{*}: \operatorname{Hom}_{Q}(R, X) \rightarrow \operatorname{Hom}_{Q}(P, X)
$$

Since $\operatorname{dim} \operatorname{Hom}_{Q}(P, R)=2$, one can find $\theta \in \operatorname{Hom}_{Q}(P, R)$ such that θ^{*} is not invertible. Then there is $\varphi \in \operatorname{Hom}_{Q}(R, X)$ such that $\theta^{*}(\varphi)=\varphi \circ \theta=0$. Then $\varphi(\theta(P))=0$, and φ is well defined homomorphism $Z_{\theta} \rightarrow X$.

Corollary 8.11. Let X be regular simple of dimension x. Then $x \leq \delta$.
Proof. By Exercise 8.3, x is a root. If $x_{0} \neq 0$, then $\operatorname{Hom}_{Q}\left(Z_{\theta}, X\right) \neq 0$ for some θ. Consider a non-zero homomorphism $\varphi: Z_{\theta} \rightarrow X$. Since the image of φ is regular and X is regular simple, φ is surjective. Therefore X is a quotient of Z_{θ}, hence $x \leq \delta$. Finally, if $x_{0}=0$, then $x<\delta$.

Exercise 8.12. Let Q be as in Exercise 6.5. Check that regular simple representations have dimensions $\epsilon_{i}+\epsilon_{j}+\epsilon_{0}$ for all $0<i<j<4$ and $\delta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4}+2 \epsilon_{0}$. Show that an indecomposable representation ρ of dimension δ is regular simple if and only if $\operatorname{Im} \rho_{\gamma} \neq \operatorname{Im} \rho_{\gamma^{\prime}}$ for all distinct $\gamma, \gamma^{\prime} \in Q_{1}$.
\{VIIIlm26\}
Lemma 8.13. Let X and Y be two regular simple representations of Q. Then

$$
\operatorname{Hom}_{Q}(X, Y)=\left\{\begin{array}{l}
k, \text { if } X \simeq Y \\
0 \text { otherwise }
\end{array}\right.
$$

and

$$
\operatorname{Ext}_{Q}^{1}(X, Y)=\left\{\begin{array}{l}
k, \text { if } \Phi^{+} X \simeq Y \\
0 \text { otherwise }
\end{array}\right.
$$

Proof. For any homomorphism $\varphi: X \rightarrow Y$ both $\operatorname{Ker} \varphi$ and Coker φ are regular. Therefore either φ is an isomorphism or $\varphi=0$. Moreover, $\operatorname{Hom}_{Q}(X, X)=k$ because X is a brick (see Exercise 8.3).

To prove the second assertion use Lemma 5.7:

$$
\langle x, y\rangle_{Q}=-\langle y, c(x)\rangle_{Q} .
$$

If Y is not isomorphic to X or $\Phi^{+} X$, then

$$
\langle x, y\rangle_{Q}=\operatorname{dim} \operatorname{Hom}_{Q}(X, Y)-\operatorname{dim} \operatorname{Ext}_{Q}^{1}(X, Y) \leq 0
$$

and

$$
\langle y, c(x)\rangle_{Q}=\operatorname{dim} \operatorname{Hom}_{Q}\left(Y, \Phi^{+} X\right)-\operatorname{dim} \operatorname{Ext}_{Q}^{1}\left(Y, \Phi^{+} X\right) \leq 0
$$

Therefore we must have $\langle x, y\rangle_{Q}=0$. Hence $\operatorname{Ext}_{Q}^{1}(X, Y)=0$.

If $Y \simeq X$, then

$$
\langle x, x\rangle_{Q}=1=-\langle x, c(x)\rangle_{Q}
$$

if x is a real root and

$$
\langle x, x\rangle_{Q}=0=-\langle x, c(x)\rangle_{Q}
$$

if $x=c(x)$ is imaginary. In both cases we obtain $\operatorname{dim} \operatorname{Ext}^{1}\left(Y, \Phi^{+} X\right)=1$. The case $Y \simeq \Phi^{+} X$ is similar.
\{VIIIprop26\}
Proposition 8.14.
(1) If X is regular simple, then $\Phi^{+} X$ is also regular simple.
(2) If $x<\delta$, then $\left(\Phi^{+}\right)^{s} X \cong X$ for some $s>1$.
(3) If $x=\delta$, then $\Phi^{+} X \cong X$.

Proof. Set $Y:=\Phi^{+} X$. Then

$$
\langle x, y\rangle_{Q}=-\langle c(x), c(x)\rangle_{Q}=\left\{\begin{array}{l}
-1, \text { if } x \text { is real } \\
0, \text { if } x \text { is imaginary }
\end{array} .\right.
$$

If x is real, then $\operatorname{Ext}_{Q}^{1}(X, Y) \neq 0$. Consider a filtration of Y as in Exercise 8.5. Then $\operatorname{Ext}_{Q}^{1}\left(X, Y_{i}\right) \neq 0$ at least for one i. But by Lemma 8.13, this implies $Y_{i} \simeq \Phi^{+} X$. Hence Y is regular simple. The set of real roots $\alpha<\delta$ is finite. Therefore $c^{s}(x)=x$ for some s. Then $\langle x, x\rangle_{Q}=\left\langle x, c^{s}(x)\right\rangle_{Q}=1$. Therefore $\operatorname{Hom}_{Q}\left(X, \Phi^{s} X\right) \neq 0$. This proves (1) in the case of real x and (2).

Let $x=\delta$. If Y is not simple then it contains a proper regular simple submodule Z and we have

$$
\operatorname{Hom}_{Q}(Z, Y) \simeq \operatorname{Hom}_{Q}\left(Z, \Phi^{+} X\right) \simeq \operatorname{Hom}_{Q}\left(\Phi^{-} Z, X\right)=0
$$

A contradiction. Hence (1) holds for imaginary x. Furthermore, $\operatorname{Ext}_{Q}^{1}(X, Y) \simeq$ $\operatorname{Hom}_{Q}(X, Y)=k$ by Lemma 8.13. Thus, (3) is proved.

The minimal number s such that $\left(\Phi^{+}\right)^{s} X \cong X$ is called the period of X. Regular simple representations can be divided into orbits with respect to the action of Φ^{+}.

Corollary 8.15. Let X be a regular indecomposable representation. Then all regular simple S such that $[X: S]_{r}>0$ belong to the same Φ^{+}-orbit.

Proof. Let r denote the regular length of X, i.e. the length of a filtration introduced in Exercise 8.5. Assume that the statement is false and pick up X with the minimal regular length r for which it fails. Let S be a regular simple submodule of X. Consider the exact sequence

$$
0 \rightarrow S \rightarrow X \rightarrow Y \rightarrow 0
$$

and let $Y=\oplus_{i=1}^{k} Y_{i}$ be a direct sum of indecomposables. Then all regular simple constituents of Y_{i} belong to the same Φ^{+}-orbit. Indecomposability of X implies that $\operatorname{Ext}_{Q}^{1}\left(Y_{i}, S\right) \neq 0$ for all $i=1, \ldots k$. Lemma 8.13 implies that S lies in the Φ^{+}-orbit of
the regular simple constituents of Y_{i}. Therefore all regular simple constituents of X are in the same orbit. A contradiction.

Exercise 8.16. Let $\left\{S_{1}, \ldots S_{p}\right\}$ be an orbit of Φ^{+}in the set of regular simple representation and let $\alpha_{i}=\operatorname{dim} S_{i}$. Assume that $S_{i}=\left(\Phi^{+}\right)^{i-1} S_{1}$. If $p=1$, then $\alpha_{1}=\delta$, if $p=2$, then $\left(\alpha_{1}, \alpha_{2}\right)=-2$. If $p>2$ then $\left(\alpha_{i}, \alpha_{j}\right)=0$ if $i \neq j \pm 1$ and $(i, j) \neq(p, 1),(1, p)$ and

$$
\left(\alpha_{i}, \alpha_{i+1}\right)=-1, i=1, \ldots, p-1, \quad\left(\alpha_{1}, \alpha_{p}\right)=-1 .
$$

In other words, $\alpha_{1}, \ldots, \alpha_{p}$ form simple roots system for \tilde{A}_{p-1}. Prove also that $\alpha_{1}, \ldots, \alpha_{p}$ are linearly independent.
8.4. Indecomposable regular representations and tubes. As follows from Corollary 8.15 simple regular constituents of an indecomposable regular representation belong to the same orbit of Φ^{+}. Thus, each orbit of Φ^{+}in the set of simple regular representations defines a family of indecomposables called a tube.

Exercise 8.17. Let Q be the quiver of Exercise 6.5. Then there are 3 orbits of regular simple representations of period 2 and infinitely many orbits of period 1.

Theorem 8.18. Let T be a tube and \mathcal{S} be the set of isomorphism classes of regular simple representations in T. Then for every $r>0$ and $S \in \mathcal{S}$ there exists a unique up to isomorphism regular representation $X^{(r)}(S) \in T$ of regular length r such that
(1) it has a unique regular simple quotient which is isomorphic to S,
(2) every non-zero regular submodule of $X^{(r)}(S)$ has a unique regular simple quotient.
Moreover, every indecomposable representation in T is isomorphic to $X^{(r)}(S)$ for some $r>0$ and $S \in \mathcal{S}$.

Proof. We first prove the existence of $X^{(r)}(S)$ by induction on r, with the base case $X^{(1)}(S)=S$. To construct $X^{(r)}(S)$ for arbitrary r use $X^{(r-1)}\left(\Phi^{+} S\right)$ and the surjection $p: X^{(r-1)}\left(\Phi^{+} S\right) \rightarrow \Phi^{+} S$ which defines the surjection:

$$
\bar{p}: \operatorname{Ext}_{Q}^{1}\left(S, X^{(r-1)}\left(\Phi^{+} S\right)\right) \rightarrow \operatorname{Ext}_{Q}^{1}\left(S, \Phi^{+} S\right)=k
$$

Let $\varphi \in \operatorname{Ext}_{Q}^{1}\left(S, X^{(r-1)}\left(\Phi^{+} S\right)\right)$ be such that $\bar{p}(\varphi) \neq 0$. Then it induces a non-split exact sequence

$$
0 \rightarrow X^{(r-1)}\left(\Phi^{+} S\right) \rightarrow Z \xrightarrow{\pi} S \rightarrow 0 .
$$

Denote by N a maximal proper regular submodule of $X^{(r-1)}\left(\Phi^{+} S\right)$ which is unique by the induction assumption. Then the sequence

$$
\begin{equation*}
0 \rightarrow \Phi^{+} S \rightarrow Z / N \rightarrow S \rightarrow 0 \tag{8.2}
\end{equation*}
$$

does not split.

We set $X^{(r)}(S):=Z$ and claim that Z satisfies the requirements of the theorem. It suffices to check that Z has a unique proper maximal regular submodule. Indeed, let M be a proper maximal regular submodule of Z. If $M \neq X^{(r-1)}\left(\Phi^{+} S\right)$ then $M \cap X^{(r-1)}\left(\Phi^{+} S\right)=N$ and $M / N=\Phi^{+} S$ is embedded in Z / N. This contradicts the non-splitting of the sequence (8.2).

Now let us show that $X^{(r)}(S)$ is unique up to isomorphism again by induction on r. We will need the following

Lemma 8.19. For any $r>0$ and $S, S^{\prime} \in \mathcal{S}$ we have

$$
\operatorname{Ext}_{Q}^{1}\left(S, X^{(r)}\left(S^{\prime}\right)\right)=\left\{\begin{array}{l}
0, \text { if } S^{\prime} \neq \Phi^{+} S \\
k, \text { if } S^{\prime}=\Phi^{+} S
\end{array} .\right.
$$

Proof. We prove Lemma by induction on r. If $r=1$ the statement is Lemma 8.13. Let $S^{\prime \prime}$ be the unique regular simple submodule of $X^{(r)}\left(S^{\prime}\right)$. We consider the exact sequence

$$
0 \rightarrow S^{\prime \prime} \rightarrow X^{(r)}\left(S^{\prime}\right) \rightarrow X^{(r-1)}\left(S^{\prime}\right) \rightarrow 0
$$

and the corresponding long exact sequence for $\operatorname{Ext}_{Q}(S, \cdot)$. Note that $\operatorname{Hom}_{Q}\left(S, S^{\prime \prime}\right) \rightarrow$ $\operatorname{Hom}_{Q}\left(S, X^{(r)}\left(S^{\prime}\right)\right)$ is an isomorphism since $S^{\prime \prime}$ is the unique regular simple submodule of $X^{(r)}\left(S^{\prime}\right)$. Furthermore, $\operatorname{Ext}_{Q}^{1}\left(S, S^{\prime \prime}\right)=0$ if $S^{\prime \prime} \neq \Phi^{+} S$. So in this case we obtain an isomorphism

$$
\operatorname{Ext}_{Q}^{1}\left(S, X^{(r)}\left(S^{\prime}\right)\right) \xrightarrow{\sim} \operatorname{Ext}_{Q}^{1}\left(S, X^{(r-1)}\left(S^{\prime}\right)\right)
$$

and the statement follows by induction. On the other hand, if $S^{\prime \prime}=\Phi^{+} S$, the unique simple submodule of $X^{(r-1)}\left(S^{\prime}\right)$ is isomorphic to S and therefore we have
$0 \rightarrow \operatorname{Hom}_{Q}\left(S, X^{(r-1)}\left(S^{\prime}\right)\right) \xrightarrow{\sim} \operatorname{Ext}_{Q}^{1}\left(S, S^{\prime \prime}\right) \xrightarrow{0} \operatorname{Ext}_{Q}^{1}\left(S, X^{(r)}\left(S^{\prime}\right)\right) \xrightarrow{\sim} \operatorname{Ext}_{Q}^{1}\left(S, X^{(r-1)}\left(S^{\prime}\right)\right) \rightarrow 0$.

Now by induction assumption $X^{(r)}(S)$ has a unique maximal regular submodule isomorphic to $X^{(r-1)}\left(\Phi^{+}(S)\right)$. By Lemma $8.19 \operatorname{Ext}_{Q}^{1}\left(S, X^{(r-1)}\left(\Phi^{+}\right)\right)=k$ which implies the uniquness of $X^{(r)}(S)$.

Finally let us prove the last assertion. Let $X \in T$ be an indecomposable representation of regular length r and let S be some regular simple quotient of X. We will prove that X is isomorphic to $X^{(r)}(S)$ by induction on r. Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow Y \rightarrow X \rightarrow S \rightarrow 0 \tag{8.3}
\end{equation*}
$$

and let Y_{1}, \ldots, Y_{m} be the indecomposable summands of Y. Assume that $m \geq 2$. Indecomposability of X implies that $\operatorname{Ext}_{Q}^{1}\left(S, Y_{i}\right) \neq 0$ for all $i=1, \ldots, m$. So by induction assumption and Lemma 8.19, each summand Y_{i} is isomophic to $X^{\left(r_{i}\right)}\left(\Phi^{+} S\right)$ for some r_{i}. Without loss of generality we may assume that r_{1} is maximal. Then for every $i \geq 2$ we have a surjective homomorphism $f_{i}: Y_{1} \rightarrow Y_{i}$ which induces an isomorphism $\tilde{f}_{i}: \operatorname{Ext}_{Q}^{1}\left(S, Y_{1}\right) \rightarrow \operatorname{Ext}_{Q}^{1}\left(S, Y_{i}\right)$. Assume that the sequence (8.3)
corresponds to the element $\sum_{i=1}^{m} \psi_{i}$ for some $\psi_{i} \in \operatorname{Ext}{ }_{Q}^{1}\left(S, Y_{i}\right)$. Then $\psi_{i}=c_{i} \tilde{f}_{i}\left(\psi_{1}\right)$. Let

$$
Z_{2}:=\left\{c_{2} m-f_{2}(m) \mid m \in Y_{1}\right\} .
$$

Then Z_{2} splits as a direct sumand in X and we obtain a contradiction.
Thus Y is indecomposable, isomorphic to $X^{(r-1)}(S)$ and hence X is isomorphic to $X^{(r)}(S)$.

Lemma 8.20. Every tube contains exactly one indecomposable representation isomorphic to Z_{θ}.

Proof. Pick up a simple regular X in a tube T. Let p be the period of X, i.e. $\left(\Phi^{+}\right)^{p} X \cong X$. If $x=\operatorname{dim} X$, then

$$
x+c(x)+\cdots+c^{p-1}(x)=m \delta
$$

There exists i such that $y:=c^{i}(x)$ has the coordinate $y_{0} \neq 0$. Let $Y:=\left(\Phi^{+}\right)^{i} X$. By Lemma 8.10 there exists $\theta \in \operatorname{Hom}_{Q}(P, R)$ and a non-zero homomorphism $\varphi: Z_{\theta} \rightarrow Y$. Hence Z_{θ} is in the tube T. Moreover Z_{θ} is isomorphic to $X^{(p)}(Y)$. This implies $m=1$ and the choice of i is unique.

To prove uniquness of Z_{θ}, recall preprojective representations P and R introduced in Section 8.2. Note that for any regular simple Z of dimension z we have

$$
\langle p, z\rangle_{Q}=\langle r, z\rangle_{Q}=z_{0} .
$$

Since R is preprojective, $\operatorname{Ext}_{Q}^{1}(R, Z)=0$. Therefore if Z is not isomorphic to Y we have $\operatorname{Hom}_{Q}(R, Z)=0$. Since any Z_{τ} is a quotient of R we also have $\operatorname{Hom}_{Q}\left(Z_{\tau}, Z\right)=$ 0 . Therefore any indecomposable representation in T isomorphic to Z_{τ} must be isomorphic to $X^{(p)}(Y)$. Hence the uniquness part of the statement.

Corollary 8.21. Let T be a tube and S_{1}, \ldots, S_{p} be all regular simple representations of T up to isomorphism. Then $\operatorname{dim} S_{1}+\cdots+\operatorname{dim} S_{p}=\delta$.

Lemma 8.22. Let X be regular indecomposable, then $\operatorname{dim} X$ is a root.
Proof. Lemma follows from Theorem 8.18 and Exercise 8.16. Indeed, for any S and r we have

$$
\operatorname{dim} X^{(r)}(S)=m \delta+\alpha_{1}+\cdots+\alpha_{q},
$$

where $\alpha_{i}:=\operatorname{dim}\left(\Phi^{+}\right)^{i-1} X, r=m p+q, 0 \leq q<p$. Then $\operatorname{dim} X^{(r)}$ is a root by Exercise 8.16.

9. Indecomposable representations of affine quivers

Theorem 9.1. Let Q be a quiver whose underlying graph is affine.
(1) The dimension of every indecomposable representation of Q is a root.
(2) If α is a real root, then there exists exactly one (up to isomorphism) indecomposable representation of dimension α.
(3) If $\alpha=m \delta$ is an imaginary root, then there are infinitely many indecomposable representations of dimension α. Every tube contains finitely many indecomposable representation of dimension α.

Proof. (1) Let α be the dimension of an indecomposable representation X. If $\langle\alpha, \delta\rangle \neq 0$, then X is preprojective or preinjective, and α is a real root by Corollary 7.3. If $\langle\alpha, \delta\rangle=0$, then X is regular and α is a root by Lemma 8.22.
(2) Let α be a real root and X be indecomposable of dimension α. If $\langle\alpha, \delta\rangle_{Q} \neq 0$ then X is annihilated by some power of Φ^{+}or Φ^{-}. In this case the proof of uniquness is similar to the proof of Corollary 4.3 and we leave it to the reader. If $\langle\alpha, \delta\rangle_{Q}=0$ then X is regular and hence belongs to some tube T. Then by Theorem 8.18, $X \simeq X^{(r)}(S)$ for some simple S. It suffices to check that for any r which is not a multiple of p and two distinct regular simple representation S and S^{\prime}, $\operatorname{dim} X^{(r)}(S) \neq \operatorname{dim} X^{(r)}\left(S^{\prime}\right)$. It easily follows from the the linear independence of dimension vectors of the regular simple representation of the tube T, see Exercise 8.16.
(3) The first assertion follows from Lemma 8.9 and the second one is a simple consequence of Theorem 8.18.

Example 9.2. Let Q be a quiver with underlying graph $\Gamma=\tilde{A}_{n}$ for $n>1$. Then we have $\delta=\epsilon_{0}+\cdots+\epsilon_{n}$. Roots are in bijection with counterclockwise paths on Γ disregarding the orientation of arrow. Indeed, write a path as a sequence of vertices i_{1}, \ldots, i_{s} such that $\left(i_{j}, i_{j+1}\right) \in \Gamma_{1}$ and i_{j+1} is the next to i_{j} in the counterclockwise direction. Then the corresponding root α equals $\epsilon_{i_{1}}+\cdots+\epsilon_{i_{s}}$. It is easy to see that α is imaginary if and only if $s=m(n+1)$, in which case i_{1} is the next to i_{s} in the counterclockwise direction.

Let α be a real root. We define the unique indecomposable representation of dimension α as follows. Let $V=k^{s}$ with fixed basis v_{1}, \ldots, v_{s}. For every $i \in Q_{0}$ define V_{i} to be the span of all v_{j} such that $i_{j}=i$. For every γ define $\rho_{\gamma}: V_{s(\gamma)} \rightarrow V_{t(\gamma)}$ by setting for each j such that $i_{j}=s(\gamma)$

$$
\rho_{\gamma}\left(v_{j}\right)=\left\{\begin{array}{l}
v_{j+1}, \text { if } i_{j+1}=t(\gamma) \\
v_{j-1}, \text { if } i_{j-1}=t(\gamma) \\
0 \text { otherwise }
\end{array} .\right.
$$

In particular, $\rho_{\gamma}\left(v_{1}\right)=0$ if and only if i_{1} is the target of the first edge of the path and $\rho_{\gamma}\left(v_{s}\right)=0$ if and only if i_{s} is the target of the last edge of the path.

Exercise 9.3. Show that ρ is indecomposable.
Now let $\alpha=m \delta$ be imaginary. We define a family of indecomposable representation $\rho^{t, \beta}$ where $\beta \in Q_{1}$ and $t \in k$. We identify V_{i} with k^{m} for each $i \in Q_{0}$ and set

$$
\rho_{\gamma}^{t, \beta}=\left\{\begin{array}{l}
I_{m}, \text { if } \gamma \neq \beta \\
J_{m}(t), \text { if } \gamma=\beta
\end{array},\right.
$$

where I_{m} is the identity matrix and $J_{m}(t)$ is the Jordan block with eigenvalue t.
Exercise 9.4.
(1) Show that $\rho^{t, \beta}$ are indecomposable.
(2) If $t \neq 0$, then $\rho^{t, \beta}$ is isomorphic to $\rho^{t^{-1}, \beta^{\prime}}$ if β and β^{\prime} have the same direction (clockwise or counterclockwise) and is isomorphic to $\rho^{t, \beta^{\prime}}$ if β and β^{\prime} have opposite directions.
(3) The representations $\rho^{t, \beta}$ for $t \neq 0$ and fixed β together with $\rho^{0, \beta}$ for all $\beta \in Q_{1}$ provide a complete list of all up to isomorphism indecomposable representations of Q of dimension $m \delta$.

CHAPTER 9

Applications of quivers

In this chapter we define quivers with relations and use them to study certain abelian categories.

1. From abelian categories to algebras

Consider an abelian category \mathcal{C} which satisfies the following properties:
(1) For any pair of objects X, Y, the abelian $\operatorname{group} \operatorname{Hom}_{\mathcal{C}}(X, Y)$ is a finitedimensional vector space over a ground field k;
(2) there are finitely many isomorphism classes of simple objects L_{1}, \ldots, L_{n};
(3) every object in \mathcal{C} has finite length;
(4) The category \mathcal{C} has enough projective objects, i. e. for every object X there exists a projective object P and a surjective morphism $\psi: P \rightarrow X$.
ExERCISE 1.1. Check that the category of finite-dimensional representations of a finite group G over k and the category of finite-dimensional representations of quiver Q without loops or oriented cycles satisfy the conditions above. More generally, let A be a finite-dimensional k-algebra, then the category of finite-dimensional A-modules satisfies the conditions above.

Exercise 1.2. If X is an object of \mathcal{C}, then any $\varphi \in \operatorname{End}_{\mathcal{C}}(X)$ is either nilpotent or an isomorphism. Therefore the Krull-Schmidt theorem holds for any object of \mathcal{C}.

ExERCISE 1.3. Prove that any object of \mathcal{C} has a projective resolution and that $\operatorname{Ext}_{\mathcal{C}}^{i}(X, Y)$ is a finite-dimensional vector space for all $i \geq 0$ and all objects $X, Y \in \mathcal{C}$.

Using the property (1) of \mathcal{C}, we define a new category Vect $\otimes \mathcal{C}$ whose objects are $M \otimes X$ for some $M \in$ Vect and $X \in \mathcal{C}$ and morphisms are defined by

$$
\operatorname{Hom}_{\mathrm{Vect} \otimes \mathcal{C}}(M \otimes X, N \otimes Y):=\operatorname{Hom}_{k}(M, N) \otimes_{k} \operatorname{Hom}_{\mathcal{C}}(X, Y) .
$$

Obviously we have a fully faithful functor $\mathcal{C} \rightarrow \operatorname{Vect} \otimes \mathcal{C}$ sending X to $k \otimes X$ and we have an isomorphism $M \otimes X \simeq k \otimes X^{\oplus \operatorname{dim} M}$. On the other hand, we have a forgetful functor $\operatorname{Vect} \otimes \mathcal{C} \rightarrow \mathcal{C}$. We will denote by $M \boxtimes X$ an object of \mathcal{C} obtained by application of the forgetful functor to $M \otimes X$, keeping in mind that $M \boxtimes X$ isomorphic to $X^{\oplus \operatorname{dim} M}$.

A projective generator of \mathcal{C} is a projective object P such that for any $X \in \mathcal{C}$ there exist $M \in$ Vect and a surjective morphism $\psi: M \otimes P \rightarrow X$. Let

$$
A:=\operatorname{End}_{\mathcal{C}}(P)
$$

Then A is a finite-dimensional k-algebra. For any $X \in \mathcal{C}$, the space $\Phi X:=\operatorname{Hom}_{\mathcal{C}}(P, X)$ has a natural structure of right A-module. Clearly, Φ is a functor from \mathcal{C} to the category of finite-dimensional right A-modules, which we denote by $\bmod _{A}$. Projectivity of P implies that Φ is exact.

For every $M \in \bmod _{A}$, define the following object in \mathcal{C} :

$$
M \boxtimes_{A} P:=M \boxtimes P /\left(\sum_{a \in A} \operatorname{Ker}\left(a \boxtimes \operatorname{Id}_{P}-\operatorname{Id}_{M} \boxtimes a\right)\right) .
$$

We claim that there exists a canonical isomorphism

$$
\operatorname{Hom}_{\mathcal{C}}\left(M \boxtimes_{A} P, X\right) \simeq \operatorname{Hom}_{A}\left(M, \operatorname{Hom}_{\mathcal{C}}(P, X)\right)
$$

Indeed, by definition of Vect $\otimes \mathcal{C}$ there is a canonical isomorphism

$$
\operatorname{Hom}_{\mathcal{C}}(M \boxtimes P, X) \simeq \operatorname{Hom}_{k}\left(M, \operatorname{Hom}_{\mathcal{C}}(P, X)\right)
$$

The spaces on the both sides of this identity are equipped with natural structures of A-bimodule. For any A-bimodule R we set

$$
R^{A}=\{r \in R \mid a r=r a \text { for all } a \in A\}
$$

Then

$$
\operatorname{Hom}_{\mathcal{C}}(M \boxtimes P, X)^{A}=\operatorname{Hom}_{\mathcal{C}}\left(M \boxtimes_{A} P, X\right)
$$

and

$$
\operatorname{Hom}_{k}\left(M, \operatorname{Hom}_{\mathcal{C}}(P, X)\right)=\operatorname{Hom}_{A}\left(M, \operatorname{Hom}_{\mathcal{C}}(P, X)\right)
$$

Therefore the functor $\Psi: \bmod _{A} \rightarrow \mathcal{C}$, defined by $\Psi M:=M \boxtimes_{A} P$, is right adjoint to Φ. In particular, Ψ is right exact.

Theorem 1.4. The functors Φ and Ψ establish an equivalence between the categories \mathcal{C} and $\bmod _{A}$.

Proof. We start with proving that Φ and Ψ establish a bijection on isomorphism classes of simple modules in both categories. Pick up a simple object L_{i} in \mathcal{C} and let $S_{i}:=\operatorname{Hom}_{\mathcal{C}}\left(P, L_{i}\right)$. Since P is a projective generator of \mathcal{C}, we have $S_{i} \neq 0$. Let us check that S_{i} is a simple A-module. Indeed, given two non-zero morphisms $\psi: P \rightarrow L_{i}$ and $\psi^{\prime}: P \rightarrow L_{i}$, there exists a commutative diagram

for some $\varphi \in A$. Hence $\psi A=S_{i}$ for any non-zero $\psi \in S_{i}$.

Since P has finite length there exists a unique minimal $R \hookrightarrow P$ such that P / R is semisimple. Furthermore, for any simple L_{i} we have $\operatorname{Hom}_{\mathcal{C}}\left(P, L_{i}\right)=\operatorname{Hom}_{\mathcal{C}}\left(P / R, L_{i}\right)$. Therefore, we have a decomposition

$$
\begin{equation*}
P / R \simeq \bigoplus_{i=1}^{n}\left(S_{i} \boxtimes_{D_{i}} L_{i}\right), \quad D_{i}:=\operatorname{End}_{\mathcal{C}}\left(L_{i}\right) \tag{9.1}
\end{equation*}
$$

We claim that any simple A-module S is isomorphic to some S_{i}. As follows from results of Section 7 Chapter 5, it suffices to check that for every primitive idempotent $e \in A$ there exists i such that $S_{i} e \neq 0$. Indeed, otherwise $e P \subset R$ and a simple quotient of $e P$ can be lifted to a simple quotient of P, which contradicts the minimality of R. Now we obtain

$$
S_{i} \boxtimes_{A} P \simeq S_{i} \boxtimes_{A}(P / R) \simeq L_{i} .
$$

Thus, we have proved that Φ and Ψ provide a bijection between isomorphism classes of simple objects in \mathcal{C} and $\bmod _{A}$.

By adjointness of Φ and Ψ, we have morphisms $\alpha_{M}: M \rightarrow \Phi \Psi M$ for all $M \in \bmod _{A}$ and $\beta_{X}: \Psi \Phi X \rightarrow X$ for all $X \in \mathcal{C}$. We need to show that they are isomorphisms. It follows from (9.1) that α_{M} (resp. β_{X}) is an isomorpism if M (resp. $X)$ is simple.

First we will prove that β_{X} is an isomorphism for any $X \in \mathcal{C}$ by induction on the length of X. We consider an exact sequence

$$
0 \rightarrow L \rightarrow X \rightarrow Y \rightarrow 0
$$

where L is simple. Since $\Phi \Psi$ is right exact, we have the following commutative diagram

with exact upper and low rows. By the induction assumption, β_{L} and β_{Y} are isomorphisms. Note also that $f \beta_{L}$ is injective, which implies the injectivity of $\Psi \Phi(f)$. By Snake lemma (Exercise 5.6, Chapter 5) β_{X} is an isomorphism.

Finally let us show that α_{M} is an isomorphism for all $M \in \bmod _{A}$. It is trivial that α_{M} is an isomorphism for a free A-module M. Any module is a quotient of a free module. Hence it suffices to prove that for any exact sequence

$$
0 \rightarrow S \rightarrow M \rightarrow N \rightarrow 0
$$

such that α_{S} and α_{M} are isomorphisms, α_{N} is also an isomorphism. We consider the commutative diagram

and observe that $\alpha_{M} f$ is injective. Hence $\Phi \Psi(f)$ is injective. Again using Snake lemma, we obtain that α_{N} is an isomorphism. The proof of the theorem is complete.

Note that the above Theorem allows to prove many facts about \mathcal{C} using the results of Section 7 in Chapter 5. For example, we have the following

Corollary 1.5. For any simple object L_{i} there exists a unique, up to isomorphism, indecomposable projective object P_{i}, whose unique simple quotient is isomorphic to L_{i}. Every indecomposable projective object of \mathcal{C} is isomorphic to one of P_{1}, \ldots, P_{n}.

2. From categories to quivers

2.1. Quivers with relations. Let us assume that \mathcal{C} satisfies conditions (1)-(4) of Section 9.1. Assume also that $\operatorname{End}_{\mathcal{C}}\left(L_{i}\right)=k$ for every simple module L_{1}, \ldots, L_{n}. We can choose the direct sum $P_{1} \oplus \cdots \oplus P_{n}$ as projective generator P. The extension quiver of \mathcal{C} is the quiver with vertices $\{1, \ldots, n\}$ such that for every ordered pair of vertices (i, j), the number of arrows with source i and target j equals $\operatorname{dim} \operatorname{Ext}_{\mathcal{C}}{ }^{1}\left(L_{i}, L_{j}\right)$.

Lemma 2.1. Let $P:=P_{1} \oplus \cdots \oplus P_{n}$ and $A:=\operatorname{End}_{\mathcal{C}}(P)$. Then $A^{o p}$ is isomorphic to a quotient $k(Q) / \mathcal{R}$, for some two-sided-ideal \mathcal{R} contained in $\operatorname{rad}^{2} k(Q)$.

Proof. For every indecomposable P_{i} consider the radical filtration

$$
P_{i} \supset \nabla^{1}\left(P_{i}\right) \supset \nabla^{2}\left(P_{i}\right) \supset \ldots .
$$

Recall that $\nabla^{s}\left(P_{i}\right)$ is the minimal submodule in $\nabla^{s-1}\left(P_{i}\right)$ such that the quotient $\nabla^{s-1}\left(P_{i}\right) / \nabla^{s}\left(P_{i}\right)$ is semisimple. By Theorem 1.4, we have the following identity for the radical filtration of P (see Corollary 7.11, Chapter 5):

$$
\begin{equation*}
\left(\operatorname{rad}^{s} A\right) P=\nabla^{s}(P) \tag{9.2}
\end{equation*}
$$

Then $P_{i} / \nabla^{1}\left(P_{i}\right) \simeq L_{i}$ and for any non-trivial extension

$$
0 \rightarrow L_{j} \rightarrow X \rightarrow L_{i} \rightarrow 0
$$

we have a surjection $P_{i} / \nabla^{2}\left(P_{i}\right) \rightarrow X$. This implies

$$
\operatorname{Ext}_{\mathcal{C}}^{1}\left(L_{i}, L_{j}\right) \simeq \operatorname{Hom}_{\mathcal{C}}\left(L_{j}, \nabla^{1}\left(P_{i}\right) / \nabla^{2}\left(P_{i}\right)\right) \simeq \operatorname{Hom}_{\mathcal{C}}\left(P_{j}, \nabla^{1}\left(P_{i}\right) / \nabla^{2}\left(P_{i}\right)\right) .
$$

Now we fix a basis in $\operatorname{Hom}_{\mathcal{C}}\left(P_{j}, \nabla^{1}\left(P_{i}\right) / \nabla^{2}\left(P_{i}\right)\right)$ enumerated by arrows of the opposite quiver $Q^{o p}$ with source j and target i. By a slight abuse of notation we can consider every arrow $\gamma=(j \rightarrow i)$ as an element of $\operatorname{Hom}_{\mathcal{C}}\left(P_{j}, \nabla^{1}\left(P_{i}\right) / \nabla^{2}\left(P_{i}\right)\right)$.

By projectivity of P_{j} the natural map

$$
\theta: \operatorname{Hom}_{\mathcal{C}}\left(P_{j}, \nabla^{1}\left(P_{i}\right)\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(P_{j}, \nabla^{1}\left(P_{i}\right) / \nabla^{2}\left(P_{i}\right)\right)
$$

is surjective.
We construct a homomorphism $F: k\left(Q^{o p}\right) \rightarrow A$ by setting $F\left(e_{i}\right)$ to be the projector $P \rightarrow P_{i}$ with kernel $\oplus_{j \neq j} P_{j}$ and $F(\gamma)$ to be a element in the preimage $\theta^{-1}(\gamma)$. This homomorphism depends on the choice of bases in $\operatorname{Hom}_{\mathcal{C}}\left(P_{j}, \nabla^{1}\left(P_{i}\right) / \nabla^{2}\left(P_{i}\right)\right)$ and on the choice of a lift $\gamma \mapsto \theta^{-1}(\gamma)$.

It follows immediately from the construction of F and (9.2) that the induced homomorphism $k\left(Q^{o p}\right) \rightarrow A / \operatorname{rad}^{2} A$ is surjective. It is easy to show by induction on s that $k\left(Q^{o p}\right) \rightarrow A / \operatorname{rad}^{s} A$ is surjective for all s. Since $\operatorname{rad}^{s} A=0$ for sufficiently large s, F is surjective.

Corollary 2.2. The category \mathcal{C} with Ext quiver Q is equivalent to the category of finite-dimensional left $B_{\mathcal{C}}$-modules, where $B_{\mathcal{C}}=k(Q) / R$ for some ideal R of $k(Q)$.

Proof. Follows from Lemma 2.1 and Theorem 1.4, since $B_{\mathcal{C}}$ is isomorphic to $A^{o p}$.

The representations of $k(Q) / R$ are called representations of the quiver Q with relations R. In general, classifying indecomposable representations of $k(Q) / R$ may be a very difficult problem. There are however two boundary cases, when the problem can be reduced to the ordinary representation theory of quivers. The first case is $R=0$, where one can use the results of two previous chapters. The second case is when R is maximal possible, i.e. the product of any two arrows is zero. In this case the following trick of duplicating the quiver may be useful:

Let Q be a quiver with set of vertices $Q_{0}=\{1, \ldots, n\}$ and assume that the ideal $R \subset k(Q)$ is generated by all paths of length 2 . Consider the quiver \bar{Q}, with set of vertices $\left\{1^{-}, \ldots, n^{-}, 1^{+}, \ldots n^{+}\right\}$and with set of arrows \bar{Q}_{1} defined by

$$
\bar{Q}_{1}:=\left\{\left(i^{-} \rightarrow j^{+}\right) \mid(i \rightarrow j) \in Q_{1}\right\} .
$$

For example, if Q is a loop \bullet^{1}, then \bar{Q} is $\bullet^{1^{-}} \rightarrow \bullet^{1^{+}}$. Let (V, ρ) be a representation of $k(Q) / R$, then for every $i \in Q_{0}$ we have

$$
\sum_{\gamma \in Q_{+}(i)} \operatorname{Im} \gamma \subset \bigcap_{\gamma \in Q_{-}(i)} \operatorname{Ker} \gamma
$$

If we assume that (V, ρ) is indecomposable but not irreducible, then the above embedding becomes the equality

$$
\sum_{\gamma \in Q_{+}(i)} \operatorname{Im} \gamma=\bigcap_{\gamma \in Q_{-}(i)} \operatorname{Ker} \gamma
$$

We construct a representation $(\bar{V}, \bar{\rho})$ of \bar{Q} in the following way. We set

$$
\bar{V}_{i^{+}}:=\bigcap_{\gamma \in Q_{-}(i)} \operatorname{Ker} \gamma, \quad \bar{V}_{i^{-}}:=V_{i} / \bar{V}_{i^{+}} .
$$

For any $\gamma=(i \rightarrow j) \in Q_{1}$, the map $\rho_{\gamma}: V_{i} \rightarrow V_{j}$ induces in the natural way the map $\bar{\rho}_{\bar{\gamma}}: V_{i^{-}} \rightarrow V_{j^{+}}$, where $\bar{\gamma}=\left(i^{-} \rightarrow j^{+}\right) \in \bar{Q}_{1}$.

Conversely, let $(\bar{V}, \bar{\rho})$ be a representation of \bar{Q}. We can construct a representation (V, ρ) of $k(Q) / R$ by setting

$$
V_{i}:=\bar{V}_{i^{-}} \oplus \bar{V}_{i^{+}}, \quad \rho_{\gamma}:=\bar{\rho}_{\bar{\gamma}} \text { for all } \bar{\gamma}=\left(i^{-} \rightarrow j^{+}\right), \gamma=(i \rightarrow j) .
$$

The following statement is straightforward.
Lemma 2.3. The map $(V, \rho) \mapsto(\bar{V}, \bar{\rho})$ defines a bijection between isomorphism classes of non-irreducible indecomposable representations of $k(Q) / R$ and isomorphism classes of non-irreducible indecomposable representations of \bar{Q}.

Example 2.4. Let us revisit Example 7.17 from Chapter 5. Let \mathcal{C} be the category of finite-dimensional representations of S_{3} over \mathbb{F}_{3}. There are exactly two (up to isomorphism) simple objects in \mathcal{C}, the trivial representation and the sign representation. The corresponding indecomposable projectives are $P_{+}:=\operatorname{Ind}_{S_{2}}^{S_{3}}$ triv and $P_{-}:=\operatorname{Ind}_{S_{2}}^{S_{3}} \operatorname{sgn}$. The Ext quiver Q is

$$
\bullet \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} \bullet
$$

It is not difficult to check, using the radical filtration of $P_{ \pm}$calculated in Example 7.17, that the ideal R is generated by $\alpha \beta \alpha$ and $\beta \alpha \beta$. The classification of all (up to isomorphism) indecomposable representations of S_{3} is therefore equivalent to the classification of indecomposable left $B_{\mathcal{C}}$-modules. If we set $P_{1}:=\Phi P_{+}$and $P_{2}:=\Phi P_{-}$, then $P_{1}=A e_{1}$ and $P_{2}=A e_{2}$, where e_{1}, e_{2} are the primitive idempotents of $B_{\mathcal{C}}$ corresponding to the vertices of Q. Let us note also that in this case $B_{\mathcal{C}}$ is isomorphic to $B_{\mathcal{C}}^{o p}$. If P is an indecomposable projective module, then P^{*} is an indecomposable injective $B_{\mathcal{C}}^{o p}$-module. By direct inspection one can see that P_{1} and P_{2} are slef-dual, hence they are injective.

Suppose that M is an indecomposable $B_{\mathcal{C}}$-module. Assume that $\beta \alpha M \neq 0$. There exists a non-zero vector $m \in M$ such that $m, \alpha m, \beta \alpha m$ are linearly independent. This implies that M contains a submodule isomorphic to P_{1}. Since P_{1} is injective and M is indecomposable we obtain that M is isomorphic to P_{1}. Similarly, if $\alpha \beta M \neq 0$ we obtain that M is isomorphic to P_{2}.

Next, we assume that $\beta \alpha M=\alpha \beta M=0$. Then we can use Lemma 2.3. Indeed, \bar{Q} is the disjoint union of two A_{2} quivers:

$$
\bullet \rightarrow \bullet \bullet \rightarrow \bullet .
$$

Hence $k(Q) /(\alpha \beta, \beta \alpha)$ has four indecomposable representations: two of dimension $(1,1)$ and two, which are irreducible, of dimension $(0,1)$ and $(1,0)$ respectively. In particular, we obtain that in this case every indecomposable representation is a quotient of an indecomposable projective representation.

We do not need the assumption that the number of simple or projective objects is finite. We illustrate this in the following example.

Example 2.5. Let Λ be the Grassmann algebra with two generators, i.e.

$$
\Lambda=k<x, y>/\left(x^{2}, y^{2}, x y+y x\right)
$$

Consider the \mathbb{Z}-grading $\Lambda=\Lambda_{0} \oplus \Lambda_{1} \oplus \Lambda_{2}$, where

$$
\Lambda_{0}=k \quad \Lambda_{1}=k x+k y, \quad \Lambda_{2}=k x y
$$

Let \mathcal{C} be the category of graded Λ-modules. The objects of \mathcal{C} are Λ-modules $M=$ $\bigoplus_{i \in \mathbb{Z}} M_{i}$, such that $\Lambda_{i} M_{j} \subset M_{i+j}$, and we assume that morphisms preserve the grading. We leave it to the reader to check that all up to isomorphism simple modules are one-dimensional and hence are determined uniquely by the degree. Indecomposable projective modules are free of rank 1 and are parametrized by integers. An indecomposable projective module P_{i} is isomorphic to Λ with shifted grading: $\operatorname{deg}(1)=i$. The Ext quiver Q has infinitely many vertices:

and it is not hard to check that the defining relations are

$$
\alpha_{i+1} \alpha_{i}=\beta_{i+1} \beta_{i}=0, \quad \alpha_{i+1} \beta_{i}+\beta_{i+1} \alpha_{i}=0
$$

for all $i \in \mathbb{Z}$.
Let us classify the indecomposable representations of this quiver with relations. First observe that, as in the previous example, any indecomposable projective is injective. As in the previous example we first assume that $\alpha_{i+1} \beta_{i} M \neq 0$ for some $i \in \mathbb{Z}$. Then if M is indecomposable, M is isomorphic P_{i} by an argument similar to the one in the previous example.

Next we consider the case when $\alpha_{i+1} \beta_{i} M \neq 0$ for all i. Then we should apply again Lemma 2.3. Note that \bar{Q} is a disjoint union of infinitely many Kronecker quivers. Thus, if M is a an indecomposable object which is neither projective nor simple, then M is isomorphic to the corresponding representation of the Kronecker quiver.

Remark 2.6. The reader familiar with algebraic geometry could read [3] in order to understand the link between the "derived category" of coherent sheaves over the projective line and the "derived category" of \mathcal{C}.

3. Finitely represented, tame and wild algebras

Let C be a finite-dimensional k-algebra. We say that C is finitely represented if C has finitely many indecomposable representations. We call C tame if for each $d \subset \mathbb{Z}_{>0}$, there exists a finite set M_{1}, \ldots, M_{r} of $C-k[x]$ bimodules (free of rank d over $k[x]$) such that every indecomposable representation of C of dimension d is isomorphic to $M_{i} \otimes_{k[x]} k[x] /(x-\lambda)$ for some $i \leq r, \lambda \in k$. Finally, C is wild if there exists a $C-k<x, y>$ bimodule M such that the functor $X \mapsto M \otimes_{k<x, y>} X$ preserves indecomposability and is faithful. We formulate here without proof the following fundamental results. The first one is called Drozd's thrichotomy.

ThEOREM 3.1. [9] Every finite-dimensional algebra over an algebraically closed field k is either finitely represented or tame or wild.

Theorem 3.2. [9] Let $A l g_{n}$ be the algebraic variety of all associative algebra structures on a given n-dimensional k-vector space. Then the subset of finitely represented algebras is Zariski open in Alg_{n}.

REmARK 3.3. If \mathcal{C} is a category satisfying the assumptions (1)-(4) of section 1 , then by Theorem 1.4, it is equivalent to the category of representations of some finite-dimensional algebra. Hence the notions of finitely-represented, tame and wild are well-defined for such categories.

Let us consider the case where $C=k(Q)$ is the path algebra of a quiver Q. Gabriel's theorem (Theorem 7.2) implies that C is finitely represented if and only if all connected components of Q are Coxeter-Dynkin graphs. We have seen in Chapter 8 that the path algebra of an affine quiver is not finitely represented. On the other hand, it is tame, since indecomposable representation in each dimension can be parametrized by at most one continuous parameter. The folowing result claims that all other quivers are wild.
\{IXth22\}
Theorem 3.4. [13] Let Q be a connected quiver without oriented cycles. Then $k(Q)$ is finitely represented if and only if Q is Dynkin, $k(Q)$ is tame if and only if Q is affine.

In general, the classification of tame algebras seems to be an impossible problem. If the Ext quiver has just a few vertices such a classification can be found in K. Erdmann's book [10]. However, in applications it is often possible to determine whether the category in question is tame or wild.

Exercise 3.5. If an algebra C is finitely presented then any quotient algebra C / I is finitely presented. If C is tame, then C / I is finitely presented or tame.

Exercise 3.6. Let \mathcal{C} be a category satisying our assumptions and Q be its Ext quiver.
(1) If \mathcal{C} is tame, then \bar{Q} is a disjoint union of Dynkin and affine quivers.
(2) If Q is a disjoint union of Dynkin and affine quivers, then \mathcal{C} is tame.
(3) If Q is a disjoint union of Dynkin quivers, then \mathcal{C} is finitely presented.

Exercise 3.7. Generalize Example 2.5 to the Grassman algebra

$$
\Lambda=k<x_{1}, \ldots, x_{n}>/\left(x_{i}^{2}, x_{i} x_{j}+x_{j} x_{i}\right)
$$

with n generators. Describe the Ext quiver for the category \mathcal{C} of \mathbb{Z}-graded Λ-modules and show that for $n>2$ the category \mathcal{C} is wild.

4. Frobenius algebras

Let A be a finite-dimensional algebra over k. We use the notation ${ }_{A} \bmod$ (resp. $\bmod _{A}$) for the categories of finite- dimensionl left (resp. right) A-modules. We denote by ${ }_{A} A$ (resp. A_{A}) the algebra A considered as a left (resp. right) module over itself. We have an exact contravariant functor

$$
D:{ }_{A} \bmod \rightarrow \bmod _{A}
$$

defined by $D(M)=M^{*}$. Obviously, D sends projective objects to injective objects and vice versa.

A finite-dimensional A algebra over k is called a Frobenius algebra if $D\left(A_{A}\right)$ is isomorphic to ${ }_{A} A$.

Theorem 4.1. The following conditions on A are equivalent
(1) A is a Frobenius algebra;
(2) There exists a non-degenerate bilinear form $\langle\cdot, \cdot\rangle$ on A such that $\langle a b, c\rangle=$ $\langle a, b c\rangle ;$
(3) There exists $\lambda \in A^{*}$ such that Ker λ does not contain non-trivial left or right ideals.

Proof. A form $\langle\cdot, \cdot\rangle$ gives an isomorphism $\mu: A \rightarrow A^{*}$ by the formula $x \rightarrow\langle\cdot, x\rangle$. The condition $\langle a b, c\rangle=\langle a, b c\rangle$ is equivalent to μ being a homomorphism of modules. The linear functional λ can be constructed by $\lambda(x)=\langle 1, x\rangle$. Conversely, given λ, one can define $\langle x, y\rangle=\lambda(x y)$. The assumption that $\operatorname{Ker} \lambda$ does not contain non-trivial one-sided ideals is equivalent to the condition that the left and right kernels of $\langle\cdot, \cdot\rangle$ are zero.

Lemma 4.2. Let A be a Frobenius algebra. A left A-module X is projective if and only if it is injective.

Proof. A projective module X is a direct summand of a free module, but a free module is injective since $D\left(A_{A}\right)$ is isomorphic to ${ }_{A} A$. Hence, X is injective. By duality, an injective module is projective.

Example 4.3. A group algebra $k(G)$ is Frobenius. Take

$$
\lambda\left(\sum_{g \in G} a_{g} g\right)=a_{1} .
$$

The corresponding bilinear form is symmetric.
Example 4.4. The Grassmann algebra $\Lambda=k<x_{1}, \ldots, x_{n}>/\left(x_{i}^{2}, x_{i} x_{j}+x_{j} x_{i}\right)$ is Frobenius. Put

$$
\lambda\left(\sum_{i_{1}<\cdots<i_{k}} c_{i_{1} \ldots i_{k}} x_{i_{1}} \ldots x_{i_{k}}\right)=c_{12 \ldots n} .
$$

In a sense Frobenius algebras generalize group algebras. For example, if $T \in$ $\operatorname{Hom}_{k}(X, Y)$ for two $k(G)$-modules X and Y then

$$
\bar{T}:=\sum_{g \in G} g T g^{-1} \in \operatorname{Hom}_{G}(X, Y) .
$$

The idea of taking average over the group is very important in representation theory. It can be generalized for Frobenius algebras.

Choose a basis e_{1}, \ldots, e_{n} in a Frobenius algebra A. Let f_{1}, \ldots, f_{n} be the dual basis, i.e.

$$
\begin{equation*}
\left\langle f_{i}, e_{j}\right\rangle=\delta_{i j} . \tag{9.3}
\end{equation*}
$$

Every $a \in A$ can be written

$$
\begin{equation*}
a=\sum\left\langle f_{i}, a\right\rangle e_{i}=\sum\left\langle a, e_{i}\right\rangle f_{i} . \tag{9.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum a e_{i} \otimes f_{i}=\sum\left\langle f_{j}, a e_{i}\right\rangle e_{j} \otimes f_{i}=\sum\left\langle f_{j} a, e_{i}\right\rangle e_{j} \otimes f_{i}=\sum e_{j} \otimes f_{j} a . \tag{9.5}
\end{equation*}
$$

Lemma 4.5. Let X and Y be A-modules, $T \in \operatorname{Hom}_{k}(X, Y)$. Define \bar{T} by the formula

$$
\bar{T}=\sum e_{i} T f_{i} .
$$

Then $\bar{T} \in \operatorname{Hom}_{A}(X, Y)$.
Proof. This is a direct calculation using (9.4) and (9.5).

Example 4.6. If $A=k(G)$, the dual bases can be chosen as $\{g\}_{g \in G}$ and $\left\{g^{-1}\right\}_{g \in G}$. Hence $\bar{T}=\sum g T g^{-1}$.

In a Frobenius algebra one can use the following criterion of projectivity:
Theorem 4.7. An A-module X is injective (hence projective) if there exists $T \in \operatorname{End}_{k}(X)$ such that $\bar{T}=\operatorname{Id}_{X}$.

Proof. First, let us assume the existence of T. We have to show that X is injective, i.e., for any embedding $\varepsilon: X \rightarrow Y$ there exists $\pi \in \operatorname{Hom}_{A}(Y, X)$ such that $\pi \circ \varepsilon=I d$. Consider a k-linear map $p \in \operatorname{Hom}_{k}(Y, X)$ such that $p \circ \varepsilon=I d$. Put $\pi=\sum e_{i} T p f_{i}$. Then for any $x \in X$ we have

$$
\pi(\varepsilon(x))=\sum e_{i} T p f_{i}(\varepsilon(x))=\sum e_{i} T\left(p \varepsilon\left(f_{i} x\right)\right)=\sum e_{i} T\left(f_{i} x\right)=\bar{T} x=\mathrm{Id}_{X}
$$

using $f_{i} \varepsilon=\varepsilon f_{i}$. By Lemma 4.5, $\pi \in \operatorname{Hom}_{A}(X, Y)$.
Now assume that X is injective. We define a map $\delta: X \rightarrow A \otimes_{k} X$ by the formula

$$
\delta(x):=\sum e_{i} \otimes f_{i} x .
$$

Then $\delta \in \operatorname{Hom}_{A}\left(X, A \otimes_{k} X\right)$ by (9.5). Furthermore, since $f_{i} x$ span $A x, \delta$ is injective. Since X is an injective A-module, there exists $\tau: A \otimes_{k} X \rightarrow X$ such that $\tau \circ \delta=\operatorname{Id}_{X}$. We define $S \in \operatorname{Hom}_{k}\left(A \otimes_{k} X, A \otimes_{k} X\right)$ by the formula

$$
S(a \otimes x)=\langle 1, a\rangle 1 \otimes x
$$

Then

$$
\bar{S}(a \otimes x)=\sum e_{i} S\left(f_{i} a \otimes x\right)=\sum\left\langle 1, f_{i} a\right\rangle e_{i} \otimes x=\sum\left\langle f_{i}, a\right\rangle e_{i} \otimes x=a \otimes x
$$

due to (9.4). Set $T:=\tau \circ S \circ \delta$. Then $\bar{T}=\operatorname{Id}_{X}$.

5. Application to group algebras

Let G be a finite group. The goal of this section is to determine when the group algebra $k(G)$ is finitely presented. If char $k=0$, or char k does not divide $|G|$, then $k(G)$ is finitely presented because it is semisimple. Hence in this section we assume that char $k=p>0$ and that p divides $|G|$.
5.1. Relative projective and injective modules in a group algebra. Let H be a subgroup of a group G. A $k(G)$-module X is H-injective if any exact sequence of $k(G)$-modules

$$
0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0
$$

which splits over $k(H)$, splits over $k(G)$.
In the similar way one defines H-projective module.
Let $\left\{g_{1}, \ldots, g_{r}\right\}$ be a set of representatives in the set of left cosets G / H. For any $k(G)$-modules X, Y, and $T \in \operatorname{Hom}_{H}(X, Y)$ put

$$
\bar{T}=\sum g_{i} T g_{i}^{-1}
$$

Exercise 5.1. Show that \bar{T} does not depend on the choice of representatives and $\bar{T} \in \operatorname{Hom}_{G}(X, Y)$.

Theorem 5.2. The following conditions on $k(G)$-module X are equivalent
(1) X is H-injective;
(2) X is a direct summand in $\operatorname{Ind}_{H}^{G} X$;
(3) X is H-projective;
(4) There exists $T \in \operatorname{End}_{H}(X)$ such that $\bar{T}=\mathrm{Id}$.

Proof. This theorem is very similar to Theorem 4.7. To prove $1 \Rightarrow 2$ we check that $\delta: X \rightarrow \operatorname{Ind}_{H}^{G} X$, defined by the formula

$$
\delta(x)=\sum g_{i} \otimes g_{i}^{-1} x
$$

defines an embedding of X. By injectivity X is a direct summand of $\operatorname{Ind}_{H}^{G} X$.
To prove $3 \Rightarrow 2$ we use the projection $\operatorname{Ind}_{H}^{G} X \rightarrow X$ defined by $g \otimes x \mapsto g x$.
Now let us prove $2 \Rightarrow 4$. We define $S: \operatorname{Ind}_{H}^{G} X \rightarrow \operatorname{Ind}_{H}^{G} X$ by

$$
S\left(\sum g_{i} \otimes x_{i}\right)=1 \otimes x_{1}
$$

here we assume that $g_{1}=1$. It is easily checked that $S \in \operatorname{End}_{H}\left(\operatorname{Ind}_{H}^{G} X\right)$ and $\bar{S}=I d$. Then we obtain $T=\tau \circ S \circ \delta$, where $\tau: \operatorname{Ind}_{H}^{G} X \rightarrow X$ is the projection such that $\tau \circ \delta=\mathrm{Id}$.

It remains to prove $4 \Rightarrow 1$ and $4 \Rightarrow 3$. Both proofs are similar to the first part of the proof of Theorem 4.7 and we leave them to the reader.

Let p be prime. Recall that if $|G|=p^{s} r$ with $(p, r)=1$, then there exists a subgroup P of order p^{s}. It is called a Sylow subgroup. All Sylow p-subgroups are conjugate in G. In what follows we will use the following statement:

Corollary 5.3. Let char $k=p$ and P be a Sylow p-subgroup. Then every $k(G)$-module X is P-projective.

Proof. We have to check condition (4) from Theorem 5.2. But $r=[G: P]$ is invertible in k. So we can put $T=\frac{1}{r} \mathrm{Id}$.
5.2. Finitely represented group algebras. We assume that char $k=p$ and $|G|=p^{s} r$ with $(p, r)=1$ and $s>0$. In this subsection we will prove the following:

THEOREM 5.4. The group algebra $k(G)$ is finitely represented over a field of characteristic p if and only if any Sylow p-subgroup of G is cyclic.
\{IXIm41\}
Lemma 5.5. Let H be a cyclic p-group, i.e. $|H|=p^{s}$. Then there are exactly p^{s} isomorphism classes of indecomposable representations of H over k, exactly one for each dimension. More precisely each indecomposable L_{m} of dimension $m \leq p^{s}$ is isomorphic to $k(H) /(g-1)^{m}$, where g is a generator of H.

Proof. We use

$$
k(H) \cong k[g] /\left(g^{p^{s}}-1\right) \cong k[\alpha] / \alpha^{p^{s}}
$$

where $\alpha=g-1$ Let M be an m-dimensional indecomposable H-module. Then the matrix of α in a suitable basis of M is the nilpotent Jordan block of size m and $m \leq p^{s}$.

Lemma 5.6. If a Sylow p-subgroup P of G is cyclic, then $k(G)$ is finitely represented. Moreover, the number of indecomposable $k(G)$-modules is not greater than $|G|$.

Proof. Let $\left\{Y_{i} \mid i=1, \ldots, p^{s}\right\}$ be the set of all (up to isomorphism) indecomposable P-modules, $\operatorname{dim} Y_{i}=i$. Let m_{i} denote the number of G-indecomposable components of the induced module $\operatorname{Ind}_{P}^{G} Y_{i}$. By comparing dimensions we know that $m_{i} \leq r$.

By Corollary 5.3 every indecomposable $k(G)$-module X is P-projective. We have a canonical exact sequence of G-modules:

$$
0 \rightarrow N \rightarrow \operatorname{Ind}_{P}^{G} X \rightarrow X \rightarrow 0
$$

which splits over P and hence over G. Therefore X is isomorphic to a direct summand of $\operatorname{Ind}_{P}^{G} X$ and hence of $\operatorname{Ind}_{P}^{G} Y_{i}$ for some i. Moreover, i can be chosen in such a way that $\operatorname{dim} X \leq i$.

This implies that the number of all (up to isomorphism) indecomposable $k(G)$ modules does not exceed $\sum_{i=1}^{p^{s}} m_{i} \leq|G|$.

Lemma 5.7. If P is a non-cyclic p-group, then P contains a normal subgroup N such that $P / N \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

Proof. This statement can be obtained easily by induction on $|P|$. If P is abelian, the statement follows from the classification of finite abelian groups. If P is not abelian, then P has a non-trivial center Z and the quotient P / Z is not cyclic. By induction asumption we can choose a normal subgroup $N^{\prime} \subset P / Z$ such that the quotient $(P / Z) / N^{\prime}$ is isomorphic to $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. We set $N=\pi^{-1}\left(N^{\prime}\right)$, where $\pi: P \rightarrow P / Z$ is the canonical projection.

Lemma 5.8. The group $Z=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ has an indecomposable representation of dimension n for each $n \in \mathbb{Z}_{>0}$.

Proof. Note that $k(Z)$ has a unique (up to isomorphism) simple module. Hence the unique indecomposable projective Z-module is isomorphic to $k(Z)$. Let g and h be generators of $Z, \alpha=g-1, \beta=h-1$. Then $k(Z) \simeq k[\alpha, \beta] /\left(\alpha^{p}, \beta^{p}\right)$. Therefore the Ext quiver Q of the category of finite-dimensional Z-modules has one vertex and two loops. The quiver \bar{Q} is the Kronecker quiver. It has at least one indecomposable representation in each dimension.

Lemma 5.9. If a Sylow p-subgroup P of G is not cyclic, then G has an indecomposable representation of arbitrary high dimension.

Proof. By Lemma 5.7 and Lemma 5.8, P has an indecomposable representation Y of dimension n for any positive integer n. Decompose $\operatorname{Ind}_{P}^{G} Y$ into direct sum of indecomposable $k(G)$-modules. At least one indecomposable component X contains Y as an indecomposable $k(P)$-component. Hence $\operatorname{dim} X \geq n$.

Lemma 5.6 and Lemma 5.9 imply Theorem 5.4.

6. On certain categories of $\mathfrak{s l}_{2}$-modules

In this section we show how quivers can be used to study the category of HarishChandra modules for the Lie algebra $\mathfrak{s l}_{2}$. Let us point out that representation theory of Lie algebras is a very deep and popular topic with multitude of applications. Here we just touch it, hoping that it will work as a motivation for further study of the subject.
6.1. Lie algebras. A Lie algebra \mathfrak{g} is a vector space equipped with a bilinear operation (the Lie bracket) $[\cdot, \cdot]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow k$ satisfying the following conditions for all $x, y, z \in \mathfrak{g}:$
(1) $[x, y]=-[y, x]$;
(2) $[[x, y], z]+[[y, z], x]+[[z, x], y]=0$.

Exercise 6.1. Let A be an associative algebra. Then the bracket $[a, b]:=a b-b a$ defines a Lie algebra structure on A.

For instance:
Example 6.2. The Lie algebra $\mathfrak{s l}_{n}(k)$ is the algebra of traceless $n \times n$ matrices, the Lie bracket is given by the commutator, and one has $\operatorname{dim} \mathfrak{s l}_{n}(k)=n^{2}-1$.

The importance of Lie algebras is related to the fact that they can be seen as tangent spaces to continuous groups at the identity element. Let us illustrate this with an example. Let $k=\mathbb{R}$ or \mathbb{C}. Consider the group $G=S L_{n}(\mathbb{R})$ or $S L_{n}(\mathbb{C})$ of matrices with determinant 1 . Let $X(t): \mathbb{R} \rightarrow G$ be a smooth function such that $X(0)=1$. Let $x:=X^{\prime}(0)=\left.\frac{d}{d t} X(t)\right|_{t=0}$. By differentiating the identity $\operatorname{det} X(t)=1$ we obtain

$$
\left.\frac{d}{d t} \operatorname{det} X(t)\right|_{t=0}=\operatorname{tr} X^{\prime}(0)=0
$$

Therefore $x \in \mathfrak{s l}_{n}(k)$. Conversely, if $x \in \mathfrak{s l}_{n}(k)$, then $X(t)=e^{t x}$ is a path in G (called a 1-parameter subgroup) such that $X(0)=1$ and $X^{\prime}(0)=x$.

Exercise 6.3. Consider the paths $X(t), Y(s): \mathbb{R} \rightarrow G$ such that $X(0)=Y(0)=$ $1, X^{\prime}(0)=x, Y^{\prime}(0)=y$, then show that
(1) $\left.\frac{d}{d t} X(t) Y(t)\right|_{t=0}=x+y$,
(2) $\left.\frac{\partial^{2}}{\partial t \partial s} X(t) Y(s) X^{-1}(t) Y^{-1}(s)\right|_{t=0, s=0}=[x, y]$.

Let $\rho: G \rightarrow G L(V)$ be a finite-dimensional representation of G. We can differentiate ρ to define a \mathfrak{g} action on V

$$
x v:=\left.\frac{d}{d t} X(t) v\right|_{t=0}
$$

It follows from Exercise 6.3 that the action of \mathfrak{g} is linear and satisfies the condition

$$
[x, y] v=x y v-y x v
$$

This leads to the notion of a \mathfrak{g}-module: a vector space M is a \mathfrak{g}-module if there is an action $\mathfrak{g} \otimes M \rightarrow M$ such that $[x, y] m=x y m-y x m$ for all $x, y \in \mathfrak{g}$ and $m \in M$.

Exercise 6.4. The adjoint module. Consider the action ad of \mathfrak{g} on itself given by $\operatorname{ad}(x) y:=[x, y]$. Check that ad defines a \mathfrak{g}-module structure on \mathfrak{g}. Let $G=S L_{n}$, $X(t): \mathbb{R} \rightarrow G, X(0)=1, X^{\prime}(0)=x$. Check that for all $y \in \mathfrak{g}$

$$
\operatorname{ad}(x) y=\left.\frac{d}{d t} X(t) y X^{-1}(t)\right|_{t=0}
$$

\{IXexadjoint $\}$

Exercise 6.5. Let M and N be \mathfrak{g}-modules. Define a \mathfrak{g}-action on M^{*} and on $M \otimes N$ by the formulas

$$
g \varphi(m):=-\varphi(g m), \quad g(m \otimes n):=g m \otimes n+m \otimes g n .
$$

Check that M^{*} and $M \otimes N$ are \mathfrak{g}-modules.
6.2. Harish-Chandra modules: motivation. The reader can skip this subsection and go directly to the next one. We recommend the first chapter of $[\mathbf{3 5}]$ for the detailed overview of Harish-Chandra modules for $\mathfrak{s l}_{2}$.

We explained above how to define a \mathfrak{g}-module associated to a finite-dimensional representation of the group G. But what to do if the representation is infinitedimensional?

Let $\rho: G \rightarrow U(V)$ be a unitary representation of G. We would like to differentiate matrix coefficients. It is clear, however, that $\langle g v, w\rangle$ can not be a smooth function of $g \in G$ for all $v, w \in V$. One can prove the existence of a G-stable dense subspace $V_{0} \subset V$ such that $\langle g v, w\rangle$ is a smooth function of $g \in G$ for all $v, w \in V_{0}{ }^{1}$. Now for any $x \in \mathfrak{g}$ and $v \in V_{0}$ we can define $x v \in V_{0}^{*}$ by setting

$$
\langle x v, w\rangle:=\left.\frac{d}{d t}\langle X(t) v, w\rangle\right|_{t=0}
$$

In this way we define a linear map $\mathfrak{g} \otimes V_{0} \rightarrow V_{0}^{*}$ where V_{0}^{*} is the algebraic dual of V_{0}. The remarkable discovery of Harish-Chandra is that one can find a dense subspace M in V_{0} invariant under \mathfrak{g}-action.

Let us consider a maximal compact subgroup K of G. If $G=S L_{n}(\mathbb{R})$ then K is the orthogonal group $S O_{n}$. Since all irreducible unitary representations of K are finite-dimensional, we know that V is a topological direct sum of finite-dimensional representation of K. Let us assume that every finite-dimensional irreducible representation of K appears in V with finite multiplicity (this can be proven for irreducible $V)$. Let M be the subset of all vectors $v \in V$ such that the span of $g v$ for all $g \in K$ is finite-dimensional. Then M is dense in V, it is the sum of all irreducible K-submodules in V. Furthermore, $M \subset V_{0}$ since V_{0} is stable under the projector on

[^2]every isotypic K-component. Let us show that M is invariant under the action of \mathfrak{g}. Indeed, every $v \in M$ belongs to a finite-dimensional K-stable W. Consider the $\operatorname{map} \alpha: \mathfrak{g} \otimes W \rightarrow V_{0}^{*}$ defined as the restriction of the map $\mathfrak{g} \otimes V_{0} \rightarrow V_{0}^{*}$. For any $w \in W, g \in K$ and $x \in \mathfrak{g}$ we have $g(x w)=g x g^{-1} g w$. Therefore α is a homomorphism of K-modules, where K action on \mathfrak{g} is by conjugation. So the image of α is a finite-dimensional K-submodule of V^{*}. The assumption about finite multiplicities of K-modules ensures that $\operatorname{Im} \alpha \subset M$.

The above construction motivates the following definition. A Harish-Chandra module is a \mathfrak{g}-module M, which is a direct sum of irreducible K-modules with finite multiplicities, such that for any smooth path $X(t): \mathbb{R} \rightarrow K$, with $X(0)=1$ and $X^{\prime}(0)=x$, and $m \in M$ we have

$$
x m=\left.\frac{d}{d t} X(t) m\right|_{t=0} .
$$

For any topologically irreducible unitary representation of G we can construct the Harish-Chandra module M. It is not hard to show that M is simple in algebraic sense, i.e., M does not have proper non-zero \mathfrak{g}-invariant subspaces. Not every simple HarishChandra \mathfrak{g}-module gives rise to a unitary representation of G. One can consider classification of simple Harish-Chandra modules as a first step towards describing the unitary dual of G.

From now on, we assume that $G=S L_{2}(R)$ and $K=S O_{2} \simeq S^{1}$. In matrix form

$$
K=\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a^{2}+b^{2}=1\right\}
$$

we set $z=a+b i$. Let \mathfrak{k} be the Lie algebra of K. It is easy to see that $\mathfrak{k}=\mathbb{R} u$, where $u=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. In this way

$$
g_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)=e^{u \theta},
$$

where $0 \leq \theta<2 \pi$. All irreducible unitary representations of K are one-dimensional: they are defined by the maps $g_{\theta} \mapsto e^{i n \theta}$ for $n \in \mathbb{Z}$. Therefore an $\mathfrak{s l}_{2}(\mathbb{R})$-module M is a Harish-Chandra module if

$$
M=\bigoplus_{n \in \mathbb{Z}} M_{n}, \quad M_{n}=\{m \in M \mid u m=i n m\}, \quad \operatorname{dim} M_{n} \leq \infty
$$

Since M is a vector space over \mathbb{C}, it makes sense to complexify the Lie algebra and consider $\mathfrak{s l}_{2}(\mathbb{C})$-action on M. Consider the basis $\{e, h, f\}$ in $\mathfrak{s l}_{2}(\mathbb{C})$ given by

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad f=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)
$$

This basis satisfies the relations

$$
\begin{equation*}
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h \tag{9.6}
\end{equation*}
$$

which we have seen already in Section 3.4 of Chapter 3. Furthemore, the conjugation by the matrix $\left(\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right)$ maps \mathfrak{k} to the diagonal subalgebra of $\mathfrak{s l}_{2}$.

6.3. Weight modules over $\mathfrak{s l}_{2}(\mathbb{C})$.

Definition 6.6. Let $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{C})$. A \mathfrak{g}-module M is called a weight module if the action of h in M is diagonalizable and all the corresponding eigenspaces are finitedimensional. By M_{λ} we denote the h-eigenspace with eigenvalue $\lambda \in \mathbb{C}$. By supp M we denote the set of all $\lambda \in \mathbb{C}$ such that $M_{\lambda} \neq 0$.

As we have shown above, a complexified Harish-Chandra module is a weight module with integral eigenvalues of h.

Exercise 6.7. Show that submodules and quotients of weight modules are weight modules.
$\{$ IXweightlm1
Lemma 6.8. Let M be a weight module. Then $e M_{\lambda} \subset M_{\lambda+2}$ and $f M(\lambda) \subset M_{\lambda-2}$.
Proof. This is a simple consequence of (9.6). If $h m=\lambda m$, then

$$
\begin{aligned}
& h e m=([h, e]+e h) m=2 e m+e h m=(\lambda+2) e m, \\
& h f m=([h, f]+f h) m=2 f m+f h m=(\lambda-2) f m .
\end{aligned}
$$

Corollary 6.9. If M is an indecomposable weight module, then $\operatorname{supp} M \subset$ $\nu+2 \mathbb{Z}$ for some $\nu \in \mathbb{C}$.

Now we are going to construct an important family $\mathcal{F}(\lambda, \mu)$ of weight modules for all $\lambda, \mu \in \mathbb{C}$. We identify $\mathcal{F}(\lambda, \mu)$ with $t^{\lambda} \mathbb{C}\left[t, t^{-1}\right]$ and define the action of f, h, e by setting

$$
f \mapsto \frac{\partial}{\partial t}, \quad h \mapsto 2 t \frac{\partial}{\partial t}+\mu, \quad e \mapsto-t^{2} \frac{\partial}{\partial t}-\mu t
$$

with the convention that $\frac{\partial}{\partial t} t^{\nu}:=\nu t^{\nu-1}$.
Exercise 6.10. Prove that:
(1) $\mathcal{F}(\lambda, \mu)$ is a weight module and $\operatorname{supp} \mathcal{F}(\lambda, \mu)=2 \lambda+\mu+2 \mathbb{Z}$;
(2) All h-eigenspaces in $\mathcal{F}(\lambda, \mu)$ are one-dimensional;
(3) $\mathcal{F}(\lambda, \mu)$ is simple if and only if $\lambda, \lambda+\frac{\mu}{2} \notin \mathbb{Z}$.

Now let \mathcal{U} be the associative algebra over \mathbb{C} with generators e, h, f and relations (9.6). Then every \mathfrak{g}-module is automatically a \mathcal{U}-module.
\{IXexU\}
ExErcise 6.11. Define the adjoint action of \mathfrak{g} on \mathcal{U} by setting

$$
\operatorname{ad}_{x} y:=x y-y x \quad \text { for all } \quad x \in \mathfrak{g}, y \in \mathcal{U} .
$$

Check that $\operatorname{ad}_{x}(y z)=\left(\operatorname{ad}_{x} y\right)+y \operatorname{ad}_{x} z$ and that \mathcal{U} is a \mathfrak{g}-module with respect to this action.

Consider the adjoint action of h on \mathcal{U} and set

$$
\mathcal{U}_{n}=\left\{y \in \mathcal{U} \mid \operatorname{ad}_{h} y=n y\right\} .
$$

Exercise 6.11 implies that $\mathcal{U}_{n} \neq 0$ if and only if $n \in 2 \mathbb{Z}$ and

$$
\mathcal{U}=\bigoplus_{n \in \mathbb{Z}} \mathcal{U}_{n}
$$

defines a grading of the associative algebra \mathcal{U}. In particular, it is clear that \mathcal{U}_{0} is a commutative subalgebra of \mathcal{U} generated by h and $e f$.

EXERCISE 6.12. If M is a weight module, then $\mathcal{U}_{n} M_{\lambda} \subset M_{\lambda+n}$.
Now we describe the center \mathcal{Z} of \mathcal{U}. Note first that \mathcal{Z} is a subalgebra of \mathcal{U}_{0} since \mathcal{U}_{0} is the centralizer of h in \mathcal{U}. Let

$$
\Omega:=\frac{h^{2}}{2}-h+2 f e=\frac{h^{2}}{2}+h+2 e f .
$$

This Ω is called the Casimir element. By a straightforward computation we see that $\Omega \in \mathcal{Z}$. (It suffices to check that it commutes with e and f).

ExERCISE 6.13. Check that Ω acts on $\mathcal{F}(\lambda, \mu)$ by the scalar operator $\frac{\mu^{2}}{2}-\mu$.
In fact, any element of \mathcal{Z} acts by a scalar operator on any simple \mathfrak{g}-module. This is a consequence of the following useful analogue of Schur lemma in the infinitedimensional case.

Lemma 6.14. Let A be a countable dimensional algebra over \mathbb{C} and M be a simple A-module. Then $\operatorname{End}_{A}(M)=\mathbb{C}$.

Proof. Note that M is countable dimensional and any $\varphi \in \operatorname{End}_{A}(M)$ is completely determined by its value on a generator of M. Hence $\operatorname{End}_{A}(M)$ is a countable dimensional \mathbb{C}-algebra. Since $\operatorname{End}_{A}(M)$ is a division ring, it suffices to show that every $\varphi \in \operatorname{End}_{A}(M) \backslash \mathbb{C}$ is algebraic over \mathbb{C}. If φ is transcendental, then $\operatorname{End}_{A}(M)$ contains a subfield field $\mathbb{C}(z)$ of rational functions. This field is not of countable dimensional over \mathbb{C} since the set $\left\{\left.\frac{1}{\varphi-a} \right\rvert\, a \in \mathbb{C}\right\}$ is linearly independent.

Lemma 6.15. (1) The commutative algebra \mathcal{U}_{0} is isomorphic to the polynomial algebra $\mathbb{C}[h, \Omega]$.
(2) Let $n=2 m$. Then \mathcal{U}_{n} is a free \mathcal{U}_{0}-module of rank 1 with generator e^{m} for $m>0$ and f^{m} for $m<0$.
(3) The center \mathcal{Z} of \mathcal{U} coincides with $\mathcal{C}[\Omega]$.

Proof. The relations (9.6) easily imply that the monomials $e^{a} f^{b} h^{c}$ for all $a, b, c \in$ \mathbb{N} span \mathcal{U}. Each monomial is an eigenvector of ad_{h} with eigenvalue $2(a-b)$. Hence \mathcal{U}_{0} is generated by h and ef or equivalently by h and Ω.

To show that h and Ω are algebraically independent we use $\mathcal{F}(\lambda, \mu)$. Suppose that there exists a polynomial relation $p(h, \Omega)=0$. Then $p(h, \Omega)$ acts by zero on $\mathcal{F}(\lambda, \mu)$ for all $\lambda, \mu \in \mathbb{C}$. This implies

$$
p\left(2 \lambda+\mu+2 n, \frac{\mu^{2}}{2}-\mu\right)=0
$$

for all $n \in \mathbb{Z}, \lambda, \mu \in \mathbb{C}$. This implies $p \equiv 0$. This completes the proof of (1).
Let us show (2). Assume that $m>0$ (the case $m<0$ is similar). Then by the same argument involving monomials, we easily obtain that e^{m} is a generator of \mathcal{U}_{n} seen as a \mathcal{U}_{0}-module. Assume that $p(h, \Omega) e^{m}=0$. Then $p(h, \Omega) e^{m}$ acts by zero on $\mathcal{F}(\lambda, \mu)$ for all $\lambda, \mu \in \mathbb{C}$, which is only possible in the case $p \equiv 0$.

Finally, let us prove (3). Let $z \in \mathcal{Z}$. By Lemma $6.14 z$ acts by a scalar operator on all simple $\mathcal{F}(\lambda, \mu)$. Let $z=p(h, \Omega)$ for some polynomial p. Fix $\lambda, \mu \in \mathbb{C}$ such that that $\mathcal{F}(\lambda, \mu)$ is simple. Then $p\left(2 \lambda+\mu+2 n, \frac{\mu^{2}}{2}-\mu\right)$ is a constant function of $n \in \mathbb{Z}$. Since this holds for generic λ and μ, we obtain $p=p(\Omega)$.
6.4. The category of weight $\mathfrak{s l}_{2}$-modules with semisimple action of Ω. Denote by \mathcal{C} the category of finite length \mathcal{U}-modules semisimple over \mathcal{U}_{0}. Any object of M is a weight $\mathfrak{s l}_{2}$-module with semisimple action of Ω.

Let us fix $\theta \in \mathbb{C} / 2 \mathbb{Z}$ and $\chi \in \mathbb{C}$. Denote by $\mathcal{C}_{\theta, \chi}$ the subcategory of \mathcal{C} of all modules such that

- If $\lambda \in \operatorname{supp} M$, then $\lambda \in \theta$.
- Ω acts on M by the scalar operator χ Id.
\{IXlmblocks\}
Lemma 6.16. For every $M \in \mathcal{C}$ there exists a unique decompostion

$$
M=M_{1} \oplus \cdots \oplus M_{l}
$$

with $M_{i} \in \mathcal{C}_{\theta_{i}, \chi_{i}}$.
Proof. For every $\theta \in \mathbb{C} / 2 \mathbb{Z}$ and $\chi \in \mathbb{C}$ set

$$
M(\theta, \chi):=\{m \in M \mid \Omega m=\chi m, h m=\lambda m \text { for some } \lambda \in \theta\}
$$

By Lemma 6.8, $M(\theta, \chi)$ is \mathfrak{g}-stable, M is the direct sum of $M(\theta, \chi)$. Since M has finite length, $M(\theta, \chi) \neq 0$ for finitely many (θ, χ).

The subcategories $\mathcal{C}_{\theta, \chi}$ are called the blocks of \mathcal{C}. We are going to show that they satisfy the conditions of Sections 1 and 2 and hence they can be described by quivers with relations. In fact, we only have to check that every block has finitely many isomorphism classes of simple objects and that \mathcal{C} has enough projectives. The condition that all objects have finite length and Lemma 6.14 imply all other properties.

Lemma 6.17. Let $C_{\nu, \chi}$ denote the one-dimensional \mathcal{U}_{0}-module on which h acts by ν and Ω by χ, and $P(\nu, \chi):=\mathcal{U} \otimes \mathcal{U}_{0} C_{\nu, \chi}$. Then:
(1) $P(\nu, \chi)$ is projective in \mathcal{C};
(2) $\operatorname{supp} P(\nu, \chi)=\nu+2 \mathbb{Z}$ and all h-eigenspaces are one-dimensional;
(3) $P(\nu, \chi)$ has a unique proper maximal submodule.

Proof. The first assertion follows immediately from the Frobenius reciprocity (see Theorem 5.3, Chapter 2). Indeed, for every $M \in \mathcal{C}$ we have

$$
\operatorname{Hom}_{\mathcal{U}}(P(\nu, \chi), M) \simeq \operatorname{Hom}_{\mathcal{U}_{0}}\left(C_{\nu, \chi}, M\right)
$$

Since every M is a semisimple \mathcal{U}_{0}-module, the functor $\operatorname{Hom}_{\mathcal{U}_{0}}\left(C_{\nu, \chi}, \cdot\right)$ is exact on \mathcal{C} and therefore $\operatorname{Hom}_{\mathcal{U}}(P(\nu, \chi), \cdot)$ is also exact.

The second assertion is a consequence of Lemma 6.15 (1). Indeed, we have

$$
P(\nu, \chi)=C_{\nu, \chi} \oplus \bigoplus_{m>0} e^{m} C_{\nu, \chi} \oplus \bigoplus_{m>0} f^{m} C_{\nu, \chi}
$$

and $e^{m} C_{\nu, \chi}$ is the h-eigenspace with eigenvalue $\nu+2 m$ while $f^{m} C_{\nu, \chi}$ is the h-eigenspace with eigenvalue $\nu-2 m$.

To prove (3), let F be the sum of all submodules M of $P(\nu, \chi)$ such that $\nu \notin$ $\operatorname{supp} M$. It is obvious that F is the unique maximal proper submodule of $P(\nu, \chi)$.

Corollary 6.18. The category \mathcal{C} has enough projective modules.
Proof. Every $M \in \mathcal{C}$ is finitely generated, since it has finite length. Therefore there exists a finite-dimensional \mathcal{U}_{0}-module M^{\prime} which generates M. Set $P=\mathcal{U} \otimes \mathcal{U}_{0} M^{\prime}$. By Frobenius reciprocity the embedding $M^{\prime} \hookrightarrow M$ induces the surjection $P \rightarrow M$. Since M^{\prime} is a direct sum of finitely many $C_{\nu, \chi}, P$ is a direct sum of finitely many $P(\nu, \chi)$.

Lemma 6.19. Let L be a simple module in $\mathcal{C}_{\theta, \chi}$. Then all h-eigenspaces in L are one dimensional. Furthemore, if L^{\prime} is another simple module in $\mathcal{C}_{\theta, \chi}$ and the intersection $\operatorname{supp} L \cap \operatorname{supp} L^{\prime}$ is not empty, then L^{\prime} and L are isomorphic.

Proof. Let $\nu \in \operatorname{supp} L$. Then by Lemma $6.17, L$ is isomorphic to the unique simple quotient of $P(\nu, \chi)$. Hence the statement.

Lemma 6.20. Let M be a simple weight module. The we have the following four possibilities for the $\operatorname{supp} M$:
(1) $\operatorname{supp} M=\{m, m-2, \ldots, 2-m,-m\}$ for some $m \in \mathbb{N}$. In this case M is finite-dimensional;
(2) $\operatorname{supp} M=\nu+2 \mathbb{N}$ for some $\nu \in \mathbb{C}$;
(3) $\operatorname{supp} M=\nu-2 \mathbb{N}$ for some $\nu \in \mathbb{C}$;
(4) $\operatorname{supp} M=\nu+2 \mathbb{Z}$ for some $\nu \in \mathbb{C}$.

Proof. Consider the decomposition $M=\bigoplus_{\lambda \in \operatorname{supp} M} M_{\lambda}$, by Lemma 6.19 every M_{λ} is 1-dimensional. There are four possibilities
(1) Both e and f have a non-trivial kernel in M;
(2) f acts injectively on M and $e M_{\nu}=0$ for some $\nu \in \mathbb{C}$;
(3) e acts injectively on M and $f M_{\nu}=0$ for some $\nu \in \mathbb{C}$;
(4) Both e and f act injectively on M.

Cases (2), (3) and (4) immediately imply the corresponding cases in the lemma. Now let us consider the first case. Take a non-zero $v \in M_{\nu}$ such that $e v=0$. Since M is finite-dimensional, there exists $m \in \mathbb{N}$ such that $v, f v, f^{2} v, \ldots f^{m} v$ form a basis of M and $f^{m+1} v=0$. Then we have
$e f^{m+1} v=\sum_{j=0}^{m} f^{m-j} h f^{j} v=\left(\sum_{j=0^{m}}(-2 j+\lambda)\right) f^{m} v=((m+1) \lambda-m(m+1)) f^{m} v=0$.
Hence $\lambda=m$ and the proof of the lemma is complete.
Now we can classify simple modules in all blocks $\mathcal{C}_{\theta, \chi}$.
Proposition 6.21. Consider the category $\mathcal{C}_{\theta, \chi}$. Then we have the following three cases:
(1) Assume that $2 \chi \neq \nu(\nu+2)$ for any $\nu \in \theta$. Then $\mathcal{C}_{\theta, \chi}$ has one (up to isomorphism) simple module M with $\operatorname{supp} M=\theta$. Furthermore M is projective.
(2) Assume that $2 \chi=\nu(\nu+2)$ for some $\nu \in \theta$ and $\theta \neq 2 \mathbb{Z}$ or $1+2 \mathbb{Z}$ or $\chi=-\frac{1}{2}$, $\theta=1+2 \mathbb{Z}, \nu=-1$. Then $\mathcal{C}_{\theta, \chi}$ has two (up to isomorphism) simple modules: $L^{-}(\nu)$ with $\operatorname{supp} L^{-}(\nu)=\nu-2 \mathbb{N}$, $L^{+}(\nu+2)$ with $\operatorname{supp} L^{+}(\nu)=\nu+2+2 \mathbb{N}$.
(3) Finally if $2 \chi=m(m+2)$ for some $m \in \mathbb{N}$ such that $m \in \theta$. Then $\mathcal{C}_{\theta, \chi}$ has three (up to isomorphism) simple modules:
$L^{-}(-m-2)$ with $\operatorname{supp} L^{-}(-m-2)=-m-2-2 \mathbb{N}$,
$L^{+}(m+2)$ with $\operatorname{supp} L^{+}(m+2)=m+2+2 \mathbb{N}$, $V(m)$ with $\operatorname{supp} V(m)=\{m, m-2, \ldots, 2-m,-m\}$.

Proof. We use Lemma 6.20. If v is an h-eigenvector with eigenvalue ν such that $e v=0$, then

$$
\Omega v=\frac{h^{2}+2 h}{2} v=\chi v
$$

which implies the relation $2 \chi=\nu(\nu-2)$. Similarly, if $f v=0$ we have

$$
\Omega v=\frac{h^{2}-2 h}{2} v=\chi v
$$

which implies the relation $2 \chi=\nu(\nu-2)$. Then the Proposition follows from Lemma 6.20 .

REmARK 6.22. As a consequence, we obtained a classification of all simple finitedimensional $\mathfrak{s l}_{2}(\mathbb{C})$-modules. Observe that $V(m)$ is a submodule of $\mathcal{F}(0,-m)$. The corresponding representation of the group $S L_{2}(\mathbb{C})$ can be realized as the m-th symmetric power of the natural 2-dimensional representation.

Furthermore, if $\theta=2 \mathbb{Z}$ or $1+2 \mathbb{Z}$, then Proposition 6.21 provides the classification of simple Harish-Chandra modules. It makes sense to compare this classification with the list of irreducible unitary representations of $S L_{2}(\mathbb{R})$ given in Section 3, Chapter 4. The reader can check that the discrete series representations $\mathcal{H}_{m}^{ \pm}$correspond to the

Harish-Chandra modules $L^{ \pm}(m)$ and that the principal, repectively complementary, series correspond to the simple projective modules $P(0, \chi)$ respectively $P(1, \chi)$, for specific values of the parameter χ.
6.5. Ext quivers of blocks. Now we will compute quivers and relations for eack block $\mathcal{C}_{\theta, \chi}$. Note that the blocks satisfying (1) of Proposition 6.21 are semisimple and have only one simple object. Therefore this case is trivial.

Proposition 6.23. (a) If (θ, χ) satisfies the condition (2) of Proposition 6.21, then the category $\mathcal{C}_{\theta, \chi}$ is equivalent to the category of representations of the quiver

submitted to the relations $\alpha \beta=\beta \alpha=0$.
(b) If (θ, χ) satisfies the condition (3) of Proposition 6.21, then the category $\mathcal{C}_{\theta, \chi}$ is equivalent to the category of representations of the quiver

$$
\bullet^{1} \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} \bullet^{2} \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} \bullet^{3} .
$$

submitted to the relations $\alpha \beta=\beta \alpha=0$.
Proof. (a) Assume (θ, χ) satisfies the condition (2) of Proposition 6.21. Then the Ext quiver Q has two vertices corresponding to the two simple modules $L^{-}(\nu)$ and $L^{+}(\nu+2)$, the indecomposable projective modules are $P^{-}:=P(\nu, \chi)$ and $P^{+}:=$ $P(\nu+2, \chi)$. Furthemore, the radical filtration of P^{-}(resp. P^{+}) has two layers and is determined from the exact sequence

$$
0 \rightarrow L^{+}(\nu+2) \rightarrow P^{-} \rightarrow L^{-}(\nu) \rightarrow 0 \quad\left(\text { resp. } 0 \rightarrow L^{-}(\nu) \rightarrow P^{+} \rightarrow L^{+}(\nu+2) \rightarrow 0\right)
$$

The statement follows.
(b) Now let us consider the most interesting case: when $\mathcal{C}_{\theta, \chi}$ has three simple modules $L^{-}(-n-2), V(n), L^{+}(n+2)$. Therefore the block has three indecomposable projectives modules P^{-}, P^{f}, P^{+}which are covers of $L^{-}(-m-2), V(m), L^{+}(m+2)$ respectively. In this case the statement also follows from the calculation of the radical filtration of the indecomposable projective modules.

The following exercise completes the proof:
ExERCISE 6.24. The radical filtration of P^{+}and P^{-}has three layers:

$$
\begin{aligned}
& P^{+} / \nabla\left(P^{+}\right) \simeq L^{+}(m+2), \nabla\left(P^{+}\right) / \nabla^{2}\left(P^{+}\right) \simeq V(m), \nabla^{2}\left(P^{+}\right) \simeq L^{-}(-m-2), \\
& P^{-} / \nabla\left(P^{-}\right) \simeq L^{-}(-m-2), \nabla\left(P^{-}\right) / \nabla^{2}\left(P^{-}\right) \simeq V(m), \nabla^{2}\left(P^{-}\right) \simeq L^{+}(m+2) .
\end{aligned}
$$

The radical filtration of P^{f} has two layers

$$
P^{f} / \nabla\left(P^{f}\right) \simeq V(m), \nabla\left(P^{f}\right) \simeq L^{+}(m+2) \oplus L^{-}(-2-m)
$$

Proposition 6.25. All the blocks of the category \mathcal{C} are finitely represented.

Proof. All we have to show that the quivers with relations appearing in Proposition 6.23 are finitely represented. In case (a), we have a finitely represented algebra since \bar{Q} is the disjoint union of two quivers of type A_{2}. There are 4 (up to isomorphism) indecomposable representations $P^{-}, P^{-}, L^{+}(\nu+2)$ and $L^{-}(\nu)$.

In case (b) we use the same trick as in Example 2.5. Assume that $V=V_{0} \oplus V_{1} \oplus V_{2}$ is an indecomposable representation. If $\alpha^{2} v \neq 0$ for some $v \in V_{0}$, then V contains a submodule spanned by $v, \alpha v, \alpha^{2} v$ which is both injective and projective. Therefore $V \simeq P_{1}$. Similarly, if there is $w \in V_{2}$ such that $\beta^{2} w \neq 0$, then $V \simeq P_{3}$. If we exclude these two cases, then we may assume the relation $\alpha^{2}=\beta^{2}=0$. Hence the classification of indecomposable modules can be reduced to the same problem for \bar{Q}, see Lemma 2.3. In this case \bar{Q} is the disjoint union of two Dynkin quivers:

The reader can check that there are 9 indecomposable modules.
6.6. The category of all weight modules. Finally, let us consider the situation which occurs when we drop the assumption that Ω is diagonalizable. Let $\tilde{\mathcal{C}}$ denote the category of all weight $\mathfrak{s l}_{2}$-modules of finite length. Obviously \mathcal{C} is a subcategory of $\tilde{\mathcal{C}}$ and both categories have the same simple modules.

Our first observation is that for any $M \in \tilde{\mathcal{C}}$ there exists a polynomial $p(x) \in \mathbb{C}[x]$ such that $p(\Omega) M=0$. Therefore the category $\tilde{\mathcal{C}}$ decomposes into the following direct sum of blocks

$$
\tilde{\mathcal{C}}=\bigoplus \tilde{\mathcal{C}}_{\theta, \chi}
$$

where $\tilde{\mathcal{C}}_{\theta, \chi}$ is the subcategory consisting of modules M such that $\operatorname{supp} M \subset \theta$ and $(\Omega-\chi)^{n} M=0$ for sufficiently large n.

Our next observation concerns projective modules. It is not difficult to see that $\tilde{\mathcal{C}}_{\theta, \chi}$ does not have enough projectives. To overcome this obstacle we will consider the categories $\mathcal{C}_{\theta, \chi}^{(n)}$ for all $n>0$, consisiting of modules M which satisfy the additional condition $(\Omega-\chi)^{n} M=0$. Then we have a relation

$$
\begin{equation*}
\{\text { IXind }\} \tag{9.7}
\end{equation*}
$$

$$
\tilde{\mathcal{C}}_{\theta, \chi}=\lim _{\rightarrow} \mathcal{C}_{\theta, \chi}^{(n)},
$$

i.e. every object of $\tilde{\mathcal{C}}_{\theta, \chi}$ is an object of $\mathcal{C}_{\theta, \chi}^{(n)}$ for sufficiently large n. Thus, the problem of classifying indecomposable weight modules is reduced to the same problem for $\mathcal{C}_{\theta, \chi}^{(n)}$.

Lemma 6.26. (a) If (θ, χ) satisfies condition (1) of Proposition 6.21, then the category $\mathcal{C}_{\theta, \chi}^{(n)}$ is equivalent to the category of representations of the quiver \bullet^{∞} with the relation $\alpha^{n}=0$.
(b) If (θ, χ) satisfies condition (2) of Proposition 6.21, then the category $\mathcal{C}_{\theta, \chi}^{(n)}$ is equivalent to the category of representations of the quiver

with relations $(\alpha \beta)^{n}=(\beta \alpha)^{n}=0$.
(c) If (θ, χ) satisfies condition (3) of Proposition 6.21, then the category $\mathcal{C}_{\theta, \chi}^{(n)}$ is equivalent to the category of representations of the quiver

$$
\bullet^{1} \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} \bullet^{2} \underset{\delta}{\stackrel{\gamma}{\rightleftarrows}} \bullet^{3} .
$$

with relations

$$
(\beta \alpha)^{n}=(\gamma \delta)^{n}=0, \quad \alpha \beta=\delta \gamma, \quad(\alpha \beta)^{n}=0
$$

Proof. To construct projective modules in $\mathcal{C}_{\theta, \chi}^{(n)}$ we use the induction

$$
\mathcal{U} \otimes \mathcal{U}_{0}\left(U_{0} /\left(h-\nu,(\Omega-\chi)^{n}\right)\right) .
$$

Exercise 6.27. Use the Frobenius reciprocity to show that
(1) If $\nu \in \theta$, then $\mathcal{U} \otimes \mathcal{u}_{0}\left(U_{0} /\left(h-\nu,(\Omega-\chi)^{n}\right)\right)$ is an indecomposable projective module in $\tilde{\mathcal{C}}_{\theta, \chi}^{(n)}$.
(2) If $z=\Omega-\chi$, then

$$
\operatorname{End}_{\tilde{\mathcal{C}}}\left(\mathcal{U} \otimes \mathcal{u}_{0}\left(U_{0} /\left(h-\nu,(\Omega-\chi)^{n}\right)\right)\right) \simeq \mathbb{C}[z] /\left(z^{n}\right)
$$

In case (a), there is only one indecomposable projective module and its endomorphism algebra is isomorphic $\mathbb{C}[z] /\left(z^{n}\right)$ by Exercise 6.27 (2).

In case (b), there are two non-isomorphic indecomposable projective modules, call them P_{1} and P_{2}, the corresponding simple modules will be denoted by L_{1} and L_{2}. Note that $z:=\Omega-\chi$ is nilpotent on P_{1} and P_{2} and $P_{1} / z P_{1}, P_{2} / z P_{2}$ are indecomposable projectives in $\mathcal{C}_{\theta, \chi}$. Then, using induction on n, one can compute the radical filtrations of P_{1} and P_{2} :

$$
\begin{aligned}
& \nabla^{i}\left(P_{1}\right) / \nabla^{i+1}\left(P_{1}\right)=\left\{\begin{array}{l}
L_{1} \text { if } i \text { is even } \\
L_{2} \text { if } i \text { is odd }
\end{array},\right. \\
& \nabla^{i}\left(P_{2}\right) / \nabla^{i+1}\left(P_{2}\right)=\left\{\begin{array}{l}
L_{2} \text { if } i \text { is even } \\
L_{1} \text { if } i \text { is odd }
\end{array},\right.
\end{aligned}
$$

for $i<2 n$, and $\nabla^{2 n}\left(P_{1}\right)=\nabla^{2 n}\left(P_{2}\right)=0$. The statement follows.
In case (c) there are 3 non-isomorphic indecomposable projective modules: P_{1}, P_{2}, P_{3}, with simple quotients L_{1}, L_{2}, L_{3} respectively. We assume that L_{2} is the finitedimensional module isomorphic to $V(m)$. In order to calculate the radical filtration of projective modules we consider first the filtration:

$$
P_{i} \supset z P_{i} \supset z^{n-1} P_{i} \supset z^{n} P_{i}=0 .
$$

Then every quotient $z^{j} P_{i} / z^{j+1} P_{i}$ is isomorphic to the projective cover of L_{i} in $\mathcal{C}_{\theta, \chi}$. After application of Exercise 6.24 and induction on n, we obtain the radical filtration of P_{2} :

$$
\nabla^{i}\left(P_{2}\right) / \nabla^{i+1}\left(P_{2}\right)=\left\{\begin{array}{l}
L_{2} \text { if } i \text { is even } \\
L_{1} \oplus L_{3} \text { if } i \text { is odd }
\end{array}\right.
$$

for $i<2 n$ and $\nabla^{2 n}\left(P_{2}\right)=0$. The radical filtrations of P_{1} and P_{3} can be obtained similarly:

$$
\nabla^{i}\left(P_{j}\right) / \nabla^{i+1}\left(P_{j}\right)=\left\{\begin{array}{l}
L_{1} \oplus L_{3} \text { if } i \text { is even and } i \neq 0,2 n \\
L_{2} \text { if } i \text { is odd } \\
L_{j} \text { if } i=0 \\
L_{j^{\prime}} \text { if } i=2 n
\end{array}\right.
$$

where $j=1,3$ and $j^{\prime}=3,1$ respectively and $i \leq 2 n, \nabla^{2 n+1}\left(P_{j}\right)=0$. That implies (c).

A representation of a quiver Q is called nilpotent of every path acts nilpotently. Lemma 6.26 implies the following:

Proposition 6.28. Each block $\tilde{\mathcal{C}}_{\theta, \chi}$ is equivalent to the category of nilpotent representation of one of the following quivers:
(1) \bullet;
(2) $\bullet \rightleftarrows \bullet$;
(3) $\bullet \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} \bullet \stackrel{\gamma}{\rightleftarrows} \bullet$ with relation $\alpha \beta=\delta \gamma$.

Let us finish with the following proposition.
Proposition 6.29. For every $\theta \in \mathbb{C} / 2 \mathbb{Z}, \chi \in \mathbb{C}$ and $n>0$, the block $\mathcal{C}_{\theta, \chi}^{n}$ is finitely presented and $\tilde{\mathcal{C}}_{\theta, \chi}$ is tame.

Proof. Note that the second assertion is an immediate consequence of the first one by (9.7). Moreover, the first assertion in case (a) is obvious: there is exactly one indecomposable representation in every dimension, given by the nilpotent Jordan block.

In case (b), the block is equivalent to the category of $\mathbb{Z} / 2 \mathbb{Z}$-graded modules over the $\mathbb{Z} / 2 \mathbb{Z}$-graded algebra $\mathbb{C}[\xi] /\left(\xi^{2 n}\right)$, where the degree of ξ is equal to 1 . For every dimension vector of the shape $(p, p),(p+1, p)$ and $(p, p+1)$ for $p \leq n$, there is exactly In case (b), the block is equivale
the $\mathbb{Z} / 2 \mathbb{Z}$-graded algebra $\mathbb{C}[\xi] /\left(\xi^{2 n}\right)$,
dimension vector of the shape (p, p),
one indecomposable representation.
In case (c), we give a description

In case (c), we give a description of all indecomposable nilpotent representations of the quiver (3) of Proposition 6.28 and leave the proof to the reader. We call a quiver Γ admissible if the following conditions hold:

- The set Γ_{0} of vertices is a finite subset of $\mathbb{N} \times \mathbb{N}$ such that if $(a, b) \in \Gamma_{0}$, then $b=a$ or $a \pm 1$.
- If $(a, a),(a+1, a+1) \in \Gamma_{0}$ then $(a, a+1),(a+1, a) \in \Gamma_{0}$.
- At least one of $(0,0),(1,0)$ and $(0,1)$ belongs to Γ_{0}.
- The arrows of Γ are of the form $(a, b) \rightarrow(c, d)$ where $c=a, d=b+1$ or $c=a+1, d=b$.
- Γ is connected.
- Each arrow has a mark α, β, γ or δ according to the following rule:

$$
\begin{gathered}
(a+1, a) \xrightarrow{\alpha}(a+1, a+1), \\
(a, a) \xrightarrow{\beta}(a+1, a), \\
(a, a) \xrightarrow{\gamma}(a, a+1), \\
(a, a+1) \xrightarrow{\delta}(a+1, a+1) .
\end{gathered}
$$

Here is an example of an admissible quiver:

To every admissible quiver Γ, we associate the representation $\left(V^{\Gamma}, \rho^{\gamma}\right)$ as follows: we set V^{Γ} to be the formal span of e_{s}, for all $s \in \Gamma_{0}$, assuming $e_{s} \in V_{1}^{\Gamma}$ for $s=$ $(a+1, a), e_{s} \in V_{2}^{\Gamma}$ for $s=(a, a)$ and $e_{s} \in V_{3}^{\Gamma}$ for $s=(a, a+1)$. For every $u \in$ $\{\alpha, \beta, \gamma, \delta\}=Q_{1}$, we set $\rho^{\Gamma} e_{s}=e_{t}$ if $(s \xrightarrow{u} t)$ is an arrow of Γ, and zero otherwise.

It is not difficult to check that $\left(V^{\Gamma}, \rho^{\Gamma}\right)$ is indeed an indecomposable nilpotent representation of the quiver (3). We claim that $\left(V^{\Gamma}, \rho^{\Gamma}\right)$ for all admissible Γ are pairwise non-isomorphic and form a complete list of all up to isomorphism indecomposable representations of (3).

With these results, we hope we have shown that the quiver representation theory is a powerful tool in relation with various classical problems and we believe that it is time for us to end this book.

Bibliography

1. E. Artin, Galois theory, Notre-Dame mathematical lectures (1942).
2. H. Bass, Algebraic K-theory, Benjamin (1968).
3. A.A. Beilinson, The derived category of coherent sheaves on Pn. Selected translations. Selecta Math. Soviet. 3 (1983/84), n.3.
4. I.N. Bernstein, I.M. Gel'fand, V.A. Ponomarev, Coxeter functors, and Gabriel's theorem. (Russian) Uspehi Mat. Nauk 28 (1973), no. 2(170).
5. N. Bourbaki, Lie groups and Lie algebras Chaters 4-6, Springer (2002).
6. W. Crawley-Boevey, Lectures on representations of quivers, PDF available on his web-page (1992).
7. C.W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras. Reprint of the 1962 original. AMS Chelsea Publishing, Providence, RI (2006).
8. J. Dixmier, Enveloping algebras. North-Holland Mathematical Library, Vol. 14. Translated from the French. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977).
9. Ju.A. Drozd, Tame and wild matrix problems. Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., 832, Springer, Berlin-New York (1980).
10. K. Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Math., 1428, Springer, Berlin-New York (1990).
11. P. Etingof, O. Schiffmann, Lectures on quantum groups. Second edition. Lectures in Mathematical Physics. International Press, Somerville, MA (2002).
12. W. Fulton, J. Harris, Representation theory, a first course, GTM 129, Springer (1991).
13. P. Gabriel, A.V. Roiter, Representations of finite-dimensional algebras. With a chapter by B. Keller. Encyclopaedia Math. Sci., 73, Algebra, VIII, Springer, Berlin (1992).
14. L. Geissinger, Hopf algebras of symmetric functions and class functions, LNM 579 pp . 168-181 Springer (1977).
15. I. Gel'fand, I. Graev, N. Vilenkin, Generalized functions. Vol. 5: Integral geometry and representation theory. Translated from the Russian by Eugene Saletan Academic Press, New YorkLondon (1966).
16. I. Gel'fand, I. Graev, Construction of irreducible representations of simple algebraic groups over a finite field. (Russian) Dokl. Akad. Nauk SSSR 147 (1962).
17. I.M. Gel'fand, V.A. Ponomarev, Indecomposable representations of the Lorentz group, Uspekh Mat, Nauk, 28, (1968) no. 1-60
18. R. Godement, Analysis IV, Universitext, Springer (2015).
19. A. Grothendieck, Sur quelques points d'algèbre homologique. (French) Tohoku Math. J. (2) 9, pp. 119-221 (1957).
20. S. Helgason, Groups and geometric analysis: integral geometry, ivariant differential operators and spherical functions, Academic Press (1984), AMS (1994).
21. J.C. Jantzen, Lectures on quantum groups. Graduate Studies in Mathematics, 6. American Mathematical Society, Providence, RI (1996).
22. T.-Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics No. 189, Berlin, New York: Springer-Verlag, (1999).
23. G. Lusztig, Introduction to quantum groups, Bikhäuser (1993).
24. I.G. Macdonald, Symmetric finctions and Hall polynomials, second edition, Oxford University Press (1995).
25. S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114 Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Gottingen-Heidelberg (1963).
26. D. Mumford, Tata lectures on theta. III. With collaboration of Madhav Nori and Peter Norman. Reprint of the 1991 original. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2007).
27. J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics 85, Boston, MA: Academic Press (1979).
28. W. Rudin, Real and complex analysis. Third edition. McGraw-Hill Book Co., New York (1987).
29. J.P. Serre, Linear representations of finite groups, Springer (1977).
30. T.A. Springer, A.V. Zelevinsky, Characters of $G L\left(n, \mathbb{F}_{q}\right)$ and Hopf algebras, Journal of London Math. Soc. (2) 30, pp. 27-43 (1984).
31. T.A. Springer, Invariant theory. Lecture Notes in Mathematics, Vol. 585. Springer-Verlag, Berlin-New York (1977).
32. T.A. Springer, Linear algebraic groups. Second edition. Progress in Mathematics, 9. Birkhäuser Boston, Inc., Boston, MA (1998).
33. R. Steinberg, The representations of $G L(3, q), G L(4, q), P G L(3, q)$ and $P G L(4, q)$, Canadian journal of math. 3 pp. 225-235 (1951)
34. D. Vogan, Unitary representations of reductive Lie groups, Princeton University Press (1987).
35. D. Vogan, Representations of real reductive Lie groups, P.M. 15, Brirkäuser (1981).
36. C. Weibel, An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, (1994).
37. A.V. Zelevinsky, Representations of finite classical groups: a Hopf algebra approach, LNM 869, Springer (1981).

[^0]: ${ }^{1}$ Compare with the analogous result for groups in Chapter 2.

[^1]: ${ }^{1}$ Some authors prefer the term postprojective instead of preprojective, see $[\mathbf{1 3}]$.

[^2]: ${ }^{1}$ It suffices to consider vectors $\int_{G} f(g) g v d g$ for all smooth functions $f(g)$ with compact support.

