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Preface

Representation theory is a very active research topic in mathematics nowadays.
There are representations associated to several algebraic structures, representa-

tions of algebras, groups (of finite or infinite cardinal). Roughly speaking, a represen-
tation is a vector space equipped with a linear action of the algebraic structure. For
example, the algebra of n× n matrices acts on the vector space Cn. A slightly more
complicated example is the action of the group GL(n,C) in the set of n×n-matrices,
the group acting by conjugation.

In the beginning, there was no tendency to classify all the representations of a
given object. The first result in this direction is due to Frobenius, who was interested
in the general theory of finite groups. Let G be a finite group, a representation V of
G is a complex vector space V together with a morphism of groups ρ : G→ GL(V ).
One says V is irreducible if there exists no proper subspace W ⊂ V such that W
is stable under all ρ(g), g ∈ G. Frobenius showed there is finitely many irreducible
representations of G and that they are completely determined by their characters:
the character of V is the complex function g ∈ G 7→ Tr(ρ(g)) where Tr is the trace of
the endomorphism. These characters form a basis of the complex valued functions on
G invariant under conjugation. Then Frobenius proceeded to compute the characters
of symmetric groups in general. His results inspired Schur, who was able to relate
them to the theory of complex finite dimensional representations of GL(n,C) through
the Schur-Weyl duality. In both cases, every finite dimensional representation of the
group is a direct sum of irreducible representations (we say that the representations
are completely reducible).

The representation theory of symmetric groupes and the related combinatorics
turn out to be very useful in a lot of questions. We decided to follow Zelevinsky
and his book [37] and describe a Hopf algebra approach. This is an early example
of categorification, which was born before the fashionable term categorification was
invented.

Most of the results about representations of finite groups can be generalized to
compact groups. In particular, once more, the complex finite dimensional represen-
tations of a compact groups are completely reducible, and the regular representation
in the space of continuous functions on the compact group has the similar struc-
ture. This theory was developed by H. Weyl and the original motivation came from
quantum mechanics. The first examples of compact groups are the group SO(2)
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8 PREFACE

of rotations of the plane (the circle) and the group SO(3) of rotations of the 3-
dimensional space. In the former case, the problem of computing the Fourier series
for a function on the circle is equivalent to the decomposition of the regular repre-
sentation. More generally, the study of complex representations of compact groups
helps to understand Fourier analysis on such groups.

If a topological group is not compact, for example, the group of real numbers
with operation of addition, the representation theory of such a group involves more
complicated analysis (Fourier transform instead of Fourier series). The representa-
tion theory of real non-compact groups was initiated by Harish-Chandra and by the
Russian school led by Gelfand. Here emphasis is on the classification of unitary rep-
resentations due to applications from physics. It is also worth mentioning that this
theory is closely related to harmonic analysis, and many special functions (such as
Legendre polynomials) naturally appear in the context of representation theory.

In the theory of finite groups one can drop the assumption that the characteristic
of the ground field is zero. This leads immediately to the loss of complete reducibility.
This representation theory was initiated by Brauer and it is more algebraic. If one
turns to algebras, a representation of an algebra is, by definition, the same as a
module over this algebra. Let k be a field. Let A be a k-algebra which is finite
dimensional as a vector space. It is a well-known fact that A-modules are not,
in general, completely reducible: for instance, if A = k[X]/X2 and M = A, the
module M contains kX as a submodule which has no A-stable complement. An
indecomposable A-module is a module which has no non-trivial decomposition as a
direct sum. It is also interesting to attempt a classification of A-modules. It is a
very difficult task in general. Nevertheless, the irreduducible A-modules are in finite
number. The radical R of A is defined as the ideal of A which annihilates each of
those irreducible modules, it is a nilpotent ideal. Assume k is algebraically closed,
the quotient ring A/R is a product of matrix algebras over k, A/R = ΠiEndk(Si)
where Si runs along the irreducible A-modules.

If G is a finite group, the algebra k(G) of k-valued functions on G, the composition
law being the convolution, is a finite dimensional k-algebra, with a zero radical as long
as the characteristic of the field k does not divide the cardinal of G. The irreducible
modules of k(G) are exactly the finite dimensional representations of the group G,
the action of G extends linearly to k(G). This shows that all k(G)-modules are
completely reducible (Maschke’s theorem).

In order to study finite dimensional k-algebras representations more generally,
it is useful to introduce quivers. Let A be a finite dimensional k-algebra, denote
S1, . . . , Sn its irreducible representations, and draw the following graph, called the
quiver associated to A: the vertices are labelled by the Sis and we put l arrows
between Si and Sj, pointing at Sj, if Ext1(Si, Sj) is of dimension l (the explicit
definition of Ext1 requires some homological algebra which is difficult to summarize
in such a short introduction).
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More generally, a quiver is an oriented graph with any number of vertices. Let Q
be a quiver, a representation of Q is a set of vector spaces indexed by the vertices of
Q together with linear maps associated to the arrows of Q. Those objects were first
systematically used by Gabriel in the early 70’s, and studied by a lot of people ever
since. The aim is to characterize the finitely represented algebras, or in other terms
the algebras with a finite number of indecomposable modules (up to isomorphism).

Today the representation theory has many flavors. In addition to the above
mentioned, one should add representations over non-archimedian local fields with its
applications to number theory, representations of infinite-dimensional Lie algebras
with applications to number theory and physics and representations of quantum
groups. However, in all these theories certain main ideas appear again and again
very often in disguise. Due to technical details it may be difficult for a neophyte to
recognize them. The goal of this book is to present some of these ideas in their most
elementary incarnation.

We will assume that the reader is familiar with usual linear algebra (including
the theory of Jordan forms and tensor products of vector spaces) and basic theory of
groups and rings.





CHAPTER 1

Introduction to representation theory of finite groups.

Beauty is the first test: there is no permanent place in the world for ugly mathe-
matics. (G.H. Hardy)

1. Definitions and examples
{defex}

Let k be a field, V be a vector space over k. By GL (V ) we denote the group of
all invertible linear operators in V . If dimV = n, then GL (V ) is isomorphic to the
group of invertible n× n matrices with entries in k.

A (linear) representation of a group G in V is a group homomorphism

ρ : G→ GL (V ) ,

dimV is called the degree or the dimension of the representation ρ (it may be infinite).
For any g ∈ G we denote by ρg the image of g in GL (V ) and for any v ∈ V we
denote by ρgv the image of v under the action of ρg. The following properties are
direct consequences of the definition

• ρgρh = ρgh;
• ρ1 = Id;
• ρ−1

g = ρg−1 ;
• ρg (xv + yw) = xρgv + yρhw.

Example 1.1. (1) Let us consider the abelian group of integers Z with op-
eration of addition. Let V be the plane R2 and for every n ∈ Z, we set

ρn =

(
1 n
0 1

)
. The reader can check that this defines a representation of

degree 2 of Z.
(2) LetG be the symmetric group Sn, V = kn. For every s ∈ Sn and (x1, . . . , xn) ∈

kn set

ρs (x1, . . . , xn) =
(
xs(1), . . . , xs(n)

)
.

In this way we obtain a representation of the symmetric group Sn which is
called the permutation representation.

(3) For any group G (finite or infinite) the trivial representation is the homo-
morphism ρ : G→ k∗ such that ρs = 1 for all s ∈ G.

11



12 1. INTRODUCTION TO REPRESENTATION THEORY OF FINITE GROUPS.

(4) Let G be a group and

F (G) = {ϕ : G→ k}
be the space of functions on G with values in k. For any g, h ∈ G and
ϕ ∈ F (G) let

ρgϕ (h) = ϕ (hg) .

Then ρ : G→ GL (F (G)) is a linear representation.
(5) Recall that the group algebra k (G) is the vector space of all finite linear

combinations
∑
cgg, cg ∈ k with natural multiplication. We define the

regular representation R : G→ GL (k (G)) in the following way

Rs

(∑
cgg
)

=
∑

cgsg.

Definition 1.2. Two representations of a group G, ρ : G → GL(V ) and σ :
G → GL(W ) are called equivalent or isomorphic if there exists an invertible linear
operator T : V → W such that T ◦ ρg = σg ◦ T for any g ∈ G.

{regularexample}
Example 1.3. If G is a finite group, then the representations in examples 4 and

5 are equivalent. Indeed, define T : F (G)→ k (G) by the formula

T (ϕ) =
∑
x∈G

ϕ (x)x−1.

Then for any ϕ ∈ F (G) and g ∈ G we have

T (ρgϕ) =
∑
x∈G

ρgϕ (x)x−1 =
∑
x∈G

ϕ (xg)x−1 =
∑
y∈G

ϕ (y) gy−1 = Rg (Tϕ) .

Let a group G act on a set X on the right. Let F(X) be the set of k-valued
functions on X. Then there is a representation of G in F(X) defined by

ρgϕ(x) := ϕ(x · g)

.{ex1}
Exercise 1.4. Consider a left action l : G × X → X of G on X. For every

ϕ ∈ F(X), g ∈ G and x ∈ X set

σgϕ(x) = ϕ(g−1 · x).

(a) Prove that σ is a representation of G in F(X).
(b) Define a right action r : X ×G→ X by

x · g := g−1 · x,
and consider the representation ρ of G in F(X) associated with this action. Check
that ρ and σ are equivalent representations.

Remark 1.5. As one can see from the previous exercise, there is a canonical way
to go between right and left action and between corresponding representations.
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2. Ways to produce new representations

Let G be a group.
Restriction. If H is a subgroup of G and ρ : G → GL (V ) is a representation

of G, the restriction of homomorphism ρ to H gives a representation of H which we
call the restriction of ρ to H. We denote by ResH ρ the restriction of ρ on H.

Lift. Let p : G → H be a homomorphism of groups. Then for every represen-
tation ρ : H → GL (V ), the composite homomorphism ρ ◦ p : G → GL (V ) gives a
representation of G on V . This construction is frequently used in the following case:
let N be a normal subgroup of G, H denote the quotient group G/N and p be the
natural projection. In this case p is obviously surjective. Note that in the general
case we do not require p to be surjective.

Direct sum. If we have two representations ρ : G → GL (V ) and σ : G →
GL (W ), then we can define ρ⊕ σ : G→ GL (V ⊕W ) by the formula

(ρ⊕ σ)g (v, w) = (ρgv, σgw) .

Tensor product. The tensor product of two representations ρ : G → GL (V )
and σ : G→ GL (W ) is defined by

(ρ⊗ σ)g (v ⊗ w) = ρgv ⊗ σgw.

Exterior tensor product. Let G and H be two groups. Consider representa-
tions ρ : G → GL (V ) and σ : H → GL (W ) of G and H respectively. One defines
their exterior tensor product ρ� σ : G×H → GL (V ⊗W ) by the formula

(ρ� σ)(g,h) v ⊗ w = ρgv ⊗ σhw.
{ex2}

Exercise 2.1. If δ : G → G × G is the diagonal embedding, show that for any
representations ρ and σ of G

ρ⊗ σ = (ρ� σ) ◦ δ.

Dual representation. Let V ∗ denote the dual space of V and 〈·, ·〉 denote the
natural pairing between V and V ∗. For any representation ρ : G→ GL (V ) one can
define the dual representation ρ∗ : G→ GL (V ∗) by the formula

〈ρ∗gϕ, v〉 = 〈ϕ, ρ−1
g v〉

for every v ∈ V, ϕ ∈ V ∗.
Let V be a finite-dimensional representation of G with a fixed basis. Let Ag for

g ∈ G be the matrix of ρg in this basis. Then the matrix of ρ∗g in the dual basis of

V ∗ is equal to (Atg)
−1.

{ex3}
Exercise 2.2. Show that if G is finite, then its regular representation is self-dual

(isomorphic to its dual).
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More generally, if ρ : G→ GL (V ) and σ : G→ GL (W ) are two representations,
then one can naturally define a representation τ of G on Homk (V,W ) by the formula

τgϕ = σg ◦ ϕ ◦ ρ−1
g , g ∈ G, ϕ ∈ Homk (V,W ) .

{ex4}
Exercise 2.3. Show that if V and W are finite dimensional, then the represen-

tation τ of G on Homk (V,W ) is isomorphic to ρ∗ ⊗ τ .

Intertwining operators. A linear operator T : V → W is called an intertwining
operator if T ◦ ρg = σg ◦ T for any g ∈ G. The set of all intertwining operators will
be denoted by HomG (V,W ). It is clearly a vector space. Moreover, if ρ = σ,
then EndG(V ) := HomG (V, V ) has a natural structure of associative k-algebra with
multiplication given by composition.

{ex5}
Exercise 2.4. Consider the regular representation of G in k(G). Prove that the

algebra of intertwiners EndG(k(G)) is isomorphic to k(G). (Hint: ϕ ∈ EndG(k(G))
is completely determined by ϕ(1).)

3. Invariant subspaces and irreducibility

3.1. Invariant subspaces and subrepresentations. Consider a representa-
tion ρ : G → GL (V ). A subspace W ⊂ V is called G-invariant if ρg (W ) ⊂ W for
any g ∈ G.

If W is a G-invariant subspace, then there are two representations of G naturally
associated with it: the representation in W which is called a subrepresentation and the
representation in the quotient space V/W which is called a quotient representation.

{ex6}
Exercise 3.1. Let ρ : Sn → GL (kn) be the permutation representation, then

W = {x(1, . . . , 1) | x ∈ k}

and

W ′ = {(x1, . . . , xn) | x1 + x2 + · · ·+ xn = 0}

are invariant subspaces.
{ex7}

Exercise 3.2. Let G be a finite group of order |G|. Prove that any representation
of G contains an invariant subspace of dimension less or equal than |G|.

3.2. Maschke’s theorem.
{Maschke}

Theorem 3.3. (Maschke) Let G be a finite group such that char k does not divide
|G|. Let ρ : G→ GL (V ) be a representation and W ⊂ V be a G-invariant subspace.
Then there exists a complementary G-invariant subspace, i.e. a G-invariant subspace
W ′ ⊂ V such that V = W ⊕W ′.
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Proof. Let W ′′ be a subspace (not necessarily G-invariant) such that W⊕W ′′ =
V . Consider the projector P : V → V onto W with kernel W ′′. One has P 2 = P .
Now we construct a new operator

P̄ :=
1

|G|
∑
g∈G

ρg ◦ P ◦ ρ−1
g .

An easy calculation shows that ρg ◦ P̄ ◦ ρ−1
g = P̄ for all g ∈ G, and therefore ρg ◦ P̄ =

P̄ ◦ ρg. In other words, P̄ ∈ EndG(V ).
On the other hand, P̄|W = Id and Im P̄ = W . Hence P̄ 2 = P̄ .
Let W ′ = Ker P̄ . First, we claim that W ′ is G-invariant. Indeed, let w ∈ W ′,

then P̄ (ρgw) = ρg
(
P̄w
)

= 0 for all g ∈ G, hence ρgw ∈ Ker P̄ = W ′.
Now we prove that V = W ⊕W ′. Indeed, W ∩W ′ = 0, since P̄|W = Id. On the

other hand, for any v ∈ V , we have w = P̄ v ∈ W and w′ = v − P̄ v ∈ W ′. Thus,
v = w + w′, and therefore V = W +W ′. �

Remarks. If char k divides |G| or G is infinite, the conclusion of Mashke’s
theorem does not hold anymore. Indeed, in the example of Exercise 3.1 W and W ′

are complementary if and only if char k does not divide n. Otherwise, W ⊂ W ′ ⊂ V ,
and one can show that neither W nor W ′ have a G-invariant complement.

In the case of an infinite group, consider the representation of Z in R2 as in the
first example of Section 1. The span of (1, 0) is the only G-invariant line. Therefore
it can not have a G-invariant complement in R2.

3.3. Irreducible representations and Schur’s lemma.

Definition 3.4. A non-zero representation is called irreducible if it does not
contain any proper non-zero G-invariant subspace.

{exdimir}
Exercise 3.5. Show that the dimension of any irreducible representation of a

finite group G is not bigger than its order |G|.

The following elementary statement plays a key role in representation theory.

Lemma 3.6. (Schur) Let ρ : G→ GL(V ) and σ : G→ GL(W ) be two irreducible {Schur}
representations. If T ∈ HomG(V,W ), then either T = 0 or T is an isomorphism.

Proof. Note that KerT and ImT are G-invariant subspaces of V and W , re-
spectively. Then by irreducibility of ρ, either KerT = V or KerT = 0, and by
irreducibility of σ, either ImT = W or ImT = 0. Hence the statement. �

{corschur}
Corollary 3.7. (a) Let ρ : G→ GL(V ) be an irreducible representation. Then

EndG(V ) is a division ring.
(b) If the characteristic of k does not divide |G|, EndG(V ) is a division ring if and

only if ρ is irreducible.
(c) If k is algebraically closed and ρ is irreducible, then EndG(V ) = k.
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Proof. (a) is an immediate consequence of Schur’s Lemma.
To prove (b) we use Maschke’s theorem. Indeed, if V is reducible, then V = V1⊕V2

for some proper subspaces V1 and V2. Let p1 be the projector on V1 with kernel V2 and
p2 be the projector onto V2 with kernel V1. Then p1, p2 ∈ EndG(V ) and p1 ◦ p2 = 0.
Hence EndG(V ) has zero divisors.

Let us prove (c). Consider T ∈ EndG(V ). Then T has an eigenvalue λ ∈ k and
T−λ Id ∈ EndG(V ). Since T−λ Id is not invertible, it must be zero by (a). Therefore
T = λ Id. �

3.4. Complete reducibility.

Definition 3.8. A representation is called completely reducible if it splits into a
direct sum of irreducible subrepresentations. (This direct sum might be infinite.)

{cr}
Theorem 3.9. Let ρ : G → GL(V ) be a representation of a group G. The

following conditions are equivalent.
(a) ρ is completely reducible;
(b) For any G-invariant subspace W ⊂ V there exists a complementary G-

invariant subspace W ′.

Proof. This theorem is easier in the case of finite-dimensional V . To prove it for
arbitrary V and G we need Zorn’s lemma. First, note that if V is finite dimensional,
then it always contains an irreducible subrepresentation. Indeed, we can take a
subrepresentation of minimal positive dimension. If V is infinite dimensional then
this is not true in general.

{subinvariance}
Lemma 3.10. If ρ satisfies (b), any subrepresentation and any quotient of ρ also

satisfy (b).

Proof. To prove that any subrepresentation satisfies (b) consider a flag of G-
invariant subspaces U ⊂ W ⊂ V . Let U ′ ⊂ V and W ′ ⊂ V be G-invariant subspaces
such that U ⊕ U ′ = V and W ⊕W ′ = V . Then W = U ⊕ (U ′ ∩W ).

The statement about quotients is dual and we leave it to the reader as an exercise.
�{minirr}

Lemma 3.11. Let ρ satisfy (b). Then it contains an irreducible subrepresentation.

Proof. Pick up a non-zero vector v ∈ V and let V ′ be the span of ρgv for all
g ∈ G. Consider the set of G-invariant subspaces of V ′ which do not contain v, with
partial order given by inclusion. For any linearly ordered subset {Xi}i∈I there exists

a maximal element, given by the union
⋃
i∈I

Xi. Hence there exists a proper maximal

G-invariant subspace W ⊂ V ′, which does not contain v. By the previous lemma one
can find a G-invariant subspace U ⊂ V ′ such that V ′ = W⊕U . Then U is isomorphic
to the quotient representation V ′/W , which is irreducible by the maximality of W in
V ′. �
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Now we will prove that (a) implies (b). We write

V =
⊕
i∈I

Vi

for a family of irreducible G-invariant subspaces Vi. Let W ⊂ V be some G-invariant
subspace. By Zorn’s lemma there exists a maximal subset J ⊂ I such that

W ∩
⊕
j∈J

Vj = 0.

We claim that W ′ :=
⊕
j∈J

Vj is complementary to W . Indeed, it suffices to prove that

V = W + W ′. For any i /∈ J we have (Vi ⊕W ′) ∩W 6= 0. Therefore there exists
a non-zero vector v ∈ Vi equal to w + w′ for some w ∈ W and w′ ∈ W ′. Hence
Vi ∩ (W ′ + W ) 6= 0 and by irreducibility of Vi, we have Vi ⊂ W + W ′. Therefore
V = W +W ′.

To prove that (b) implies (a) consider the family of all irreducible subrepresen-

tations {Wk}k∈K of V . Note that
∑
k∈K

Wk = V because otherwise
∑
k∈K

Wk has a

G-invariant complement which contains an irreducible subrepresentation. Again due

to Zorn’s lemma one can find a minimal J ⊂ K such that
∑
j∈J

Wj = V . Then clearly

V =
⊕
j∈J

Wj. �

The next statement follows from Maschke’s theorem and Theorem 3.9. {cormaschke}
Proposition 3.12. Let G be a finite group and k be a field such that char k does

not divide |G|. Then every representation of G is completely reducible.

4. Characters {characters}
4.1. Definition and main properties. For a linear operator T in a finite-

dimensional vector space V we denote by trT the trace of T .
For any finite-dimensional representation ρ : G→ GL (V ) the function χρ : G→ k

defined by
χρ (g) = tr ρg.

is called the character of the representation ρ.
{charex}

Exercise 4.1. Check the following properties of characters.

(1) χρ (1) = dim ρ;
(2) if ρ ∼= σ, then χρ = χσ;
(3) χρ⊕σ = χρ + χσ;
(4) χρ⊗σ = χρχσ;
(5) χρ∗ (g) = χρ (g−1);
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(6) χρ (ghg−1) = χρ (h).
{charperm}

Exercise 4.2. Calculate the character of the permutation representation of Sn
(see the first example of Section 1).

{charreg}
Example 4.3. If R is the regular representation of a finite group, then χR (g) = 0

for any g 6= 1 and χR (1) = |G|.

Example 4.4. Let ρ : G → GL (V ) be a representation of dimension n and
assume char k 6= 2. Consider the representation ρ⊗ρ in V ⊗V and the decomposition

V ⊗ V = S2V ⊕ Λ2V.

The subspaces S2V and Λ2V are G-invariant. Denote by sym and alt the subrepre-
sentations of G in S2V and Λ2V respectively. Let us compute the characters χsym

and χalt.
Let g ∈ G and denote by λ1, . . . , λn the eigenvalues of ρg (taken with multiplic-

ities). Then the eigenvalues of altg are the products λiλj for all i < j while the
eigenvalues of symg are λiλj for i ≤ j. This leads to

χsym (g) =
∑
i≤j

λiλj,

χalt (g) =
∑
i<j

λiλj.

Hence

χsym (g)− χalt (g) =
∑
i

λ2
i = tr ρg2 = χρ

(
g2
)
.

On the other hand by properties (3) and (4)

χsym (g) + χalt (g) = χρ⊗ρ (g) = χ2
ρ (g) .

Thus, we get

(1.1){symalt} χsym (g) =
χ2
ρ (g) + χρ (g2)

2
, χalt (g) =

χ2
ρ (g)− χρ (g2)

2
.

{complexcase}
Lemma 4.5. If k = C and G is finite, then for any finite-dimensional representa-

tion ρ and any g ∈ G we have

χρ(g) = χρ(g−1).

Proof. Indeed, χρ(g) is the sum of all the eigenvalues of ρg. Since g has finite
order, every eigenvalue of ρg is a root of 1. Therefore the eigenvalues of ρg−1 are the
complex conjugates of the eigenvalues of ρg. �
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{orthrel}
4.2. Orthogonality relations. In this subsection we assume that G is finite

and the characteristic of the ground field k is zero. Introduce a non-degenerate
symmetric bilinear form on the space of functions F (G) by the formula

(1.2){scalarproduct} (ϕ, ψ) =
1

|G|
∑
s∈G

ϕ
(
s−1
)
ψ (s) .

If ρ : G → GL(V ) is a representation, then we denote by V G the subspace of
G-invariant vectors, i.e.

V G = {v ∈ V |ρg(v) = v,∀g ∈ G}.
{orth1}

Lemma 4.6. If ρ : G→ GL(V ) is a representation, then

dimV G = (χρ, χtriv),

where χtriv denotes the character of the trivial representation, i.e. χtriv(g) = 1 for all
g ∈ G.

Proof. Consider the linear operator P ∈ EndG(V ) defined by the formula

P =
1

|G|
∑
g∈G

ρg.

Note that P 2 = P and ImP = V G. Thus, P is a projector on V G. Since char k = 0
we have

trP = dim ImP = dimV G.

On the other hand, by direct calculation we get trP = (χρ, χtriv), and the lemma
follows. �

Note that for two representations ρ : G→ GL(V ) and σ : G→ GL(W ) we have

(1.3) Homk(V,W )G = HomG(V,W ) = (V ∗ ⊗W )G.

Therefore we have the following
{orth2}

Corollary 4.7. One has

dim HomG(V,W ) = (χρ, χσ).

Proof. The statement is a consequence of the following computation:

(χρ, χσ) =
1

|G|
∑
g∈G

χρ(g
−1)χσ(g) =

1

|G|
∑
g∈G

χρ∗⊗σ(g) = (χρ∗⊗σ, χtriv).

�

The following theorem is usually called the orthogonality relations for characters.
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{orth}
Theorem 4.8. Let ρ, σ be irreducible representations over a field of characteristic

zero.
(a) If ρ : G→ GL(V ) and σ : G→ GL(W ) are not isomorphic, then (χρ, χσ) = 0.
(b) Assume that the ground field is algebraically closed. If ρ and σ are equivalent,

then (χρ, χσ) = 1.

Proof. By Schur’s lemma

HomG(V,W ) = 0.

Therefore Corollary 4.7 implies (a).
Assertion (b) follows from Corollary 3.7 (c) and Corollary 4.7. �

This theorem has several important corollaries.
{orth3}

Corollary 4.9. Let

ρ = m1ρ1 ⊕ · · · ⊕mrρr

be a decomposition into a sum of irreducible representations, where miρi is the direct

sum of mi copies of ρi. Then mi =
(χρ,χρi)
(χρi ,χρi)

.

The number mi is called the multiplicity of an irreducible representation ρi in ρ.
{orth7}

Corollary 4.10. Two finite-dimensional representations ρ and σ are equivalent
if and only if their characters coincide.

In the rest of this section we assume that the ground field is alge-
braically closed.

{orth4}
Corollary 4.11. A representation ρ is irreducible if and only if (χρ, χρ) = 1.

{exttens}
Exercise 4.12. Let ρ and σ be irreducible representations of finite groups G and

H respectively.
(a) If the ground field is algebraically closed, then the exterior product ρ � σ is

an irreducible representation of G×H.
(b) Give a counterexample to (a) in the case when the ground field is not alge-

braically closed.
{orth5}

Theorem 4.13. Every irreducible representation ρ appears in the regular repre-
sentation with multiplicity dim ρ.

Proof. The statement is a direct consequence of the following computation

(χρ, χR) =
1

|G|
χρ (1)χR (1) = dim ρ.

�
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{orth6}
Corollary 4.14. Let ρ1, . . . , ρr be all (up to isomorphism) irreducible represen-

tations of G and ni = dim ρi. Then

n2
1 + · · ·+ n2

r = |G|.

Proof. Indeed,

dimR = |G| = χR(1) =
r∑
i=1

niχρi(1) =
r∑
i=1

n2
i .

� {permrep}
Example 4.15. Let G act on a finite set X and

k (X) =

{∑
x∈X

bxx | bx ∈ k

}
.

Define ρ : G→ GL (k (X)) by

ρg

(∑
x∈X

bxx

)
=
∑
x∈X

bxg · x.

It is easy to check that ρ is a representation and

χρ (g) = | {x ∈ X | g · x = x} |.
Clearly, ρ contains the trivial subrepresentation. To find the multiplicity of the trivial
representation in ρ we have to calculate (1, χρ):

(1, χρ) =
1

|G|
∑
g∈G

χρ (g) =
1

|G|
∑
g∈G

∑
g·x=x

1 =
1

|G|
∑
x∈X

∑
g∈Gx

1 =
1

|G|
∑
x∈X

|Gx|,

where
Gx = {g ∈ G | g · x = x} .

Let X = X1 ∪ · · · ∪ Xm be the disjoint union of orbits. Then |Gx| = |G|
|Xi| for each

x ∈ Xi and therefore

(1, χρ) =
1

|G|

m∑
i=1

∑
x∈Xi

|G|
|Xi|

= m.

Now let us evaluate (χρ, χρ):

(χρ, χρ) =
1

|G|
∑
g∈G

(∑
g·x=x

1

)2

=
1

|G|
∑
g∈G

∑
g·x=x,g·y=y

1 =
1

|G|
∑

(x,y)∈X×X

|G(x,y)|.

Let σ be the representation associated with the action of G on X ×X. Then the
last formula implies

(χρ, χρ) = (1, χσ) .
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Thus, ρ is irreducible if and only if |X| = 1, and ρ has two irreducible components if
and only if the action of G on X ×X with removed diagonal is transitive.

4.3. The number of irreducible representations of a finite group.

Definition 4.16. Let

C (G) =
{
ϕ ∈ F (G) | ϕ

(
ghg−1

)
= ϕ (h)

}
.

Elements of C(G) are called class functions.

Exercise 4.17. Check that the restriction of (·, ·) on C (G) is non-degenerate.
{Ith2}

Theorem 4.18. The characters of irreducible representations of G form an or-
thonormal basis of C (G).

Proof. We have to show that if ϕ ∈ C (G) and (ϕ, χρ) = 0 for any irreducible
representation ρ, then ϕ = 0. The following lemma is straightforward.

{lm2}
Lemma 4.19. Let ρ : G→ GL (V ) be a representation, ϕ ∈ C (G) and

T =
1

|G|
∑
g∈G

ϕ
(
g−1
)
ρg.

Then T ∈ EndG V and trT = (ϕ, χρ).

Thus, for any irreducible representation ρ we have

(1.4){proj1}
1

|G|
∑
g∈G

ϕ
(
g−1
)
ρg = 0.

But then the same is true for any representation ρ, since any representation is a direct
sum of irreducible representations. Apply (1.4) to the case when ρ = R is the regular
representation. Then

1

|G|
∑
g∈G

ϕ
(
g−1
)
Rg(1) =

1

|G|
∑
g∈G

ϕ
(
g−1
)
g = 0.

Hence ϕ (g−1) = 0 for all g ∈ G, i.e. ϕ = 0. �
{Icor5}

Corollary 4.20. The number of isomorphism classes of irreducible representa-
tions equals the number of conjugacy classes in the group G.

Corollary 4.21. If G is a finite abelian group, then every irreducible represen-
tation of G is one-dimensional and the number of irreducible representations is the
order of the group G.

For any groupG (not necessarily finite) letG∗ denote the set of all one-dimensional
representations of G.
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Exercise 4.22. (a) Show that G∗ is a group with respect to the operation of
tensor product.

(b) Show that the kernel of any ρ ∈ G∗ contains the commutator [G,G]. Hence
we have G∗ ' (G/[G,G])∗.

(c) Show that if G is a finite abelian group, then G∗ ' G. (This isomorphism is
not canonical.)

{permex}
Exercise 4.23. Consider the symmetric group Sn for n ≥ 2.
(a) Prove that the commutator [Sn, Sn] coincides with the subgroup An of all even

permutation.
(b) Show that Sn has two up to isomorphism one-dimensional representations:

the trivial and the sign representation ε : Sn → {1,−1}.
{tens1dim}

Exercise 4.24. Let ρ be a one-dimensional representation of a finite group G
and σ is some other representation of G. Show that σ is irreducible if and only if
ρ⊗ σ is irreducible.

4.4. Isotypic components. Consider the decomposition of some representation
ρ : G→ GL(V ) into a direct sum of irreducible representations

ρ = m1ρ1 ⊕ · · · ⊕mrρr.

The subspace Wi ' V ⊕mii of the representation miρi is called the isotypic component
of type ρi of V .

{isotypic}
Lemma 4.25. Let ni denote the dimension of the irreducible representation ρi

and

πi :=
ni
|G|

∑
g∈G

χi(g
−1)ρg.

Then πi is the projector on the isotypic component Wi of type ρi.

Proof. Define a linear operator on Vj by the formula

πij :=
ni
|G|

∑
g∈G

χi(g
−1)(ρj)g.

By construction πij ∈ EndG(Vj). Corollary 3.7 (c) implies that πij = λ Id. By
Theorem 4.8

trπij = ni(χi, χj) = niδij.

Now we write

πi =
r∑
j=1

πij.

Hence
πi|Wj

= δij Id .

The statement follows. �
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4.5. A faithful representation. A representation ρ : G → GL(V ) is called
faithful if ρ is injective.

{Ithfaithful}
Theorem 4.26. Let ρ : G→ GL(V ) be a faithful representation of a finite group

G. Then every irreducible representation of G occurs in some tensor power of ρ.

Proof. We have to show that for any irreducible representation ρi there exists
m such that (χmρ , χi) 6= 0. Assume that the statement is false for some i. Consider
the generating functions

∞∑
m=0

χmρ (g)tm =
1

1− tχρ(g)
.

By our assumption for some i we have∑
g∈G

χi(g
−1)

1− tχρ(g)
= 0.

Rewrite the above identity in the form

ni
1− tn

= −
∑

g∈G\{1}

χi(g
−1

1− tχρ(g)
,

where n denotes the dimension of ρ.
Both sides of the above identity are rational functions. If they are equal then

χρ(g) = n for at least one g 6= 1. Let ε1, . . . , εn be the eigenvalues of ρg. Since g has
finite order, all εi-s are roots of 1. The condition

χρ(g) = ε1 + · · ·+ εn = n

implies ε1 = · · · = εn = 1. Hence ρg is the identity operator, which contradict the
assumption that ρ is faithful. �

5. Examples.

In the examples below we assume that the ground field is C.
{sym3}

Example 5.1. Let G = S3. There are three conjugacy classes in G, each class
is denoted by some element in this class: 1,(12),(123). Therefore there are three
irreducible representations, denote their characters by χ1, χ2 and χ3. It is not difficult
to see that S3 has the following table of characters

1 (12) (123)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1
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The characters of one-dimensional representations are given in the first and the
second row (those are the trivial representation and the sign representation, see Ex-
ercise 4.23), the last character χ3 can be obtained by using the identity

(1.5){perm1} χperm = χ1 + χ3,

where χperm stands for the character of the permutation representation, see Exercise
4.2.

{sym4}
Example 5.2. Let G = S4. In this case we have the following character table (in

the first row we write the number of elements in each conjugacy class).

1 6 8 3 6
1 (12) (123) (12) (34) (1234)

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 3 1 0 −1 −1
χ4 3 −1 0 −1 1
χ5 2 0 −1 2 0

The first two rows are the characters of the one-dimensional representations. The
third one can again be obtained from (1.5). When we take the tensor product ρ4 :=
ρ2⊗ρ3 we get a new 3-dimensional irreducible representation, see Exercise 4.24 whose
character χ4 is equal to the product χ2χ3. The last character can be obtained through
Theorem 4.8. An alternative way to describe ρ5 is to consider S4/K4, where

K4 = {1, (12) (34) , (13) (24) , (14) (23)}

is the Klein subgroup. Observe that S4/K4
∼= S3, and therefore the two-dimensional

representation σ of S3 can be lifted to a representation of S4 by

ρ5 = σ ◦ p,

where p : S4 → S3 is the natural projection.

{alter5}
Example 5.3. Now let G = A5. There are 5 irreducible representations of G over

C. Here is the character table
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1 20 15 12 12
1 (123) (12) (34) (12345) (12354)

χ1 1 1 1 1 1
χ2 4 1 0 −1 −1
χ3 5 −1 1 0 0

χ4 3 0 −1 1+
√

5
2

1−
√

5
2

χ5 3 0 −1 1−
√

5
2

1+
√

5
2

To obtain χ2 we use the permutation representation and (1.5) once more. In order
to construct new irreducible representations we consider the characters χsym and χalt

of the second symmetric and the second exterior powers of ρ2 respectively. Using
(1.1) we compute

1 (123) (12) (34) (12345) (12354)
χsym 10 1 2 0 0
χalt 6 0 −2 1 1

It is easy to check that

(χsym, χsym) = 3, (χsym, χ1) = (χsym, χ2) = 1.

Therefore
χ3 = χsym − χ1 − χ2

is the character of another irreducible representation of dimension 5. We still miss
two.

To find then we use χalt. We have

(χalt, χalt) = 2, (χalt, χ1) = (χalt, χ2) = (χalt, χ3) = 0.

Therefore χalt = χ4 + χ5 is the sum of two irreducible characters. First we compute
the dimensions of ρ4 and ρ5 using

12 + 42 + 52 + n2
4 + n2

5 = 60.

We obtain n4 = n5 = 3.
Next, we use Theorem 4.8 to compute some other values of χ4 and χ5. The

equations
(χ4, χ1 + χ2) = 0, (χ4, χ3) = 0

imply
χ4 ((123)) = 0, χ4 ((12) (34)) = −1.

The same argument applied to χ5 gives

χ5 ((123)) = 0, χ5 ((12) (34)) = −1.
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Finally let us denote

x = χ4 ((12345)) , y = χ4 ((12354))

and write down the equation arising from (χ4, χ4) = 1:

1

60

(
9 + 15 + 12x2 + 12y2

)
= 1,

or more simply

(1.6) {equ2} x2 + y2 = 3.

On the other hand, (χ4, χ1) = 0, which gives

3− 15 + 12 (x+ y) = 0,

or simply

(1.7) {equ3} x+ y = 1.

The system (1.6), (1.7) has two solutions

x1 =
1 +
√

5

2
, y1 =

1−
√

5

2
, x2 =

1−
√

5

2
, y2 =

1 +
√

5

2
.

They give the characters χ4 and χ5.

Now that we have the character table of A5 we would like to explain a geometric
construction related to it. First, we observe that the previous constructions work
over the ground field R of real numbers. In particular, the representations ρ4 and ρ5

are defined over R. Indeed, they are subrepresentations of the second exterior power
of ρ2 and by Lemma 4.25 the corresponding projectors are defined over R. Therefore
we have an action of A5 in R3. Our next step is to show that this action preserves
the scalar product. In a more general context we have the following result.

{lemmascalarproduct}
Lemma 5.4. Let V be a finite-dimensional vector space over R and ρ be a repre-

sentation of some finite group G in V . There exists a positive definite scalar product
B : V × V → R such that B(ρgu, ρgv) = B(u, v) for any u, v ∈ V and g ∈ G.

Remark. Such a scalar product is called invariant.

Proof. Let C : V × V → R be some positive definite scalar product. Set

B(u, v) :=
∑
g∈G

C(ρgu, ρgv).

Then B satisfies the conditions of the lemma. �

Dodecahedron. We have constructed two 3-dimensional irreducible represen-
tations of A5, we can use any of them to construct a dodecahedron, i.e. a regular
polyhedron with 12 pentagonal faces and 20 vertices. For instance, let us take ρ = ρ4.
By Lemma 5.4 we may assume that for all g ∈ G, ρg acts on R3 by an orthogonal
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matrix. We claim that ρg preserves the orientation in R3, in other words the deter-
minant det ρg is 1 for all g ∈ G. We already know that det ρg = ±1. Therefore if g is
of odd order the determinant is necessarily 1. If g is of even order, it belongs to the
conjugacy class of (12)(34). Hence it is an involution with trace −1, thus a rotation
by 180◦. Recall that any isometry in R3 preserving orientation is a rotation.

Let g = (123), then it is of order 3, hence ρg is a rotation by 120◦. Pick up a
non-zero x fixed by ρg. Consider its orbit S = {ρg(x)|g ∈ A5}. Since the stabilizer of
x in A5 is the cyclic group generated by ρg, we know that S has 20 points. Moreover,
all points of S lie on a sphere, and hence the convex hull ∆ of S is a polytope with
vertices in S. We will show that ∆ is a regular polytope whose faces are regular
pentagons.

Let h = (12345). Consider the subgroup H ⊂ A5 generated by h. Since ρh is a
rotation by 72◦. Without loss of generality we may assume the axis of ρh is vertical.
Hence the different orbits of H in S lie on 4 horizontal planes. The top and the
bottom plane sections are faces of ∆. Thus, we can conclude that at least some faces
of ∆ are regular pentagons.

Next, we claim that any vertex of ∆ belongs to exactly three pentagonal faces.
Indeed, it follows from the fact that the stabilizer of any s ∈ S has order three and
it acts on the set of pentagonal faces containing s.

Finally, assume there is a face f of ∆ which is not a regular pentagon. Then at
least one angle of f is not less than 60◦. Denote this angle by α and the corresponding
vertex by s. Consider the stabilizer of s in A5. It is a cyclic group of order 3 acting
on the set of faces containing s. Thus, there are at least three plane angles at s which
are equal to α. But then the total sum of all plane angles at s should be at least
3 × 72◦ + 3α which is bigger that 360◦, thus, a contradiction. Thus, all the faces of
∆ are regular pentagons. Hence the total number of faces is 12.

Note that we have also proved that the group of rotations of a dodecahedron is
isomorphic to A5.

{same}
Exercise 5.5. Let D4 denote the dihedral group of order 8 and H8 denote the

multiplicative subgroup of quaternions consisting of ±1,±i,±j,±k. Compute the
character tables of both groups and verify that those tables coincide.

6. Invariant forms

We assume here that char k = 0. Recall that a bilinear form on a vector space V
is a map B : V × V → k satisfying

(1) B (cv, dw) = cdB (v, w);
(2) B (v1 + v2, w) = B (v1, w) +B (v2, w);
(3) B (v, w1 + w2) = B (v, w1) +B (v, w2).

One can also think about a bilinear form as a vector in V ∗ ⊗ V ∗ or as the homo-
morphism B : V → V ∗ given by the formula Bv (w) = B (v, w). A bilinear form is
symmetric if B (v, w) = B (w, v) and skew-symmetric if B (v, w) = −B (w, v). Every
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bilinear form can be uniquely written as a sum B = B+ +B− where B+ is symmetric
and B− skew-symmetric form,

B± (v, w) =
B (v, w)±B (w, v)

2
.

Such a decomposition corresponds to the decomposition

(1.8) {equ1} V ∗ ⊗ V ∗ = S2V ∗ ⊕ Λ2V ∗.

A bilinear form is non-degenerate if B : V → V ∗ is an isomorphism, in other words
if B (v, V ) = 0 implies v = 0.

Let ρ : G → GL (V ) be a representation. We say that a bilinear form B on V is
G-invariant if

B (ρgv, ρgw) = B (v, w)

for any v, w ∈ V , g ∈ G. If there is no possible confusion we use the word invariant
instead of G-invariant.

{exbil}
Exercise 6.1. Check the following

(1) If W ⊂ V is an invariant subspace, then W⊥ = {v ∈ V | B (v,W ) = 0} is
invariant. In particular, KerB is invariant.

(2) B : V → V ∗ is invariant if and only if B ∈ HomG (V, V ∗).
(3) If B is invariant, then B+ and B− are invariant.

{bilinear1}
Lemma 6.2. Let ρ : G→ GL(V ) be an irreducible representation of G, then any

non-zero invariant bilinear form on V is non-degenerate. If k is algebraically closed,
then such a bilinear form is unique up to scalar multiplication.

Remark. Lemma 6.2 holds for a field of arbitrary characteristic.

Proof. Follows from Exercise 6.1 (2) and Schur’s lemma. �
{bilincor1}

Lemma 6.3. Let ρ : G → GL(V ) be an irreducible representation of G. Then it
admits a non-zero invariant form if and only if χρ (g) = χρ (g−1) for any g ∈ G.

Proof. Since every nontrivial invariant bilinear form establishes an isomorphism
between ρ and ρ∗, the statement follows from Corollary 4.10. �

{bilinear2}
Lemma 6.4. (a) If k is algebraically closed, then every non-zero invariant bilinear

form on an irreducible representation ρ is either symmetric or skew-symmetric.
(b) Define

mρ =
1

|G|
∑
g∈G

χρ
(
g2
)
.

Then mρ = 1, 0 or −1.
(c) If mρ = 0, then ρ does not admit an invariant form. If mρ = 1 (resp.

mρ = −1), then ρ admits a symmetric (resp. skew-symmetric) invariant form.
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Proof. First, (a) is a consequence of Lemma 6.2 and Exercise 6.1.
Let us prove (b) and (c). Recall that ρ⊗ ρ = ρalt ⊕ ρsym. Using 1.1 we obtain

(χsym, χtriv) =
1

|G|
∑
g∈G

χ2
ρ (g) + χρ (g2)

2
,

(χalt, χtriv) =
1

|G|
∑
g∈G

χ2
ρ (g)− χρ (g2)

2
.

Note that
1

|G|
∑
g∈G

χ2
ρ (g) = (χρ, χρ∗) .

Therefore

(χsym, χtriv) =
(χρ, χρ∗) +mρ

2
,

(χalt, χtriv) =
(χρ, χρ∗)−mρ

2
.

We have the folowing trichotomy

• ρ does not have an invariant form, if and only if ρ is not isomorphic to ρ∗. In
this case (χρ, χρ∗) = 0 and (χsym, χtriv) = (χalt, χtriv) = 0. Therefore mρ = 0.
• ρ has a symmetric invariant form if and only if (χρ, χρ∗) = 1 and (χsym, χtriv) =

1. This implies mρ = 1.
• ρ admits a skew-symmetric invariant if and only if (χρ, χρ∗) = 1 and (χalt, χtriv) =

1. This implies mρ = 1.

�

Let k = C. An irreducible representation of a finite group G is called real if
mρ = 1, complex if mρ = 0 and quaternionic if mρ = −1.

Remark. Since χρ (s−1) = χ̄ρ (s), then χρ takes only real values for real and
quaternionic representations. If ρ is complex there is at least one g ∈ G such that
χρ (g) /∈ R. This terminology will become clear in Section 8.

Exercise 6.5. Show that
(a) All irreducible representation of S4 are real.
(b) All non-trivial irreducible representations of Z3 are complex.
(c) The two-dimensional representation of the quaternionic group H8 is quater-

nionic (see Exercise 5.5).

Exercise 6.6. Assume that the order of G be odd. Show that all non-trivial
irreducible representation of G are complex. (Hint: prove that mρ = (χρ, χtriv).)
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7. Representations over R

Let us recall that by Lemma 5.4 every representation of a finite group over R
admits an invariant positive definite scalar product. Assume the representation
ρ : G → GL(V ) is irreducible. Denote by B(·, ·) an invariant scalar product and let
Q(·, ·) denote another invariant symmetric form on V . These two forms can be silmul-
taneously diagonalized. Therefore there exists λ ∈ R, such that Ker (Q− λB) 6= 0.
Since Ker (Q− λB) 6= 0 is G-invariant and ρ is irreducible, this implies Q = λB.
There we have {bilinear3}

Lemma 7.1. Let ρ : G → GL(V ) be an irreducible representation of G over R.
There is exactly one invariant symmetric form on V up to scalar multiplication.

{frobenius}
Theorem 7.2. Let R ⊂ K be a division ring and a finite-dimensional algebra

over R. Then K is isomorphic to R,C or H.

Proof. If K is a field, then K ∼= R or C, because C = R̄ and [C : R] = 2.
Assume that K is not commutative. Then it contains a subfield isomorphic to

C obtained by taking x ∈ K\R and considering R[x]. Therefore without loss of
generality we may assume R ⊂ C ⊂ K.

Consider the involutive C-linear automoprhism of K defined by the formula

f (x) = ixi−1.

Look at the eigenspace decomposition of K with respect to f

K = K1 ⊕K−1,

where
K±1 = {x ∈ K | f (x) = ±x} .

One can easily check the following inclusions

K1K1 ⊂ K1, K−1K−1 ⊂ K1, K1K−1 ⊂ K−1, K−1K1 ⊂ K−1.

The eigenspace K1 coincides with the centralizer of C in K. Therefore K1 = C.
Choose a non-zero y ∈ K−. The left multiplication by y defines an isomorphism

of R vector spaces K1 and K−1. Hence dimRK1 = dimRK−1 = 2 and dimK = 4.
For any z = a+ bi ∈ K1 and any w ∈ K−1, we have

wz̄ = wa− wbi = aw + biw = zw.

Since w2 ∈ C and commutes with w, we have w2 ∈ R. We claim that w2 is negative
since otherwise w2 = c2 for some real c and (w − c) (w + c) = 0, which is impossible,
since K is a division ring. Set j := w√

−w2 . Then j2 = −1 and ij = −ji. So if we set

k := ij, then 1, i, j, k form the standard basis of H. �
{lm5}

Lemma 7.3. Let ρ : G → GL (V ) be an irreducible representation over R, then
there are three possibilities:

(1) EndG (V ) = R and (χρ, χρ) = 1;
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(2) EndG (V ) ∼= C and (χρ, χρ) = 2;
(3) EndG (V ) ∼= H and (χρ, χρ) = 4.

Proof. Corollary 3.7 and Theorem 7.2 imply that EndG (V ) is isomorphic to
R,C or H, (χρ, χρ) = 1, 2 or 4 as follows from Corollary 4.7.

�

8. Relationship between representations over R and over C
{real}

Hermitian invariant form. Recall that a Hermitian form is a binary additive
form on a complex vector space satisfying the conditions

H (av, bw) = ābH (v, w) , H (w, v) = H̄ (v, w) .

The following Lemma can be proved exactly as Lemma 7.1.
{hermitian}

Lemma 8.1. Every representation of a finite group over C admits a positive-
definite invariant Hermitian form. If the representation is irreducible, then any two
invariant Hermitian forms on it are proportional.

Let ρ : G → GL (V ) be a representation of dimension n over C. Denote by V R

the space V considered as a vector space over R of dimension 2n. Denote by ρR the
representation of G in V R.

{realchar}
Exercise 8.2. Show that

χρR = χρ + χ̄ρ.

The exercise implies that (χρR , χρR) is either 2 or 4. Hence dim EndG
(
V R
)

is

either 2 or 4. Moreover, C is a self-centralizing subalgebra in EndG
(
V R
)
. Therefore

EndG
(
V R
)

is isomorphic to C, H or to the ring M2(R) of real matrices of size 2× 2.
{realcharacters}

Proposition 8.3. Let ρ : G → GL (V ) be an irreducible representation over C.
Then one of the follwoing three cases occur.

(1) EndG
(
V R
)
'M2(R). Then there exists a basis of V such that the matrices

ρg for all g ∈ G have real entries. In this case V admits an invariant scalar
product.

(2) EndG
(
V R
)
' C. Then ρ is complex, i.e. ρ does not admit any invariant

bilinear form.
(3) EndG

(
V R
)
' H. Then ρ admits an invariant skew-symmetric form.

Proof. The statement (1) follows from Lemma 7.1. For (2) use Exercise 8.3.
Since

(
χρR , χρR

)
= 2 by Lemma 7.3, then χρ 6= χ̄ρ, and therefore ρ is complex.

Finally let us prove (3). Let j ∈ EndG
(
V R
)

= H, then j (bv) = b̄v for all b ∈ C.
Let H be a positive-definite invariant Hermitian form on V . Then

Q (v, w) = H (jw, jv)
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is another invariant positive-definite Hermitian form. By Lemma 8.1 Q = λH and λ
should be positive because Q is also positive definite. Since j2 = −1, one has λ2 = 1
and therefore λ = 1. Thus,

H (v, w) = H (jw, jv) .

Set
B (v, w) = H (jv, w) .

Then B is a bilinear invariant form, and

B (w, v) = H (jw, v) = H
(
jv, j2w

)
= −H (jv, w) = −B (v, w) ,

hence B is skew-symmetric. �
{realcor}

Corollary 8.4. Let σ be an irreducible representation of G over R. There are
three possibilities for σ

(1) χσ = χρ for some real representation ρ of G over C;
(2) χσ = χρ + χ̄ρ for some complex representation ρ of G over C;
(3) χσ = 2χρ for some quaternionic representation ρ of G over C.

{numberofreal}
Theorem 8.5. Let G be a finite group, r denote the number of conjugacy classes

and s denote the number of classes which are stable under inversion. Then r+s
2

is the
number of irreducible representations of G over R.

Proof. Recall that C(G) is the space of complex valued class functions on G.
Consider the involution θ : C(G)→ C(G) given by

θϕ(g) = ϕ(g−1).

An easy calculation shows that dim C(G)θ = s+ r−s
2

= r+s
2

.
Denote by χ1, . . . , χr the irreducible characters of G over C. Recall that χ1, . . . , χr

form a basis of C(G). Observe that for any character χρ

θ(χρ) = χρ∗ .

Therefore θ permutes irreducible characters χ1, . . . , χr. Corollary 8.4 implies that
the number of irreducible representations of G over R equals the number of self-
dual irreducible representations over C plus half the number of those which are not
self-dual. Therefore this number is equal to dim C(G)θ. �





CHAPTER 2

Modules with applications to finite groups

1. Modules over associative rings

1.1. The notion of module.

Definition 1.1. Let R be an associative ring with identity element 1 ∈ R.
An abelian group M is called a (left) R-module if there is a map R × M → M ,
(a,m) 7→ am such that for all a, b ∈ R and m,n ∈M we have

(1) (ab)m = a (bm);
(2) 1m = m;
(3) (a+ b)m = am+ bm;
(4) a (m+ n) = am+ an.

One can define in a similar way a right R-module. Unless otherwise stated we
only consider left modules and we say module for left module.

{vspace}
Example 1.2. If R is a field then R-modules are vector spaces over R.

{groupalgebraex}
Example 1.3. Let G be a group and k (G) be its group algebra over k. Then

every k(G)-module V is a vector space over k equipped with a G-action. Set

ρgv := gv

for all g ∈ G ⊂ k (G), v ∈ V . This defines a representation ρ : G→ GL(V ).
Conversely, if V is a vector space over k and ρ : G→ GL (V ) is a representation,

the formula (∑
g∈G

agg

)
v :=

∑
g∈G

agρgv.

defines a k(G)-module structure on V .
In other words, to study representations of G over k is exactly the same as to

study k(G)-modules. Hence from now on we will talk indifferently of k(G)-modules,
representations of G over k or just simply G-modules over k.

Definition 1.4. Let M be an R-module. A submodule N ⊂ M is a subgroup
which is invariant under the R-action. If N ⊂ M is a submodule then the quotient
M/N has a naturalR-module structure. A non-zero moduleM is simple or irreducible
if all submodules are either zero or M .

Remark 1.5. Sums and intersections of submodules are submodules.

35
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{exleftideal}
Example 1.6. If R is an arbitrary ring, then R is a left R-module with action

given by left multiplication. Its submodules are the left ideals.

Let {Mj}j∈J be a family of R-modules. We define the direct sum
⊕
j∈J

Mj and the

direct product
∏
j∈J

Mj in the obvious way. An R-module is free if it is isomophic to a

direct sum of I copies of R, (I can be infinite).
{Vexfree}

Exercise 1.7. If R is a division ring, then every non-zero R-module is free.

Exercise 1.8. Let R = Z be the ring of integers.
(a) Show that any simple Z-module is isomorphic to Z/pZ for some prime p.
(b) Let M be a Z-module. We call m ∈ M a torsion element if rm = 0 for some

non-zero r ∈ Z. Prove that the subset M tor of all torsion elements is a submodule.
(c) We say M is torsion free if M tor = 0. Prove that M/M tor is torsion free.
(d) Give an example of a non-zero torsion free Z-module which is not free.

Let M and N be R-modules. In the same way as in the group case we define the
abelian group HomR (M,N) of R-invariant homomorphisms from M to N and the
ring EndR (M) of R-invariant endomorphisms of M . In particular if k is a field and
V is an n-dimensional vector space, then Endk (V ) is the matrix ring Mn(k).

In this context we have the following formulation of Schur’s Lemma. Its proof is
the same as in the group case.

{shurforrings}
Lemma 1.9. Let M and N be simple R-modules. If ϕ ∈ HomR (M,N) is not zero

then it is an isomorphism.
If M is a simple module, then EndR (M) is a division ring.

1.2. A group algebra is a product of matrix rings. Recall that for every
ring R one defines Rop as the ring with the same abelian group structure together
with the new multiplication ∗ given by

a ∗ b = ba.{op}
Lemma 1.10. The ring EndR (R) is isomorphic to Rop.

Proof. For all a ∈ R, define ϕa ∈ End (R) by the formula

ϕa (x) = xa.

It is easy to check that

• ϕa ∈ EndR (R),
• ϕba = ϕa ◦ ϕb.

In this way we have constructed a homomorphism

ϕ : Rop → EndR (R) .
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All we have to show that this is an isomorphism.
Injectivity: Assume ϕa = ϕb. Then ϕa (1) = ϕb (1), hence a = b.
Surjectivity: let γ ∈ EndR (R). One has for all x ∈ R

γ (x) = γ (x1) = xγ (1) .

Therefore γ = ϕγ(1). �
{ssend}

Lemma 1.11. Let ρi : G → GL (Vi), i = 1, . . . , l, be a finite set of pairwise non-
isomorphic irreducible representations of a finite group G over an algebraically closed
field k, and let

V = V ⊕m1
1 ⊕ · · · ⊕ V ⊕mll .

Then

EndG (V ) ∼= Mm1(k)× · · · ×Mml(k).

Proof. If ϕ is an element of EndG (V ), then Schur’s Lemma implies that ϕ
preserves isotypic components. Therefore we have an isomorphism

EndG (V ) ∼= EndG
(
V ⊕m1

1

)
× · · · × EndG

(
V ⊕mll

)
.

Thus it suffices to prove the following
{send}

Lemma 1.12. Let G be a finite group, k be an algebraically closed field and W be
a simple k(G)-module. Then EndG (W⊕m) is isomorphic to the matrix ring Mm(k).

Proof. For all i, j = 1, . . . ,m denote by pj the canonical projection of W⊕m

onto its j-th factor and by qi the embedding of W as the i-th factor into W⊕m. Take
ϕ ∈ EndG (W⊕m). For all i, j = 1, . . . ,m denote by ϕij the composition map

W
qj−→ W⊕m ϕ−→ W⊕m pi−→ W.

Since ϕij ∈ EndG(W ), Schur’s Lemma implies

ϕij = cij IdW

for some cij ∈ k. Thus we obtain a map

Φ : End
(
W⊕m)→Mm(k).

Moreover, ϕ can be written uniquely as

ϕ =
m∑

i,j=1

cijqi ◦ pj.

If ψ is another element in End (W⊕m) we write

ψ =
m∑

i,j=1

dijqi ◦ pj.
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Then we have, for the composition

ϕ ◦ ψ =
m∑

i,j,k=1

cikdkjqi ◦ pj.

This shows that Φ is a homomorphism of rings. Injectivity and surjectivity of Φ are
direct consequences of the definition. �

�
{groupalgebra}

Theorem 1.13. Let G be a finite group. Assume k is algebraically closed and
char k = 0. Then

k (G) ∼= Mn1(k)× · · · ×Mnr(k),

where n1, . . . , nr are the dimensions of all up to isomorphism irreducible representa-
tions.

Proof. By Lemma 1.10

Endk(G) (k (G)) ∼= k (G)op .

Moreover, g 7→ g−1 gives an isomorphism

k (G)op ∼= k (G) .

On the other hand, by Theorem 4.13 Chapter 1 one has

k (G) = V ⊕n1
1 ⊕ · · · ⊕ V ⊕nrr ,

where V1, . . . , Vr are simple G-modules. Applying Lemma 1.11 we get the theorem.
�

2. Finitely generated modules and Noetherian rings.

Definition 2.1. An R-module M is finitely generated if there exist finitely many
elements x1, . . . , xn ∈M such that M = Rx1 + · · ·+Rxn.

{fingen}
Lemma 2.2. Let

0→ N
q−→M

p−→ L→ 0

be an exact sequence of R-modules.
(a) If M is finitely generated, then L is finitely generated.
(b) If N and L are finitely generated, then M is finitely generated.

Proof. The first assertion is obvious. For the second let

L = Rx1 + · · ·+Rxn, N = Ry1 + · · ·+Rym,

then one has M = Rp−1 (x1) + · · ·+Rp−1 (xn) +Rq (y1) + · · ·+Rq (ym). �
{noethequ}

Lemma 2.3. Let R be a ring. The following conditions are equivalent
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(1) Every increasing chain of left ideals in R is finite, in other words for any
sequence I1 ⊂ I2 ⊂ . . . of left ideals, there exists n0 such that for all n > n0,
In = In0 .

(2) Every left ideal is a finitely generated R-module.

Proof. (1) ⇒ (2). Assume that some left ideal I is not finitely generated. Then
there exists an infinite sequence of xn ∈ I such that

xn+1 /∈ Rx1 + · · ·+Rxn.

But then In = Rx1 + · · ·+Rxn form an infinite increasing chain of ideals which does
not stabilize.

(2)⇒ (1). Let I1 ⊂ I2 ⊂ . . . be an increasing chain of ideals. Consider

I :=
⋃
n

In.

Then by (2) I is finitely generated. Therefore I = Rx1+· · ·+Rxs for some x1, . . . xs ∈
I. Then there exists n0 such that x1, . . . , xs ∈ In0 . Hence I = In0 and the chain
stabilizes. �

Definition 2.4. A ring satisfying the conditions of Lemma 2.3 is called (left)
Noetherian. {submodule}

Lemma 2.5. Let R be a left Noetherian ring and M be a finitely generated R-
module. Then every submodule of M is finitely generated.

Proof. First, we prove the statement when M is free. Then M is isomorphic
to Rn for some n and we use induction on n. For n = 1 the statement follows from
definition. Consider the exact sequence

0→ Rn−1 → Rn → R→ 0.

Let N be a submodule of Rn. Consider the exact sequence obtained by restriction to
N

0→ N ∩Rn−1 → N → N ′ → 0.

By induction assumption N ∩ Rn−1 is finitely generated and N ′ ⊂ R is finitely
generated. Therefore by Lemma 2.2 (b), N is finitely generated.

In the general case M is a quotient of a free module of finite rank. We use the
exact sequence

0→ K → Rn p−→M → 0.

If N is a submodule of M , then p−1(N) ⊂ Rn is finitely generated. Therefore by
Lemma 2.2 (a), N is also finitely generated. �

Exercise 2.6. (a) A principal ideal domain is a Noetherian ring. In particular,
Z and the polynomial ring k[X] are Noetherian.

(b) Show that the polynomial ring k[X1, . . . , Xn, . . . ] of infinitely many variables
is not Noetherian.
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(c) A subring of a Noetherian ring is not automatically Noetherian. For example,
let R be a subring of C[X, Y ] consisting of polynomial functions constant on the cross
X2 − Y 2 = 0. Show that R is not Noetherian.

Let R be a commutative ring. An element r ∈ R is called integral over Z if there
exists a monic polynomial p(X) ∈ Z[X] such that p(r) = 0.

Exercise 2.7. Check that r is integral over Z if and only if Z[r] ⊂ R is a finitely
generated Z-module.

Remark. The complex numbers which are integral over Z are usually called
algebraic integers. All the rational numbers which are integral over Z belong to Z.

{subring}
Lemma 2.8. Let R be a commutative ring and S be the set of elements integral

over Z. Then S is a subring of R.

Proof. Let x, y ∈ S. By assumption Z [x] and Z [y] are finitely generated Z-
modules. Then Z [x, y] is also finitely generated. Since Z is Noetherian ring, Lemma
2.5 implies that for every s ∈ Z [x, y] the Z-submodule Z [s] is finitely generated. �

3. The center of the group algebra k (G)

In this section we assume that k is algebraically closed of characteristic 0 and G
is a finite group. In this section we obtain some results about the center Z (G) of the
group ring k (G). It is clear that Z(G) can be identified with the subspace of class
functions:

Z (G) =

{∑
s∈G

f (s) s | f ∈ C (G)

}
.

Recall that if n1, . . . , nr are the dimensions of isomorphism classes of simple G-
modules, then by Theorem 1.13 we have an isomorphism

k (G) 'Mn1(k)× · · · ×Mnr(k).

If ei ∈ k(G) denotes the element corresponding to the identity matrix in Mni(K), the
e1, . . . , er form a basis of Z(G) and one has

eiej = δijei

1G = e1 + · · ·+ er.

If ρj : G→ GL (Vj) is an irreducible representation, then ej acts on Vj as the identity
element and we have

(2.1){idempotentaction} ρj (ei) = δij IdVj .{centerbasis}
Lemma 3.1. If χi is the character of the irreducible representation ρi of dimension

ni, then one has

(2.2) ei =
ni
|G|

∑
g∈G

χi
(
g−1
)
g.
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Proof. We have to check (2.1). Since ρj (ei) belongs to EndG (Vj), Schur’s
Lemma implies ρj (ei) = λ Id for some λ. Now we use orthogonality relations, Theo-
rem 4.8

tr ρj (ei) =
ni
|G|

∑
χi
(
g−1
)
χj (g) =

ni
|G|

(χi, χj) = δijni.

Therefore we have njλ = δijni which implies λ = δij. �
{omega}

Exercise 3.2. Define ωi : Z (G)→ k by the formula

ωi

(∑
ass
)

=
1

ni

∑
asχi

(
s−1
)

and ω : Z(G)→ kr by
ω = (ω1, . . . , ωr) .

Check that ω is an isomorphism of rings. Hint: check that ωi (ej) = δij using again
the orthogonality relations.

For any conjugacy class C in G let

ηC :=
∑
g∈C

g.

Clearly, the set ηC for C running over the set of conjugacy classes is a basis in Z(G).
{IIconjint}

Lemma 3.3. For any irreducible character χi and g in a conjugacy class C, the

number |C|
ni
χi(g) is algebraic integer.

Proof. Observe that
|C|
ni
χi(g) = ωi(ηC).

Since any homomorphism maps an alegebraic integer to an algebraic integer, the
statement follows. � {conjcl}

Lemma 3.4. For any conjugacy class C ⊂ G we have

ηC = |C|
r∑
i=1

χi(g)

ni
ei,

where g is any element of C.

Proof. If we extend by linearity χ1, ..., χr to linear functionals on k(G), then
(2.1) implies χj(ei) = niδi,j. Thus, χ1, . . . , χr form a basis in the dual space Z(G)∗.
Therefore it suffices to check that

χj(ηC) = |C|
r∑
i=1

χi(g)

ni
χj(ei) = |C|χj(g).

�

The next statement is called sometimes the second orthogonality relation.
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{secondorth}
Lemma 3.5. If g, h ∈ G lie in the same conjugacy class C, we have

r∑
i=1

χi(g)χi(h
−1) =

|G|
|C|

.

If g and h are not conjugate we have
r∑
i=1

χi(g)χi(h
−1) = 0.

Proof. The statement follows from Lemma 3.1 and Lemma 3.4. Indeed, if g is
in the conjugacy class C, we have

ηC = |C|
r∑
i=1

χi(g)

ni
ei =

|C|
|G|

r∑
i=1

∑
h∈G

χi(g)χi(h
−1)h.

The coefficient of h in the last expression is 1 if h ∈ C and zero otherwise. This
implies the lemma. �{intaux}

Lemma 3.6. Let u =
∑

g∈G agg ∈ Z (G). If all ag are algebraic integers, then u
is integral over Z.

Proof. Consider the basis ηC of Z(G). Every ηC is integral over Z since the
subring generated by all ηC is a finitely generated Z-module. Now the statement
follows from Lemma 2.8. �{divides}

Theorem 3.7. For all i = 1, . . . , r the dimension ni divides |G|.
Proof. For every g ∈ G, all eigenvalues of ρ(g) are roots of 1. Therefore χρ (s)

is an algebraic integer. By Lemma 3.6 u =
∑

s∈G χi (s) s is integral over Z. Recall
the homomorphism ωi from Exercise 3.2. Since ωi (u) is an algebraic integer we have

ωi (u) =
1

ni

∑
s∈G

χi (s)χi
(
s−1
)

=
|G|
ni

(χi, χi) =
|G|
ni
.

Therefore |G|
ni
∈ Z. �

{betterdivides}
Theorem 3.8. Let Z be the center of G and ρ be an irreducible n-dimensional

representation of G. Then n divides |G||Z| .

Proof. Let Gm be the direct product of m copies of G and ρm be the exterior
product of m copies of ρ. The dimension of ρm is nm. Furthermore, ρm is irreducible
by Exercise 4.12. Consider the normal subgroup N of Gm defined by

N = {(z1, . . . , zm) ∈ Zm | z1z2 . . . zm = 1} .
We have |N | = |Z|m−1. Furthermore, N lies in the kernel of ρm. Therefore ρm is a
representation of the quotient group H = G/N . Hence, by Theorem 3.7, nm divides
|G|m
|Z|m−1 for every m > 0. It follows from prime factorization that n divides |G||Z| . �
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4. One application

We will show now one application of the results of the previous section. It is well
known that any finite group whose order is a power of a prime number is solvable.
The following statement is a generalization of this result. The proof uses essentially
representation theory.

{IIburnside}
Theorem 4.1. (Burnside). Let G be a finite group of order psqt for some prime

numbers p, q and some s, t ∈ N. Then G is solvable.

Proof. For the proof of the theorem we need the following lemma.
{IIlmburnside}

Lemma 4.2. Let ρ be a complex representation of a finite group G of dimension

n. Let g ∈ G be such that χρ(g)

n
is an algebraic integer. Then ρg is a scalar operator.

Proof. Let m be the order of g and ε1, . . . , εn be the eigenvalues of ρg. Let ζ be
a primitive m-th root of 1 and denote by Γ the Galois group of Q(ζ) over Q. Each
εi is a power of ζ. Assume that εi 6= εj for some i 6= j. By the triangle inequality we
have

|χρ(g)

n
| = |ε1 + · · ·+ εn

n
| < 1,

and for any γ ∈ Γ

|γ(χρ(g))

n
| = |γ(ε1) + · · ·+ γ(εn)

n
| ≤ 1.

Let

d :=
∏
γ∈Γ

γ(χρ(g))

n
.

Then d ∈ Z but |d| < 1 and we obtain a contradiction. �

To prove the theorem it suffices to show that G has a non-trivial proper normal
subgroup. Indeed, if N is such subgroup, then using induction on the order of the
group we may assume that G/N and N are solvable and hence G is also solvable.

Consider a Sylow subgroup P of G of order ps. Then P has a non-trival center,
let g 6= 1 be an element in this center. Denote by C the conjugacy class of g. If
|C| = 1, then G has a non-trivial center and we are done. Assume that |C| > 1.
Since the centralizer of g in G contains P , we have |C| = qm for some m > 0.

Let χ1, . . . , χr be the irreducible characters of G, n1, . . . , nr denote the dimensions
of the corresponding irreducible representations ρ1, . . . , ρr. Assume that ρ1 is the
trivial representations. The relation

r∑
i=1

n2
i = 1 +

r∑
i=1

n2
i = |G|
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implies that there exists i > 1 such that (ni, q) = 1. We claim that i can be chosen
in such a way that χi(g) 6= 0. Indeed, by Lemma 3.5 we have

0 =
r∑
i=1

χi(g)χ1(1) =
r∑
i=1

niχi(g) = 1 +
r∑
i=2

niχi(g).

If we assume that χi(g) = 0 for all i > 1 such that (ni, q) = 1, we would have
1 + qa = 0 for some algebraic integer a and this is impossible.

By Lemma 3.3 the number |C|χi(g)
ni

is an algebraic integer. Recall that (ni, |C|) = 1.

Hence there are integers a, b such that a|C| + bni = 1. Therefore χi(g)
ni

= a |C|χi(g)
ni

+

bχi(g) is an algebraic integer. By Lemma 4.2 we obtain that ρi(g) is a scalar operator.
Let N be the subset of all elements h ∈ G such that ρi(h) is a scalar operator.

It is easy to check that N is a normal subgroup of G. Since g ∈ N , we know that
N 6= {1}. If N = G, then ni = 1, and therefore the commutator group [G,G] is non-
trivial. Otherwise, N is a proper normal subgroup of G. The proof of the theorem is
complete. �

5. Generalities on induced modules

Let A be a ring, B be a subring of A and M be a B-module. Consider the
abelian group A⊗BM defined by generators and relations in the following way. The
generators are all elements of the Cartesian product A×M and the relations:

(a1 + a2)×m− a1 ×m− a2 ×m, a1, a2 ∈ A,m ∈M,(2.3){indrel}
a× (m1 +m2)− a×m1 − a×m2, a ∈ A,m1,m2 ∈M,(2.4)

ab×m− a× bm, a ∈ A, b ∈ B,m ∈M.(2.5)

This group has a structure of A-module, A acting on it by left multiplication. For
every a ∈ A and m ∈M we denote by a⊗m the corresponding element in A⊗BM .

Definition 5.1. The A-module A⊗B M is called the induced module.
{genind}

Exercise 5.2. (a) Show that A⊗B B is isomorphic to A.
(b) Show that if M1 and M2 are two B-modules, then there exists a canonical

isomorphism of A-modules

A⊗B (M1 ⊕M2) ' A⊗B M1 ⊕ A⊗B M2.

(c) Check that for any n ∈ Z one has

Q⊗Z (Z/nZ) = 0.
{frobeniusreciprocity}

Theorem 5.3. (Frobenius reciprocity.) For every B-module M and for every
A-module N , there is an isomorphism of abelian groups

HomB (M,N) ∼= HomA (A⊗B M,N) .
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Proof. LetM be aB-module andN be an A-module. Consider j : M → A⊗BM
defined by

j (m) := 1⊗m,
which is a homomorphism of B-modules.

{lm1}
Lemma 5.4. For every ϕ ∈ HomB (M,N) there exists a unique ψ ∈ HomA (A⊗B M,N)

such that ψ ◦ j = ϕ. In other words, the following diagram is commutative

M

ϕ
$$IIIIIIIIII

j // A⊗B M
ψ

��
N

.

Proof. We define ψ by the formula

ψ(a⊗m) := aϕ(m),

for all a ∈ A and m ∈ M . The reader can check that ψ is well defined, i.e. the
relations defining A⊗B M are preserved by ψ. That proves the existence of ψ.

To check uniqueness we just note that for all a ∈ A and m ∈ M , ψ must satisfy
the relation

ψ (a⊗m) = aψ (1⊗m) = aϕ (m) .

�

To prove the theorem we observe that by the above lemma the map ψ 7→ ϕ := ψ◦j
gives an isomorphism between HomA (A⊗B M,N) and HomB (M,N). �

Remark 5.5. For readers familiar with category theory the former theorem can
be reformulated as follows. Since any A-module M is automatically a B-module,
we have a natural functor Res from the category of A-modules to the category of B-
modules. This functor is usually called the restriction functor. The induction functor
Ind from the category of B-modules to the category of A-modules which sends M to
A⊗B M is left adjoint of Res.

{extensionex}
Example 5.6. Let k ⊂ F be a field extension. For any vector space M over k,

F ⊗kM is a vector space of the same dimension over F . If we have an exact sequence
of vector spaces

0→ N →M → L→ 0,

then the sequence

0→ F ⊗k N → F ⊗k M → F ⊗k L→ 0

is also exact. In other words the induction in this situation is an exact functor.
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{exactind}
Exercise 5.7. Let A be a ring and B be a subring of A.
(a) Show that if a sequence of B-modules

N →M → L→ 0

is exact, then the sequence

A⊗B N → A⊗B M → A⊗B L→ 0

of induced modules is also exact. In other words the induction functor is right exact.
(b) Assume that A is a free B-module, then the induction functor is exact. In

other words, if a sequence
0→ N →M → L→ 0

of B-modules is exact, then the sequence

0→ A⊗B N → A⊗B M → A⊗B L→ 0

is also exact.
(c) Let A = Z[X]/(X2, 2X) and B = Z. Consider the exact sequence

0→ Z ϕ−→ Z→ Z/2Z→ 0,

where ϕ is the multiplication by 2. Check that after applying induction we get a
sequence of A-modules

0→ A→ A→ A/2A→ 0,

which is not exact.

Later we discuss general properties of induction but now we are going to study
induction for the case of groups.

6. Induced representations for groups.

Let G be a finite group. Let H be a subgroup of G and ρ : H → GL (V ) be a
representation of H with characater χ. Then the induced representation IndGH ρ is by
definition the k (G)-module

k (G)⊗k(H) V.

The following lemma has a straightforward proof.
{indrepstr}

Lemma 6.1. The dimension of IndGH ρ equals the product of dim ρ by the index
[G : H] of H. More precisely, let S be a set of representatives of left cosets in G/H,
i.e.

G =
∐
s∈S

sH,

then

(2.6){indequ1} k (G)⊗k(H) V =
⊕
s∈S

s⊗ V.
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Moreover, for any g ∈ G, s ∈ S there exists a unique s′ ∈ S such that (s′)−1gs ∈ H.
Then the action of g on s⊗ v for all v ∈ V is given by

(2.7){indequ3} g (s⊗ v) = s′ ⊗ ρ(s′)−1gsv.
{exindperm}

Example 6.2. Let ρ be the trivial representation of H. Then IndGH ρ is the
permutation representation of G obtained from the natural left action of G on the
set of left cosets G/H, see Example 3 in Section 4.2 Chapter 1.

{charind}
Lemma 6.3. We keep the notations of the previous lemma. Denote by IndGH χ

the character of the induced representation. Then one has for g ∈ G

(2.8) {indequ2} IndGH χ (g) =
∑

s∈S,s−1gs∈H

χ
(
s−1gs

)
.

Proof. (2.6) and (2.7) imply

IndGH χ (g) =
∑
s∈S

δs,s′ tr ρ(s′)−1gs.

� {indcor}
Corollary 6.4. In the notations of Lemma 6.3 we have

IndGH χ (g) =
1

|H|
∑

u∈G,u−1gu∈H

χ
(
u−1gu

)
.

Proof. If s−1gs ∈ H, then for all u ∈ sH we have χ(u−1gu) = χ(s−1gs). There-
fore

χ(s−1gs) =
1

|H|
∑
u∈sH

χ
(
u−1gu

)
.

Hence the statement follows from (2.8). �
{indcor2}

Corollary 6.5. Let H be a normal subgroup in G. Then IndGH χ (g) = 0 for
any g /∈ H.

Exercise 6.6. (a) Let G = S3 and H = A3 be its normal cyclic subgroup.
Consider a one-dimensional representation of H such that ρ(123) = ε, where ε is a
primitive 3-rd root of 1. Show that then

IndGH χρ (1) = 2,

IndGH χρ (12) = 0,

IndGH χρ (123) = −1.

Therefore IndGH ρ is the irreducible 2-dimensional representation of S3.
(b) Next, consider the 2-element subgroup K of G = S3 generated by the trans-

position (12), and let σ be the (unique) non-trivial one-dimensional representation of
K. Show that

IndGK χσ (1) = 3,
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IndGK χσ (12) = −1,

IndGH χρ (123) = 0.

Therefore IndGK σ is the direct sum of the sign representation and the 2-dimensional
irreducible representation.

Now we assume that k has characteristic zero. Let us recall that, in Section 4.2
Chapter 1, we defined a scalar product on the space C(G) of class functions by (1.2).
When we consider several groups at the same time we specify the group by the a
lower index.{indth1}

Theorem 6.7. Consider two representations ρ : G → GL (V ) and σ : H →
GL (W ). Then we have the identity

(2.9){indequ4}
(
IndGH χσ, χρ

)
G

= (χσ,ResH χρ)H .

Proof. The statement follows from Frobenius reciprocity (Theorem 5.3) and
Corollary 4.7 in Chapter 1, since

dim HomG

(
IndGHW,V

)
= dim HomH (W,V ) .

�

Exercise 6.8. Prove Theorem 6.7 directly from Corollary 6.4. Define two maps

ResH : C (G)→ C (H) , IndGH : C (H)→ C (G) ,

the former is the restriction on a subgroup, the latter is defined by (2.8). Then for
any ϕ ∈ C (G) , ψ ∈ C (H) (

IndGH ϕ, ψ
)
G

= (ϕ,ResH ψ)H .

7. Double cosets and restriction to a subgroup

If K and H are subgroups of G one can define the equivalence relation on G : s ∼ t
if and only if s ∈ KtH. The equivalence classes are called double cosets. We can choose
a set of representative T ⊂ G such that

G =
∐
t∈T

K tH .

We define the set of double cosets by K\G/H. One can identify K\G/H with K-
orbits on S = G/H in the obvious way and with G-orbits on G/K × G/H by the
formula

KtH → G (K, tH) .

Example 7.1. Let F be a field. Let G = GL2 (F) be the group of all invertible
2× 2 matrices with coefficients in F. Consider the natural action of G on F2. Let B
be the subgroup of upper-triangular matrices in G. We denote by P1 the projective
line which is the set of all one-dimensional linear subspaces of F2. Clearly, G acts on
P1.
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Exercise 7.2. Prove that G acts transitively on P1 and that the stabilizer of any
point in P1 is isomorphic to B.

By the above exercise one can identify G/B with the set of lines P1. The set of
double cosets B\G/B can be identified with the set of G-orbits in P1 × P1 or with
the set of B-orbits in P1 . {bruhatsl2}

Exercise 7.3. Check that G has only two orbits on P1 × P1: the diagonal and
its complement. Thus, |B\G/B| = 2 and

G = B ∪BsB,
where

s =

(
0 1
1 0

)
.

{IIth2}
Theorem 7.4. Let T ⊂ G such that G =

∐
s∈T KsH. Then

ResK IndGH ρ = ⊕s∈T IndKK∩sHs−1 ρs,

where
ρsh

def
= ρs−1hs,

for any h ∈ sHs−1.

Proof. Let s ∈ T and W s = k (K) (s⊗ V ). Then by construction, W s is K-
invariant and

k (G)⊗k(H) V = ⊕s∈TW s.

Thus, we need to check that the representation ofK inW s is isomorphic to IndKK∩sHs−1 ρs.
We define a homomorphism

α : IndKK∩sHs−1 V → W s

by α (t⊗ v) = ts⊗ v for any t ∈ K, v ∈ V . It is well defined

α (th⊗ v − t⊗ ρshv) = ths⊗ v − ts⊗ ρs−1hsv = ts
(
s−1hs

)
⊗ v − ts⊗ ρs−1hsv = 0

and obviously surjective. Injectivity can be proved by counting dimensions. �

Example 7.5. Let us go back to our example B ⊂ SL2 (F) (see Exercise 7.3).
We now assume that F = Fq is the finite field with q elements. Theorem 7.4 tells us
that for any representation ρ of B

IndGB ρ = ρ⊕ IndGH ρ
′,

where H = B ∩ sBs−1 is a subgroup of diagonal matrices and

ρ′
(
a 0
0 b

)
= ρ

(
b 0
0 a

)
.

{IIcor5}
Corollary 7.6. If H is a normal subgroup of G, then

ResH IndGH ρ = ⊕s∈G/Hρs.
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8. Mackey’s criterion

In order to compute
(
IndGH χ, IndGH χ

)
, we use Frobenius reciprocity and Theo-

rem 7.4. One has:(
IndGH χ, IndGH χ

)
G

=
(
ResH IndGH χ, χ

)
H

=
∑
s∈T

(
IndHH∩sHs−1 χs, χ

)
H

=

=
∑
s∈T

(χs,ResH∩sHs−1 χ)H∩sHs−1 = (χ, χ)H +
∑

s∈T\{1}

(χs,ResH∩sHs−1 χ)H∩sHs−1 .

We call two representation disjoint if they do not have any irreducible component
in common, or in other words if their characters are orthogonal.

{th4}
Theorem 8.1. (Mackey’s criterion) The representation IndGH ρ is irreducible if

and only if ρ is irreducible and ρs and ρ are disjoint representations of H ∩ sHs−1

for all s ∈ T\ {1}.

Proof. Write the condition(
IndGH χ, IndGH χ

)
G

= 1

and use the above formula. �{Icor6}
Corollary 8.2. Let H be a normal subgroup of G and ρ be an irreducible

representation of H. Then IndGH ρ is irreducible if and only if ρs is not isomorphic to
ρ for any s ∈ G/H, s /∈ H.

Remark 8.3. Note that if H is normal, then G/H acts on the set of representa-
tions of H. In fact, this is a part of the action of the group AutH of automorphisms
of H on the set of representation of H. Indeed, if ϕ ∈ AutH and ρ : H → GL (V ) is
a representation, then ρϕ : H → GL (V ) defined by

ρϕt = ρϕ(t),

is a new representation of H.

9. Hecke algebras, a first glimpse

Definition 9.1. Let G be a group, H ⊂ G a subgroup, considerH(G,H) ⊂ k(G)
defined by:

H(G,H) := EndG(IndGH triv).

This is the Hecke algebra associated to the pair (G,H).

Define the projector

ΠH :=
1

|H|
∑
h∈H

h ∈ k(G).

{indtriv}
Exercise 9.2. Show that

IndGH triv = k(G)ΠH .
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Applying Frobenius reciprocity, one gets:

EndG IndGH triv = HomH(triv, IndGH triv).

We can identify the Hecke algebra with ΠHk(G)ΠH . Therefore a basis of the Hecke
algebra can be enumerated by the double cosets, i.e. elements of H\G/H.

Set, for g ∈ G,

ηg := ΠHgΠH .

it is clear that those functions are constant on double cosets and give a basis of the
Hecke algebra. Then, the multiplication is given by the formula

(2.10) {heckemultiplication}ηgηg′ =
∑
g′′∈G

1

|H|
|gHg′ ∩Hg′′H|ηg′′ .

Exercise 9.3. Consider the pair G = GL2(Fq), H = B the subgroup of upper
triangular matrices. Then by Exercise 7.3 we know that the Hecke algebra H(G,B)
is 2-dimensional. The identity element ηe corresponds to the double coset B. The
second element of the basis is ηs. Let us compute η2

s using (2.10). We have

η2
s = aηe + bηs,

where

a =
|sBs ∩B|
|B|

, b =
sBs ∩BsB
|B|

.

Since sBs is the subgroup of the lower triangular matrices in G, the intersection
subgroup sBs ∩B is the subgroup of diagonal matrices. Therefore we have

|B| = (q − 1)2q, |sBs ∩B| = (q − 1)2, a =
1

q
, b = 1− a =

q − 1

q
.

Definition 9.4. We say that a G-module V is multiplicity free if any simple
G-module appears in V with multiplicity either 0 or 1.

{abelianhecke}
Proposition 9.5. Assume that k is algebraically closed. The following conditions

on the pair H ⊂ G are equivalent

(1) The G-module IndGH triv is multiplicity free;
(2) For any G-module M the dimension of subspace MH of H-invariants is at

most one;
(3) The Hecke algebra H(G,H) is commutative.

Proof. (1) is equivalent to (2) by Frobenius reciprocity. Equivalence of (1) and
(3) follows from Lemma 1.11. �

{abcrit}
Lemma 9.6. Let G be a finite group and H ⊂ G be a subgroup. Let ϕ : G→ G

be antiautomorphism of G such that for any g ∈ G we have ϕ(g) ∈ HgH. Then
H(G,H) is commutative.
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Proof. Extend ϕ to the whole group algebra k(G) by linearity. Then ϕ is an
antiautomorphism of k(G) and for all g ∈ G we have ϕ(ηg) = ηg. Therefore for any
g, h ∈ H\G/H we have

ηgηh =
∑

cug,hηu =
∑

u∈H\G/H

cug,hϕ(ηu) = ϕ(ηgηh) = ϕ(ηh)ϕ(ηg) = ηhηg.

�

Exercise 9.7. Let G be the symmetric group Sn and H = Sp×Sn−p. Prove that
H(G,H) is abelian. Hint: consider ϕ(g) = g−1 and apply Lemma 9.6.

10. Some examples

Let H be a subgroup of G of index 2. Then H is normal and G = H ∪ sH for
some s ∈ G\H. Suppose that ρ is an irreducible representation of H. There are two
possibilities

(1) ρs is isomorphic to ρ;
(2) ρs is not isomorphic to ρ.

Hence there are two possibilities for IndGH ρ :

(1) IndGH ρ = σ ⊕ σ′, where σ and σ′ are two non-isomorphic irreducible repre-
sentations of G;

(2) IndGH ρ is irreducible.

For instance, let G = S5, H = A5 and ρ1, . . . , ρ5 be the irreducible representations
of H introduced in Example 5.3. 3. Then for i = 1, 2, 3

IndGH ρi = σi ⊕ (σi ⊗ sgn) ,

where sgn denotes the sign representation. Furthermore, the induced modules IndGH ρ4

and IndGH ρ5 are isomorphic and irreducible. Thus in dimensions 1, 4 and 5, S5 has
two non-isomorphic irreducible representations and only one in dimension 6.

Now let G be the subgroup of GL2 (Fq) consisting of matrices of shape(
a b
0 1

)
,

where a ∈ F∗q and b ∈ Fq. Let us classify complex irreducible representations of G.

One has |G| = q2 − q. Furtheremore G has q conjugacy classes with the following
representatives (

1 0
0 1

)
,

(
1 1
0 1

)
,

(
a 0
0 1

)
,

(in the last case a 6= 1). Note that

H =

{(
1 b
0 1

)
, b ∈ Fq

}
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is a normal subgroup of G and the quotient G/H is isomorphic to F∗q which is cyclic
of order q − 1.

Therefore G has q − 1 one-dimensional representations which can be lifted from
G/H. That leaves one more representation, its dimension must be q − 1. Let us try
to obtain it using induction from H. Let σ be a non-trivial irreducible representation
of H, its dimension is automatically 1. Then the dimension of the induced represen-
tation IndGH σ is equal to q− 1 as required. We claim that it is irreducible. Indeed, if
ρ is a one-dimensional representation of G, then by Frobenius reciprocity, Theorem
6.7, we have (

IndGH σ, ρ
)
G

= (σ,ResH ρ)H = 0,

since ResH ρ is trivial. Therefore IndGH σ is irreducible.

Exercise 10.1. Compute the character of this representation.

Exercise 10.2. Let G′ denote the commutator of G, namely the subgoup of G
generated by ghg−1h−1 for all g, h ∈ G. Show that all one-dimensional representations
of G are obtained by lifting from one-dimensional representations of G/G′.

11. Some generalities about field extension
{lm4}

Lemma 11.1. If char k = 0 and G is finite, then a representation ρ : G→ GL (V )
is irreducible if and only if EndG (V ) is a division ring.

Proof. In one direction it is Schur’s Lemma. In the opposite direction if V is
not irreducible, then V = V1 ⊕ V2 and the projectors p1 and p2 are intertwiners such
that p1 ◦ p2 = 0. �

For any extension F of k and any representation ρ : G→ GL (V ) over k we denote
by ρF the representation G→ GL (F ⊗k V ).

For any representation ρ : G → GL (V ) we denote by V G the subspace of G-
invariants in V , i.e.

V G = {v ∈ V | ρsv = v,∀s ∈ G} .
{lm7}

Lemma 11.2. One has (F ⊗k V )G = F ⊗k V G.

Proof. The embedding F ⊗k V G ⊂ (F ⊗k V )G is trivial. On the other hand, V G

is the image of the operator

p =
1

|G|
∑
s∈G

τs,

in particular dimV G equals the rank of p. Since rank p does not depend on the base
field, we have

dimF ⊗k V G = dim (F ⊗k V )G .

�
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{IIcor6}
Corollary 11.3. Let ρ : G→ GL (V ) and σ : G→ GL (W ) be two representa-

tions over k. Then

HomG (F ⊗k V, F ⊗k W ) = F ⊗ HomG (V,W ) .

In particular,

dimk HomG (V,W ) = dimF HomG (F ⊗k V, F ⊗k W ) .

Proof.
HomG (V,W ) = (V ∗ ⊗W )G .

�{cor11}
Corollary 11.4. The formula

dim HomG (V,W ) = (χρ, χσ)

holds even if the field is not algebraically closed.

A representation ρ : G → GL (V ) over k is called absolutely irreducible if it
remains irreducible after any extension of k. This property is equivalent to the
egality (χρ, χρ) = 1.

A field K is called splitting for a group G if every irreducible representation of G
over K is absolutely irreducible. It is not difficult to see that for a finite group G,
there exists a finite extension of Q which is a splitting field for G.

12. Artin’s theorem and representations over Q

Let G be a finite group and ρ be a representation of G over Q. Then the character
χρ is called a rational character. Note that χρ(g) ∈ Z since χρ(g) is algebraic integer
and rational. For a cyclic subgroup H ⊂ G and a 1-dimensional character θ : H → C∗
we denote by F θ

H the the character of the induced representation IndGH θ. For an
element g ∈ G we denote by 〈g〉 the cyclic subgroup generated by g.

{IIlmrationl}
Lemma 12.1. If χ is a rational character and 〈g〉 = 〈h〉, then χ(g) = χ(h).

Proof. Let χ = χρ. Let ε1, . . . , εn be eigenvalues of ρg counted with multiplici-
ties. Then χ(g) = ε1 + · · ·+ εn. Assume that the order of 〈g〉 is m. Then ε1, . . . , εn
are m-th roots of 1 and hence elements of cyclotomic extension Q(ζ) where ζ is a
primitive m-th root of 1. Furthermore, h = gp where p is relatively prime to m and
χ(h) = εp1 + · · · + εpn. Let σ be the element of the Galois group of Q(ζ) such that
σ(ζ) = ζp. Then χ(h) = σ(χ(g)). Since χ(g) ∈ Z, we obtain χ(g) = χ(h). �

{IIArtin}
Theorem 12.2. (Artin) Let χ be a rational character of G. There exist algebraic

integers a1, . . . , am, cyclic subgroups H1, . . . , Hm and 1-dimensional characters θi :
Hi → C∗ such that

χ =
m∑
i=1

ai
|G|

F θi
Hi
.
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Proof. Let H be a cyclic subgroup of G. Define a function TH : H → Z by the
formula

TH(x) =

{
|H| if 〈x〉 = H

0 otherwise
.

{IIexArtin}
Exercise 12.3. Let N(H) denote the normalizer of H in G. Show that

IndGH TH(x) =

{
|N(H)| if 〈x〉 ∼ H

0 otherwise
.

{IIauxArtin}
Lemma 12.4. For a cyclic group H the function TH is a linear combination of

induced characters with algebraic integral coefficients.

Proof. We prove the statement by induction on the order of H. Assume that
the statement is true for all proper subgroups of H. It follows easily from Exercise
12.3 that for any x ∈ G we have∑

P⊂H

IndGP TP (x) = |H|

where summation is taken over all subgroups P of H. Hence we have

TH(x) = |H| −
∑
P 6=H

IndGP TP (x).

By the induction hypothesis IndGP TP (x) is a linear combination of induced characters
for all proper subgroups P of H. Hence the same is true for TH . �

Let us choose the set H1, . . . , Hm of representatives of conjugacy classes of all
cyclic subgroups of G and let Hi = 〈gi〉. Define τ : G→ Z by

τ := |G|
m∑
j=1

χ(gi)

|N(Hi)|
IndGH THi .

For any element x ∈ G there exists exactly one index i such that THi(x) = |N(Hi)|.
For all other j we have THj(x) = 0. This implies τ(x) = |G|χ(xi). By Lemma 12.1
χ(x) = χ(xi). Hence χ = τ

|G| and the proof of Theorem is complete by Lemma

12.4. � {IIcorArtin}
Proposition 12.5. Let G be a finite group. The number of irreducible represen-

tations of G over Q equals the number of conjugacy classes of all cyclic subgroups.

Proof. Let m be the number of conjugacy classes of cyclic subgroups and q be
the number of irreducible rational representations. By Lemma 12.1, q ≤ m. On the
other hand, let H1, . . . , Hm be all up to conjugacy cyclic subgroups of G. Then by
Exercise 12.3 and Lemma 12.4, {IndGHi THi}i=1,...,m is a linearly independent set in the
space of rational characters. Hence m ≤ q. �





CHAPTER 3

Representations of compact groups

1. Compact groups

Let G be a group which is also a topological space. We say that G is a topological
group if both the multiplication from G × G to G and the inverse from G to G are
continuous maps. Naturally, we say that G is compact (respectively, locally compact)
if it is a compact (resp., locally compact) topological space.

Examples.

• The circle

S1 = {z ∈ C | |z| = 1} .
• The torus T n = S1 × · · · × S1.

Note that in general, the direct product of two compact groups is com-
pact.
• The unitary group

Un =
{
X ∈ GLn(C) | X̄ tX = 1n

}
.

To see that Un is compact, note that a matrix X = (xij) ∈ Un satisfies the
equations

∑n
j=1 |xij|2 = 1 for i = 1, . . . , n. Hence Un is a closed subset of the

product of n spheres of dimension (2n− 1).
• The special unitary group

SUn = {X ∈ Un | detX = 1} .

• The orthogonal group

On =
{
x ∈ GLn (R) | X tX = 1n

}
.

• The special orthogonal group

SOn = {X ∈ On | detX = 1} .

1.1. Haar measure. A measure dg on a locally compact group G is called right-
invariant if, for every integrable function f on G and every h in G, one has:∫

G

f (gh) dg =

∫
G

f (g) dg.

57
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Similarly, a measure d′g on G is called left-invariant if for every integrable function
f on G and every h in G, one has:∫

G

f (hg) d′g =

∫
G

f (g) d′g.

{IIIth2}
Theorem 1.1. Let G be compact group. There exists a unique right-invariant

measure dg on G such that ∫
G

dg = 1.

In the same way there exists a unique left-invariant measure d′g such that∫
G

d′g = 1.

Moreover, dg = d′g.

Definition 1.2. The measure dg is called the Haar measure on G.

We do not give the proof of this theorem in general. In this sketch of proof, we
assume general knowledge of submanifolds and of the notion of vector bundle. All
examples we consider here are smooth submanifolds in GLk(R) or GLk(C).

{exIII:subgroup}
Exercise 1.3. Assume that G is a subgroup of GLk(R) or GLk(C) and G which

is also a closed submanifold, i.e. locally it is given by the equations f1 = · · · = fm = 0
for some smooth functions f1, . . . , fm. Show that G is a smooth submanifold in GLk
of some dimension p, i.e. at every point of g ∈ G one can find functions h1, . . . , hp
such that G is defined by h1 = · · · = hp = 0 in some neighbourhood of g and
dh1(g), . . . , dhp(g) are linearly independent. Consider the map mg : G → G given
by left multiplication by g ∈ G. Then its differential (mg)∗ : TeG → TgG is an
isomorphism between tangent spaces at e and g.

To define the invariant measure we just need to define a volume form on the
tangent space at identity TeG and then use right (left) multiplication to define it on
the whole group. More precisely, let γ ∈ ΛtopT ∗eG. Then the map

g 7→ γg := m∗g−1 (γ) ,

where mg : G → G is the right (left) multiplication by g and m∗g−1 is the induced

differential map ΛtopT ∗eG → ΛtopT ∗gG, is a section of the bundle ΛtopT ∗G. This
section is a right (left) invariant differential form of maximal degree on the group G,
i.e. an invariant volume form. One can normalize γ to satisfy

∫
G
γ = 1.

Remark 1.4. If G is locally compact but not compact, there are still left-invariant
and right-invariant measures on G, each is unique up to scalar multiplication, but the
left-invariant ones are not necessarily proportional to the right-invariant ones. We
speak of left-Haar measure or right-Haar measure.
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1.2. Continuous representations. Consider a vector space V over C equipped
with a topology such that addition and multiplication by a scalar are continuous. We
always assume that a topological vector space satisfies the following conditions

(1) for any v ∈ V \ 0 there exists a neighbourhood of 0 which does not contain
v;

(2) there is a basis of convex neighbourhoods of zero.

Topological vector spaces satisfying the above conditions are called locally convex.
We do not go into the theory of such spaces. All we need to know is the fact that
there is a non-zero continuous linear functional on a locally convex space.

Definition 1.5. A representation ρ : G→ GL (V ) is called continuous if the map
G×V → V given by (g, v) 7→ ρgv is continuous. Two continuous representations are
equivalent or isomorphic if there is a bicontinuous invertible intertwining operator
between them. In this chapter we consider only continuous representations.

A representation ρ : G → GL (V ), V 6= {0} is called topologically irreducible if
the only G-invariant closed subspaces of V are V and 0.

1.3. Unitary representations. Recall that a Hilbert space is a vector space
over C equipped with a positive definite Hermitian form 〈, 〉, which is complete with
respect to the topology defined by the norm

‖v‖ = 〈v, v〉1/2 .

We will use the following facts about Hilbert spaces:

(1) A Hilbert space V has an orthonormal topological basis, i.e. an orthonormal

system of vectors {ei}i∈I such that
⊕
i∈I

Cei is dense in V . Two Hilbert spaces

are isomorphic if and only if their topological orthonormal bases have the
same cardinality.

(2) If V ∗ denotes the space of all continuous linear functionals on V , then we
have an isomorphism V ∗ ' V given by v 7→ 〈v, ·〉.

Definition 1.6. A continuous representation ρ : G → GL (V ) is called unitary
if V is a Hilbert space and

〈v, w〉 = 〈ρgv, ρgw〉
for any v, w ∈ V and g ∈ G. If U(V ) denotes the group of all unitary operators in
V , then ρ defines a homomorphism G→ U(V ).

The following is an important example of a unitary representation.
Regular representation. Let G be a compact group and L2 (G) be the space

of all complex valued functions ϕ on G such that∫
|ϕ (g) |2dg
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exists. Then L2 (G) is a Hilbert space with respect to the Hermitian form

〈ϕ, ψ〉 =

∫
G

ϕ̄ (g)ψ (g) dg.

Moreover, the representation R of G in L2 (G) given by

Rgϕ (h) = ϕ (hg)

is continuous and the Hermitian form is G-invariant. This representation is called
the regular reprensentation of G.

1.4. Linear operators in a Hilbert space. We will recall certain facts about
linear operators in a Hilbert space. We only sketch the proofs hiding technical details
in exercises. The enthusiastic reader is encouraged to supply those details and the
less enthusiastic reader can find those details in textbooks on the subject, for instance
[18].

Definition 1.7. A linear operator T in a Hilbert space is called bounded if there
exists C > 0 such that for any v ∈ V we have ‖Tv‖ ≤ C‖v‖.

{exIIIbounded}
Exercise 1.8. Let B(V ) denote the set of all bounded operators in a Hilbert

space V .
(a) Check that B(V ) is an algebra over C with multiplication given by composi-

tion.
(b) Show that T ∈ B(V ) if and only if the map T : V → V is continuous.
(c) Introduce the norm on B(V ) by setting

‖T‖ = sup‖v‖=1 ‖Tv‖.
Check that ‖T1T2‖ ≤ ‖T1‖‖T2‖ and ‖T1 + T2‖ ≤ ‖T1‖ + ‖T2‖ for all T1, T2 ∈ B(V )
and that B(V ) is complete in the topology defined by this norm. Thus, B(V ) is a
Banach algebra.

{IIIinverse}
Theorem 1.9. Let T ∈ B(V ) be invertible. Then T−1 is also bounded.

Proof. Consider the unit ball

B := {x ∈ V | ‖x‖ < 1}.
For any k ∈ N denote by Sk the closure of T (kB) = kT (B) and let Uk = V \ Sk.
Note that

V =
⋃
k∈N

kB.

Since T is invertible, it is surjective, and therefore⋃
k∈N

Sk = V.

We claim that there exists k such that Uk is not dense. Indeed, otherwise there exists
a sequence of embedded balls Bk ⊂ Uk, Bk+1 ⊂ Bk, which has a common point by



1. COMPACT GROUPS 61

completeness of V . This contradicts to the fact that the intersection of all Uk is
empty. Then Sk contains a ball x + εB for some x ∈ V and ε > 0. It is not hard to
see that for any r > k

ε
+ ‖x‖, Sr contains B.

Now we will prove the inclusion B ⊂ T (2rB) for r as above. Indeed, let y ∈ B ⊂
Sr. There exists x1 ∈ rB such that ‖y − Tx1‖ < 1

2
. Note that y − Tx1 ∈ 1

2
B ⊂ 1

2
Sr.

Then one can find x2 ∈ r
2
B such that ‖y − Tx1 − Tx2‖ < 1

4
. Proceeding in this way

we can construct a sequence {xn ∈ 1
2n−1B} such that ‖y − T (x1 + · · · + xn)‖ < 1

2n
.

Consider w =
∞∑
i=1

xi, which is well defined due to completeness of V . Then w ∈ 2rB

and Tw = y. That implies B ⊂ T (2rB).
Now we have T−1B ⊂ 2rB and hence ‖T−1‖ ≤ 2r. �

Bounded operators have a nice spectral theory, see [18] for instance.

Definition 1.10. Let T be bounded. The spectrum σ(T ) of T is the subset of
complex numbers λ such that T − λ Id is not invertible.

In a finite-dimensional Hilbert space σ(T ) is the set of eigenvalues of T . In the
infinite-dimensional case a point of the spectrum is not necessarily an eigenvalue. We
need the following fundamental result.

{IIIspectral}
Theorem 1.11. If T is bounded, then σ(T ) is a non-empty closed bounded subset

of C.

Proof. The main idea is to consider the resolvent R(λ) = (T − λ Id)−1 as a
function of λ. If T is invertible, then we have the decomposition

R(λ) = T−1(Id +T−1λ+ T−2λ2 + . . . ),

which converges for |λ| < 1
‖T−1‖ . Thus, R(λ) is analytic in a neighbourhood of 0.

Using shift R(λ)→ R(λ+ c) we obtain that R(λ) is analytic in its domain which is
C \ σ(T ). The domain of R(λ) is an open set. Hence σ(T ) is closed.

Furthermore, we can write the series for R(λ) at infinity:

(3.1) {eqIIIres} R(λ) = −λ−1(Id +λ−1T + λ−2T 2 + . . . ).

This series converges for |λ| > ‖T‖. Therefore σ(λ) is a subset of the circle |λ| ≤ ‖T‖.
Hence σ(T ) is bounded.

Finally, (3.1) also implies lim
λ→∞
R(λ) = 0. Suppose that σ(T ) = ∅, then R(λ) is

analytic and bounded. By Liouville’s theorem R(λ) is constant, which is impossible.
�

Definition 1.12. For any linear operator T in a Hilbert space V we denote by
T ∗ the adjoint operator. Since V ∗ ' V , we can consider T ∗ as a linear operator in V
such that for any x, y ∈ V

〈x, Ty〉 = 〈T ∗x, y〉 .
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An operator T is self-adjoint if T ∗ = T . A self-adjoint operator T defines on V a Her-
mitian form 〈x, y〉T = 〈x, Ty〉. We call T (semi)positive if this form is (semi)positive
definite. For any operator X the operator X∗X is semipositive self-adjoint.

{exIIIselfadjoint}
Exercise 1.13. (a) If T is bounded, then T ∗ is bounded and σ(T ∗) is the complex

conjugate of σ(T ).
(b) If T is bounded self-adjoint, then σ(T ) ⊂ R.

{lemIIIselfadjointnorm}
Lemma 1.14. Let T be a self-adjoint operator in a Hilbert space. Then ‖T 2‖ =

‖T‖2.

Proof. For any bounded operator A the Cauchy–Schwartz inequality implies
that for all v ∈ V

〈Av, v〉 ≤ ‖Av‖‖v‖ ≤ ‖A‖‖v‖2.

For a self-adjoint T we have 〈
T 2v, v

〉
= ‖Tv‖2.

Therefore
‖T 2‖ ≥ sup‖v‖=1

〈
T 2v, v

〉
= sup‖v‖=1 ‖Tv‖2 = ‖T‖2.

On the other hand ‖T 2‖ ≤ ‖T‖2. Hence ‖T 2‖ = ‖T‖2. �
{lemIIIselfadjointspectrum}

Lemma 1.15. Let T be a self-adjoint operator in a Hilbert space V such that
σ(T ) = {µ} is a single point. Then T = µ Id.

Proof. Without loss of generality we may assume µ = 0. Then the series (3.1)
converges for all λ 6= 0. Therefore by the root test we have

lim
n→∞

sup ‖T n‖ = 0.

By Lemma 1.14 if n = 2k, then ‖T n‖ = ‖T‖n. This implies ‖T‖ = 0. Hence
T = 0. �{exIIIfunction}

Exercise 1.16. Let X be a self-adjoint bounded operator.
(a) If f ∈ R[x] is a polynomial with real coefficients, then σ(f(X)) = f(σ(X)).
(b) Let f : R → R be a continuous function. Show that one can define f(X) by

approximating f by polynomials fn on the interval |x| ≤ ‖X‖ and setting f(X) =
lim
n→∞

fn(X) and the result does not depend on the choice of approximation.

(c) For a continuous function f we still have σ(f(X)) = f(σ(X)).

Definition 1.17. An operator T in a Hilbert space V is called compact if the
closure of the image T (S) of the unit sphere S = {x ∈ V | ‖x‖ = 1} is compact.

Clearly, any compact operator is bounded.

Exercise 1.18. Let C(V ) be the subset of all compact operators in a Hilbert
space V .

(a) Show that C(V ) is a closed ideal in B(V ).
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(b) Let F(V ) be the ideal in B(V ) of all operators with finite-dimensional image.
Prove that C(V ) is the closure of F(V ).

{IIIcompeigen}
Lemma 1.19. Let A be a compact self-adjoint operator in V . Then

λ := sup
u∈S
〈Au, u〉

is either zero or an eigenvalue of A.

Proof. Consider the hermitian form x 7→ λ 〈x, x〉 − 〈Ax, x〉 on V , it is positive
therefore the Cauchy–Schwarz inequality gives

(3.2) {IIISchwarz}|λ 〈x, y〉 − 〈Ax, y〉 |2 ≤ (λ 〈x, x〉 − 〈Ax, x〉)(λ 〈y, y〉 − 〈Ay, y〉)
Let (xn) be a sequence in S such that 〈Axn, xn〉 converges to λ. Since A is a compact
operator, after extracting a subsequence we may assume that Axn converges to z ∈ V .
By the inequality 3.2, we get that 〈λxn − Axn, y〉 tends to 0 uniformly in y ∈ S.
Hence, ‖λxn−Axn‖ tends to 0. Therefore, (xn) converges to 1

λ
z and z is a eigenvector

for A with eigenvalue λ, if λ > 0. �

1.5. Schur’s lemma for unitary representations.
{thIIISchurunitary}

Theorem 1.20. Let ρ : G → U(V ) a topologically irreducible unitary represen-
tation of G and T ∈ B(V ) be a bounded intertwining operator. Then T = λ Id for
some λ ∈ C.

Proof. First, by Theorem 1.11, the spectrum σ(T ) is not empty. Therefore by
adding a suitable scalar operator we may assume that T is not invertible. Note that
T ∗ is also an intertwiner, and therefore S = TT ∗ is an interwiner as well. Moreover,
S is not invertible. If σ(S) = {0}, then S = 0 by Lemma 1.15. Then we claim
that KerT 6= 0. Indeed, if T is injective, then ImT ∗ ⊂ KerT = 0. That implies
T ∗ = T = 0. Since KerT is a closed G-invariant subspace of V , we obtain T = 0.

Now we assume that σ(S) consists of more than one point. We will use Exer-
cise 1.16. One can always find two continuous functions f, g : R → R such that
fg(σ(S)) = 0, but f(σ(S)) 6= 0 and g(σ(S)) 6= 0. Then Exercise 1.16(3) together
with Lemma 1.15 implies f(S)g(S) = 0. Both f(S) and g(S) are non-zero intertwin-
ers. At least one of Ker f(S) and Ker g(S) is a proper non-zero G-invariant subspace
of V . Contradiction. � {corIIIScur}

Corollary 1.21. Let ρ : G → U(V ) and ρ′ : G → U(V ′) be two topologically
irreducible unitary representations and T : V → V ′ be a continuous intertwining
operator. Then either T = 0 or there exists c > 0 such that cT : V → V ′ is an
isometry of Hilbert spaces.

Proof. Let T 6= 0. By Theorem 1.20 we have T ∗T = TT ∗ = λ Id for some
positive real λ. Set c = λ−1/2 and U = cT . Then U∗ = U−1, hence U is an
isometry. �
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{corIIIabelian}
Corollary 1.22. Every topologically irreducible unitary representation of an

abelian topological group G is one-dimensional.

1.6. Irreducible unitary representations of compact groups.
{IIIunfindim}

Proposition 1.23. Every non-zero unitary representation of a compact group G
contains a non-zero finite dimensional invariant subspace.

Proof. Let ρ : G → GL (V ) be an irreducible unitary representation. Choose
v ∈ V , ‖v‖ = 1. Define an operator T : V → V by the formula

Tx = 〈v, x〉 v.
One can check easily that T is a semipositive self-adjoint operator of rank 1.
Define the operator

Qx =

∫
G

ρgT
(
ρ−1
g x
)
dg.

Exercise 1.24. Check Q : V → V is a compact semipositive intertwining oper-
ator.

Lemma 1.19 implies thatQ has a positive eigenvalue λ. ConsiderW = Ker (Q− λ Id).
Then W is an invariant subspace of V . Note that for any orthonormal system of vec-
tors e1, . . . , en ∈ W , one has

n∑
i=1

〈ei, T ei〉 ≤ 1.

Hence
n∑
i=1

〈ei, Qei〉 =
n∑
i=1

∫
G

〈ρgei, Tρgei〉 ≤ 1.

That implies λn ≤ 1. Hence dimW ≤ 1
λ
. �

{IIIcorfindim}
Corollary 1.25. Every irreducible unitary representation of a compact group

G is finite-dimensional.{IIIlocconvex}
Lemma 1.26. Every topologically irreducible representation of a compact group

G is isomorphic to a subrepresentation of the regular representation in L2 (G).

Proof. Let ρ : G → GL (V ) be irreducible. Pick a non-zero continuous linear
functional ϕ on V and define the map Φ : V → L2 (G) which sends v to the ma-
trix coefficient fv,ϕ (g) = 〈ϕ, ρgv〉. The continuity of ρ and ϕ implies that fv,ϕ is a
continuous function on G, therefore fv,ϕ ∈ L2 (G). Furthermore

Rgfv,ϕ(h) = fv,ϕ(hg) = 〈ϕ, ρhgv〉 = 〈ϕ, ρhρgv〉 = fρgv,ϕ(h).

Hence Φ is a continuous intertwining operator and the irreducibility of ρ implies
Ker Φ = 0. The bicontinuity assertion follows from Corollary 1.25. �
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{IIIunitary}
Corollary 1.27. Every topologically irreducible representation of a compact

group G is equivalent to some unitary representation.
{IIIcor25}

Corollary 1.28. Every irreducible continuous representation of a compact group
G is finite-dimensional.

{IIIcompsemisimple}
Theorem 1.29. If ρ : G→ GL(V ) is a unitary representation, then for any closed

invariant subspace W ⊂ V there exists a closed invariant subspace U ⊂ V such that
V = U ⊕W .

Proof. Take U = W⊥. �

Let Ĝ denotes the set of isomorphism classes of irreducible unitary representations
of G. This set is called the unitary dual of G.

{IIIdense}
Lemma 1.30. Let V be a unitary representation of a compact group G. Then it

has a unique dense semi-simple G-submodule, namely ⊕ρ∈Ĝ HomG(Vρ, V )⊗ Vρ.

Proof. Let M = ⊕ρ∈Ĝ HomG(Vρ, V )⊗ Vρ, and M̄ denote the closure of M . We

claim that M̄ = V . Indeed, if M̄⊥ is not zero, then it contains an irreducible finite-
dimensional subrepresentation by Proposition 1.23, but any such representation is
contained in M .

On the other hand, if N is a dense semisimple submodule of V , then N must
contain all finite-dimensional irreducible subrepresentations of V . Therefore N =
M . �

2. Orthogonality relations and Peter–Weyl Theorem

2.1. Matrix coefficients. Let ρ : G→ GL (V ) be a unitary representation of a
compact group G. The function G→ C defined by the formula

fv,w (g) = 〈w, ρgv〉 .

for v, w in V is called a matrix coefficient of the representation ρ.
Since ρ is unitary, one has:

(3.3) {IIIequ10} fv,w
(
g−1
)

= f̄w,v (g) .
{IIIth10}

Theorem 2.1. For every irreducible unitary representation ρ : G→ GL (V ), one
has:

〈fv,w, fv′,w′〉 =
1

dim ρ
〈v, v′〉 〈w′, w〉 .

Moreover, the matrix coefficients of two non-isomorphic representations of G are
orthogonal in L2 (G).
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Proof. Take v and v′ in V . Define T ∈ EndC (V ) by

Tx := 〈v, x〉 v′

and let

Q =

∫
G

ρgTρ
−1
g dg.

As follows from Schur’s lemma, since ρ is irreducible, Q is a scalar multiplication.
Since

trQ = trT = 〈v, v′〉 ,
we obtain

Q =
〈v, v′〉
dim ρ

Id .

Hence

〈w′, Qw〉 =
1

dim ρ
〈v, v′〉 〈w′, w〉 .

On the other hand,

〈w′, Qw〉 =

∫
G

〈
w′,
〈
v, ρ−1

g w
〉
ρgv

′〉 dg =

∫
G

fw,v
(
g−1
)
fv′,w′ (g) dg =

=

∫
G

f̄v,w (g) fv′,w′ (g) dg =
1

dim ρ
〈fv,w, fv′,w′〉 .

If fv,w and fv′,w′ are matrix coefficients of two non-isomorphic representations, then
Q = 0, and the calculation is even simpler. �

{IIIcor10}
Corollary 2.2. Let ρ : G → GL(V ) and σ : G → GL(W ) be two irreducible

unitary representations, then 〈χρ, χσ〉 = 1 if ρ is isomorphic to σ and 〈χρ, χσ〉 = 0
otherwise.

Proof. Let v1, . . . , vn be an orthonormal basis in V and w1, . . . , wm be an or-
thonormal basis in W . Then

〈χρ, χσ〉 =
n∑
i=1

m∑
j=1

〈
fvi,vi , fwj ,wj

〉
.

Therefore the statement follows from Theorem 2.1. �
{IIIauxPW}

Lemma 2.3. Let ρ : G → GL(V ) be an irreducible unitary representation of G.
Then the map V → HomG(V, L2(G)) defined by

w 7→ ϕw, ϕw(v) := fv,w for all v, w ∈ V

is an isomorphism of vector spaces.
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Proof. It is easy to see that ϕw ∈ HomG(V, L2(G)). Moreover, the value of
ϕw(w) at e equals 〈w,w〉. Hence ϕw 6= 0 if w 6= 0. Thus, the map is injective. To check
surjectivity note that HomG(V, L2(G)) is the subspace of functions f : G × V → C
satisfying the condition

f(gh, v) = f(g, ρhv) for all v ∈ V, g, h ∈ G.
For any such f there exists w ∈ V such that f(e, v) = 〈w, v〉. The above condition
implies f(g, v) = 〈w, ρgv〉, i.e. f = ϕw. �

{IIIpeterweyl}
Theorem 2.4. (Peter–Weyl) Matrix coefficients of all irreducible unitary repre-

sentations span a dense subspace in L2 (G) for a compact group G.

Proof. We apply Lemma 1.30 to the regular representation of G. Let ρ ∈ Ĝ.
Lemma 2.3 implies that Vρ⊗HomG(Vρ, L

2(G)) coincides with the space of all matrix
coefficients of ρ. Hence the span of matrix coefficients is the unique semisimple
G-submodule in L2(G). �

2.2. Convolution algebra. For a group G we define by L1(G) the set of all
complex valued functions ϕ on G such that

‖f‖1 :=

∫
G

|ϕ(g)|dg

is finite. {IIIconvolution}
Definition 2.5. The convolution product of two continuous complex valued func-

tions ϕ and ψ on G is defined by the formula:

(3.4) (ϕ ∗ ψ)(g) :=

∫
G

ϕ(h)ψ(h−1g)dh.

{IIIexoconvol}
Exercise 2.6. The following properties are easily checked:

(1) ‖ϕ ∗ ψ‖1 ≤ ‖ϕ‖1‖ψ‖1

(2) The convolution product extends uniquely as a continuous bilinear map
L1(G)× L1(G)→ L1(G).

(3) The convolution is an associative product.
(4) Let V be a unitary representation of G, show that we can see it as a L1(G)-

module by setting ϕ.v :=
∫
G
ϕ(g)gvdg.

{IIIcorPW1}
Corollary 2.7. Let G be a compact group and R denote the representation of

G×G in L2 (G) given by the formula

Rs,tf (x) = f
(
s−1xt

)
.

Then

L2 (G) ∼=
⊕̂

ρ∈Ĝ
V ∗ρ � Vρ,

where the direct sum is in the sense of Hilbert spaces.
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Moreover, this isomorphism is actually an isomorphism of algebras (without unit)

between L2(G) equipped with the convolution and
⊕̂

ρ∈ĜEnd(Vρ).

Proof. For any ρ ∈ Ĝ consider the map Φρ : V ∗ρ � Vρ → L2(G) defined by

Φρ(v ⊗ w)(g) = 〈v, ρgw〉 .
It is easy to see that Φρ defines an embedding of the irreducible G×G-representation
ρ∗ � ρ in L2(G). Moreover, by orthogonality relation 〈Im Φρ, Im Φσ〉 = 0 if ρ and
σ are not isomorphic. The direct sum

⊕
ρ∈Ĝ Im Φρ coincides with the span of all

matrix coefficients of all irreducible representations of G. Hence it is dense in L2(G).
That implies the first statement. The final statement is clear by applying item (4) of
Exercise 2.6. �

Remark 2.8. A finite group G is a compact group in discrete topology and
L2(G) with convolution product is the group algebra C(G). Therefore Theorem 1.13
of Chapter 2 is a particular case of Corollary 2.7 when the ground field is C.

{IIIcorPW2}
Corollary 2.9. The characters of irreducible representations form an orthonor-

mal basis in the subspace of class function in L2 (G).

Proof. Let C(G) denote the subspace of class functions in L2(G), it is clearly
the center of L2(G). On the other hand, the center of End(Vρ) is C and its image
in L2(G) is Cχρ (χρ denotes as usual the character of ρ). The assertion is a direct
consequence of Corollary 2.7. �

{exIIIprojector}
Exercise 2.10. Let r : G → U(V ) be a unitary representation of a compact

group G and ρ be an irreducible representation with character χρ. Then the linear
operator

Pρ(x) := dim ρ

∫
G

χρ(g
−1)rgxdg

is a projector onto the corresponding isotypic component.

Exercise 2.11. Let E be a faithful finite-dimensional representation of a compact
group G. Show that all irreducible representations of G appear in T (E)⊗ T (E∗) as
subrepresentations. Hint: Note that G is a subgroup in GL(E). Using Weierstrass
theorem prove that matrix coefficient of E and E∗ generate a dense subalgebra in
L2(G) (with usual pointwise multiplication).

3. Examples

3.1. The circle. Let T = S1 = {z ∈ C | |z| = 1}, if z ∈ S1, one can write
z = eiθ with θ in R/2πZ. The Haar measure on S1 is equal to dθ

2π
. All irreducible

representations of S1 are one-dimensional since S1 is abelian. They are given by the

characters χn : S1 → C∗, χn (θ) = einθ, n ∈ Z. Hence Ŝ1 = Z and

L2
(
S1
)

= ⊕n∈ZCeinθ.
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This is a representation-theoretic explanation of the Parseval theorem, meaning that
every square integrable periodic function is the sum (with respect to the L2 norm)
of its Fourier series.

3.2. The group SU2. Consider the compact group G = SU2. Then G consists
of all matrices (

a b
−b̄ ā

)
,

satisfying the relations |a|2 + |b|2 = 1. Thus, as a topological space, SU2 is isomorphic
to the 3-dimensional sphere S3.

{exIIIquat}
Exercise 3.1. Check that SU2 is isomorphic to the multiplicative subgroup of

quaternions with norm 1 by identifying the quaternion a+bi+cj+dk = a+bi+j(c+di)

with the matrix

(
a+ bi c+ di
−c+ di a− di

)
.

To find the irreducible representations of SU2, consider the polynomial ring
C [x, y], with the action of SU2 given by the formula

ρg (x) = ax+ by, ρg (y) = −b̄x+ āy, if g =

(
a b
−b̄ ā

)
.

Let ρn be the representation of G in the space Cn [x, y] of homogeneous polynomi-
als of degree n. The monomials xn, xn−1y, . . . , yn form a basis of Cn [x, y]. Therefore
dim ρn = n+ 1. We claim that all ρn are irreducible and that every irreducible repre-
sentation of SU2 is isomorphic to ρn for some n ≥ 0. We will show this by checking
that the characters χn of ρn form an orthonormal basis in the Hilbert space of class
functions on G.

Recall that every unitary matrix is diagonal in some orthonormal basis, therefore

every conjugacy class of SU2 intersects the diagonal subgroup. Moreover,

(
z 0
0 z̄

)
and

(
z̄ 0
0 z

)
are conjugate. Hence the set of conjugacy classes can be identified with

the quotient of S1 by the equivalence relation z ∼ z̄. Let z = eiθ, then

(3.5) {IIIequ15}χn (z) = zn + zn−2 + · · ·+ z−n =
zn+1 − z−n−1

z − z−1
=

sin (n+ 1) θ

sin θ
.

First, let us compute the Haar measure for G.
{exIIIsu2haar}

Exercise 3.2. Let G = SU2.
(a) Using Exercise 3.1 show that the action of G×G given by the multiplication

on the right and on the left coincides with the standard action of SO(4) on S3. Use
it to prove that SO(4) is isomorphic to the quotient of G × G by the two element
subgroup {(1, 1), (−1,−1)}.
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(b) Prove that the Haar measure on G is proportional to the standard volume
form on S3 invariant under the action of the orthogonal group SO4.

More generally: let us compute the volume form on the n-dimensional sphere Sn ⊂
Rn+1 which is invariant under the action SOn+1. We use the spherical coordinates in
Rn+1,

x1 = r cos θ, x2 = r sin θ cosϕ1, x3 = r sin θ sinϕ1 cosϕ2,
. . .
xn−1 = r sin θ sinϕ1 sinϕ2 . . . sinϕn−2 cosϕn−1,
xn = r sin θ sinϕ1 sinϕ2 . . . sinϕn−2 sinϕn−1,

where r > 0, θ, ϕ1, . . . , ϕn−2 vary in [0, π] and ϕn−1 ∈ [0, 2π]. The Jacobian relating
spherical and Euclidean coordinates is equal to

rn sinn−1 θ sinn−2 ϕ1 . . . sinϕn−2,

thus when we restrict to the sphere r = 1 we obtain the volume

sinn−1 θ sinn−2 ϕ1 . . . sinϕn−2dθdϕ1 . . . dϕn−1,

which is SOn+1-invariant. It is not normalized.
Let us return to the case G = SU2 ' S3. After normalization the invariant

volume form is
1

2π2
sin2 θ sinϕ1dθdϕ1dϕ2.

The conjugacy class C (θ) of all matrices with eigenvalues eiθ, e−iθ (θ ∈ [0, π]) is
the set of points in S3 with spherical coordinates (1, θ, ϕ1, ϕ2): indeed, the minimal
polynomial on R of the quaternion with those coordinates is

t2 − 2t cos θ + 1

which is also the characteristic polynomial of the corresponding matrix in SU2, so it
belongs to C(θ).

Hence, one gets that, for a class function ψ on G∫
G

ψ (g) dg =
1

2π2

∫ π

0

ψ (θ) sin2 θdθ

∫ π

0

sinϕ1dϕ1

∫ 2π

0

dϕ2 =
2

π

∫ π

0

ψ (θ) sin2 θdθ.

Exercise 3.3. Prove that the functions χn form an orthonormal basis of the
space L2([0, π]) with the measure 2

π
sin2 θdθ and hence of the space of class functions

on G.

3.3. The orthogonal group G = SO3. Recall that SU2 can be realized as
the set of quaternions with norm 1. Consider the representation γ of SU2 in the
space of quaternions H defined by the formula γg (α) = gαg−1. One can see that
the 3-dimensional space Him of pure imaginary quaternions is invariant and (α, β) =
Re
(
αβ̄
)

is an invariant positive definite scalar product on Him. Therefore ρ defines
a homomorphism γ : SU2 → SO3.
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{IIIdoublecover}
Exercise 3.4. Check that Ker γ = {1,−1} and that γ is surjective. Hence SO3

∼=
SU2/ {1,−1}. Thus, we can see that as a topological space SO3 is a 3-dimensional
sphere with opposite points identified, or the real 3-dimensional projective space.

Therefore every representation of SO3 can be lifted to the representations of SU2,
and a representation of SU2 factors to the representation of SO3 if and only if it
is trivial on −1. One can check easily that ρn (−1) = 1 if and only if n is even.
Thus, any irreducible representation of SO3 is isomorphic to ρ2m for some m > 0
and dim ρ2m = 2m + 1. Below we give an independent realization of irreducible
representation of SO3.

3.4. Harmonic analysis on a sphere. Consider the sphere S2 in R3 defined
by the equation

x2
1 + x2

2 + x2
3 = 1.

The action of SO3 on S2 induces the representation of SO3 in the space L2(S2) of
complex-valued square integrable functions on S2. This representation is unitary.
We would like to decompose it into a sum of irreducible representations of SO3. We
note first that the space C[S2] obtained by restriction of the polynomial functions
C[x1, x2, x3] to S2 is the invariant dense subspace in L2(S2). Indeed, it is dense in
the space of continuous functions on S2 by the Weierstrass theorem and the latter
space is dense in L2(S2).

Let us introduce the following differential operators in R3:

e := −1

2

(
x2

1 + x2
2 + x2

3

)
, h := x1

∂

∂x1

+x2
∂

∂x2

+x3
∂

∂x3

+
3

2
, f :=

1

2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
,

note that e, f , and h commute with the action of SO3 and satisfy the relations

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f,

where [a, b] = ab− ba.
Let Pn be the space of homogeneous polynomial of degree n and Hn = Ker f ∩Pn.

The polynomials of Hn are called harmonic polynomials since they are annihilated
by the Laplace operator f . For any ϕ ∈ Pn we have

h (ϕ) =

(
n+

3

2

)
ϕ.

If ϕ ∈ Hn, then

fe (ϕ) = ef (ϕ)− h (ϕ) = −
(
n+

3

2

)
ϕ,

and by induction

fek (ϕ) = efek−1 (ϕ)− hek−1 (ϕ) = −
(
nk + k (k − 1) +

3k

2

)
ek−1ϕ.
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In particular, this implies that

(3.6) {IIIequ12} fek (Hn) = ek−1 (Hn) .

We will prove now that

(3.7){IIIequ13} Pn = Hn ⊕ e (Hn−2)⊕ e2 (Hn−4) + . . .

by induction on n. Indeed, by the induction assumption

Pn−2 = Hn−2 ⊕ e (Hn−4) + . . . .

Furthermore, (3.6) implies fe (Pn−2) = Pn−2. Hence Hn ∩ ePn−2 = 0. On the
other hand, f : Pn → Pn−2 is surjective, and therefore dimHn + dimPn−2 = dimPn.
Therefore

(3.8){IIIequ14} Pn = Hn ⊕ ePn−2,

which implies (3.7). Note that after restriction to S2, the operator e acts as the
multiplication on −1

2
.

Hence (3.7) implies that

C
[
S2
]

=
⊕
n≥0

Hn.

To calculate the dimension of Hn use (3.8)

dimHn = dimPn − dimPn−2 =
(n+ 1) (n+ 2)

2
− n (n− 1)

2
= 2n+ 1.

Finally, we will prove that the representation of SO3 in Hn is irreducible and
isomorphic to ρ2n. Consider the subgroup D ⊂ SO3 consisting of all rotations about
x3-axis. Then D is the image under γ : SU2 → SO3 of a diagonal subgroup of SU2.
Let Rθ denotes the rotation by the angle θ.

{exIIIeigenvalues}
Exercise 3.5. Let V2n be the space of the representation ρ2n. Check that the set

of eigenvalues of Rθ in the representation V2n equals {ekθi | − n ≤ k ≤ n}.

Let ϕ = (x1 + ix2)n. It is easy to see that ϕn ∈ Hn and Rθ(ϕn) = enθiϕn. By
Exercise 3.5 this implies that Hn contains a subrepresentation isomorphic to ρ2k for
some k ≥ n. By comparing dimensions we see that this implies Hn = V2n. Thus, we
obtain the following decompositions

C[S2] =
⊕
n∈N

Hn, L
2(S2) =

⊕̂
n∈N

Hn.

Now, we are able to prove the following geometrical theorem.
{IIItomography}

Theorem 3.6. A convex centrally symmetric solid in R3 is uniquely determined
by the areas of the plane cross-sections through the origin.
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Proof. A convex solid B can be defined by an even continuous function on S2.
Indeed, for each unit vector v let

ϕ (v) = sup
{
t2 ∈ R | tv ∈ B

}
.

Define a linear operator T in the space of all even continuous functions on S2 by the
formula

Tϕ (v) =
1

2

∫ 2π

0

ϕ (w) dθ,

where w runs the set of unit vectors orthogonal to v, and θ is the angular parameter
on the circle S2 ∩ v⊥. Check that Tϕ (v) is the area of the cross section by the plane
v⊥. We have to prove that T is invertible.

Obviously T commutes with the SO3-action. Therefore T can be diagonalized by
using Schur’s lemma and the decomposition

L2(G)even =
⊕̂
n∈N

H2n.

Indeed, T acts on H2n as the scalar operator λnId. We have to check that λn 6= 0 for
all n. Consider again ϕ2n ∈ H2n. Then ϕ2n (1, 0, 0) = 1 and

Tϕ2n (1, 0, 0) =
1

2

∫ 2π

0

(iy)2n dθ =
(−1)n

2

∫ 2π

0

sin2n θdθ,

here we take the integral over the circle x2
2+x2

3 = 1, and assume x2 = sin θ, x3 = cos θ.
Since Tϕ = λnϕ, we obtain

λn =
(−1)n

2

∫ 2π

0

sin2n θdθ 6= 0.

�





CHAPTER 4

Some results about unitary representations

In this chapter, we consider unitary representations of groups which are locally compact but no
longer compact. We do not intend to go very far in this deep subject, but we want to give three examples
in order to show how the structure of the dual of the group changes.

1. Unitary representations of Rn and Fourier transform

1.1. Unitary dual of a locally compact abelian group. Let G be a locally
compact abelian group. Then by Corollary 1.22 of Chapter 3, every unitary represen-

tation of G is one-dimensional. Therefore the unitary dual Ĝ is the set of continuous

homomorphisms ρ : G → S1. Moreover, Ĝ is an abelian group with multiplication
defined by the tensor product.

For example, as we have seen in Section 3.1 Chapter 3, if G = S1 is the circle,

then Ĝ is isomorphic to Z. In general, if G is compact, then Ĝ is discrete. If G is not

compact, one can define a topology on Ĝ (by uniform convergence on compact sets)

in such a way that the natural homomorphism s : G→ ̂̂
G, defined by s(g)(ρ) = ρ(g),

is an isomorphism of topological groups. This fact is usually called the Pontryagin
duality.

Let us concentrate on the case when G = V is a real vector space of finite
dimension n. Let us fix an invariant volume form dx on V . The unitary dual of V is
isomorphic to the usual dual V ∗ via identification

ρξ(x) = e2iπ<ξ,x> for all x ∈ V, ξ ∈ V ∗,

where < ξ, x > is the duality evaluation.
We immediately see that, in contrast with the compact case, ρξ is no longer

in L2(V ). We still can try to write down the analogous of the formula giving the
projector Pξ from L2(V ) onto the irreducible representation ρξ, as in Exercise 2.10
Chapter 3: for f ∈ L2(V ), y ∈ V and ξ ∈ V ∗, let us set

Pξ(f)(y) :=

∫
V

f(x+ y)e−2iπ<ξ,x>dx = (

∫
V

f(z)e−2iπ<ξ,z>dz)ρξ(y) :

the coefficient
∫
V
f(z)e−2iπ<ξ,z>dz is nothing but the value f̂(ξ) of the Fourier trans-

form f̂ . However, the integral defining f̂ has no obvious meaning for f ∈ L2(V ),

75
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since L2(V ) is not included in L1(V ). In this section, we explain how to overcome
this difficulty, see Plancherel theorem (Theorem 1.12).

We also would like to claim that every f ∈ L2(V ) is in a certain sense the “sum
of its projections”, which leads to the equality

f(x) =

∫
V

f̂(ξ)e2iπ<ξ,x>dξ.

This formula expresses the involutivity of the Fourier transform, see Theorem 1.7
below.

1.2. Fourier transform: generalities. Let L1(V ) be the set of integrable
complex-valued functions on V .

{IVFourierTransform}
Definition 1.1. Let f ∈ L1(V ), the Fourier transform of f is the function on V ∗

f̂(ξ) :=

∫
V

f(x)e−2iπ<ξ,x>dx.

{IVRk1}
Remark 1.2. (1) One checks that lim

ξ→∞
f̂(ξ) = 0 and that f̂ is continuous on

V ∗.
(2) Nevertheless, there is no reason for f̂ to belong to L1(V ∗) (check on the

characteristic function of an interval in R).
(3) The Fourier transform of the convolution (see Definition 2.5 Chapter 3) of

two functions is the product of the Fourier transforms of the two factors.
(4) (Adjunction formula for Fourier transforms) Let f ∈ L1(V ) and ϕ ∈ L1(V ∗),{IVadjunction}

then ∫
V

f(x)ϕ̂(x)dx =

∫
V ∗
f̂(ξ)ϕ(ξ)dξ.

Exercise 1.3. Let γ ∈ GL(V ), show that the Fourier transform of the function

γ.f defined by (γ.f)(x) = f(γ−1(x)) is equal to det(γ)tγ−1.f̂ .

Let us consider the generalized Wiener algebra W(V ) consisting of integrable
functions on V whose Fourier transform is integrable on V ∗.

{IVdensity}
Proposition 1.4. The subspace W(V ) ⊂ L1(V ) is a dense subset (for the L1-

norm).

Proof. Let Q be a positive definite quadratic form on V , denote by B its polar-
ization and by Q−1 the quadratic form on V ∗ whose polarization is B−1. Let Disc(Q)
denote the discriminant of Q in a basis of V of volume 1.

{IVweierstrass}
Lemma 1.5. The Fourier transform of the function φ : x 7→ e−πQ(x) on V is the

function ξ 7→ Disc(Q)−1/2e−πQ
−1(ξ) on V ∗.
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Proof. (of the lemma) One can reduce this lemma to the case n = 1 by using an
orthogonal basis for Q and Fubini’s theorem. We just need to compute the Fourier
transform of the function ε(x) := x 7→ e−πx

2
on the line R.

One has

ε̂(ξ) =

∫
R
e−πx

2−2iπξxdx = e−πξ
2

∫
R
e−π(x+iξ)2

dx.

By complex integration, the integral factor in the far-right-hand side does not depend
on ξ and its value for ξ = 0 is the Gauss integral

∫
R e
−πx2

dx = 1. Hence the
lemma. �

To finish the proof of proposition let us take Q such that Disc(Q) = 1. The lemma
implies that φ belongs to W(V ). For every λ ∈ R>0, we set φλ(x) := λnφ(λx).

Exercise 1.6. Check that φλ(x) is a positive-valued function and
∫
V
φλ(x)dx =

1. Prove that, when λ tends to infinity, φλ(x) converges uniformally to 0 in the
complement of any neighbourhood of 0 ∈ V .

Now take any function f ∈ L1(V ). By Remark 1.2 the convolution product
fλ := f ∗φλ belongs toW(V ). By the exercise fλ converges to f for the L1-norm. �

Theorem 1.7. (Fourier inversion formula) Let f ∈ W(V ), one has, for all x ∈ V : {IVFourierreciprocity}
ˆ̂
f(x) = f(−x).

Proof. By Proposition 1.4 the subset of continuous bounded functions is dense
inW(V ). Hence it suffices to prove the statement for continuous bounded f . We use
a slight extension of the adjunction formula (Remark 1.2, (4)): let λ ∈ R>0, one has,
for all f ∈ L1(V ) and ϕ ∈ L1(V ∗),

(4.1) {IVlambdaadjunction}
∫
V

f(λx)ϕ̂(x)dx =

∫
V ∗
f̂(ξ)ϕ(λξ)dξ =

∫∫
V×V ∗

f(x)ϕ(ξ)e−2iπλ<ξ,x>dxdξ.

If λ goes to 0, the function x 7→ f(λx) tends to f(0) and remains bounded by
||f ||∞ := sup |f |. By dominated convergence, we obtain the equality

(4.2) f(0) ˆ̂ϕ(0) =
ˆ̂
f(0)ϕ(0).

Using the function φ of Lemma 1.5 for ϕ, we know that
ˆ̂
φ = φ, thus

ˆ̂
f(0) = f(0).

We use the action of the additive group V on W(V ) (translation) given by

τy(f) : (x 7→ f(x− y))

and on W(V ∗) (multiplication) given by

µy(ϕ) : ξ 7→ e−2iπ<ξ,y>ϕ(ξ)

for all y ∈ V .
{IVdoublehat}

Exercise 1.8. Check that

(1) τ̂y(f) = µy(f̂) for all f ∈ L1(V ),
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(2) µ̂y(ϕ) = τ−y(ϕ̂) for all ϕ ∈ L1(V ∗).

We apply the translation τy to f , Exercise 1.8 shows that
̂̂
τy(f) = τ−y

ˆ̂
f , hence

the result. �{IVRk2}
Remark 1.9. Fourier inversion formula is equivalent to the following statement

(4.3){IVdoublebarhat}
¯̄̂
f̂ = f

where f̄ denotes the complex conjugate of f .
{IVsubset}

Corollary 1.10. The space W(V ) is a dense subspace in L2(V ).

Proof. By Theorem 1.7 and Remark 1.2, W(V ) is a subset of the set C0(V ) of
continuous functions on V which tend to 0 at infinity. For details see [28]. Therefore
W(V ) is included in L2(V ). The proof of Proposition 1.4 can be adapted to prove
the density of W(V ) in L2(V ) (using that φ ∈ L2(V )). �

{IVinjectivity}
Corollary 1.11. The Fourier transform is an injective map from L1(V ) to

C0(V ∗).

Proof. We first notice that W(V ) is dense in C0(V ) by the same argument as
in the proof of the Proposition 1.4.

Hence, if f ∈ L1(V ) is such that f̂ = 0, to show that f = 0 it is sufficient to prove
that ∫

V

f(x)g(x)dx = 0

for any g ∈ W(V ). By Theorem 1.7, g is the Fourier transform of ξ 7→ ĝ(−ξ) and by
Remark 1.2(4), one has∫

V

f(x)g(x)dx =

∫
V ∗
f̂(ξ)ĝ(−ξ)dξ = 0.

�{IVPlancherel}
Theorem 1.12. (Plancherel) The Fourier transform extends to an isometry from

L2(V ) to L2(V ∗).

Proof. Since W(V ) is dense in L2(V ), all we have to show is that for f and g
in W(V ), one has

(4.4)

∫
V

f̄(x)g(x)dx =

∫
V ∗

¯̂
f(ξ)ĝ(ξ)dξ.

By Remark 1.2 (4), the right-hand side is equal to∫
V

ˆ̂̄
f(x)g(x)dx.

But, by Remark 1.9 (4.3),
ˆ̂̄
f = f̄ , QED. �
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{IVproduct&convolution}
Remark 1.13. By Plancherel’s theorem, the Fourier transform maps W(V ) to

W(V ∗) exchanging the roles of usual and convolution products.

1.3. The link between Fourier series and Fourier transform on R. Let f
be a function over the interval [−1

2
, 1

2
]. The Fourier series of f is

(4.5)
∑
n∈Z

cn(f)e2iπnx

where

cn :=

∫ 1
2

− 1
2

f(t)e−2iπntdt.

Now, for λ ∈ R>0, if g is a function defined over the interval [−λ
2
, λ

2
], changing the

variable by y := λx, the corresponding Fourier series is written

(4.6)
∑
n∈Z

(∫ λ
2

−λ
2

1

λ
g(u)e−2iπnu

λdu

)
e2iπn y

λ .

We consider that, formally, g is the sum of its Fourier series on [−λ
2
, λ

2
].

Now if we consider g as a function defined on R with compact support by extend-
ing by 0 outside the interval [−λ

2
, λ

2
], we may interpret the n-th Fourier coefficient as

1
λ
ĝ(n

λ
) and the Fourier series as the sum

(4.7)
1

λ

∑
n∈Z

ĝ(
n

λ
)e2iπ ny

λ .

Formally, this series is exactly the Riemann sum, corresponding to the partition of
R associated to the intervals [n

λ
, n+1

λ
], of the infinite integral

∫
R f̂(t)e2iπntdt.

If now g is compactly supported and λ tends to +∞, this formal expression of
the sum suggests the equality

g(t) =

∫
R
ĝ(u)e2iπtudu.

2. Heisenberg groups and the Stone-von Neumann theorem

2.1. The Heisenberg group and some examples of its unitary represen-
tations. Let V be a real vector space over of finite even dimension n = 2g together
with a non-degenerate symplectic form ω : (x, y) 7→ (x|y). Let T = S1 be the group
of complex numbers of modulus 1. We define the Heisenberg group H as the set
theoretical product T× V with the composition law

(t, x)(t′, x′) := (tt′eiπ(x|x′), x+ x′).
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The centre of H is T, imbedded in H by t 7→ (t, 0). There is a non-split exact
sequence

1→ T→ H → V → 0.

The commutator map (g, h) 7→ ghg−1h−1 of elements of H naturally factorises as the
map V × V → T

(x, y) 7→ e2iπ(x|y).
{exIVrep1}

Exercise 2.1. Show that the formula

r(t,x)f(y) := tf(y − x)eiπ(x|y) for all t ∈ T, x, y ∈ V, f ∈ L2(V )

defines a unitary representation r of the group H in the space L2(V ).
{IVdefSchrodinger}

Definition 2.2. Consider two maximal isotropic subspaces of V with trivial
intersection. If we denote one of them by W , then the second one can be identified
by ω with the dual space W ∗. Since the restriction of ω to both W and W ∗ is zero,
the map x 7→ (1, x) from V to H induces group homomorphisms on both W and W ∗.

The Schrödinger representation σ of H in the Hilbert space L2(W ) is defined by

σ(t,w+η)f(x) = tf(x− w)e2iπ(η|x) for all t ∈ T, x, w ∈ W, η ∈ W ∗, f ∈ L2(W ).

Exercise 2.3. Prove that σ is an irreducible unitary representation of H. To
show irreducibility, it is sufficient to check that any bounded operator T in L2(W ),
commuting with the action of H, is a scalar multiplication. First, since T commutes
with the action of W ∗, it commutes also with multiplication by any continuous func-
tion with compact support. Making use of partitions of unity, show that this implies
that T is the multiplication by some bounded measurable function g on W . Moreover,
since T commutes with the action of W , the function g is invariant under translations,
hence is a constant function.

2.2. The Stone–von Neumann theorem. The aim of this subection is to
show

Theorem 2.4. (Stone–von Neumann) Let ρ be a unitary representation of H such
that ρt = t Id for all t ∈ T. Then ρ is isomorphic to the Schrödinger representation.

Let H be a Hilbert space together with an action ρ of the Heisenberg group H:
we assume that the hypotheses of the theorem are satisfied by (ρ,H). To simplify
the notations, we identify x ∈ V with (1, x) ∈ H, although it is not a group ho-
momorphism. We set ρ(x) := ρ(1,x) for all x ∈ V . Then the condition that ρ is a
representation is equivalent to

(4.8){IVrep} ρ(x)ρ(y) = eiπ(x|y)ρ(x+ y).

We denote by A the minimal closed subalgebra of the algebra B(H) of bounded
operators on H, which contains the image ρH . Let C0

c (V ) be the space of compactly
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supported continuous complex valued functions on V . For every ϕ ∈ C0
c (V ), set

Tϕ :=

∫
V

ϕ(x)ρ(x)dx,

where dx is the Lebesgue measure on V . It is easy to see that Tϕ ∈ A. We have

TϕTψ =

∫∫
V×V

ϕ(x)ψ(y)ρ(x)ρ(y)dxdy

TϕTψ =

∫∫
V×V

ϕ(x)ψ(y)eiπ(x|y)ρ(x+ y)dxdy

TϕTψ =

∫∫
V×V

ϕ(x)ψ(u− x)eiπ(x|u−x)ρ(u)dxdu

TϕTψ = Tϕ>ψ,

where ϕ> ψ is defined by the formula

(4.9) {IVetoile} ϕ> ψ(u) =

∫
V

ϕ(x)ψ(u− x)eiπ(x|u−x)dx.

Since clearly ||Tϕ|| ≤ ‖ϕ‖1(=
∫
V
|ϕ(x)|dx), we get the following statements:

• The map ϕ 7→ Tϕ extends by continuity to L1(V ), the space of integrable
complex valued functions on V .
• The product (ϕ, ψ) 7→ ϕ> ψ extends to a product L1(V )× L1(V )→ L1(V )
• The formula (4.9) remains valid for ϕ and ψ in L1(V ) for almost every u ∈ V .

{IVinjectivite}
Lemma 2.5. The map ϕ 7→ Tϕ is injective on L1(V ).

Proof. Denote by N the kernel of this map. We notice the equality

ρ(y)Tϕρ(−y) =

∫
V

ϕ(x)ρ(y)ρ(x)ρ(−y)dx =

∫
V

ϕ(x)e2iπ(y|x)ρ(x)dx.

It shows that if ϕ(x) is in N then ϕ(x)e2iπ(y|x) lies in N for every y ∈ V . For a, b in
H, consider the matrix coefficient function

χa,b(x) =< ρ(x)a, b >,

where <,> is the scalar product on H. It is a continuous bounded function of x ∈ V .
Moreover, for any x, there exists at least one coefficient function which doesn’t vanish
at x.

If ϕ belongs to N , we have ∫
V

ϕ(x)χa,b(x)dx = 0,

and therefore ∫
V

ϕ(x)χa,b(x)e2iπ(x|y)dx = 0
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for all y ∈ V . This means that the Fourier transform of the function ϕχa,b ∈ L1(V )
is identically zero, hence ϕχa,b = 0 for all a, b, therefore ϕ = 0. �

We will also use the following equality:

(4.10){IVadjoint} T ∗ϕ = Tϕ∗ ,

with ϕ∗(x) := ϕ(−x).
Our ultimate goal is to construct a continuous intertwiner τ : L2(V ) → H. The

following observation is crucial for this construction.
{IVintertwiner}

Lemma 2.6. (a) For all f ∈ C0
c (V ) and h ∈ H, we have Trhf = ρhTf .

(b) For any u ∈ H, the map πu := C0
c (V ) → H defined by f 7→ Tfu is H-

equivariant.

Proof. It is sufficient to check (a) for h = (1, y) with y ∈ V . Then using (4.8)
and making the substitution z = x− y, we obtain

Trhf =

∫
V

f(x− y)ρ(x)eiπ(y|x)dx =

∫
V

f(x− y)ρ(y)ρ(x− y)dx =

= ρ(y)

∫
V

f(z)ρ(z)dz = ρ(y)Tf .

(b) follows immediately from (a). �

Thus we have an equivariant map πu : C0
c (V )→ H. It remains to show that for a

suitable choice of u ∈ H we are able to extend πu to a continuous map L2(V )→ H.
{IVphi}

Lemma 2.7. Let ϕ be a continuous bounded function on V which lies in the
intersection L1(V ) ∩ L2(V ). Assume that Tϕ is an orthogonal projection onto a line
Cεϕ for some vector εϕ in H of norm 1. Then the map πεϕ : C0

c (V )→ H extends to
a continuous linear H-equivariant map τ : L2(V )→ H.

Proof. Observe that for any f ∈ L2(V ) the convolution f > ϕ lies in L1(V ).
Hence we can use

Tfεϕ = TfTϕεϕ = Tf>ϕεϕ.

�

The next step is to look for a function ϕ such that Tϕ is an orthogonal projector
of rank 1.

{IVprojector}
Lemma 2.8. Let P ∈ B(H) be a non-zero self-adjoint bounded operator. Then P

is a scalar multiple of an orthogonal projector of rank 1 if and only if, for any x ∈ V ,
we have

(4.11){IVrank1} Pρ(x)P ∈ CP.
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Proof. We first note that if P is a multiple of an orthogonal projector of rank
1, then clearly Pρ(x)P ∈ CP for all x ∈ V .

Let us assume now that P satisfies the latter condition. First, we have P 2 = λP
for some non-zero λ. Hence after normalization we can assume P 2 = P . Hence P is
a projector. It is an orthogonal projector since P is self-adjoint.

It remains to show that P has rank 1. Let u be a non-zero vector in P (H) and M
be the span of ρ(x)u for all x ∈ V . The assumption on P implies that M is included
in Cu⊕ KerP . The fact that H is irreducible implies that M is dense in H. Hence
we have H = Cu⊕KerP . Thus P has rank 1. �

{IVfunctionalequation}
Lemma 2.9. Let ϕ be an element in L1(V ) such that ϕ = ϕ∗. Then Tϕ is a

multiple of an orthogonal projection on a line if and only if, for all u ∈ V , the
function

x 7→ ϕ(u+ x)ϕ(u− x)

is its own Fourier transform.

Remark 2.10. A priori, the Fourier transform is defined on the dual V ∗ of V ,
but those spaces are identified through the symplectic form ω.

We will refer to this characterisation of ϕ as the functional equation.

Proof. We use Lemma 2.8. Let v ∈ V . We compute

Tϕρ(v)Tϕ =

∫∫
V×V

ϕ(x)ϕ(y)ρ(x)ρ(v)ρ(y)dxdy

=

∫∫
V×V

ϕ(x)ϕ(y)eiπ((x|v)+(x|y)+(v|y))ρ(x+ v + y)dxdy

=

∫∫
V×V

ϕ(x)ϕ(z − v − x)eiπ((x|v)+(x|z)+(v|z))ρ(z)dxdz.

For almost every value of z, this operator is Tψ for

ψ(v, z) =

∫
V

ϕ(x)ϕ(z − v − x)eiπ((x|v)+(x|z)+(v|z))dx

by Fubini’s theorem (consider ψ as a function of the variable v when z is fixed). The
relation (4.11) is equivalent to the fact that for every v, ψ = C(v)ϕ. So (4.11) is
equivalent to: ∫

V

ϕ(x)ϕ(z − v − x)eiπ((x|v)+(x|z)+(v|z))dx = C(v)ϕ(z).

In the left hand side, we set x = −y and use ϕ∗ = ϕ. Then we obtain∫
V

ϕ(y)ϕ(v − z − y)e−iπ((y|v)+(y|z)+(z|v))dy = C(v)ϕ(z) = C(z)ϕ(v).
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Hence

(4.12) {IVC}
ϕ(z)

C(z)
=
ϕ(v)

C(v)

so that ϕ(z)

C(z)
does not depend on z, moreover it is equal to its complex conjugate:

hence it belongs to R. We set D = ϕ(z)

C(z)
, and get C(z) = Dϕ(−z).

Finally, ∫
V

ϕ(x)ϕ(z − v − x)eiπ((x|v)+(x|z)+(v|z))dx = Dϕ(−v)ϕ(z).

Now we set t := x− 1
2
(z − v) and we get∫

V

ϕ(
z − v

2
+ t)ϕ(

z − v
2
− t)eiπ(t|z+v)dt = Dϕ(−v)ϕ(z).

The left hand side is precisely the value at z+v
2

of the Fourier transform of t 7→
ϕ( z−v

2
+ t)ϕ( z−v

2
− t), the Fourier inversion formula implies D2 = 1 and D is a

positive real number as can be seen by setting z = v in (4.12), hence the Lemma. �

In order to find a non-trivial solution of the functional equation, we choose a
positive definite quadratic form Q on V , denote by B : V → V ∗ the morphism
induced by the polarization of Q. We recall (Lemma 1.5) that the Fourier transform

of the function z 7→ e−πQ(z) on V is the function w 7→ Disc(Q)−
1
2 e−πQ

−1(w) on V ∗.
Let Ω : V → V ∗ be the isomorphism induced by the symplectic form ω.

{IVJ}
Lemma 2.11. The function x 7→ ψ(x) = e−πQ(x) is its own Fourier transform if

and only if one has
(Ω−1B)2 = −IdV .

Proof. Straightforward computation. �

Lemma 2.12. The function

ϕ(x) := e−π
Q(x)

2

satisfies the functional equation of Lemma 2.9.

Proof. This is easily shown using the fact that ϕ(u+ x)ϕ(u− x) = ϕ2(u)ϕ2(x).
�

Now by application of Lemma 2.7 we obtain a boundedH-invariant linear operator
τ : L2(V ) → H. Consider the dual operator τ ∗ : H → L2(V ). The composition
ττ ∗ is a bounded intertwiner in H. Hence Theorem 1.20 in Chapter 3 implies that
ττ ∗ = λ IdH for some positive real λ, since ττ ∗ is positive and self-adjoint.

Next we will show that λ = 1.{IVconstant}
Lemma 2.13. We have τ ∗(εϕ) = ϕ and ττ ∗ = IdH.
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Proof. Consider the operator Y : L2(V )→ L2(V ) defined by

Y (f) := ϕ> f > ϕ.

Applying Lemma 2.5 and the relations ϕ>ϕ = ϕ and TϕTfTϕ ∈ CTϕ, we get that Y
is the orthogonal projection on the line Cϕ. Hence Y (f) = 〈ϕ, f〉L2(V ) ϕ.

If f is orthogonal to τ ∗(εϕ), then

〈τ ∗(εϕ), f〉L2(V ) = 〈εϕ, τ(f)〉H = 〈εϕ, Tf (εϕ)〉H = 0.

This is equivalent to TϕTfTϕ = TY (f) = 0. Hence f is orthogonal to ϕ. We obtain
that τ ∗(εϕ) = cϕ for some c ∈ C. But

c = 〈cϕ, ϕ〉L2(V ) = 〈τ ∗(εϕ), ϕ〉L2(V ) = 〈εϕ, τ(ϕ)〉H = 〈εϕ, εϕ〉H = 1.

The first assertion is proved.
Now

〈ττ ∗(εϕ), εϕ〉H = 〈τ ∗(εϕ), τ ∗(εϕ)〉L2(V ) = 〈ϕ, ϕ〉L2(V ) = 1.

Hence the second assertion. �

Thus, we have shown that an arbitrary irreducible unitary representation H is

equivalent to the subrepresentation of L2(V ) generated by ϕ(x) = e−π
Q(x)

2 . Therefore,
the Stone-von Neumann theorem is proved.

2.3. Fock representation. Let us continue with a lovely avatar of this repre-
sentation, the Fock representation. We would like to characterize the image τ ∗(H)
inside L2(V ).

Just before Lemma 2.11, we chose a quadratic form Q on V such that (Ω−1B)2 =
−IdV , and this equips V with a structure of complex vector space of dimension g for
which Ω−1B is the scalar multiplication by the imaginary unit i. We denote by J
this complex structure and by VJ the corresponding complex space.

Furthermore B+ iΩ : VJ → V ∗J is a sesquilinear isomorphism, we denote by A the
corresponding Hermitian form on VJ .

In this context, for a given x ∈ V we have:

(4.13) {IVaction}r(1,x)ϕ(y) = ϕ(y − x)eiπ(x|y) = e−π
Q(y−x)

2
+iπ(x|y) = e−π(

Q(x)+Q(y)
2

−A(x,y))

which is the product of ϕ(y) with a holomorphic function of f(y) = e−π(
Q(x)

2
−A(x,y)).

The Fock representation associated to the complex structure J is the subspace
FJ ⊂ L2(V ) consisting of the products fϕ where ϕ was defined before and f is
a holomorphic function on VJ . We have just proven that this space is stable un-
der the H-action. Moreover, it is closed in L2(V ) since holomorphy is preserved
under uniform convergence on compact sets. Let us choose complex coordinates
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z = (z1, . . . , zg) in VJ so that the Hermitiam product has the form A(w, z) =
∑
w̄izi.

The scalar product (·, ·)F in FJ is given by

(fϕ, gϕ)F =

∫
V

f̄(z)g(z)e−π|z|
2

dz̄dz,

where |z|2 =
∑g

i=1 |zi|2. If m = (m1, . . . ,mg) ∈ Ng we denote by zm the monomial
function zm1

1 . . . z
mg
g . Any analytic function f(z) can be represented by a convergent

series

(4.14){IVTaylor} f(z) =
∑
m∈Ng

amz
m.

{IVFockbasis}
Exercise 2.14. Check that if f(z)ϕ ∈ FJ then the series

f(z)ϕ =
∑
m∈Ng

amz
mϕ

is convergent in the topology defined by the norm in FJ . Furthermore, prove that
{zm |m ∈ Ng} is an orthogonal topological basis of FJ .

{IVFock}
Lemma 2.15. The image τ ∗(H) is equal to FJ . Hence the representation of H in

FJ is irreducible.

Proof. Recall that τ ∗(εϕ) = ϕ. Therefore taking into account (4.13) it is suf-
ficient to show that the set {e−πA(x,y)ϕ(y) |x ∈ V } is dense in FJ . Let fϕ ∈ FJ .
Assume that

(f(y)ϕ(y), e−πA(x,y))F = 0 for all x ∈ V.
In the z-coordinates it amounts to saying that

F (w) =

∫
V

f̄(z)e
∑g
i=1 wizie−π|z|

2

dz̄dz

is identically zero. Note that then the partial derivative

∂F

∂wi
=

∫
V

zif̄(z)e
∑g
i=1 wizie−π|z|

2

dz̄dz,

is also zero. Hence for every monomial zm and w ∈ VJ we have∫
V

zmf̄(z)e
∑g
i=1 wizie−π|z|

2

dz̄dz = 0.

Consider the Taylor series (4.14). By Exercise 2.14 we have for any w ∈ VJ∫
V

f(z)f̄(z)e
∑g
i=1 wizie−π|z|

2

dz̄dz = 0,

in particular, ∫
V

f(z)f̄(z)dz̄dz = 0,

which implies f(z) = 0. Hence the set {e−πA(x,y)ϕ(y) |x ∈ V } is dense in FJ . �
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Exercise 2.16. Check that f > ϕ ∈ FJ for any f ∈ L2(V ). Therefore the map
f 7→ f > ϕ from L2(V ) to L2(V ) is an orthogonal projection onto FJ .

2.4. Unitary dual of H. Now it is not hard to classify unitary irreducible
representations of the Heisenberg group H. If ρ is an irreducible representation of
H in a Hilbert space H, then by Theorem 1.20 Chapter 3, for every t ∈ T we have

ρt = χt IdH for some character χ ∈ T̂. In other words, using the description of T̂,

ρt = tn IdH for some n ∈ Z. Hence we have defined the map Φ : Ĥ → Z = T̂.
We know that the fiber Φ−1(1) = {σ} is a single point due to the Stone–von

Neumann theorem. We claim that for any n 6= 0 the fiber Φ−1(n) is also a single
point. Indeed, consider a linear transformation γ of V such that 〈γ(x)|γ(y)〉 = n 〈x|y〉.
Then we can define a homomorphism γ̃ : H → H by setting γ̃(t, x) = (tn, γ(x)). We
have the exact sequence of groups

1→ Z/nZ→ H
γ̃−→ H → 1.

If ρ lies in the fiber over n, then Ker ρ ⊂ Ker γ̃. Hence ρ = γ̃ ◦ ρ′, where ρ′ lies in
Φ−1(1). Thus, ρ ' γ̃ ◦ σ.

Finally, Φ−1(0) consists of all representations which are trivial on T. Therefore
Φ−1(0) coincides with the unitary dual of V = H/T and hence it is isomorphic to V ∗.

3. Representations of SL2 (R)

In this section we give a construction of all up to isomorphism unitary irreducible
representations of the group SL2(R). We do not provide a proof that our list is
complete and refer to [18] for this.

3.1. Geometry of SL2(R). In this section we use the notation

G = SL2 (R) = {g ∈ GL2 (R) | det g = 1} .
{IVexsl}

Exercise 3.1. (a) Since G = {
(
a b
c d

)
| ad − bc = 1}, topologically G can be

described as a non-compact 3-dimensional quadric in R4.
(b) Describe conjugacy classes in G.
(c) The only proper non-trivial normal closed subgroup of G is the center {1,−1}.

Let us start with the following observation.
{IVunfin}

Lemma 3.2. Let ρ : G → GL(V ) be a unitary finite-dimensional representation
of G. Then ρ is trivial.

Proof. Let g =

(
1 1
0 1

)
. Then gk is conjugate to g for every non-zero integer

k. Hence tr ρg = tr ρgk . Note that ρg is unitary and hence diagonalizable in V . Let
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λ1, . . . , λn be the eigenvalues of ρg (taken with muliplicities). Then for any k 6= 0 we
have

λ1 + · · ·+ λn = λk1 + · · ·+ λkn.

Hence λ1 = · · · = λn = 1. Then g ∈ Ker ρ. By Exercise 3.1 we have G = Ker ρ. �

Let K be the subgroup of matrices

gθ =

(
cos θ sin θ
− sin θ cos θ

)
.

The group K is a maximal compact subgroup of G, clearly K is isomorphic to T = S1.
If ρ : G → GL (V ) is a unitary representation of G in a Hilbert space then the re-
stricted K-representation ResK ρ splits into the sum of 1-dimensional representations
of K. In particular, one can find v ∈ V such that, for some n, ρgθ (v) = einθv. We
define the matrix coefficient function f : G→ C by the fomula

f (g) = 〈v, ρgv〉 .

Then f satisfies the condition

f (ggθ) = einθf (g) .

Thus, one can consider f as a section of a line bundle on the space G/K (if n = 0,
then f is a function). Thus, it is clear that the space G/K is an important geometric
object, on which the representations of G are “realized”. To be a trifle more precise,
consider the quotient (G× C)/K where K acts on G by right multiplication and on
C by einθ. It is a topological line bundle on G/K, and one can see f as a section of
this bundle.

Consider the Lobachevsky plane

H = {z = x+ iy ∈ C | y > 0}

equipped with the Riemannian metric defined by the formula dx2+dy2

y2 and the corre-

sponding volume form dxdy
y2 . Then G coincides with the group of rigid motions of H

preserving orientation. The action of the matrix

(
a b
c d

)
∈ G on H is given by the

formula

z 7→ az + b

cz + d
.

Exercise 3.3. Check that G acts transitively on H, preserves the metric and the
volume. Moreover, the stabilizer of i ∈ H coincides with K. Thus, we identify H
with G/K.
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3.2. Discrete series. Those are the representations with matrix coefficients in
L2 (G). For n ∈ Z>1, let H+

n be the space of holomorphic densities on H, i.e. the

set of formal expressions ϕ (z) (dz)n/2, where ϕ (z) is a holomorphic function on H
satisfying the condition that the integral∫

H

|ϕ|2yn−2dzdz̄

is finite. Define a representation of G in H+
n by the formula

ρg

(
ϕ (z) (dz)n/2

)
= ϕ

(
az + b

cz + d

)
1

(cz + d)n
(dz)n/2 ,

and a Hermitian product on Hn by the formula

(4.15) {IVequ1}
〈
ϕ (dz)n/2 , ψ (dz)n/2

〉
=

∫
H

ϕ̄ψyn−2dzdz̄,

for n > 1. For n = 1 the product is defined by

(4.16) {IVequ2}
〈
ϕ (dz)n/2 , ψ (dz)n/2

〉
=

∫ ∞
−∞

ϕ̄ψdx,

in this case H+
1 consists of all densities which converge to L2-functions on the bound-

ary (real line).

Exercise 3.4. Check that this Hermitian product is invariant.

To show that H+
n is irreducible it is convenient to consider the Poincaré model of

the Lobachevsky plane using the conformal map

w =
z − i
z + i

,

that maps H to the unit disk |w| < 1. Then the group G acts on the unit disk by
linear-fractional maps w 7→ aw+b

b̄w+ā
for all complex a, b satisfying |a|2 − |b|2 = 1, and

K is defined by the condition b = 0. If a = eiθ, then ρgθ (w) = e2iθw. The invariant
volume form is dwdw̄

1−w̄w .

It is clear that wk (dw)n/2 for all k ≥ 0 form an orthogonal basis in H+
n , each

vector wk (dw)n/2 is an eigenvector with respect to K, namely

ρgθ

(
wk (dw)n/2

)
= e(2k+n)iθwk (dw)n/2 .

It is easy to check now thatH+
n is irreducible. Indeed, every invariant closed subspace

M in H+
n has a topological basis consisting of eigenvectors of K, in other words

wk (dw)n/2 for all positive k must form a topological basis of M . Without loss of

generality assume that M contains (dw)n/2, then by applying ρg one can get that
1

(bw+a)n
(dw)n/2, and in Taylor series for 1

(bw+a)n
all elements of the basis appear with

non-zero coefficients. That implies wk (dw)n/2 ∈M for all k ≥ 0, hence M = H+
n .
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One can construct another series H−n by considering holomorphic densities in the
lower half-plane Re z < 0.

Exercise 3.5. Check that all representations in the discrete series H±n are pair-
wise non-isomorphic.

3.3. Principal series. These representations are parameterized by a continu-
ous parameter s ∈ Ri (s 6= 0). Consider now the action of G on the real line by
linear fractional transformations x 7→ ax+b

cx+d
. Let P+

s denotes the space of densities

ϕ (x) (dx)
1+s

2 with G-action given by

ρg

(
ϕ (x) (dx)

1+s
2

)
= ϕ

(
ax+ b

cx+ d

)
|cx+ d|−s−1.

The Hermitian product given by

(4.17){IVequ3} 〈ϕ, ψ〉 =

∫ ∞
−∞

ϕ̄ψdx

is invariant. The property of invariance justify the choice of weight for the density as

(dx)
1+s

2 (dx)
1+s̄

2 = dx, thus the integration is invariant. To check that the represen-
tation is irreducible one can move the real line to the unit circle as in the example

of discrete series and then use eikθ (dθ)
1+s

2 as an orthonormal basis in P+
s . Note that

the eigen values of ρgθ in this case are e2kiθ for all integer k.
The second principal series P−s can be obtained if instead of densities we consider

the pseudo densities which are transformed by the law

ρg

(
ϕ (x) (dx)

1+s
2

)
= ϕ

(
ax+ b

cx+ d

)
|cx+ d|−s−1 sgn (cx+ d) dx

1+s
2 .

3.4. Complementary series. Those are representations which do not appear
in the regular representation L2 (G). They can be realized as the representations in

Cs of all densities ϕ (x) (dx)
1+s

2 for real 0 < s < 1 and have an invariant Hermitian
product

(4.18){IVequ4} 〈ϕ, ψ〉 =

∫ ∞
−∞

∫ ∞
−∞

ϕ̄ (x)ψ (y) |x− y|s−1dxdy.



CHAPTER 5

On algebraic methods

et... plusieurs ratons laveurs. (J. Prévert, L’inventaire)

In which we put together all the facts in algebra coming to our mind for further use. We apologize
for the kaleidoscopic outcome.

1. Introduction

Say a few words about infinite direct sums and products, talk about Zorn’s lemma.
Emphasize that we are now in full generality.

2. Semisimple modules and density theorem

2.1. Semisimplicity. Let R be a unital ring. We will use indifferently the terms
R-module and module whenever the context is clear.

Definition 2.1. An R-module M is semisimple if for any submodule N ⊂ M
there exists a submodule N ′ of M such that M = N ⊕N ′.

Recall that a non-zero R-module M is simple if any submodule of M is either M
or 0. Clearly, a simple module is semi-simple.

{Vquotientsubmod}
Exercise 2.2. Show that if M a semisimple R-module and if N is a quotient of

M , then N is isomorphic to some submodule of M .
{VlmV1}

Lemma 2.3. Every submodule, every quotient of a semisimpleR-module is semisim-
ple.

Proof. Let N be a submodule of a semisimple module M , and let P be a sub-
module of N . By semisimplicity of M , there exists a submodule P ′ ⊂ M such that
M = P ⊕ P ′, then there exists an R-invariant projector p : M → P with kernel P ′.
The restriction of p to N defines the projector N → P and the kernel of this projector
is the complement of P in N . Apply Exercise 2.2 to complete the proof. �

For what comes next, it is essential that the ring R is unital. Indeed it is necessary
to have this property to ensure that R has a maximal left ideal and this can be proved
using Zorn’s Lemma.

{VlmV2}
Lemma 2.4. Any semisimple R-module contains a simple submodule.

91
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Proof. Let M be semisimple, m ∈M . Let I be a maximal left ideal in R. Then
Rm is semisimple by Lemma 2.3 and Rm = Im ⊕ N . We claim that N is simple.
Indeed, every submodule of Rm is of the form Jm for some left ideal J ⊂ R. If N ′

is a submodule of N , then N ′ ⊕ Im = Jm and hence I ⊂ J . But, by maximality of
I, J = I or R, therefore N ′ = 0 or N . �

{VlmV3}
Lemma 2.5. Let M be an R-module. The following conditions are equivalent:

(1) M is semisimple;

(2) M =
∑
i∈I

Mi for a family of simple submodules Mi of M indexed by a set I;

(3) M =
⊕
j∈J0

Mj for a family of simple submodules Mj of M indexed by a set

J0.

Proof. (1) ⇒ (2) Let {Mi}i∈I be the collection of all simple submodules of
M . We want to show that M =

∑
i∈IMi. Let N =

∑
i∈IMi and assume that N

is a proper submodule of M . Then M = N ⊕ N ′ by the semisimplicity of M . By
Lemma 2.4, N ′ contains a simple submodule which can not be contained in the family
{Mi}i∈I . Contradiction.

Let us prove (2) ⇒ (3). We consider all possible families {Mj}j∈J of simple

submodules of M such that
∑

j∈JMj = ⊕j∈JMj. First, we note the set of such
families satisfies the conditions of Zorn’s lemma, namely that any totally ordered
subset of such families has a maximal element, where the order is the inclusion order.
To check this just take the union of all sets in a totally ordered subset. Hence there is
a maximal subset J0 and the corresponding maximal family {Mj}j∈J0

which satisfies∑
j∈J0

Mj = ⊕j∈JMj. We claim that the sum M = ⊕j∈J0Mj. Indeed, otherwise we
would have a simple submodule Mk which does not belong to ⊕j∈J0Mj. But then∑

j∈J0∪kMj = ⊕j∈J0∪kMj which contradicts maximality of J0.

Finally, let us prove (3) ⇒ (1). Let N ⊂ M be a submodule and S ⊂ J0 be
a maximal subset such that N ∩ (⊕j∈SMj) = 0 (Zorn’s lemma once more). Let
M ′ = N ⊕ (⊕j∈SMj). We claim that M ′ = M . Indeed, otherwise there exists k ∈ J0

such that Mk does not belong to M ′. Then Mk ∩M ′ = 0 by simplicity of Mk, and
therefore N ∩ (⊕j∈S∪kMj) = 0. Contradiction. �

Exercise 2.6. If R is a field, after noticing that an R-module is a vector space,
show that every simple R-module is one-dimensional, and therefore, through the
existence of bases, show that every module is semisimple.

Exercise 2.7. If R = Z, then some R-modules are not semisimple, for instance
Z itself.

{VlmV4}
Lemma 2.8. Let M be a semisimple module. Then M is simple if and only if

EndR (M) is a division ring.
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Proof. In one direction this is Schur’s lemma. In the opposite direction let
M = M1 ⊕M2 for some proper submodules M1 and M2 of M . Let p1, p2 be the
canonical projections onto M1 and M2 respectively. Then p1 ◦ p2 = 0 and therefore
p1, p2 can not be invertible. �

2.2. Jacobson density theorem. LetM be anyR-module. SetK := EndR (M),
then set S := EndK (M). There exists a natural homomorphism R → S. In general
it is neither surjective nor injective. In the case when M is semisimple it is very close
to being surjective.

{VthV1}
Theorem 2.9. (Jacobson density theorem). Assume that M is semisimple. Then

for any m1, . . . ,mn ∈ M and s ∈ S there exists r ∈ R such that rmi = smi for all
i = 1, . . . , n.

Proof. First let us prove the statement for n = 1. We just have to show that
Rm1 = Sm1. The inclusion Rm1 ⊂ Sm1 is obvious. We will prove the inverse
inclusion. The semisimplicity of M implies M = Rm1 ⊕ N for some submodule N
of M . Let p be the projector M → N with kernel Rm1. Then p ∈ K and therefore
p ◦ s = s ◦ p for every s ∈ S. Hence Ker p is S-invariant. So Sm1 ⊂ Rm1.

For arbitrary n we use the following lemma.
{VlmV5}

Lemma 2.10. Let K̂ := EndR (M⊕n) and Ŝ := EndK̂ (M⊕n). Then K̂ is isomor-

phic to the matrix ring Matn (K) and Ŝ is isomorphic to S. The latter isomorphism
is given by the diagonal action

s (m1, . . . ,mn) = (sm1, . . . , smn) .

Exercise 2.11. Adapt the proof of Lemma 1.12 Chapter 2 to check the above
lemma.

� {VcorV1}
Corollary 2.12. Let M be a semisimple R-module, which is finitely generated

over K. Then the natural map R→ EndK (M) is surjective.

Proof. Let m1, . . . ,mn be generators of M over K, apply Theorem 2.9. �
{VcorV2}

Corollary 2.13. Let R be an algebra over a field k, and ρ : R → Endk (V ) be
an irreducible finite-dimensional representation of R. Then

• There exists a division ring D containing k such that ρ (R) ∼= EndD (V ).
• If k is algebraically closed, then D = k and therefore ρ is surjective.

Proof. Apply Schur’s lemma. �

Exercise 2.14. Let V be an infinite-dimensional vector space over C and R be
the ring of linear operators in V of the form k Id +F for all linear operators F with
finite-dimensional image. Check that R is a ring and V is a simple R-module. Then
K = C, S is the ring of all linear operators in V and R is dense in S but R does not
coincide with S.
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3. Wedderburn–Artin theorem

A ring R is called semisimple if every R-module is semisimple. For example, a
group algebra k (G), for a finite group G such that char k does not divide |G|, is
semisimple by Maschke’s Theorem 3.3.

{VlmV6}
Lemma 3.1. Let R be a semisimple ring. Then as a module over itself R is

isomorphic to a finite direct sum of minimal left ideals.

Proof. Consider R as an R-module. By definition the simple submodules of R
are exactly the minimal left ideals of R. Hence since R is semisimple we can write R
as a direct sum ⊕i∈ILi of minimal left ideals Li. It remains to show that this direct
sum is finite. Indeed, let li ∈ Li be the image of the identity element 1 under the
projection R → Li. But R as a module is generated by 1. Therefore li 6= 0 for all
i ∈ I. Hence I is finite. �

{VcorVdirprod}
Corollary 3.2. A direct product of finitely many semisimple rings is semisimple.

{VmatringV}
Exercise 3.3. Let D be a division ring, and R = Matn(D) be a matrix ring over

D.
(a) Let Li be the subset of R consisting of all matrices which have zeros everywhere

outside the i-th column. Check that Li is a minimal left ideal of R and that R =
L1 ⊕ · · · ⊕ Ln. Therefore R is semisimple.

(b) Show that Li and Lj are isomorphic R-modules and that any simple R-module
is isomorphic to Li.

(c) Using Corollary 2.12 show that F := EndR(Li) is isomorphic to Dop, and that
R is isomorphic to EndF (Li).

By the above exercise and Corollary 3.2 a direct product Matn1 (D1) × · · · ×
Matnk (Dk) of finitely many matrix rings is semisimple. In fact any semisimple ring
is of this form.

{VthVWA}
Theorem 3.4. (Wedderburn-Artin) Let R be a semisimple ring. Then there exist

division rings D1, . . . , Dk such that R is isomorphic to a finite product of matrix rings

Matn1 (D1)× · · · ×Matnk (Dk) .

Furthermore, D1, . . . , Dk are unique up to isomorphism and this presentation of R is
unique up to permutation of the factors.

Proof. Take the decomposition of Lemma 3.1 and combine isomorphic factors
together. Then the following decomposition holds

R = L⊕n1
1 ⊕ · · · ⊕ L⊕nkk ,

where Li is not isomorphic to Lj if i 6= j. Set Ji = L⊕nii . We claim that Ji is actually
a two-sided ideal. Indeed Lemma 1.10 of Chapter 2 and simplicity of Li imply that
Lir is isomorphic to Li for any r ∈ R such that Lir 6= 0. Thus, Lir ⊂ Ji.
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Now we will show that each Ji is isomorphic to a matrix ring. Let Fi := EndJi(Li).
The natural homomorphism Ji → EndFi(Li) is surjective by Corollary 2.12. This
homomorphism is also injective since rLi = 0 implies rJi = 0 for any r ∈ R. Then,
since Ji is a unital ring r = 0. On the other hand, Fi is a division ring by Schur’s
lemma. Threfore we have an isomorphism Ji ' EndFi(Li). By Exercise 1.7 Li is a
free Fi-module. Moreover, Li is finitely generated over Fi as Ji is a sum of finitely
many left ideals. Thus, by Exercise 3.3 (c), Ji is isomorphic to Matni(Di) where
Di = F op

i .
The uniqueness of presentation follows easily from Krull-Schmidt theorem (Theo-

rem 4.19) which we prove in the next section. Indeed, let S1, . . . , Sk be a complete list
of non-isomorphic simple R-modules. Then both Di and ni are defined intrinsically,
since Dop

i ' EndR(Si) and ni is the multiplicity of the indecomposable module Si in
R. �

4. Jordan-Hölder theorem and indecomposable modules

Let R be a unital ring.

4.1. Artinian and Noetherian modules.

Definition 4.1. We say that an R-module M is Noetherian or satisfies the
ascending chain condition (ACC for short) if every increasing sequence

M1 ⊂M2 ⊂ . . .

of submodules of M stabilizes.
Similarly, we say that M is Artinian or satisfies the descending chain condition

(DCC) if every decreasing sequence

M1 ⊃M2 ⊃ . . .

of submodules of M stabilizes.

Exercise 4.2. Consider Z as a module over itself. Show that it is Noetherian
but not Artinian.

{VexexV}
Exercise 4.3. (a) A submodule or a quotient of a Noetherian (respectively,

Artinian) module is always Noetherian (resp. Artinian).
(b) Let

0→ N →M → L→ 0

be an exact sequence of R-modules. Assume that both N and L are Noetherian
(respectively, Artinian), then M is also Noetherian (respectively, Artinian).

{Vartsemisimple}
Exercise 4.4. Let M be a semisimple module. Prove that M is Noetherian if

and only if it is Artinian.



96 5. ON ALGEBRAIC METHODS

4.2. Jordan-Hölder theorem.

Definition 4.5. Let M be an R-module. A finite sequence of submodules of M

M = M0 ⊃M1 ⊃ · · · ⊃Mk = 0

such that Mi/Mi+1 is a simple module for all i = 0, . . . , k−1 is called a Jordan-Hölder
series of M .

{VjhlemV}
Lemma 4.6. An R-module M has a Jordan-Hölder series if and only if M is both

Artinian and Noetherian.

Proof. Let M be an R-module which is both Artinian and Noetherian. Then it
is easy to see that there exists a finite sequence of properly included submodules of
M

M = M0 ⊃M1 ⊃ · · · ⊃Mk = 0

which can not be refined. Then Mi/Mi+1 is a simple module for all i = 0, . . . , k − 1.
Conversely, assume that M has a Jordan-Hölder series

M = M0 ⊃M1 ⊃ · · · ⊃Mk = 0.

We prove that M is both Noetherian and Artinian by induction on k. If k = 1, then
M is simple and hence both Noetherian and Artinian. For k > 1 consider the exact
sequence

0→M1 →M →M/M1 → 0

and use Exercise 4.3 (b). �

We say that two Jordan-Hölder series of M

M = M0 ⊃M1 ⊃ · · · ⊃Mk = 0

and

M = N0 ⊃ N1 ⊃ · · · ⊃ Nl = 0

are equivalent if k = l and for some permutation s of indices 1, . . . , k − 1 we have
Mi/Mi+1

∼= Ns(i)/Ns(i)+1.
{Vth1}

Theorem 4.7. Let M be an R-module which is both Noetherian and Artinian.
Let

M = M0 ⊃M1 ⊃ · · · ⊃Mk = 0

and

M = N0 ⊃ N1 ⊃ · · · ⊃ Nl = 0

be two Jordan-Hölder series of M . Then they are equivalent.
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Proof. First note that if M is simple, then the statement is trivial. We will
prove that if the statement holds for any proper submodule of M then it is also true
for M . If M1 = N1, then the statement is obvious. Otherwise, M1 +N1 = M , hence
we have two isomorphisms M/M1

∼= N1/ (M1 ∩N1) and M/N1
∼= M1/ (M1 ∩N1),

like the second isomorphism theorem for groups. Now let

M1 ∩N1 ⊃ K1 ⊃ · · · ⊃ Ks = 0

be a Jordan-Hölder series for M1 ∩ N1. This gives us two new Jordan-Hölder series
of M

M = M0 ⊃M1 ⊃M1 ∩N1 ⊃ K1 ⊃ · · · ⊃ Ks = 0

and
M = N0 ⊃ N1 ⊃ N1 ∩M1 ⊃ K1 ⊃ · · · ⊃ Ks = 0.

These series are obviously equivalent. By our assumption on M1 and N1 the first
series is equivalent to M = M0 ⊃ M1 ⊃ · · · ⊃ Mk = 0, and the second one is
equivalent to M = N0 ⊃ N1 ⊃ · · · ⊃ Nl = {0}. Hence the original series are also
equivalent. �

Thus, we can now give two definitions:

Definition 4.8. First, we define the length l (M) of an R-module M which
satisfies ACC and DCC as the length of any Jordan-Hölder series of M . Note that
we can easily see that if N is a proper submodule of M , then l (N) < l (M).

Furthermore, this gives rise to a notion of finite length R-module.

Remark 4.9. Note that in the case of infinite series with simple quotients, we
may have many non-equivalent series. For example, consider Z as a Z-module. Then
the series

Z ⊃ 2Z ⊃ 4Z ⊃ . . .

is not equivalent to
Z ⊃ 3Z ⊃ 9Z ⊃ . . . .

4.3. Indecomposable modules and Krull–Schmidt theorem. A module M
is indecomposable if it is not zero and M = M1 ⊕M2 implies M1 = 0 or M2 = 0.

Example 4.10. Every simple module is indecomposable. Furthermore, if a semisim-
ple module M is indecomposable then M is simple.

Definition 4.11. An element e ∈ R is called an idempotent if e2 = e.
{VidempotentV}

Lemma 4.12. An R-module M is indecomposable if and only if every idempotent
in EndR(M) is either 1 or 0.

Proof. If M is decomposable, then M = M1 ⊕M2 for some proper submodules
M1 and M2. Then the projection e : M → M1 with kernel M2 is an idempotent
in EndRM , which is neither 0 nor 1. Conversely, any non-trivial idempotent e ∈
EndRM gives rise to a decomposition M = Ker e⊕ Im e. �
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Exercise 4.13. Show that Z is an indecomposable module over itself, although
it is not simple.

{VVlmiso}
Lemma 4.14. Let M and N be indecomposable R-modules, α ∈ HomR (M,N),

β ∈ HomR (N,M) be such that β ◦ α is an isomorphism. Then α and β are isomor-
phisms.

Proof. We claim that N = Imα⊕Ker β. Indeed, since Imα∩Ker β ⊂ Ker β ◦α,
we have Imα ∩Ker β = 0. Furthermore, for any x ∈ N set y := α ◦ (β ◦ α)−1 ◦ β (x)
and z = x − y. Then β(y) = β(x). One can write x = y + z, where z ∈ Ker β and
y ∈ Imα.

Since N is indecomposable, Imα = N , Ker β = 0, hence N is isomorphic to
M . �{VVlmlocal}

Lemma 4.15. Let M be an indecomposable R-module of finite length and ϕ ∈
EndR (M), then either ϕ is an isomorphism or ϕ is nilpotent.

Proof. Since M is of finite length and Kerϕn, Imϕn are submodules, there exists
n > 0 such that Kerϕn = Kerϕn+1, Imϕn = Imϕn+1. Then Kerϕn ∩ Imϕn = 0.
The latter implies that the exact sequence

0→ Kerϕn →M → Imϕn → 0

splits. Thus, M = Kerϕn ⊕ Imϕn. Since M is indecomposable, either Imϕn = 0,
Kerϕn = M or Kerϕn = 0, Imϕn = M . In the former case ϕ is nilpotent. In the
latter case ϕn is an isomorphism and hence ϕ is also an isomorphism. �

{VVlm3sum}
Lemma 4.16. Let M be as in Lemma 4.15 and ϕ, ϕ1, ϕ2 ∈ EndR (M) such that

ϕ = ϕ1 + ϕ2. Then if ϕ is an isomorphism, at least one of ϕ1 and ϕ2 is also an
isomorphism.

Proof. Without loss of generality we may assume that ϕ = id (otherwise multi-
ply by ϕ−1). In this case ϕ1 and ϕ2 commute. If both ϕ1 and ϕ2 are nilpotent, then
ϕ1 + ϕ2 is nilpotent, but this is impossible as ϕ1 + ϕ2 = id. �

{Vcor1V}
Corollary 4.17. LetM be as in Lemma 4.15. Let ϕ = ϕ1+· · ·+ϕk ∈ EndR (M).

If ϕ is an isomorphism then ϕi is an isomorphism at least for one i.

Exercise 4.18. Let M be of finite length. Show that M has a decomposition

M = M1 ⊕ · · · ⊕Mk,

where all Mi are indecomposable.
{VthV2}

Theorem 4.19. (Krull-Schmidt) Let M be an R-module of finite length. Con-
sider two decompositions

M = M1 ⊕ · · · ⊕Mk and M = N1 ⊕ · · · ⊕Nl

such that all Mi and Nj are indecomposable. Then k = l and there exists a permu-
tation s of indices 1, . . . , k such that Mi is isomorphic to Ns(i).
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Proof. We prove the statement by induction on k. The case k = 1 is clear since
in this case M is indecomposable.

Let

p
(1)
i : M →Mi, p

(2)
j : M → Nj

denote the natural projections, and

q
(1)
i : Mi →M, q

(2)
j : Nj → N

denote the injections. We have

l∑
j=1

q
(2)
j ◦ p

(2)
j = idM ,

hence
l∑

j=1

p
(1)
1 ◦ q

(2)
j ◦ p

(2)
j ◦ q

(1)
1 = idM1 .

By Corollary 4.17 there exists j such that p
(1)
1 ◦ q

(2)
j ◦ p

(2)
j ◦ q

(1)
1 is an isomorphism.

After permuting indices we may assume that j = 1. Then Lemma 4.14 implies that

p
(2)
1 ◦ q

(1)
1 is an isomorphism between M1 and N1. Set

M ′ := M2 ⊕ · · · ⊕Mk, N ′ := N2 ⊕ · · · ⊕Nl.

Since M1 intersects trivially N ′ = Ker p
(2)
1 we have M = M1 ⊕ N ′. But we also

M = M1 ⊕M ′. Therefore M ′ is isomorphic to N ′. By induction assumption the
statement holds for M ′ ' N ′. Hence the statement holds for M . �

Exercise 4.20. Let R = C[x, y, z]/(x2 + y2 + z2− 1). Consider a homomorphism
ϕ : R⊕R⊕R→ R defined by

ϕ(a, b, c) = xa+ yb+ zc.

Show that ϕ is surjective and the kernel of ϕ is not isomorphic to a free R-module
of rank 2. On the other hand

R⊕R⊕R ' R⊕Kerϕ,

hence in this case the Krull–Schmidt theorem does not hold.

5. A bit of homological algebra

Homology groups initially come from topology, they compute some important
invariants like the genus of a Riemann surface (which dates back from Riemann of
course) and more generally Betti numbers of manifolds.

For a general exposition of the topic of homological algebra, see, for instance,
[25], [19], [27] or [36].

Let R be a unital ring.
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5.1. Complexes. Let C• = ⊕i≥0Ci be a graded R-module. An R-morphism f
from C• to D• is of degree k (k ∈ Z) if f maps Ci to Di+k for all i. An R-differential
on C• is an R-morphism d from C• to C• of degree −1 such that d2 = 0.

An R-module C• together with a differential d is called a complex.
We usually represent C• the following way:

. . .
d−→ Ci

d−→ . . .
d−→ C1

d−→ C0 → 0.

Remark 5.1. It will be convenient to look at similar situations for an R-morphism
δ of degree +1 on a graded R-module such that δ2 = 0. In this case, we will use
upper indices Ci (instead of Ci) and represent the complex the following way:

0→ C0 δ−→ C1 δ−→ . . .
δ−→ Ci δ−→ . . .

{VVKoszul}
Exercise 5.2. (Koszul complex) The following example is very important.
Let V be a finite-dimensional vector space over a field k and denote by V ∗ its

dual space. By S(V ) =
⊕

Si(V ) and Λ(V ) =
⊕

Λi(V ) we denote the symmetric
and the exterior algebras of V respectively.

Choose a basis e1, . . . , en of V and let f1, . . . , fn be the dual basis in V ∗, i.e.
fi(ej) = δij. For any x ∈ V ∗ we define the linear derivation ∂x : S(V )→ S(V ) given
by ∂x(v) := x(v) for v ∈ V and extend it to the whole S(V ) via the Leibniz relation

∂x(u1u2) = ∂x(u1)u2 + u1∂x(u2) for all u1, u2 ∈ S(V ).

Now set Ck := S(V )⊗ Λk(V ) and C• := S(V )⊗ Λ(V ). Define δ : C• → C• by

δ(u⊗ w) :=
n∑
j=1

dfj(u)⊗ (ej ∧ w) for all u ∈ S(V ), w ∈ Λ(V ).

(a) Show that δ does not depend on the choice of basis in V .
(b) Prove that δ2 = 0, and therefore (C•, δ) is a complex. It is called the Koszul

complex.
(c) Let p(w) denote the parity of the degree of w if w is homogeneous in Λ(V ).

For any x ∈ V ∗ define the linear map ∂x : Λ(V )→ Λ(V ) by setting ∂x(v) := x(v) for
all v ∈ V and extend it to the whole Λ(V ) by the Z2-graded version of the Leibniz
relation

∂x(w1 ∧ w2) = ∂x(w1) ∧ w2 + (−1)p(w1)w1 ∧ ∂x(w2) for all w1, w2 ∈ Λ(V ).

Check that one can construct a differential d of degree −1 on the Koszul complex by

d(u⊗ w) :=
n∑
j=1

(uej)⊗ ∂fj(w) for all u ∈ S(V ), w ∈ Λ(V ).
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5.2. Homology and Cohomology. Since in any complex d2 = 0, we have
Im d ⊂ Ker d (in every degree). The complex (C•, d) is exact if Im d = Ker d. The
key notion of homological algebra is defined below. This notion expresses how far a
given complex is from being exact.

Definition 5.3. Let (C•, d) be a complex of R-modules (with d of degree −1).
Its i-th homology, Hi (C•), is the quotient

Hi (C•) = (Ker d ∩ Ci) / (Im d ∩ Ci) .
A complex (C•, d) is exact if and only if Hi (C•) = 0 for all i ≥ 0.

If (C•, δ) is a complex with a differential δ of degree +1 we use the term coho-
mology instead of homology and we consistently use upper indices in the notation:

H i (C•) =
(
Ker δ ∩ Ci

)
/
(
Im δ ∩ Ci

)
.

Definition 5.4. Given two complexes (C•, d) and (C ′•, d
′), a homomorphism

f : C• → C ′• of R-modules of degree 0 which satisfies the relation f ◦ d = d′ ◦ f is
called a morphism of complexes.

Exercise 5.5. Let f : C• → C ′• be a morphism of complexes. Check that
f(Ker d) ⊂ Ker d′ and f(Im d) ⊂ Im d′. Therefore f induces a homomorphism

f∗ : Hi (C•)→ Hi (C
′
•)

between homology groups of the complexes.

Let (C•, d), (C ′•, d
′), (C ′′• , d

′′) be complexes and f : C ′• → C ′′• and g : C• → C ′• be
morphisms such that the sequence

0→ Ci
g−→ C ′i

f−→ C ′′i → 0

is exact for all i ≥ 0.
{Vsnake}

Exercise 5.6. (Snake Lemma) One can define a homomorphism δ : Hi(C
′′
• )→

Hi−1(C•) as follows. Let x ∈ Ker d′′∩C ′′i and y be an arbitrary element in the preimage
f−1(x) ⊂ C ′i. Check that d′(y) lies in the image of g. Pick up z ∈ g−1(d′(y)) ⊂ Ci−1.
Show that z ∈ Ker d. Moreover, show that for a different choice of y′ ∈ f−1(x) ⊂ C ′i
and of z′ ∈ g−1(d′(y′)) ⊂ Ci−1 the difference z− z′ lies in the image of d : Ci → Ci−1.
Thus, x 7→ z gives a well-defined map δ : Hi(C

′′
• )→ Hi−1(C•).

Why is it called “snake lemma”? Look at the following diagram

Ci
g−−−→ C ′i

f−−−→ C ′′i

d

y d′

y d′′

y
Ci−1

g−−−→ C ′i−1

f−−−→ C ′′i−1

In this diagram δ = g−1 ◦ d′ ◦ f−1 goes from the upper right to the lower left corners.
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{VthV3}
Theorem 5.7. (Long exact sequence). The following sequence

δ−→ Hi (C•)
g∗−→ Hi (C

′
•)

f∗−→ Hi (C
′′
• )

δ−→ Hi−1 (C•)
g∗−→ . . .

is actually an exact complex.

We skip the proof of this theorem. The enthusiastic reader might verify it as an
exercise or read the proof in [25] or [36].

5.3. Homotopy.

Definition 5.8. Consider complexes (C•, d), (C ′•, d
′) of R-modules and let f, g :

C• → C ′• be morphisms. We say that f and g are homotopically equivalent if there
exists a map h : C• → C ′• of degree 1 such that

f − g = h ◦ d+ d′ ◦ h.
{VVlm4}

Lemma 5.9. If f and g are homotopically equivalent then f∗ = g∗.

Proof. Let φ := f − g and x ∈ Ci such that dx = 0. Then

φ (x) = h (dx) + d′ (hx) = d′ (hx) ∈ Im d′.

Hence f∗ − g∗ = 0. �

We say that complexes C• and C ′• are homotopically equivalent if there exist
f : C• → C ′• and g : C ′• → C• such that f ◦ g is homotopically equivalent to idC′
and g ◦ f is homotopically equivalent to idC . Lemma 5.9 implies that homotopically
equivalent complexes have isomorphic homology.

Let (C•, d) be a complex of R-modules and M be an R-module. Then we have a
complex of abelian groups

0→ HomR(C0,M)
δ−→ HomR(C1,M)

δ−→ . . .
δ−→ HomR(Ci,M)

δ−→ . . . ,

where δ : HomR(Ci,M)→ HomR(Ci+1,M) is defined by

(5.1){VVdelta} δ(ϕ)(x) := ϕ(dx) for all ϕ ∈ HomR(Ci,M) and x ∈ Ci+1.

Note that the differential δ on HomR (C•,M) has degree 1. The following Lemma
will be used in the next section. The proof is straightforward and we leave it to the
reader.{VVlm6}

Lemma 5.10. Let (C•, d) and (C ′•, d
′) be homotopically equivalent complexes

and M be an arbitrary R-module. Then the complexes (HomR (C•,M) , δ) and
(HomR (C ′•,M) , δ′) are also homotopically equivalent.

The following lemma is useful for calculating cohomology.
{VVhomotopy}

Lemma 5.11. Let (C•, d) be a complex of R-modules and h : C• → C• be a map
of degree 1. Set f := d◦h+h◦d. Then f is a morphism of complexes. Furthermore,
if f : Ci → Ci is an isomorphism for all i ≥ 0, then C• is exact.
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Proof. First, f has degree 0 and since d2 = 0 we have

d ◦ f = d ◦ h ◦ d = f ◦ d.

Thus, f is a morphism of complexes.
Now let f be an isomorphism. Then f∗ : Hi(C•)→ Hi(C•) is also an isomorphism

for all i. On the other hand, f is homotopically equivalent to 0. Hence, by Lemma
5.9, f∗ = 0. Therefore Hi(C•) = 0 for all i. �

Exercise 5.12. Recall the Koszul complex (C•, δ) from Exercise 5.2. Assume
the field k has characteristic zero. Show that H i(C•) = 0 for i ≥ 0 and H0(C•) = k.

Hint. For every m ≥ 0 consider the subcomplex C•m with graded components

Ci
m := Sm−i(V )⊗ Λi(V ).

Check that d(Ci
m) ⊂ Ci−1

m , δ(Ci
m) ⊂ Ci+1

m and that the relation

d ◦ δ + δ ◦ d = m id

holds on C•m. Then use Lemma 5.11 and the decomposition C• =
⊕

m≥0C
•
m.

6. Projective modules

Let R be a unital ring.

6.1. Projective modules. An R-module P is projective if for any surjective
morphism ϕ : M → N of R-modules and any morphism ψ : P → N there exists a
morphism f : P →M such that ψ = ϕ ◦ f .

P
f //___

ψ

  AAAAAAAA M

ϕ
����
N

Example 6.1. A free R-module F is projective. Indeed, let {ei}i∈I be a set of
generators of F . Define f : F →M by f (ei) = ϕ−1 (ψ (ei)).

{VVlm7}
Lemma 6.2. Let P be an R-module, the following conditions are equivalent

(1) P is projective;
(2) There exists a free module F such that F is isomorphic to P ⊕ P ′;
(3) Any exact sequence of R-modules

0→ N →M → P → 0

splits.
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Proof. (1)⇒ (3)
Consider the exact sequence

0→ N →M
ϕ−→ P → 0.

Set ψ = idP . Since ϕ is surjective and P is projective, there exists f : P → M such
that ψ = idP = ϕ ◦ f .

(3)⇒ (2) Every module is a quotient of a free module. Therefore we just have to
apply (3) to the exact sequence

0→ N → F → P → 0

for a free module F .
(2) ⇒ (1) Choose a free module F such that F = P ⊕ P ′. Let ϕ : M → N be a

surjective morphism of R-modules and ψ a morphism ψ : P → N . Now extend ψ to
ψ̃ : F → N such that the restriction of ψ̃ to P (respectively, P ′) is ψ (respectively,

zero). There exists f : F →M such that ϕ ◦ f = ψ̃. After restriction to P we get

ϕ ◦ f|P = ψ̃|P = ψ.

�
{VVprincipal}

Exercise 6.3. Recall that a ring A is called a principal ring if A is commutative,
has no zero divisors and every ideal of A is principal, i.e. generated by a single
element.

(a) Let F be a free A-module. Show that every submodule of F is free. For
finitely generated F this can be done by induction on the rank of F . In the infinite
case one has to use transfinite induction, see [27](651).

(b) Let P be a projective A-module. Show that P is free.
{Vexinj}

Exercise 6.4. An injective R-module is a module I such that, for any injective
homomorphism i : X → Y and any homomorphism ϕ : X → I, there exists a
homomorphism ψ : Y → I such that ϕ = ψ ◦ i.

(a) Show that a module I is injective if and only if Ext1 (X, I) = 0 for any
R-module X.

One can see analogy with projective modules. However, a free module is not
injective in general. Thus, checking that every R-module has an injective resolution
is harder, see for instance [22].

(b) Let A be an algebra over a field and P be a projective right A-module. Then
P ∗ is a left A-module with action of A given by

〈aϕ, x〉 = 〈ϕ, ax〉

for all a ∈ A, x ∈ P and ϕ ∈ P ∗. Show that P ∗ is injective.

Exercise 6.5. Check that Q is an injective Z-module.
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6.2. Projective cover.

Definition 6.6. Let M be an R-module. A submodule N of M is small if for
any submodule L ⊂M such that L+N = M , we have L = M .

{Vsmallex}
Exercise 6.7. Let f : P → M be a surjective morphism of modules such that

Ker f is a small submodule of P . Assume that f = f ◦ γ for some homomorphism
γ : P → P . Show that γ is surjective.

Definition 6.8. Let M be an R-module. A projective cover of M is a projective
R-module P equipped with a surjective morphism f : P → M such that Ker f ⊂ P
is small. {Vprojcover}

Lemma 6.9. Let f : P → M and g : Q → M be two projective covers of M .
Then there exists an isomorphism ϕ : P → Q such that g ◦ ϕ = f .

Proof. The existence of ϕ such that g ◦ϕ = f follows immediately from projec-
tivity of P . Similarly, we obtain the existence of a homomorphism ψ : Q → P such
that f ◦ ψ = g. Therefore we have g ◦ ϕ ◦ ψ = g.. By Exercise 6.7 ϕ ◦ ψ is surjective.
This implies surjectivity of ϕ : P → Q. Since Q is projective we have an isomorphism
P ' Q⊕Kerϕ. Since Kerϕ ⊂ Ker f , we have P = Q+Ker f . Recall that Ker f ⊂ P
is a small. Hence P = Q and Kerϕ = 0. Thus ϕ is an isomorphism. �

6.3. Projective resolutions.

Definition 6.10. Let M be an R-module. A complex (P•, d) of R-modules

. . .
d−→ Pi

d−→ . . .
d−→ P1

d−→ P0 → 0

such that Pi is projective for all i ≥ 0, H0(P•) = M and Hi(P•) = 0 for all i ≥ 1, is
called a projective resolution of M .

It is sometimes useful to see a projective resolution as the exact complex

· · · → Pi → · · · → P1 → P0
p−→M → 0,

where p : P0 →M is the lift of the identity map between H0(P•) and M .
{VVfree}

Exercise 6.11. Show that for every R-module M , there exists a resolution of M

· · · → Fi → · · · → F1 → F0 → 0

such that all Fi are free. Such a resolution is called a free resolution.

This exercise immediately implies:
{VVprop}

Proposition 6.12. Every R-module has a projective resolution.
{VVexres}

Example 6.13. Let R = k[x1, ..., xn] be a polynomial ring over a field k. Con-
sider the simple R-module M := R/(x1, . . . , xn). One can use the Koszul complex,
introduced in Exercise 5.2, to construct a projective resolution of M . First, we iden-
tify R with the symmetric algebra S(V ) of the vector space V = kn. Let Pi denote
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the free R-module R ⊗ Λi(V ) and recall d : Pi → Pi−1 from Exercise 5.2 (c). Then
H0(P•) = M and Hi(P•) = 0 for i ≥ 1. Hence (P•, d) is a free resolution of M .

{VVlm77}
Lemma 6.14. Let (P•, d) and (P•, d

′) be two projective resolutions of an R-module
M . Then there exists a morphism of complexes f : P• → P ′• such that f∗ : H0 (P•)→
H0 (P ′•) induces the identity idM . Moreover, f is unique up to homotopy equivalence.

Proof. We use an induction procedure to construct a morphism fi : Pi → P ′i .
For i = 0, we denote by p : P0 →M and p′ : P ′0 →M the natural projections. Since
P0 is projective there exists a morphism f0 : P0 → P ′0 such that p′ ◦ f0 = p:

// P1
d // P0

f0

���
�
�

p // M

id

��

// 0

// P ′1
d′ // P ′0

p′ // M // 0

then we have f(Ker p) ⊂ Ker p′. We construct f1 : P1 → P ′1 using the following
commutative diagram:

// P1

f1

���
�
�

d // Ker p

f0

��

// 0

// P ′1
d′ // Ker p′ // 0.

The existence of f1 follows from projectivity of P1 and surjectivity of d′.
We repeat the procedure to construct fi : Pi → Pi for all i.
Suppose now that f and g are two morphisms satisfying the assumptions of the

lemma. Let us prove that f and g are homotopically equivalent. Let ϕ = f − g. We
have to prove the existence of maps hi : Pi → Pi+1 such that hi ◦ d = d′ ◦ hi+1. Let
us explain how to construct h0 and h1 using the following diagram

// P2

ϕ2

��

d // P1
d //

ϕ1

��h1~~~
~

~
~

P0

h0~~~
~

~
~

ϕ0

��

p // M

0

��

// 0

// P ′2
d′ // P ′1

d′ // P ′0
p′ // M // 0.

Since the morphism ϕ∗ : H0(P•) → H0(P ′•) is zero, we get p′ ◦ ϕ0 = 0, and hence
Imϕ0 ⊂ Im d′. Recall that P0 is projective, therefore there exists h0 : P0 → P ′1 such
that d′ ◦ h0 = ϕ0.

To construct the map h1, set ψ := ϕ1 − h0 ◦ d. The relation

d′ ◦ h0 ◦ d = ϕ0 ◦ d = d′ ◦ ϕ1

implies d′ ◦ ψ = 0. Since H1(P ′•) = 0, the image of ψ belongs to d′(P ′2), and by
projectivity of P1 there exists a morphism h1 : P1 → P ′2 such that

d′ ◦ h1 = ψ = ϕ1 − h0 ◦ d.
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The construction of hi for i > 1 is similar to the one for i = 1. The collection of
the maps hi gives the homotopy equivalence. �

The following proposition expresses in what sense a projective resolution is unique.
{VVprohom}

Proposition 6.15. Let M be an R-module, and (P•, d), (P ′•, d
′) be two projective

resolutions of M . Then (P•, d) and (P ′•, d
′) are homotopically equivalent.

Proof. By Lemma 6.14 there exist f : P• → P ′• and g : P ′• → P• such that g ◦ f
is homotopically equivalent to idP• and f ◦ g is homotopically equivalent to idP ′• . �

6.4. Extensions. {VVdefext}
Definition 6.16. Let M and N be two R-modules and P• be a projective reso-

lution of M . Consider the complex of abelian groups

0→ HomR (P0, N)
δ−→ HomR (P1, N)

δ−→ . . . ,

where δ is defined by (5.1). We define the i-th extension group ExtiR (M,N) as the
i-th cohomology group of this complex. Lemma 5.10 ensures that ExtiR (M,N) does
not depend on the choice of a projective resolution of M .

{Vext0}
Exercise 6.17. Check that Ext0

R(M,N) = HomR(M,N).

Let us give an interpretation of Ext1
R(M,N). Consider an exact sequence of R-

modules

(5.2) {Vexact} 0→ N
α−→ Q

β−→M → 0

and a projective resolution

(5.3) {Vres} . . .
d−→ P2

d−→ P1
d−→ P0

ϕ−→M → 0

of M . Then by projectivity of P• there exist ψ ∈ HomR(P0, Q) and γ ∈ HomR(P1, N)
which make the following diagram

// P2

0

��

d // P1
d //

γ

��

P0

ψ
��

ϕ

  AAAAAAAA

0 // N
α // Q

β // M // 0

commutative. Let δ be the differential of degree +1 in Definition 6.16. The commuta-
tivity of this diagram implies that γ ◦d = 0 and hence δ(γ) = 0. The choice of ψ and
γ is not unique. If we choose another pair ψ′ ∈ HomR(P0, Q) and γ′ ∈ HomR(P1, N),
then there exists θ ∈ HomR(P0, N) such that ψ′−ψ = α ◦ θ as in the diagram below

// P2

0

��

d // P1
d //

��

P0

��

0

  AAAAAAAA
θ

~~}}}}}}}}

0 // N
α // Q

β // M // 0.
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Furthermore, γ′ − γ = θ ◦ d or, equivalently, γ′ − γ = δ(θ). Thus, we can associate
the class [γ] ∈ Ext1

R (M,N) to the exact sequence (5.2).
Conversely, if we start with resolution (5.3) and a class [γ] ∈ Ext1

R (M,N), we
may consider some lift γ ∈ HomR(P1, N). Then we can associate the following short
exact sequence to [γ]

0→ P1/Ker γ → P0/d(Ker γ)→M → 0.

The reader may check that this exact sequence splits if and only if [γ] = 0.

Example 6.18. Let R be C [x]. Since C is algebraically closed, every simple R-
module is one-dimensional over C and isomorphic to Cλ := C [x] / (x− λ). It is easy
to check

0→ C [x]
d−→ C [x]→ 0,

where d (1) = x− λ is a projective resolution of Cλ. We can compute Ext• (Cλ,Cµ).
It amounts to calculating the cohomology of the complex

0→ C δ−→ C→ 0

where δ is the multiplication by µ− λ. Hence

Ext0
R(Cλ,Cµ) = Ext1

R(Cλ,Cµ) =

{
0 if λ 6= µ
C if λ = µ

Example 6.19. Let R = C [x] / (x2). Then R has only one (up to isomorphism)
simple module, which we denote C0. Then

. . .
d−→ R

d−→ R→ 0,

where d (1) = x is a projective resolution for C0 and Exti (C0,C0) = C for all i ≥ 0.

7. Representations of artinian rings

7.1. Idempotents, nilpotent ideals and Jacobson radical. A (left or right)
ideal N of a ring R is called nilpotent if there exists p > 0 such that Np = 0. The
smallest such p is called the degree of nilpotency of N . The following lemma is
sometimes called “lifting of an idempotent”.

{Vlift}
Lemma 7.1. Let N be a left (or right) nilpotent ideal of R and take r ∈ R

such that r2 ≡ r mod N . Then there exists an idempotent e ∈ R such that e ≡ r
mod N .

Proof. Let N be a left ideal. We prove the statement by induction on the degree
of nilpotency d(N). The case d(N) = 1 is trivial. Let d(N) > 1. Set n = r2− r, then
n belongs to N and rn = nr. Therefore we have

(r + n− 2rn)2 ≡ r2 + 2rn− 4r2n mod N2.
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We set s = r + n− 2rn. Then we have

s2 ≡ s mod N2, s ≡ r mod N.

Since d(N2) < d(N), the induction assumption ensures that there exists an idempo-
tent e ∈ R such that e ≡ s mod N2, hence e ≡ r mod N . �

For an R-module M let

AnnM = {x ∈ R | xM = 0} .

Definition 7.2. The Jacobson radical radR of a ring R is the intersection of
AnnM for all simple R-modules M .

{Vexrad}
Exercise 7.3. (a) Prove that radR is the intersection of all maximal left ideals

of R as well as the intersection of all maximal right ideals.
(b) Show that x belongs to radR if and only if 1 + rx is invertible for any r ∈ R.
(c) Show that if N is a nilpotent left ideal of R, then N is contained in radR.

{Vradidempotent}
Lemma 7.4. Let e ∈ radR such that e2 = e. Then e = 0.

Proof. By Exercise 7.3 (b) we have that 1 − e is invertible. But e(1 − e) = 0
and therefore e = 0. �

7.2. The Jacobson radical of an Artinian ring.

Definition 7.5. A ring R is artinian if it satisfies the descending chain condition
for left ideals.

A typical example of artinian ring is a finite-dimensional algebra over a field. It
follows from the definition that any left ideal in an Artinian ring contains a minimal
(non-zero) ideal.

{Vartid}
Lemma 7.6. Let R be an artinian ring, I ⊂ R be a left ideal. If I is not nilpotent,

then I contains a non-zero idempotent.

Proof. Since R is Artinian, one can can find a minimal left ideal J ⊂ I among
all non-nilpotent ideals of I. Then J2 = J . We will prove that J contains a non-zero
idempotent.

Let L ⊂ J be some minimal left ideal such that JL 6= 0. Then there exists x ∈ L
such that Jx 6= 0. By minimality of L we have Jx = L. Therefore there exists r ∈ J
such that rx = x. Hence (r2 − r)x = 0. Let N = {y ∈ J | yx = 0}. Note that N is
a proper left ideal of J and therefore N is nilpotent. Thus, we have r2 ≡ r mod N .
By Lemma 7.1 there exists an idempotent e ∈ R such that e ≡ r mod N , and we
are done. �

{Vth10}
Theorem 7.7. If R is artinian then radR is the unique maximal nilpotent ideal

of R.
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Proof. By Exercise 7.3 every nilpotent ideal of R lies in radR. It remains to
show that radR is nilpotent. Indeed, otherwise by Lemma 7.6, radR contains a
non-zero idempotent. This contradicts Lemma 7.4. �

{Vlm12}
Lemma 7.8. An Artinian ring R is semisimple if and only if radR = 0.

Proof. If R is semisimple and Artinian, then by Wedderburn-Artin theorem it
is a direct product of matrix rings, which does not have non-trivial nilpotent ideals.

If R is Artinian with trivial radical, then by Lemma 7.6 every minimal left ideal
L of R contains an idempotent e such that L = Re. Hence R is isomorphic to
L⊕R(1− e). Therefore R is a direct sum of its minimal left ideals. �

{Vcor12}
Corollary 7.9. If R is Artinian, then R/ radR is semisimple.

Proof. By Theorem 7.7 the quotient ring R/ radR does not have non-zero nilpo-
tent ideals. Hence it is semisimple by Lemma 7.8. �

7.3. Modules over Artinian rings.
{Vradquotient}

Lemma 7.10. LetR be an Artinian ring andM be anR-module. ThenM/(radR)M
is the maximal semisimple quotient of M .

Proof. Since R/ radR is a semisimple ring and M/(radR)M is an R/ radR-
module, we obtain that M/(radR)M is semisimple. To prove maximality, observe
that radR acts by zero on any semisimple quotient of M . �

{Vradfilt}
Corollary 7.11. Assume that R is Artinian and M is an R-module. Consider

the filtration (called the radical filtration)

M ⊃ (radR)M ⊃ (radR)2M ⊃ · · · ⊃ (radR)kM = 0,

where k is the degree of nilpotency of radR. Then all quotients (radR)iM/(radR)i+1M
are semisimple R-modules. In particular, M always has a simple quotient.

{Vart=noeth}
Proposition 7.12. Let R be Artinian. Consider it as a module over itself. Then

R is a finite length module. Hence R is a Noetherian ring.

Proof. Apply Corollary 7.11 toM = R. Then every quotient (radR)i/(radR)i+1

is a semisimple Artinian R-module. By Exercise 4.4 (radR)i/(radR)i+1 is a Noether-
ian R-module. Hence R is a Noetherian module over itself. �

Let us apply the Krull–Schmidt theorem to an Artinian ring R considered as a left
module over itself. Then R has a decomposition into a direct sum of indecomposable
submodules

R = L1 ⊕ · · · ⊕ Ln.
Recall that EndR (R) = Rop. Therefore the canonical projection on each compo-

nent Li is given by multiplication (on the right) by some idempotent element ei ∈ Li.



7. REPRESENTATIONS OF ARTINIAN RINGS 111

In other words R has a decomposition

(5.4){Vartdecomp} R = Re1 ⊕ · · · ⊕Ren.
Moreover, eiej = δijei. Once more by Krull-Schmidt theorem this decomposition is
unique up to multiplication by some invertible element on the right.

Definition 7.13. An idempotent e ∈ R is called primitive if it can not be written
e = e′ + e′′ for some non-zero idempotents e′, e′′ such that e′e′′ = e′′e′ = 0.

{Vexprimitive}
Exercise 7.14. Prove that the idempotent e ∈ R is primitive if and only if Re

is an indecomposable R-module.

In the decomposition (5.4) the idempotents e1, . . . , en are primitive.
{Vlm13}

Lemma 7.15. Assume R is Artinian, N = radR and e ∈ R is a primitive idem-
potent. Then Ne is a unique maximal submodule of Re.

Proof. Due to Corollary 7.11 it is sufficient to show that Re/Ne is a simple
R-module. Since e is primitive, the left ideal Re is an indecomposable R-module.
Assume that Re/Ne is not simple. Then Re/Ne = Ree1 ⊕ Ree2 for some non-zero
idempotent elements e1 and e2 in the quotient ring R/N . By Lemma 7.1 there exist
idempotents f1, f2 ∈ R such that fi ≡ ei mod N . Then Re = Rf1 ⊕ Rf2 which
contradicts indecomposability of Re. �

{Vth15}
Theorem 7.16. Assume R is Artinian.

(1) Every simple R-module S has a projective cover which is isomorphic to Re
for some primitive idempotent e ∈ R.

(2) Let P be an indecomposable projective R-module. There exists a primitive
idempotent e ∈ R such that P is isomorphic to Re. Furthermore, P has a
unique simple quotient.

Proof. Let S be a simple R-module. There exists a surjective homomorphism
f : R → S. Consider the decomposition (5.4). There exists i ≤ n such that the
restriction of f on Rei is non-zero. By the simplicity of S the restriction f : Rei → S
is surjective. It follows from Lemma 7.15 that Rei is a projective cover of S.

Let P be an indecomposable projective module. By Lemma 7.10 the quotient
P/(radRP ) is semisimple. Let S be a simple submodule of P/(radRP ). Then we
have a surjection f : P → S. Let g : Q → S be a projective cover of S. There
exists a morphism ϕ : P → Q such that f = g ◦ ϕ. Since Q has a unique simple
quotient, the morphism ϕ is surjective. Then P is isomorphic to Q ⊕ Kerϕ. The
indecomposability of P implies that P is isomorphic to Q. �

{Vexs3}
Example 7.17. Consider the group algebra R = F3 (S3). First let us classify

simple and indecomposable projective R-modules.
Let r be a 3-cycle and s be a transposition. Since s and r generate S3, one can

see easily that the elements r − 1, r2 − 1, sr − s and sr2 − s span a nilpotent ideal
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N , which turns out to be maximal. The quotient R/N is a semisimple R-module
with two simple components L1 and L2, where L1 (resp. L2) is the trivial (resp. the
sign) representation of S3. Set e1 = −s− 1 and e2 = s− 1. Then e1, e2 are primitive
idempotents of R such that 1 = e1 + e2 and e1e2 = 0. Hence R has exactly two
indecomposable projective modules, namely P1 = Re1 and P2 = Re2. Those modules
can be seen as induced modules

Re1
∼= IndS3

S2
(triv) , Re2

∼= IndS3
S2

(sgn) .

Thus P1 is the 3-dimensional permutation representation of S3, and P2 = P1 ⊗ sgn.

Exercise 7.18. Compute explicitly the radical filtration of P1 and P2. Show that

P1/(radR)P1 ' L1, (radR)P1/(radR)2P1 ' L2, (radR)2P1 ' L1

and

P2/(radR)P2 ' L2, (radR)P2/(radR)2P2 ' L1, (radR)2P2 ' L2.

Now we will calculate the extension groups between the simple modules. The
above exercise implies the following exact sequences

0→ L2 → P2 → P1 → L1 → 0, 0→ L1 → P1 → P2 → L2 → 0.

By gluing these sequences together we obtain a projective resolution for L1

· · · → P1 → P2 → P2 → P1 → P1 → P2 → P2 → P1 → 0

and for L2

· · · → P2 → P1 → P1 → P2 → P2 → P1 → P1 → P2 → 0.

Using the following obvious relation

Hom(Pi, Pj) =

{
F3, if i = j

0, if i 6= j

we obtain

Extp (Li, Li) =


0, if p ≡ 1, 2 mod 4, i = j

F3, if p ≡ 0, 3 mod 4, i = j

0, if p ≡ 0, 3 mod 4, i 6= j

F3, if p ≡ 1, 2 mod 4, i 6= j
{Vuppertriangular}

Exercise 7.19. Let Bn denote the algebra of upper triangular n×n matrices over
a field F. Denote by Eij the elementary matrix. Show that Eii for i = 1, . . . , n, are
primitive idempotents of Bn. Furthermore, show that Bn has n up to isomorphism
simple modules L1, . . . , Ln associated with those idempotents and that the dimension
of every Li over F is 1. Finally check that

Extp (Li, Lj) =

{
F, if i = j, p = 0 or i = j + 1, p = 1

0, otherwise
.
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8. Abelian categories

An abelian category is a generalization of categories of modules over a ring.
Let us start with definition of an additive category.

Definition 8.1. A category C is called additive if for any pair of objects A, B,

(1) The set of morphisms HomC(A,B) is an abelian group.
(2) There exist an object A ⊕ B, called a direct sum, and a pair of morphisms

iA : A→ A⊕B and iB : B → A⊕B such that for any morphisms ϕ : A→M
and ψ : B → M there exists a unique morphism τ : A⊕ B → M such that
τ ◦ iA = ϕ and τ ◦ iB = ψ.

(3) There exist an object A×B called a direct product and a pair of morphisms
pA : A×B → A and iB : A×B → B such that for any morphisms α : M → A
and β : M → M there exists a unique morphism θ : M → A× B such that
pA ◦ θ = α and pB ◦ θ = β.

(4) The induced morphism A⊕B → A×B is an isomorphism.

Definition 8.2. An abelian category is an additive category C such that, for
every morphism ϕ ∈ HomC(A,B)

(1) There exist an object and a morphism Kerϕ
i−→ A such that for any mor-

phism γ : M → A such that, ϕ ◦ γ = 0, there exists a unique morphism
δ : M → Kerϕ such that γ = i ◦ δ.

(2) There exist an object and morphism B
p−→ Cokerϕ such that for any mor-

phism τ : B → M such that, τ ◦ ϕ = 0, there exists a unique morphism
σ : Cokerϕ→M such that τ = σ ◦ p.

(3) There is an isomorphism Coker i→ Ker p.

Exercise 8.3. Let R be a ring, show that the category of finitely generated R-
modules is abelian. Show that the category of projective R-modules is additive but
not abelian in general. Finally show that the category of projective R-modules is
abelian if and only if R is a semisimple ring.

In an abelian category we can define the image of a morphism, a quotient object,
exact sequences, projective and injective objects. All the results of Sections 4, 5 and
6 can be generalized for abelian categories. If we want to define extension groups we
have to assume the existence of projective covers.

Definition 8.4. Let C be an abelian category. Its Grothendieck group KC is the
abelian group defined by generators and relations in the following way. For every
object M of C there is one generator [M ]. For every exact sequence

0→ N →M → K → 0

in C we have the relation [M ] = [K] + [N ].
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Exercise 8.5. Let C be the category of finite-dimensional vector spaces. Show
that KC is isomorphic to Z.

{exVsemisimple}
Exercise 8.6. Let G be a finite group and k be a field of characteristic 0. Let

C be the category of finite-dimensional k(G)-modules. Then KC is isomorphic to the
abelian subgroup of C(G) generated by the characters of irreducible representations.
Furthermore, the tensor product equips KC with a structure of commutative ring.



CHAPTER 6

Symmetric groups, Schur–Weyl duality and positive
self-adjoint Hopf algebras

This chapter was written with Laurent Gruson

Though this be madness, yet there is method in it (Hamlet, Act II scene 2)

In this chapter (from section 3), we will rely on a book by Andrei Zelevinsky,
Representations of finite classical groups, a Hopf algebra approach, [37], which gives
a very efficient axiomatisation of the essential properties of the representations of
symmetric groups and general linear groups over finite fields. In this book lies the
first appearance of the notion of categorification which has become an ubiquitous tool
in representation theory. For the case of symmetric groups, the seminal work is due
to Geissinger ([14]).

We will meet graded objects in what follows. Hence the word degree will be
attached to the gradation (and not to the dimension of a representation) throughout
this chapter.

1. Representations of symmetric groups
{partitions}

Consider the symmetric group Sn. In this section we classify irreducible repre-
sentations of Sn over Q. We will see that any irreducible representation over Q is
absolutely irreducible, in other words Q is a splitting field for Sn. We will realize the
irreducible representations of Sn as minimal left ideals in the group algebra Q(Sn).

Definition 1.1. A partition λ of n is a sequence of positive integers (λ1, . . . , λk)
such that λ1 ≥ · · · ≥ λk and λ1 + · · ·+ λk = n. We use the notation λ ` n when λ is
a partition of n. Moreover, the integer k is called the length of the partition λ.

{VIrem0}
Remark 1.2. Recall that two permutations lie in the same conjugacy class of

Sn if and only if there is a bijection between their sets of cycles which preserves the
lengths. Therefore we can parametrize the conjugacy classes in Sn by the partitions
of n.

115
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Definition 1.3. To every partition λ = (λ1, . . . , λk) we associate a table, also
denoted λ, consisting of n boxes with rows of length λ1, . . . , λk, it is called a Young
diagram. A Young tableau t(λ) is a Young diagram λ with entries 1, . . . , n in its
boxes such that every number occurs in exactly one box. We say that two Young
tableaux have the same shape if they are obtained from the same Young diagram.
The number of tableaux of shape λ equals n!.

{VIexyoung}
Example 1.4. Let n = 7, λ = (3, 2, 1, 1). The corresponding Young diagram is

and a possible example of tableau t(λ) is

1 2 3
4 5
6
7 .

Given a Young tableau t(λ), we denote by Pt(λ) the subgroup of Sn preserving the
rows of t(λ) and by Qt(λ) the subgroup of permutations preserving the columns.

{VIexyoungsym}
Example 1.5. Consider the tableau t(λ) from Example 1.4. Then Pt(λ) is iso-

morphic to S3 × S2, which is the subgroup of S7 permuting {1, 2, 3} and {4, 5}, and
Qt(λ) is isomorphic to S4 × S2 which permutes {1, 4, 6, 7} and {2, 5}.

{VIexrowcolumn}
Exercise 1.6. Check that Pt(λ) ∩Qt(λ) = {1} for any tableau t(λ).

Introduce the following elements in Q(Sn):

at(λ) =
∑

p∈Pt(λ)

p, bt(λ) =
∑

q∈Qt(λ)

(−1)qq, ct(λ) = at(λ)bt(λ),

where (−1)q stands for ε(q).
The element ct(λ) is called a Young symmetrizer.

{VIirrepsym}
Theorem 1.7. Let t(λ) be a Young tableau.

(1) The left ideal Q(Sn)ct(λ) is minimal, therefore it is a simple Q(Sn)-module.
(2) Two Q(Sn)-modules Q(Sn)ct(λ) and Q(Sn)ct′(µ) are isomorphic if and only if

µ = λ.
(3) Every simple Q(Sn)-module is isomorphic to Vt(λ) := Q(Sn)ct(λ) for some

Young tableau t(λ).
(4) The representatiion Vt(λ) is absolutely irreducible.

{VIrem1}
Remark 1.8. Note that assertion (3) of the Theorem follows from the first two,

since the number of Young diagrams is equal to the number of conjugacy classes (see
Remark 1.2).
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Example 1.9. Consider the partition (of length 1) λ = (n). Then the corre-
sponding Young diagram consists of one row with n boxes. For any tableau t(λ) we
have Pt(λ) = Sn, Qt(λ) is trivial and therefore

ct(λ) = at(λ) =
∑
s∈Sn

s.

The corresponding representation of Sn is trivial.

Example 1.10. Consider the partition λ = (1, . . . , 1) whose Young diagram con-
sists of one column with n boxes. Then Qt(λ) = Sn, Pt(λ) is trivial and

ct(λ) = bt(λ) =
∑
s∈Sn

(−1)s s.

Therefore the corresponding representation of Sn is the sign representation.

Example 1.11. Let us consider the partition λ = (n−1, 1) and the Young tableau
t(λ) which has entries 1, . . . , n − 1 in the first row and n in the second row. Then
Pt(λ) is isomorphic to Sn−1 and consists of all permutations which fix n, and Qt(λ) is
generated by the transposition (1n). We have

ct(λ) =

 ∑
s∈Sn−1

s

 (1− (1n)) .

Let E denote the permutation representation of Sn. Let us show that Q(Sn)ct(λ) is
the n − 1 dimensional simple submodule of E. Indeed, at(λ)ct(λ) = ct(λ), therefore
the restriction of Vt(λ) to Pt(λ) contains the trivial representation of Pt(λ). Recall
that the permutation representation can be obtained by induction from the trivial
representation of Sn−1:

E = IndSnPλ triv .

By Frobenius reciprocity Q(Sn)ct(λ) is a non-trivial submodule of E.

In the rest of this Section we prove Theorem 1.7.
First, let us note that Sn acts simply transitively on the set of Young tableaux of

the same shape by permuting the entries, and for any s ∈ Sn we have

ast(λ) = sat(λ)s
−1, bst(λ) = sbt(λ)s

−1, cst(λ) = sct(λ)s
−1.

Therefore if we have two tableaux t(λ) and t′(λ) of the same shape, then

Q(Sn)ct(λ) = Q(Sn)ct′(λ)s
−1

for some s ∈ Sn. Hence Q(Sn)ct(λ) and Q(Sn)ct′(λ) are isomorphic Q(Sn)-modules.
In what follows we denote by Vλ a representative of the isomorphism class of

Q(Sn)ct(λ) for some tableau t(λ). As we have seen the isomorphism class does not
depend on the tableau but only on its shape.
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{exVIaction}
Exercise 1.12. Let t(λ) be a Young tableau and s ∈ Sn. Show that if s does

not belong to the set Pt(λ)Qt(λ), then there exist two entries i, j which lie in the same
row of t(λ) and in the same column of st(λ). In other words, the transposition (ij)
lies in the intersection Pt(λ) ∩Qst(λ). Hint: Assume the opposite, and check that one
can find s′ ∈ Pt(λ) and s′′ ∈ Qst(λ) such that s′′t(λ) = s′st(λ).

Next, observe that for any p ∈ Pλ and q ∈ Qλ we have

pct(λ)q = (−1)q ct(λ).
{VIlm1symrep}

Lemma 1.13. Let t(λ) be a Young tableau and y ∈ Q(Sn). Assume that for all
p ∈ Pt(λ) and q ∈ Qt(λ) we have

pyq = (−1)q y.

Then y = act(λ) for some a ∈ Q.

Proof. Let T be a set of representatives of the double cosets Pt(λ)\Sn/Qt(λ).
Then Sn is the disjoint union

⊔
s∈T Pt(λ)sQt(λ) and we can write y in the form∑

s∈T

ds
∑

p∈Pt(λ),q∈Qt(λ)

(−1)q psq =
∑
s∈T

dsat(λ)sbt(λ).

It suffices to show that if s /∈ Pt(λ)Qt(λ) then at(λ)sbt(λ) = 0. This follows from Exercise
1.12. Indeed, there exists a transposition τ in the intersection Pt(λ)∩Qst(λ). Therefore

at(λ)sbt(λ)s
−1 = at(λ)bst(λ) = (at(λ)τ)(τbst(λ)) = −at(λ)bst(λ) = 0.

�

This lemma implies
{VIcor1repsym}

Corollary 1.14. We have ct(λ)Q(Sn)ct(λ) ⊂ Qct(λ).

Now we are ready to prove the first assertion of Theorem 1.7.
{VIlm2symrep}

Lemma 1.15. The ideal Q(Sn)ct(λ) is a minimal left ideal of Q(Sn).

Proof. Consider a left ideal W ⊂ Q(Sn)ct(λ). Then by Corollary 1.14 either
ct(λ)W = Qct(λ) or ct(λ)W = 0.

If ct(λ)W = Qct(λ), then Q(Sn)ct(λ)W = Q(Sn)ct(λ). Hence W = Q(Sn)ct(λ). If
ct(λ)W = 0, then W 2 = 0. But Q(Sn) is a semisimple ring, hence W = 0. �

Note that Corollary 1.14 also implies that Vλ is absolutely irreducible (statement
(4) in Theorem 1.7) because

EndSn(Q(Sn)ct(λ)) = ct(λ)Q(Sn)ct(λ) ' Q.
{VIcoridempotent}

Corollary 1.16. For every Young tableau t(λ) we have c2
t(λ) = nλct(λ), where

nλ = n!
dimVλ

.
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Proof. By Corollary 1.14 we know that c2
t(λ) = nλct(λ) for some nλ ∈ Q. More-

over, there exists a primitive idempotent e ∈ Q(Sn) such that ct(λ) = nλe. To find nλ
note that the trace of e in the regular representation equals dimVλ, and the trace of
ct(λ) in the regular representation equals n!. �

{VIex2symrep}
Exercise 1.17. Introduce the lexicographical order on partitions by setting λ > µ

if there exists i such that λj = µj for all j < i and λi > µi. Show that if λ > µ, then
for any two Young tableaux t(λ) and t′(µ) there exist entries i and j which lie in the
same row of t(λ) and in the same column of t′(µ).

{VIlm3symrep}
Lemma 1.18. Let t(λ) and t′(µ) be two Young tableaux such that λ < µ. Then

ct(λ)Q(Sn)ct′(µ) = 0.

Proof. We have to check that ct(λ)sct′(µ)s
−1 = 0 for any s ∈ Sn, which is equiv-

alent to ct(λ)cst′(µ) = 0. Therefore it suffices to prove that ct(λ)ct′(µ) = 0. By Exercise
1.17 there exists a transposition τ which belongs to the intersection Qt(λ) ∩ Pt′(µ).
Then, repeating the argument from the proof of Lemma 1.13, we obtain

ct(λ)ct′(µ) = ct(λ)τ
2ct′(µ) = −ct(λ)ct′(µ).

�

Now we show the second statement of Theorem 1.7. {VIlm4symrep}
Lemma 1.19. Two irreducible representations Vλ and Vµ are isomorphic if and

only if λ = µ.

Proof. It suffices to show that if λ 6= µ, then Vλ and Vµ are not isomorphic.
Without loss of generality we may assume λ < µ and take some Young tableaux t(λ)
and t′(µ). By Lemma 1.18 we obtain that ct(λ) acts by zero on Vµ. On the other
hand, by Corollary 1.16, ct(λ) does not annihilate Vλ. Hence the statement. �

By Remark 1.8 the proof of Theorem 1.7 is complete.
{VIrem2}

Remark 1.20. Note that in fact we have proved that if λ 6= µ, then one has
ct(λ)Q(Sn)ct′(µ) = 0 for any pair of tableaux t(λ), t′(µ). Indeed, if ct(λ)Q(Sn)ct′(µ) 6= 0,
then

Q(Sn)ct(λ)Q(Sn)ct′(µ) = Q(Sn)ct′(µ).

But this is impossible since all the irreducible components of Q(Sn)ct(λ)Q(Sn) are
isomorphic to Vλ.

{VIlm5symrep}
Lemma 1.21. Let ρ : Sn → GL (V ) be a finite-dimensional representation of Sn.

Then the multiplicity of Vλ in V equals the rank of ρ
(
ct(λ)

)
.

Proof. The rank of ct(λ) in Vλ is 1 and ct(λ)Vµ = 0 for all µ 6= λ. Hence the
statement. � {VIexcharacter}

Exercise 1.22. Let λ be a partition and χλ denote the character of Vλ.
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(1) Prove that χλ(s) ∈ Z for all s ∈ Sn.
(2) Prove that χλ(s) = χλ(s

−1) for all s ∈ Sn and hence Vλ is self-dual.
(3) For a tableau t(λ) let c̄t(λ) = bt(λ)at(λ). Prove that Q(Sn)ct(λ) and Q(Sn)c̄t(λ)

are isomorphic Q(Sn)-modules.
{VItransposed}

Exercise 1.23. Let λ be a partition. We define the conjugate partition λ⊥ by
setting λ⊥i to be equal to the length of the i-th column in the Young diagram λ. For

example, if λ = , then λ⊥ = .
Prove that for any partition λ, the representation Vλ⊥ is isomorphic to the tensor

product of Vλ with the sign representation.

Since Q is a splitting field for Sn, Theorem 1.7 provides classification of irreducible
representations of Sn over any field of characteristic zero.

2. Schur–Weyl duality.
{VIsection2}

2.1. Dual pairs. We will start the following general statement.
{VIthduality}

Theorem 2.1. Let G and H be two groups and ρ : G × H → GL (V ) be a
representation in a vector space V . Assume that V has a decomposition

V =
m⊕
i=1

Vi ⊗ HomG(Vi, V )

for some absolutely irreducible representations V1, . . . , Vm of G, and that the sub-
algebra generated by ρ(H) equals EndG(V ). Then every Wi := HomG(Vi, V ) is an
absolutely irreducible representation of H and Wi is not isomorphic to Wj if i 6= j.

Proof. Since every Vi is an absolutely irreducible representation of G, we have

EndG(V ) =
m∏
i=1

Endk(Wi).

By our assumption the homomorphism

ρ : k(H)→
m∏
i=1

Endk(Wi)

is surjective. Hence the statement. �

Remark 2.2. In general, we say that G and H satisfying the conditions of The-
orem 2.1 form a dual pair.

Example 2.3. Let k be an algebraically closed field, G be a finite group. Let ρ
be the regular representation of G in k(G) and σ be the representation of G in k(G)
defined by

σg(h) = hg−1
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for all g, h ∈ G. Then k(G) has the structure of a G × G-module and we have a
decomposition

k(G) =
r⊕
i=1

Vi � V ∗i ,

where V1, . . . , Vr are all (up to isomorphism) irreducible representations of G.

2.2. Duality between GL(V ) and Sn. Let V be a vector space over a field k
of characteristic zero. Then V is an irreducible representation of the group GL(V ).
We would like to understand V ⊗n as a GL(V )-module. Is it semisimple? If so, what
are its simple components?

Let us define the representation ρ : Sn → GL (V ⊗n) by setting

s (v1 ⊗ · · · ⊗ vn) := vs(1) ⊗ · · · ⊗ vs(n),

for all v1, . . . , vn ∈ V and s ∈ Sn. One can easily check that the actions of GL(V )
and Sn in the space V ⊗n commute. We will show that GL(V ) and Sn form a dual
pair.

{VIthSchur}
Theorem 2.4. (Schur–Weyl duality) Let m = dimV and Γn,m denote the set of

all Young diagrams λ with n boxes such that the number of rows of λ is not bigger
than m. Then

V ⊗n =
⊕

λ∈Γn,m

Vλ ⊗ Sλ(V ),

where Vλ is the irreducible representation of Sn associated to λ and

Sλ(V ) := HomSn(Vλ, V
⊗n)

is an irreducible representation of GL(V ). Moreover, Sλ(V ) and Sµ(V ) are isomorphic
if and only if λ = µ.

{rmyoung}
Remark 2.5. If λ ∈ Γn,m and t(λ) is an arbitrary Young tableau of shape λ,

then the image of the Young symmetrizer ct(λ) in V ⊗n is a simple GL(V )-module
isomorphic to Sλ(V ).

Example 2.6. Let n = 2. Then we have a decomposition V ⊗V = S2(V )⊕Λ2(V ).
Theorem 2.4 implies that S2(V ) = S(2)(V ) and Λ2(V ) = S(1,1)(V ) are irreducible rep-
resentations ofGL(V ). More generally, S(n)(V ) is isomorphic to Sn(V ) and S(1,...,1)(V )
is isomorphic to Λn(V ).

Let us prove Theorem 2.4.
{VIlmend}

Lemma 2.7. Let σ : k(GL(V ))→ Endk(V
⊗n) be the homomorphism of algebras

induced by the action of GL(V ) on V ⊗n. Then

EndSn
(
V ⊗n

)
= σ(k(GL(V ))).
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Proof. Let E = Endk (V ). Then we have an isomorphism of algebras

Endk
(
V ⊗n

)
' E⊗n.

We define the action of Sn on E⊗n by setting

s(X1 ⊗ · · · ⊗Xn) := Xs(1) ⊗ · · · ⊗Xs(n)

for all s ∈ S and X1, . . . , Xn ∈ E. Then EndSn (V ⊗n) coincides with the subalgebra of
Sn-invariants in E⊗n, that is with the n-th symmetric power Sn(E) of E. Therefore,
it suffices to show that Sn(E) is the linear span of σ(g) for all g ∈ GL(V ).

We will need the following
{VIexidentity}

Exercise 2.8. Let W be a vector space. Prove that for all n ≥ 2, the following
identity holds in the symmetric algebra S (W ):

2n−1n!x1 . . . xn =
∑

i2=0,1;...;in=0,1

(−1)i2+···+in
(
x1 + (−1)i2 x2 + · · ·+ (−1)in xn

)n
.

Let us choose a basis e1, . . . , em2 of E such that all non-zero linear combinations
a1e1+· · ·+am2em2 with coefficients ai ∈ {−n, . . . , n} belong toGL(V ). (The existence
of such a basis follows from the density of GL(V ) in E for the Zariski topology.) By
the above exercise, the set

{(a1ei1 + · · ·+ anein)⊗n | ai = ±1, i1, . . . in ≤ m2}
spans Sn(E). On the other hand, every non-zero (a1ei1 + · · · + anein) belongs to
GL(V ). By construction, we have

(a1ei1 + · · ·+ anein)⊗n = σ(a1ei1 + · · ·+ anein),

hence Sn(E) is the linear span of σ(g) for g ∈ GL(V ). �
{VIlmnonvanish}

Lemma 2.9. Let λ = (λ1, . . . , λp) be a partition of n. Then Sλ(V ) 6= 0 if and
only if λ ∈ Γn,m.

Proof. Consider the tableau t(λ) with entries 1, . . . , n placed in increasing order
from top to bottom of the Young diagram λ starting from the first column. For

instance, for λ = we consider the tableau t(λ) =

1 3 5
2 4 . By Remark 2.5

Sλ(V ) 6= 0 if and only if ct(λ)(V
⊗n) 6= 0.

If λ⊥ = µ = (µ1, . . . , µr), then

bt(λ)(V
⊗n) = ⊗ri=1Λµi(V ).

If λ is not in Γn,m, then µ1 > m and bt(λ)(V
⊗n) = 0. Hence ct(λ)(V

⊗n) = 0.
Let λ ∈ Γn,m. Choose a basis v1, . . . , vm in V , then

B := {vi1 ⊗ · · · ⊗ vin | 1 ≤ i1, . . . , in ≤ m}
is a basis of V ⊗n. Consider the particular basis vector

u := v1 ⊗ . . . vµ1 ⊗ · · · ⊗ v1 ⊗ . . . vµr ∈ B.
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One can easily see that, in the decomposition of ct(λ)(u) in the basis B, u occurs with

coefficient

p∏
i=1

λi!. In particular, ct(λ)(u) 6= 0. Hence the statement. �

Lemma 2.7, Lemma 2.9 and Theorem 2.1 imply Theorem 2.4. Furthermore, Theo-
rem 2.4 together with the Jacobson density theorem (Theorem 2.9 Chapter 5) implies
the double centralizer property:

{VIcordoublecent}
Corollary 2.10. Under the assumptions of Theorem 2.4 we have

EndGL(V )(V
⊗n) = ρ(k(Sn)).

Definition 2.11. Let λ be a partition of n. The Schur functor Sλ is the functor
from the category of vector spaces to itself defined by

V 7→ Sλ(V ) = HomSn(Vλ, V
⊗n).

Remark 2.12. Note that, if n ≥ 2, the functor Sλ is not additive, namely if V
and W are not zero,

Sλ(V ⊕W ) 6= Sλ(V )⊕ Sλ(W ).

The decomposition of Sλ(V ⊕ W ) into simple GL(V ) × GL(W )-modules will be
discussed later on (see subsection 8.3).

Schur–Weyl duality holds for an infinite-dimensional space in the following form.
{VISchurWeylinfty}

Proposition 2.13. Let V be an infinite-dimensional vector space and Γn be the
set of all partitions of n. Then we have the decomposition

V ⊗n =
⊕
λ∈Γn

Vλ ⊗ Sλ(V ),

each Sλ(V ) is a simple GL(V )-module and Sλ(V ) is not isomorphic to Sµ(V ) if λ 6= µ.

Proof. The existence of the decomposition is straightforward (consider the col-
lection of finite-dimensional subspaces of V ). For any finite-dimensional subspace W
of V , we have the embedding Sλ(W ) ↪→ Sλ(V ). Furthermore, Sλ(W ) 6= 0 if and only
if dimW ≥ λ⊥1 . Hence Sλ(V ) 6= 0 for all λ ∈ Γn.

Furthermore, Sλ(V ) is the union of Sλ(W ) for all finite-dimensional subspaces
W ⊂ V . Since Sλ(W ) is a simple GL(W )-module when dimW is sufficiently large,
we obtain that Sλ(V ) is a simple GL(V )-module.

To prove the last assertion we notice that Corollary 2.10 holds by the Jacobson
density theorem (Theorem 2.9 Chapter 5), hence Sλ(V ) is not isomorphic to Sµ(V )
if λ 6= µ. �

Schur–Weyl duality provides a link between tensor product of GL(V )-modules
and induction-restriction of representations of symmetric groups.
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{VIdfnLittlewoodRichardson}
Definition 2.14. Let λ be a partition of p and µ a partition of q. Note that

Sλ(V ) ⊗ Sµ(V ) is a GL(V )-submodule of V ⊗(p+q), hence it is a semisimple GL(V )-
module and can be written as a direct sum of simple factors Sν(V ), each occurring
with some multiplicities. These multiplicities are called Littlewood-Richardson coef-
ficients. More precisely, we define N ν

λ,µ as the function of three partitions λ, µ and ν
given by

N ν
λ,µ := dim HomGL(V )(Sν(V ), Sλ(V )⊗ Sµ(V )).

Clearly, Nν
λ,µ 6= 0 implies that ν is a partition of p+ q.

{VItens}
Proposition 2.15. Let λ be a partition of p and µ a partition of q, n = p + q

and dimV ≥ n. Consider the injective homomorphism Sp×Sq ↪→ Sn which sends Sp
to the permutations of 1, . . . , p and Sq to the permutations of p+ 1, . . . , n. Then for
any partition ν of n we have

N ν
λ,µ = dim HomSn(Vν , IndSnSp×Sq(Vλ � Vµ)) = dim HomSp×Sq(Vν , Vλ � Vµ).

Proof. Let us choose three tableaux t(ν), t′(λ) and t′′(µ). We use the identifi-
cations

Sν(V ) ' ct(ν)(V
⊗n), Sλ(V ) ' ct′(λ)(V

⊗p), Sµ(V ) ' ct′′(µ)(V
⊗q).

Since V ⊗n is a semisimple GL(V )-module, we have

HomGL(V )(ct′(λ)(V
⊗p)⊗ ct′′(µ)(V

⊗q), ct(ν)(V
⊗n)) = ct(ν)k(Sn)ct′(λ)ct′′(µ).

Now we use the isomorphism of Sn-modules

IndSnSp×Sq(Vλ � Vµ) ' k(Sn)ct′(λ)ct′′(µ).

Then, by Lemma 1.21, we obtain

Nν
λ,µ = dim HomSn(Vν , IndSnSp×Sq(Vλ � Vµ)) = dim ct(ν)k(Sn)ct′(λ)ct′′(µ).

The second equality follows by Frobenius reciprocity (Chapter 2, Theorem 5.3). �

3. Generalities on Hopf algebras
{VIHopf}

Let Z be a commutative unital ring.
Let A be a unital Z-algebra, we denote by m : A⊗A→ A the Z-linear multipli-

cation. Since A is unital, there is an Z-linear map e : Z → A. Moreover, we assume
we are given two Z-linear maps m∗ : A → A ⊗ A (called the comultiplication) and
e∗ : A→ Z (called the counit) such that the following axioms hold:
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• (A): the multiplication m is associative, meaning the following diagram is
commutative

m⊗ idA
A⊗ A⊗ A −→ A⊗ A

idA ⊗m ↓ ↓ m
A⊗ A −→ A

m

• (A∗): the comultiplication is coassociative, namely the following diagram
commutes:

m∗

A −→ A⊗ A
m∗ ↓ ↓ idA ⊗m∗

A⊗ A −→ A⊗ A⊗ A
m∗ ⊗ idA

Note that this is the transpose of the diagram of (A).
• (U): The fact that e(1) = 1 can be expressed by the commutativity of the

following diagrams:

Z ⊗ A ' A
e⊗ 1 ↓ ↓ Id,

A⊗ A −→ A
m

A⊗ Z ' A
1⊗ e ↓ ↓ Id

A⊗ A −→ A
m

• (U∗): similarly, the following diagrams commute

A ' A⊗ Z
Id ↑ ↑ 1⊗ e∗,

A −→ A⊗ A
m∗

A ' Z ⊗ A
Id ↑ ↑ e∗ ⊗ 1,

A −→ A⊗ A
m∗

• (Antipode): there exists a Z-linear isomorphism S : A → A such that the
following diagrams commute:

S ⊗ IdA
A⊗ A −→ A⊗ A

m∗ ↑ ↓ m,
A −→ A

e ◦ e∗

IdA ⊗ S
A⊗ A −→ A⊗ A

m∗ ↑ ↓ m,
A −→ A

e ◦ e∗

Definition 3.1. This set of data is called a Hopf algebra if the following property
holds:

(H): the map m∗ : A→ A⊗ A is a homomorphism of Z-algebras.
Moreover, if the antipode axiom is missing, then we call it a bialgebra.
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Exercise 3.2. Show that if an antipode exists, then it is unique. Moreover, if S
is a left antipode and S ′ is a right antipode, then S = S ′.

Remark 3.3. Assume thatA is a commutative Hopf algebra, for any commutative
algebra B, set XB := HomZ−alg(A,B), then the composition with m∗ induces a map
XB × XB = HomZ−alg(A ⊗ A,B) → XB which defines a group law on XB. This
property characterizes commutative Hopf algebras.

Example 3.4. If M is a Z-module, then the symmetric algebra S•(M) has a Hopf
algebra structure, for the comultiplication m∗ defined by: if ∆ denotes the diagonal
map M → M ⊕ M , then m∗ : S•(M ⊕ M) = S•(M) ⊗ S•(M) is the canonical
morphism of Z-algebras induced by ∆.

Exercise 3.5. Find m∗ when Z is a field and M is finite dimensional.

Definition 3.6. Let A be a bialgebra, an element x ∈ A is called primitive if
m∗(x) = x⊗ 1 + 1⊗ x.

Exercise 3.7. Show that if k is a field of characteristic zero and if V is a finite
dimensional k-vector space, then the primitive elements in S•(V ) are exactly the
elements of V .

We say that a bialgebra A is connected graded if

(1) A =
⊕

n∈NAn is a graded algebra;
(2) m∗ : A→ A⊗ A is a homomorphism of graded algebras, where the grading

on A⊗ A is given by the sum of gradings;
(3) A0 = Z;
(4) the counit e∗ : A→ Z is a homomorphism of graded rings.

{VIlmgraded}
Lemma 3.8. Let A be a graded connected bialgebra, I =

⊕
n>0An. Then for any

x ∈ I, m∗(x) = x⊗ 1 + 1⊗ x + m∗+(x) for some m∗+(x) ∈ I ⊗ I. In particular every
element of A of degree 1 is primitive.

Proof. From the properties (3) and (4) we have that I = Ker e∗. Write

m∗(x) = y ⊗ 1 + 1⊗ z +m∗+(x).

We have to check that y = z = x. But this immediately follows from the counit
axiom. �

{VIgraded}
Proposition 3.9. Let A be a connected graded bialgebra and P be the set of

primitive elements of A. Assume that I2∩P = 0. Then A is commutative and admits
an antipode.

Proof. Let us prove first that A is commutative. Assume the opposite. Let
x ∈ Ak, y ∈ Al be some homogeneous element of A such that [x, y] := xy − yx 6= 0
and k + l as small as possible. Then m∗([x, y]) = [m∗(x),m∗(y)]. By minimality of
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k+ l, we have that [m∗+(x),m∗+(y)] = 0, hence [x, y] is primitive. On the other hand,
m∗([x, y]) ∈ I ⊗ I, hence [x, y] = 0. Contradiction.

Next, let us prove the existence of an antipode. For every x ∈ An we construct
S(x) ∈ An recursively. We set

S(x) := −x for n = 1, S(x) = −x−m ◦ (Id⊗S) ◦m∗+(x) for n > 1.

Exercise 3.10. Check that S satisfies the antipode axiom.

�

4. The Hopf algebra associated to the representations of symmetric
groups

{VIcurlyA}
Let us consider the free Z-module A = ⊕n∈NA(Sn) where A(Sn) is freely gener-

ated by the characters of the irreducible representations (in C-vector spaces) of the
symmetric group Sn. (Note that since every Sn-module is semi-simple, A(Sn) is the
Grothendieck group of the category Sn -mod of finite dimensional representations of
Sn). It is a N-graded module, where the homogeneous component of degree n is equal
to A(Sn) if n ≥ 1 and the homogeneous part of degree 0 is Z by convention. More-
over, we equip it with a Z-valued symmetric bilinear form, denoted 〈; 〉, for which
the given basis of characters is an orthonormal basis, and with the positive cone A+

generated over the non-negative integers by the orthonormal basis.
In order to define the Hopf algebra structure on A, we use the induction and

restriction functors:

Ip,q : (Sp × Sq) -mod −→ Sp+q -mod,

Rp,q : Sp+q -mod −→ (Sp × Sq) -mod .

Remark 4.1. Frobenius (see Theorem 5.3) observed that the induction functor
is left adjoint to the restriction.

Since the restriction and induction functors are exact, they define maps in the
Grothendieck groups. Moreover, the following lemma holds:

Exercise 4.2. Show that we have a group isomorphism

A(Sp × Sq) ' A(Sp)⊗Z A(Sq).

We deduce, from the collections of functors Ip,q, Rp,q, p, q ∈ N, two maps:

m : A⊗A −→ A,
m∗ : A −→ A⊗A.

More explicitely, if M (resp N) is an Sp (resp. Sq) module and if [M ] (resp. [N ])
denotes its class in the Grothendieck group,

m([M ]⊗ [N ]) = [Ip,q(M ⊗N)],
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and if P is an Sn-module,

m∗([P ]) =
∑
p+q=n

[Rp,q(P )].

Exercise 4.3. Show that m is associative and hence m∗ is coassociative (use
adjunction), m is commutative and m∗ is cocommutative (use adjunction).

The tricky point is to show the following lemma:

Lemma 4.4. The map m∗ is an algebra homomorphism.

Proof. (Sketch) We will use Theorem 7.4 Chapter 2 to compute

ResSnSp×Sq IndSnSk×SlM ⊗N,
where p + q = k + l = n, M and N are representations of Sk and Sl respectively.
The double cosets Sp× Sq\Sn/Sk × Sl are enumerated by quadruples (a, b, c, d) ∈ N4

satisfying a+ b = p, c+ d = q, a+ c = k, b+ d = l. So we have

ResSnSp×Sq IndSnSk×SlM ⊗N =

=
⊕

a+b=p,c+d=q,a+c=k,b+d=l

Ind
Sp×Sq
Sa×Sb×Sc×Sd ResSk×SlSa×Sb×Sc×SdM ⊗N.

and
ResSk×SlSa×Sb×Sc×SdM ⊗N = ResSkSa×ScM ⊗ ResSlSb×Sd N.

If
Ra,c(M)⊗Rb,dN = ⊕iAi ⊗Bi ⊗ Ci ⊗Di,

then

(6.1){VIeqZ1} Rp,qIk,l(M ⊗N) =
∑

a+b=p,c+d=q,a+c=k,b+d=l

∑
i

Ia,b(Ai ⊗ Ci)⊗ Ic,d(Bi ⊗Di).

The relation (6.1) is the condition

m∗m(a, b) =
∑
i,j

m(ai, bj)⊗m(ai, bj),

where m∗(a) =
∑

i ai⊗ai, m∗(b) =
∑

j bj⊗ bj, in terms of homogeneous components.
�

The axiom (U) corresponds to the inclusion A0 ⊂ A and (U∗) is its adjoint, and
finally the antipode of the class of a simple Sn-module [M ] is the virtual module
(−1)n[ε⊗M ], where ε is the sign representation of Sn.

Hence we have a structure of Hopf algebra on A, and the following properties are
easily checked:
• positivity: the cone A+ is stable under multiplication (for m),
• self-adjointness: The maps m and m∗ are mutually adjoint with respect to the

scalar product on A and the corresponding scalar product on A⊗A.
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{VIPSH}
Definition 4.5. A graded connected bialgebra A over Z together with a homo-

geneous basis Ω, equipped with a scalar product 〈 , 〉 for which Ω is orthonormal,
which is positive (for the cone A+ generated over N by Ω) and self-adjoint is called
a positive self-adjoint Hopf algebra, PSH algebra for short.

Moreover, the elements of Ω are called basic elements of A.

Remark 4.6. Note that a PSH algebra is automatically commutative and co-
commutative Hopf algebra by Proposition 3.9.

We have just seen that:
{VIZhopf}

Proposition 4.7. The algebra A with the basis Ω given by classes of all irre-
ducible representations is a PSH algebra.

{VIGram}
Exercise 4.8. Show that for any a1, . . . , an in A, the matrix Gram(a1, . . . , an) =

((aij)) such that ai,j := 〈ai, aj〉 (called the Gram matrix) is invertible in Mn(Z) (i.e.
the determinant is ±1) if and only if the ai’s form a basis of the sublattice of A
generated by some subset of cardinal n of Ω. Note that if the Gram matrix is the
identity, then, up to sign, the ai’s belong to Ω.

{VIderivation}
Exercise 4.9. Assume H is a Hopf algebra with a scalar product and assume H

is commutative and self-adjoint. Let x be a primitive element in H and consider the
map

dx : H −→ H, y 7→
∑
i

〈yi, x〉yi

where m∗(y) =
∑

i yi ⊗ yi.
• Show that dx is a derivation (for all a, b in H, dx(ab) = adx(b) + dx(a)b).
• Show that if x and y are primitive elements in H, then dx(y) = 〈y, x〉.

5. Classification of PSH algebras part 1: decomposition theorem

In this section we classify PSH algebras following Zelevinsky, [37]. Let A be a
PSH with the specified basis Ω and positive cone A+. Let us denote by Π the set of
basic primitive elements of A that is primitive elements belonging to Ω.

A multi-index α is a finitely supported function from Π to N. For such an α we
denote by πα the monomial

∏
p∈Π p

α(p). We denote by M the set of such monomials.

For a ∈ A we denote by Supp(a) (and call support of a) the set of basic elements
which appear in the decomposition of a.

{VIsupport}
Lemma 5.1. The supports of πα and πβ are disjoint whenever α 6= β.

Proof. Since the elements of M belong to A+, we just have to show that the
scalar product 〈πα, πβ〉 is zero when α 6= β. We prove this by induction on the total
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degree of the monomial πα. Write πα = π1π
γ for some π1 such that α(π1) 6= 0. Then

(recall Exercise 4.9)
〈πα, πβ〉 = 〈πγ, dπ1(πβ)〉.

Since the total degree of πγ is less than the degree of πα, if the scalar product is not
zero, we obtain by the induction assumption that dπ1(πβ) is a multiple of πγ. This
implies πβ = π1π

γ = πα. �

For every monomial πα ∈M , denote by Aα the Z-span of Supp(πα).
{VImultigrading}

Lemma 5.2. For all πα, πβ in M , one has:

AαAβ ⊂ Aα+β.

Proof. We consider the partial ordering ≤ in A whose positive cone is A+ (i.e.
x ≤ y if and only if y − x ∈ A+). Note that if 0 ≤ x ≤ y then Supp(x) ⊂ Supp(y).
Therefore if we pick up ω in Supp(πα) and η ∈ Supp(πβ) then ωη ≤ πα+β, hence the
result. �

Let I be the ideal spanned by all elements of positive degree.
{VIexoPrim}

Exercise 5.3. (1) Show that if x ∈ A is primitive, then x ∈ I.
(2) Show that if x ∈ I then m∗(x)− 1⊗ x− x⊗ 1 belongs to I ⊗ I.

Moreover, x ∈ I is primitive if and only if x is orthogonal to I2. Indeed for y and
z in I, 〈m∗(x)− 1⊗ x− x⊗ 1, y ⊗ z〉 = 〈x, yz〉, hence the result by Exercise 5.3.

{VIoplus}
Lemma 5.4. One has:

A =
⊕
πα∈M

Aα.

Proof. Assume the equality doesn’t hold, then there exists an ω ∈ Ω which does
not belong to this sum. We choose such an ω with minimal degree k. Since ω is not
primitive, it to I2 and therefore belongs to the support of some ηη′ with η, η′ belonging
to Ω. Hence k = k′ + k′′ where k′ (resp. k′′) is degree of η (resp. η′). By minimality
of k, η and η′ lie in the direct sum, thus, by Lemma 5.2, a contradiction. �

{VImultiplicative}
Lemma 5.5. Let πα and πβ be elements in M which are relatively prime. Then

the restriction of the multiplication induces an isomorphism Aα ⊗ Aβ ' Aα+β given
by a bijection between Supp(πα)× Supp(πβ) and Supp(πα+β).

Proof. We will prove that the Gram matrix (see Exercise 4.8)

Gram((ωη)ω∈Supp(πα),η∈Supp(πβ))

is the identity. This will be enough since it implies that the products ωη are distinct
elements of Ω (again, see Exercise 4.8), and they exhaust the support of πα+β which
belongs to their linear span.

Let ω1, ω2 (resp. η1, η2) be elements of Supp(πα) (resp. Supp(πβ)), one has

〈ω1η1, ω2η2〉 = 〈m∗(ω1η1), ω2 ⊗ η2〉 = 〈m∗(ω1)m∗(η1), ω2 ⊗ η2〉.
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One has m∗(ω1) ∈
⊕

α′+α′′=αA
α′ ⊗ Aα′′ and m∗(η1) ∈

⊕
β′+β′′=β A

β′ ⊗ Aβ′′ (this is

just a transposed version of Lemma 5.2), hence

m∗(ω1)m∗(η1) ∈
∑

α′+α′′=α,β′+β′′=β

Aα
′+β′ ⊗ Aα′′+β′′ .

On the other hand, ω2⊗ η2 belongs to Aα⊗Aβ. We must understand in which cases
Aα
′+β′ ⊗ Aα′′+β′′ = Aα ⊗ Aβ and this occurs if and only if α′ + β′ = α, α′′ + β′′ = β.

Since πα and πβ are relatively prime, this occurs if and only if β′ = 0 = α′′.
The component of m∗(ω1) in Aα ⊗ A0 is ω1 ⊗ 1 and the component of m∗(η1) in

A0 ⊗ Aβ is 1⊗ η1 (see Exercise 5.3), therefore

〈ω1η1, ω2η2〉 = 〈(ω1 ⊗ 1)(1⊗ η1), ω2 ⊗ η2〉 = 〈ω1 ⊗ η1, ω2 ⊗ η2〉 = 〈ω1η1, ω2η2〉.
Hence the result. �

The following Theorem is a direct consequence of Lemmas 5.1, 5.2, 5.4, 5.5.
{VIZelevinsky1}

Theorem 5.6. (Zelevinsky’s decomposition theorem). Let A be a PSH algebra
with basis ω, and let Π be the set of basic primitive elements of A. For every π ∈ Π
we set Aπ :=

⊕
n∈NA

πn . Then

(1) Aπ is a PSH algebra and its unique basic primitive element is π,
(2) A =

⊗
π∈Π Aπ.

Remark 5.7. In the second statement, the tensor product might be infinite: it
is defined as the span of tensor monomials with a finite number of entries non-equal
to 1.

Definition 5.8. The rank of the PSH algebra A is the cardinal of the set Π of
basic primitive elements in A.

6. Classification of PSH algebras part 2: unicity for the rank 1 case

By the previous section, understanding a PSH algebra is equivalent to under-
standing its rank one components. Therefore, we want to classify the rank one cases.

Let A be PSH algebra of rank one with marked basis Ω, and denote π its unique
basic primitive element. We assume that we have chosen the graduation of A so that
π is of degree 1. We will construct a sequence (ei)i∈N of elements of Ω such that:

(1) e0 = 1, e1 = π and en is of degree n (it is automatically homogeneous since
it belongs to Ω),

(2) A ' Z[e1, e2, . . . , en, . . .] as graded Z-algebras,
(3) m∗(en) =

∑
i+j=n ei ⊗ ej.

Actually, we will find exactly two such sequences and we will denote the second one
(hi)i∈N. The antipode map exchanges those two sequences.

We denote by d the derivation of A which is adjoint to the multiplication by π
(see Exercise 4.9).
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{VIdeg2}
Lemma 6.1. There are exactly two elements in Ω of degree 2 and their sum is

equal to π2.

Proof. One has

〈π2, π2〉 = 〈π, d(π2)〉 = 2〈π, π〉 = 2.

On the other hand, if we write π2 in the basis Ω, π2 =
∑

ω∈Ω〈π2, ω〉ω, we get

〈π2, π2〉 =
∑
ω∈Ω

〈π2, ω〉2,

but 〈π2, ω〉 is a non negative integer, hence the result. �

We will denote by e2 one of those two basic elements and h2 the other one.
Furthermore, we set e∗2 (resp. h∗2) to be the linear operator on A of degree −2 which
is adjoint to the multiplication by e2 (resp. h2).

{VIexoLeibniz}
Exercise 6.2. Show that the operator e∗2 satisfies the identities

(6.2) m∗(e2) = e2 ⊗ 1 + π ⊗ π + 1⊗ e2,

(6.3){VILeibniz} e∗2(ab) = e∗2(a)b+ ae∗2(b) + d(a)d(b).
{VIconstruction}

Lemma 6.3. There is exactly one element en (resp. hn) of degree n in Ω such
that h∗2(en) = 0 (resp. e∗2(hn) = 0). This element satisfies d(en) = en−1 (resp.
d(hn) = hn−1).

Proof. We prove this for the sequence en by induction on n. The argument for
hn follows by symmetry. For n = 2, h∗2(e2) is the scalar product 〈h2, e2〉 which is zero
because e2 and h2 are two distinct elements of Ω. We assume that the statement
of the lemma holds for all i < n. If x is of degree n and satisfies h∗2(x) = 0, then
d(x) (which is of degree n − 1) is proportional to en−1 by the induction hypothesis,
since h∗2 and d commute. The scalar is equal to 〈d(x), en−1〉 = 〈x, πen−1〉 since d
is the adjoint of the multiplication by π. As in Lemma 6.1, we prove next that
〈πen−1, πen−1〉 = 2: indeed 〈πen−1, πen−1〉 = 〈d(πen−1), en−1〉 = 〈en−1 + πen−2, en−1〉
= 1 + 〈πen−2, en−1〉 = 1 + 〈en−2, d(en−1)〉 = 2.

Therefore πen−1 decomposes as the sum of two distinct basic elements ω1 + ω2.
Besides, using Exercise 6.2 equation (6.3), we have h∗2(πen−1) = en−2. Since h∗2 is a
positive operator (i.e. preserves A+), h∗2(ω1) + h∗2(ω2) = en−2 implies that one of the
factors h∗2(ωi) (i = 1 or 2) is zero, so that ωi can be choosen for x = en. �

{VIcomult}
Proposition 6.4. One has, for every n ≥ 1,

m∗(en) =
n∑
k=0

ek ⊗ en−k.
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Proof. If ω belongs to Ω, we denote by ω∗ the adjoint of the multiplication by
ω. We just need to show that ω∗(en) = 0 except if ω = ek for some 0 ≤ k ≤ n, in
which case ω∗(en) = en−k.

Indeed, we can write πk =
∑

ω∈Ω,deg(ω)=k Cωω where the coefficients Cω are positive

integers, hence dk =
∑

ω∈Ω,deg(ω)=k Cωω
∗. Since

∑
ω∈Ω,deg(ω)=k Cωω

∗(en) = dk(en) =

en−k, all the terms in the sum are zero except one (by integrity of the coefficients).
It remains to show that the non-zero term comes from the element ek of Ω. But this
is clear since dn−ke∗k(en) = e∗kd

n−k(en) = e∗k(ek) = 1. �
{VIExocomult}

Exercise 6.5. (1) Show that for every n ≥ 0, e∗n(ab) =
∑

0≤k≤n e
∗
k(a)e∗n−k(b).

(2) We make the convention that h−1 = 0. Prove the following equality for any
positive integer n and i1, . . . , ir non negative integers:

(6.4) {VIEqcomult} e∗r(hi1 . . . hir) = hi1−1 . . . hir−1.
{VIseriesproduct}

Proposition 6.6. Let t be an indeterminate, the two formal series
∑

i≥0 eit
i and∑

i≥0(−1)ihit
i are mutually inverse.

Proof. Since A is a graded bialgebra over Z, we know ([11]) that it is equipped
with a unique antipode S. Let us show that it exchanges en and (−1)nhn:

First, let us show that S is an isometry for the scalar product of A. Indeed, we
have the following commutative diagram

(6.5) {antipode}

IdA ⊗ S
A⊗ A −→ A⊗ A

m∗ ↑ ↓ m,
A −→ A

e ◦ e∗

where e : Z → A is the unit of A (see section 3). By considering the adjoint of
this diagram, we understand that S∗ is also an antipode, and by uniqueness of the
antipode, S = S−1 = S∗ hence S is an isometry and so for ω ∈ Ω, S(ω) = ±η,
for some η ∈ Ω (ω and η have the same degree). Applying the diagram (6.5) to π,
who is primitive, we check that S(π) = −π. In the same way, we obtain S(π2) = π2

and (e2) = h2. Since en is the unique basic element of degree n satisfying the
relation h∗2(en) = 0,we have S(en) = ±hn and the sign coincides is (−1)n since
S(πn) = (−1)nπn.

The diagram (6.5) implies that (m◦IdA⊗S◦m∗)(en) = 0 for all n ≥ 1. By Proposi-
tion 6.4, one has m∗(en) =

∑
0≤k≤n ek⊗en−k and so we have

∑
0≤k≤n(−1)n−kekhn−k =

0. The result follows. �

We will now use the definitions and notations for partitions introduced in Section
1. For a partition λ = (λ1, . . . , λn), we denote by eλ the product eλ = eλ1 . . . eλn and
set a similar definition for hλ. Note that in general, the elements eλ, hλ do not belong
to Ω.



1346. SYMMETRIC GROUPS, SCHUR–WEYL DUALITY AND POSITIVE SELF-ADJOINT HOPF ALGEBRAS

{dominanceorder}
Definition 6.7. Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be two partitions of

the same integer n. We say that λ is greater or equal than µ for the dominance order
and denote it λ � µ if, for every k ≤ inf(r, s), λ1 + . . .+ λk ≥ µ1 + . . .+ µk.

{VIscalprodpartitions}
Lemma 6.8. Let λ and µ be partitions of a given integer n, define Mλ,µ as the

number of matrices with entries belonging to {0, 1} such that the sum of the entries
in the i-th row (resp. column) is λi (resp. µi). Then one has:

(1) 〈eλ, hµ〉 = Mλ,µ,
(2) Mλ,λ⊥ = 1,
(3) Mλ,µ 6= 0 implies λ � µ⊥.

Proof. (Sketch) We write λ = (λ1, . . . , λr) and µ = (µ1 . . . µs). By Exercise 6.5,
we have

e∗λ1
(hµ1 . . . hµs) =

∑
νi=0,1

∑
νi=λ1

hµ1−ν1 . . . hµs−νs .

Next, we apply e∗λ2
to this sum, e∗λ3

to the result, and so on. We obtain:

〈eλ, hµ〉 = e∗λ(hµ) =
∑

νij∈{0,1},
∑
j νij=λi

hµ1−
∑
i ν1i

. . . hµs−
∑
i νsi

.

The terms in the sum of the right-hand side are equal to 0 except when µi =
∑

j νij
for all i, in which case the value is 1. The statement (1) follows.

For statement (2), we see easily that the only matrix N = (νi,j) with entries in
{0, 1} such that

∑
j νij = λi and

∑
i νij = λ⊥j is the one such that the entries decrease

along both the rows and the columns, hence the result.
Finally, consider a matrix N = (νij) with entries in {0, 1} such that

∑
j νij = λi

and
∑

i νij = µj. The sum λ1 + . . . + λi is the sum of the entries of the columns
of index ≤ i of N . Furthermore, µ⊥1 + . . . + µ⊥i is equal to

∑
j≤i jlj where lj is the

number of rows of N which have sum j. It is easy to check that statement (3) follows.
�

{VIcoroscalprodpartitions}
Corollary 6.9. The matrix (〈eλ, hµ⊥〉)λ,µ `n is upper triangular with 1’s on the

diagonal. In particular, its determinant is equal to 1.
{VIhomogeneousbasis}

Proposition 6.10. When λ varies along the partitions of n, the collection of eλ’s
is a basis of the homogeneous component of degree n, An, of A.

Proof. First we notice that every hi is a polynomial with integral coefficients in
the ej’s. This follows immediately from Proposition 6.6. Therefore the base change
matrix P from (hλ)λ`n to (eλ)λ`n has integral entries. Then the Gram matrix Ge of
(eλ)λ`n satisfies the equality

(〈eλ, hµ〉)λ,µ `n = P tGe,
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where P t denotes the transposed P . The corollary 6.9 ensures that the left-hand
side has determinant ±1 (the corollary is stated for µ⊥ and µ 7→ µ⊥ is an involution
which can produce a sign). Hence Ge has determinant ±1: we refer to Exercise 4.8
to ensure that the Z-module generated by (eλ)λ`n has a basis contained in Ω. Since
the support of en1 is the set of all ω ∈ Ω of degree n, we conclude that (eλ)λ`n is a
basis of An. �

We deduce from the results of this section: {VIZelevinskyUnicity}
Theorem 6.11. (Zelevinsky) Up to isomorphism, there is only one rank one PSH

algebra. It has only one non-trivial automorphism ι, which takes any homogeneous
element x of degree n to (−1)nS(x) where S is the antipode.

Remark 6.12. The sets of algebraically independent generators (en) and (hn) of
the Z-algebra A play symmetric roles, and they are exchanged by the automorphism
ι of the theorem.

7. Bases of PSH algebras of rank one

Let A be a PSH algebra of rank one, with basis Ω and scalar product 〈 , 〉, we will
use the sets of generators (en) and (hn). We keep all the notations of the preceding
section.

We will first describe the primitive elements of A. We denote AQ := A⊗Q.
{VIlog}

Exercise 7.1. Consider the algebra A[[t]] of formal power series with coefficients
in A. Let f ∈ A[[t]] such that m∗(f) = f ⊗ f and the constant term of f is 1. Show

that the logarithmic derivative g := f ′

f
satisfies m∗(g) = g ⊗ 1 + 1⊗ g.

{VInprimitive}
Proposition 7.2. (1) For every n ≥ 1, there is exactly one primitive el-

ement of degree n, pn, such that 〈pn, hn〉 = 1. Moreover, every primitive
element of degree n is a integral multiple of pn.

(2) In the formal power series ring AQ[[t]], we have the following equality:

(6.6) {VIEuler} exp

(∑
n≥1

pn
n
tn

)
=
∑
n≥0

hnt
n.

Proof. We first show that the set of primitive elements of degree n is a sub-
group of rank 1. Indeed, we recall that the primitive elements form the orthogonal
complement of I2 in I (see just below Exercise 5.3). Since all the elements (hλ)λ`n
except hn are in I2, the conclusion follows. Moreover, An is its own dual with respect
to the scalar product. Let denote by (hλ)λ`n the dual basis of (hλ)λ`n. Clearly, hn

can be chosen as pn. Hence statement (1).
Consider the formal series H(t) :=

∑
n≥0 hnt

n ∈ A[[t]], it satisfies the relation
m∗(H) = H ⊗H by Proposition 6.4, re-written in terms of h’s instead of e’s. Hence,

using Exercise 7.1, we get P (t) := H′(t)
H(t)

which satisfiesm∗(P ) = P⊗1+1⊗P . Hence all
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the coefficients of P are primitive elements in A. Write P (t) =
∑

i≥1$i+1t
i. To prove

statement (2), it remains to check that 〈$n, hn〉 = 1. We have P (t)H(t) = H ′(t), so
when we compare the terms on both sides we get

(6.7){VINewton} $n + h1$n−1 + . . .+ hn−1$1 − nhn = 0.

By induction on n, this implies

$n = (−1)nhn1 +
∑

λ`n,λ6=(1,...,1)

cλhλ,

where the cλ’s are integers. Now, we compute the scalar product with en: we apply
Lemma 6.8 and find that there is no contribution from the terms indexed by λ if
λ 6= (1, . . . , 1). Therefore, 〈$n, en〉 = (−1)n. Finally, we use the automorphism ι of
A to get the conclusion that pn = $n since ι(en) = hn and ι($n) = (−1)n$n by
Proposition 6.6. �

For every partition λ = (λ1, . . . , λr), we set pλ = pλ1 . . . pλr . Let us compute their
Gram matrix:

{VIgramprim}
Proposition 7.3. The family (pλ) is an orthogonal basis of AQ and one has

〈pλ, pλ〉 =
∏
j

(λ⊥j − λ⊥j+1)!
∏
i

λi.

Proof. Since pi is primitive, the operator p∗i is a derivation of A. Moreover,
since pi is of degree i, pi and pj are orthogonal when i 6= j. We compute 〈pi, pi〉: we
use the formula (6.7) (recall that we proved that pn = $n∀n) and since p∗i (hrpi−r) =
p∗i (hr)pi−r + hrp

∗
i (pi−r) = 0 if 1 ≤ r ≤ i− 1, we obtain p∗i (pi) = 〈pi, pi〉 = 〈pi, ihi〉 = i

by Proposition 7.2.
To show that pλ is orthogonal to pµ if λ 6= µ, we repeat the argument of the proof

of Lemma 5.1.
Finally, we compute 〈pri , pri 〉: we use the fact that p∗i is a derivation such that

p∗i (pi) = i, hence 〈pri , pri 〉 = r!ir. This implies the formula giving 〈pλ, pλ〉 for any
λ. �

Now we want to compute the transfer matrices between the bases (hλ) (or (eλ))
and Ω.

{VIomegapartition}
Lemma 7.4. Let λ be a partition, then the intersection of the supports Supp(eλ⊥)

and Supp(hλ) is of cardinal one. We will denote this element ωλ.

Proof. By Lemma 6.8, one has 〈eλ⊥ , hλ〉 = 1 and, by the positivity of those
elements, this implies the statement. �

Our first goal is to express hλ’s in terms of ωµ’s. First, we compute h∗i (ωλ), and
for this, we need to introduce some notations.
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Let λ be a partition, or equivalently a Young diagram. We denote by r(λ) (resp.
c(λ)) the number of rows (resp columns) of λ.

We denote by Rλ
i the set of all µ’s such that µ is obtained from λ by removing

exactly i boxes, at most one in every row of λ. Similarly, Cλ
i is the set of all µ’s such

that µ is obtained from λ by removing exactly i boxes, at most one in every column
of λ. In the specific case where i = r(λ), there is only one element in the set Rλ

i and
this element will be denoted by λ←, it is the diagram obtained by removing the first
column of λ, similarly, if i = c(λ) the unique element of Cλ

i will be denoted by λ↓

and is the diagram obtained by suppressing the first row of λ.

Remark 7.5. Note that if µ ∈ Cλ
i , then µ⊥ ∈ Ri(λ

⊥).
{VIPieri}

Theorem 7.6. (Pieri’s rule) One has:

h∗i (ωλ) =
∑
µ∈Cλi

ωµ,

and
e∗j(ωλ) =

∑
µ∈Rλ

j

ωµ.

We need several lemmas to show this statement.
{VIPierriLemma0}

Lemma 7.7. One has, for all i, j in N,

e∗i ◦ hj = hj ◦ e∗i + hj−1 ◦ e∗i−1

Proof. From Exercise 6.5 statement (1), we obtain that

e∗i (hjx) = e∗1(hj)e
∗
i−1(x) + hje

∗
i (x) ∀x ∈ A,

hence the Lemma. �
{VIPieriLemma1}

Lemma 7.8. Let p, q be two integers, let a ∈ A. Let us assume that h∗i (a) = 0 for
i > p and e∗j(a) = 0 for j > q, then

h∗p ◦ e∗q(a) = 0

and
h∗p−1 ◦ e∗q(a) = h∗p ◦ e∗q−1(a).

Proof. Using a transposed version of Proposition 6.6, we get:∑
i+j=n

(−1)jh∗i ◦ e∗j = 0.

The lemma follows. �
{VIPieriLemma2}

Lemma 7.9. One has:
e∗r(λ)(ωλ) = ωλ← .



1386. SYMMETRIC GROUPS, SCHUR–WEYL DUALITY AND POSITIVE SELF-ADJOINT HOPF ALGEBRAS

Proof. Applying Equation (6.4), we get

e∗r(λ)(hλ) = hλ← .

Since e∗r(λ) is a positive operator and ωλ < hλ by definition, we have Supp(e∗r(λ)(ωλ)) ⊂
Supp(hλ←).

By definition of ωλ, we know that 〈eλ⊥ , ωλ〉 = 1, so we have 〈e(λ←)⊥ , e
∗
r(λ)(ωλ)〉 = 1.

Therefore, ωλ← ∈ Supp(e∗r(λ)(ωλ)).

It is sufficient to show now that 〈e∗r(λ)(ωλ), hλ←〉 = 1: let us compute:

〈e∗r(λ)(ωλ), hλ←〉 = h∗λ←e
∗
r(λ)(ωλ),

assume λ = (λ1, . . . , λr),

〈e∗r(ωλ), hλ←〉 = h∗λr−1 ◦ . . . ◦ h∗λ1−1 ◦ e∗r(ωλ)

= h∗λr−1 ◦ . . . ◦ h∗λ2−1 ◦ e∗r−1 ◦ h∗λ1
(ωλ)

by Lemma 7.8 (the hypothesis is satisfied because for all i > λ1 one has h∗i (eλ⊥) = 0
and for all j > r, e∗j(hλ) = 0). We use the same trick repeatedly, the enthusiastic
reader is encouraged to check that the hypothesis of Lemma 7.8 is satisfied at each
step by induction. We finally obtain

h∗λ← ◦ e∗r(λ)(ωλ) = h∗λ(ωλ) = 1.

�

For every i in N and for every partition λ, we set:

h∗i (ωλ) =
∑
µ

aiλ,µωµ

which can also be written

(6.8){VIailambdamu} hiωµ =
∑
λ

aiλ,µωλ

the Theorem 7.6 amounts to computing the coefficients aiλ,µ.
{VIPieriLemma3}

Lemma 7.10. For i > 0 and for every partitions λ and µ, one has

aiλ,µ =


aiλ←,µ← if r(λ) = r(µ)
ai−1
λ←,µ← if r(λ) = r(µ) + 1

0 otherwise

Remark 7.11. The first equality of Theorem 7.6 is obtained from this lemma by
induction on c(λ), the second one follows via the automorphism ι.
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Proof. First, let us prove that if aiλ,µ 6= 0, then r(λ) = r(µ) or r(λ) = r(µ) + 1.

Assume r(µ) > r(λ) and aiλ,µ 6= 0: then we have ωµ ≤ h∗i (ωλ), therefore, applying
Lemma 7.9, we get

ωµ← = e∗r(µ)(ωµ) ≤ e∗r(µ) ◦ h∗i (ωλ) = h∗i ◦ e∗r(µ)(ωλ) = 0,

which gives a contradiction.
Assume r(µ) < r(λ)− 1 and aiλ,µ 6= 0: then applying the equation (6.8), we have

ωλ ≤ hiωµ, therefore applying Lemma 7.9 and Lemma 7.7, we get

ωλ← = e∗r(λ)(ωλ) ≤ e∗r(λ) ◦ hi(ωµ) = hi ◦ e∗r(λ)(ωµ) + hi−1 ◦ e∗r(λ)−1(ωµ) = 0,

which again gives a contradiction.
Next, we look at the case r(λ) = r(µ). We do a direct computation:

h∗i (ωλ←) = e∗r(λ) ◦ h∗i (ωλ) =
∑
µ

aiλ,µe
∗
r(λ)(ωµ) =

∑
r(λ)=r(µ)

aiλ,µωµ← .

Finally, we assume r(λ) = r(µ) + 1. We apply Lemma 7.7,

e∗r(µ)+1(hiωµ) = hi−1e
∗
r(µ)(ωµ) = hi−1(ωµ←) =

∑
ν

ai−1
ν,µ←ων .

On the other hand,

e∗r(µ)+1(hiωµ) =
∑
λ

aiλ,µe
∗
r(µ)+1(ωλ) =

∑
r(λ)=r(µ)+1

aiλ,µωλ← .

Now we compare the coefficients and obtain that

aiλ,µ = ai−1
λ←,µ← .

�

For a partition λ, we introduce the notion of semistandard tableau of shape λ: the
Young diagram of shape λ is filled with entries wich are no longer distinct, with the
condition that the entries are non decreasing along the rows and increasing along the
columns of λ. For instance,

1 1 1
2 3
3
4

is a semistandard tableau.
To such a semistandard tableau, we associate its weight, which is the sequence

mi consisting of the numbers of occurences of the integer i in the tableau: in our
example, m1 = 2, m2 = 1, m3 = 2, m4 = 1 and all the other mi’s are zero.
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{VIPieriiteration}
Proposition 7.12. Let λ be a partition of n. Let m1, . . . ,mr be a sequence

of non negative integers such that m1 + . . . + mr = n, then 〈hm1 . . . hmr , ωλ〉 is the
number of semistandard tableaux of shape λ and weight m1, . . . ,mr.

Proof. We iterate Pieri’s rule (see Theorem 7.6):

h∗mr(ωλ) =
∑

µ∈Cλmr

ωµ,

(hmr−1hmr)
∗(ωλ) =

∑
µ1∈Cλmr

∑
µ2∈C

µ1
mr−1

ωµ2 ,

and eventually

〈hm1 . . . hmr , ωλ〉 = (hm1 . . . hmr−1hmr)
∗(ωλ) =

∑
µ1∈Cλm1

∑
µ2∈C

µ1
m2

. . .
∑

µr∈C
µr−1
mr

1,

because ωµr = 1 due to the fact that m1 + . . .+mr = n.
The sequences µ1, . . . , µr indexing the sum in the right-hand side are in bijective

correspondence with the semistandard tableaux of shape λ and weight m1, . . . ,mr,
indeed given such a semistandard tableau, we set µi to be the union of the boxes
filled with numbers ≤ i: µi is a semistandard tableau. Hence the result. �

Remark 7.13. Since the product is commutative, 〈hm1 . . . hmr , ωλ〉 depends only
on the non-increasing rearrangement µ of the sequence µ1, . . . , µr. Note that the
partition µ we just obtained verifies λ � µ .

{VIKostkadef}
Definition 7.14. Let λ, µ be two partitions of n, we define the Kostka number

Kλµ to be the number of semistandard tableaux of shape λ and weight µ.
{VIJacobiTrudi}

Theorem 7.15. (Jacobi-Trudi) For any partition λ of n, one has

ωλ = Det
(

(hλi−i+j)1≤i,j≤r(λ)

)
.

Proof. The theorem is proved by induction on n. For n = 1 the statement is
clear and we assume that the equality holds for all partitions µ of m with m < n.

We will use the automorphism H of the PSH algebra A defined by

H(hi) =
∑
j≤i

hj,

(the automorphism H is the formal sum
∑

k∈N h
∗
k).

First, we notice that the linear map H − Id : I → A is injective: indeed this
amounts to saying that its adjoint restricts to the surjective linear map∑

0≤j≤n

Aj −→ An, (a0, . . . , an−1) 7→ a0hn + . . .+ an−1h1,

and this assertion is clear since A the polynomial algebra Z[(hi)i∈N].
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Let us explain the induction step: we denote by $λ the determinant of the theo-
rem. We know (Pieri’s rule, Theorem 7.6 ) that H(ωλ) =

∑
i≥0,µ∈Cλi

ωµ, and we will

show that H($λ), when λ varies, satisfies the same equality (with obvious changes
of notations). This will conclude the proof since H − Id : I → A is injective.

Since H is an algebra homomorphism, we have

H($λ)(= H
(
Det

(
(hλi−i+j)1≤i,j≤r(λ)

))
) = Det

(
(H(hλi−i+j))1≤i,j≤r(λ)

)
.

We know that H(hλi−i+j) =
∑

k≤λi hk−i+j by definition of H. Hence

H($λ) = Det

( ∑
k1≤λ1,...,kr≤λr

hki−i+j

)
1≤i,j≤r

 .

We notice that, in this determinant, every entry is a partial sum of the entry which
is just above it, we are led to substract the i + 1th row from the ith row for all i.
This doesn’t affect the value of the determinant, therefore we obtain the equality

H($λ) = Det

 ∑
λ2≤k1≤λ1,...,λr≤kr−1≤λr−1,kr≤λr

hki−i+j


1≤i,j≤r

 .

Since the determinant is a multilinear function of its rows, we deduce

H($λ) =
∑

λ2≤k1≤λ1,...,λr≤kr−1≤λr−1,kr≤λr

Det
(

(hki−i+j)1≤i,j≤r

)
.

Now each family of indices k1, . . . , kr gives rise to a partition µ belonging to Cλ
m for

m = n− k1 − . . .− kr, from which we deduce the result. �

8. Harvest

In the last four sections, we defined and classified PSH algebras and we obtained
precise results in the rank one case. Now it is time to see why this was useful. In this
section, we will meet two avatars of the rank one PSH algebra, namely A of section
4, and the Grothendieck group of polynomial representations of the group GL∞:
this interpretation will give us precious information concerning the representation
theory in both cases. The final section of this chapter will be devoted to another
very important application of PSH algebras, in infinite rank case, associated to linear
groups over finite fields. We will only state the main results without proof and refer
the reader to Zelevinsky’s seminal book.

8.1. Representations of symmetric groups revisited. We use the notations
of section 4. We know by Proposition 4.7 that A is a PSH algebra.
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{VIcurlyArank1}
Proposition 8.1. The PSH algebra A is of rank one with basic primitive element

π, the class (in the Grothendieck group) of the trivial representation of the trivial
group S1.

Proof. Our goal is to show that every irreducible representation of Sn (n ∈
N\{0}) appears in πn. It is clear that πn is the regular representation of Sn, hence
the result. �

Corollary 8.2. For any PSH algebra A of rank 1, together with a choice of
indexation of the basis Ω by the partitions (there are two such choices conjugate by ι)
the multiplication table of the ωλs is given by the Littlewood-Richardson coefficients
(see Definition 2.14):

ωµων =
∑
λ

Nλ
µ,νωλ.

By adjunction,

m∗(ωλ) =
∑
µ,ν

Nλ
µ,νωµ ⊗ ων .

The choice of π gives us gives us two isomorphisms between A and A (one is
obtained from the other by application of the automorphism ι). We choose the
isomorphism which send h2 to the trivial representation of S2 (hence it sends e2 to
the sign representation of S2).

Let us give an interpretation of the different bases (eλ), (hλ), (ωλ), (pλ) in this
setting.

{VIcurlyAbases}
Exercise 8.3. (1) Check that ei corresponds to the sign representation of

Si and that hi corresponds to the trivial representation of Si.
(2) Show that ωλ corresponds to the class of the irreducible representation Vλ

defined in section 1.

Remark 8.4. In the case of symmetric groups, the Grothendieck group is also the
direct sum of Z-valued class functions on Sn when n varies. See Chapter 1, associated
with the fact that the characters of the symmetric groups take their values in Z.

{VIcurlyAprimitive}
Exercise 8.5. (1) Show that the primitive element pi

i
is the characteristic

function of the circular permutation of Si.
(2) Interpreting the induction functors involved, show that, for every partition

λ, pλ is the multiple of the characteristic function of the conjugacy class cλ
corresponding to λ by the coefficient |λ|!|cλ| .

The following Proposition is now clear:
{VIcharactertableSn}

Proposition 8.6. The character table of Sn is just the transfer matrix expressing

the ωµ’s in terms of |cλ||λ|! pλ’s when µ and λ vary along the partitions of n.
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Our goal now is to prove the Hook formula:
Let λ be a partition, let a = (i, j) be any every box in the Young diagram λ, we

denote h(a) the number of boxes (i′, j′) of the Young diagram such that i′ = i and
j′ ≥ j or i′ ≥ i and j′ = j: h(a) is called the hook length of a.

{VIHook}
Theorem 8.7. (Hook formula) For every partition λ of n, the dimension of the

Sn-module Vλ is equal to

dimVλ =
n!∏

a∈λ h(a)

Proof. For any Sn-module V , let us denote by rdimV the reduced dimension of
V that is the quotient dimV

n!
: this defines a ring homomorphism from A to Q, as one

can easily see computing the dimension of an induced module.
We write λ = (λ1, . . . , λr). Set Li = λi + r − i and consider the new partition

consisting of (L1, . . . , Lr) := L. We apply Theorem 7.15 and notice that rdim(hp) =
1
p!

: therefore one has

rdim(ωλ) = Det

((
1

(Li − r + j)!

)
1≤i,j≤r

)
.

Since Li! = (Li − r + j)!Pr−j(Li) where Pk(X) is the polynomial X(X − 1) . . . (X −
k + 1), the right-hand side becomes

1

L1! . . . Lr!
Det

(
(Pr−j(Li))1≤i,j≤r

)
.

Now Pk is a polynomial of degree k with leading coefficient 1, hence this determinant
is a Vandermonde determinant and is equal to

∏
1≤i<j≤r(Li − Lj) and we get

dimVλ =
n!

L1! . . . Lr!

∏
1≤i<j≤r

(Li − Lj).

Noting that Li!∏
i<j(Li−Lj)

is product of the hook lengths of boxes of the i-th row of λ,

we obtained the wanted Hook formula. �
{VImultiplicityfree}

Theorem 8.8. For every partition λ of n, the restriction of Vλ to Sn−1 is the
direct sum ⊕µVµ where the Young diagram of µ is obtained from the Young diagram
of λ by deleting exactly one box.

Proof. This restriction is h∗1(ωλ). Hence the result. �

Exercise 8.9. Compute the dimension of the S6-module Vλ for λ = (3, 2, 1).
Calculate the restriction of Vλ to S5.
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8.2. Symmetric polynomials in infinitely many variables over Z. Let R
be a unital commutative ring, let us define the ring SR of symmetric polynomials in
a fixed infinite sequence (Xi)i∈N>0 of variables with coefficients in R. Recall that the
symmetric group Sn acts on the polynomial ring R[X1, . . . , Xn] by σ(Xi) := Xσ(i),
the ring of invariants consists of the symmetric polynomials in n variables. There is
a surjective algebra homomorphism which preserves the degree

ψn : R[X1, . . . , Xn+1]Sn+1 → R[X1, . . . , Xn]Sn

P (X1, . . . , Xn+1) 7→ P (X1, . . . , Xn, 0).

By definition, SR is the projective limit of the maps (ψn)n∈N>0 in the category of
graded rings.

In order to be more explicit, we need to introduce the ring of formal power series
R[[X1, . . . , Xn, . . .]] consisting of (possibly infinite) formal linear combinations, with
coefficients in R,

∑
α aαX

α, where α runs along multi-indices (αi)i≥1 of integers with
finite support. There is no difficulty in defining the product since, for any multi-index
α, there are only finitely many ways of expressing α into a sum α1 +α2. We set S∞ to
be the groups of permutations of all positive integers generated by the transpositions.
Then SR is the subring of R[[X1, . . . , Xn, . . .]] whose elements are invariant under S∞
and such that the degrees of the monomials are bounded.

Let A be the PSH algebra of rank one.
{VISympol}

Theorem 8.10. The map ψ : A→ SZ, given by, for all a ∈ A,

(6.9){VIpsi} ψ(a) =
∑
α

〈a,
∏
i

hαi〉Xα,

is an algebra isomorphism.
{VIRemSympol}

Remark 8.11. We deduce immediately from the formula for ψ the following
statements:

(1) ψ(hn) =
∑
|α|=nX

α, where |α| :=
∑

i αi if α = (α1, . . . , αi . . .),

(2) ψ(en) =
∑

α=(α1,...)
Xα, where every αi is either 0 or 1 and |α| = n,

(3) ψ(pn) =
∑

i≥1X
n
i .

Finally, if we denote by h♦λ the dual basis of hλ with respect to the scalar
product on A, one has

(4) ψ(h♦λ ) =
∑

αX
α where α runs along the multi-indices whose non-increasing

rearrangement is λ.

Proof. We follow the proof given in Zelevinsky’s book, attributed to Bernstein.
Let us first define the homomorphism ψ: we iterate the comultiplication A→ A⊗A
and obtain an algebra homomorphism µn : A→ A⊗n for any n (one has µ2 = m∗).

Furthermore, the counit ε induces a map εn : A⊗n+1 → A⊗n such that the follow-
ing diagram is commutative:
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(6.10){VIdiag1} A
µn

!!CCCCCCCC
µn+1 // A⊗n+1

εn

zzuuuuuuuuu

A⊗n

If B is a N-graded commutative ring and t is an indeterminate, we can define
a canonical homomorphistm βB : B → B[t] by setting, for any b ∈ B of degree k,
βB(b) := btk: thus we obtain a homomorphism β⊗nA : A⊗n → A[X1, . . . , Xn]. Note
that, in order to obtain a homogeneous homomorphism, we have to forget the grading
of A for the definition of the degree in A[X1, . . . , Xn]: in this algebra, the elements
of A have degree 0. Note also that the image of µn is always contained in (A⊗n)Sn .

{VIexodiag2}
Exercise 8.12. Show that the following diagram is commutative (the symmetric

group acts both on the set of variables and on the factors of A⊗k):

(6.11) {VIdiag2}(A⊗n+1)Sn+1

εn
��

β⊗n+1
A // (A⊗n+1[X1, . . . , Xn+1])Sn+1

��
(A⊗n)Sn

β⊗nA

// (A⊗n[X1, . . . , Xn])Sn

Let a ∈ A, by definition of µn one has

µn(a) =
∑

λ1,...,λn

〈a, ωλ1 . . . ωλn〉ωλ1 ⊗ . . .⊗ ωλn

where λ1, . . . , λn are partitions. Thus,

(6.12) {VIbetamu}β⊗nA (µn(a)) =
∑

λ1,...,λn

〈a, ωλ1 . . . ωλn〉ωλ1 ⊗ . . .⊗ ωλnX
|λ1|
1 . . . X |λn|n .

{VIpositiveaugmentations}
Lemma 8.13. There are exactly two positive algebra homomorphisms from A to

Z, conjugate up to ι (see Theorem 6.11) which transform the basic primitive element
π into 1. One of them, denoted by δ, is such that δ(hi) = 1 for all i and δ(ωλ) = 0
whenever ωλ is not one of the his.

Proof. Such a homomorphism maps π2 onto 1, but π2 = e2 + h2 and since it is
positive, either e2 or h2 is sent to one 1 (and the other to 0). Since ι exchanges e2 and
h2, we can assume that h2 is sent to 1 (and e2 to 0). We denote this homomorphism
by δ. Let ω be a basic element of degree n in A, distinct from hn. By Lemma 6.3,
e∗2(ω) 6= 0, hence ω � e2π

n−2 and since δ(e2) = 0 and δ is positive, δ(ω) = 0. Then,
since δ(πn) = 1, we obtain δ(hn) = 1, hence the Lemma. �
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Set ψn = δ⊗n ◦ β⊗nA ◦ µn : A→ Z[X1, . . . , Xn]. Applying Lemma 8.13 and (6.12),
we obtain

(6.13) {VIpsin} ψn(a) =
∑

(i1,...,in)∈Nn
〈a, hi1 . . . hin〉X i1

1 . . . X in
n .

Taking the projective limit, we get the morphism ψ : A→ SZ we are looking for and
the item (4) of Remark 8.11 ensures that ψ is an isomorphism. �

We now compute ψ(ωλ) for any partition λ, and more precisely ψn(λ) for any
n ≥ |λ|.

We first introduce the following notation for the generalized Vandermonde de-
terminant: let µ = (µ1, . . . , µn) be a decreasing sequence of non-negative integers,
we set Vµ(X1, . . . , Xn) = det((X

µj
i )1≤i,j≤n). Notice that V(n−1,n−2,...,1,0)(X1, . . . , Xn)

is the usual Vandermonde determinant.
{VIVandermonde}

Proposition 8.14. One has

(6.14){VIWeyl1} ψn(ωλ) =
V(λ1+n−1,λ2+n−2,...λn)(X1, . . . , Xn)

V(n−1,n−2,...,1,0)(X1, . . . , Xn)
.

Exercise 8.15. Show the Proposition. Hints: use the Jacobi-Trudi formula (see
Theorem 7.15), the duality in the exterior algebra of C[X1, . . . , Xn]λ1+n−1 (seen as a
free C[X1, . . . , Xn]-module), and the linear relations

ψn(e0)Xn+j
i − ψn(e1)Xn+j−1

i + . . .+ (−1)nψn(en)Xj
i = 0

(Vieta’s formula) and

e0hn+j − e1hn+j−1 + . . .+ (−1)nenhj = 0

(see the end of the proof of Proposition 6.6).
{VIsubsectionHarvestInfinite}

8.3. Complex general linear group for an infinite countable dimensional
vector space. Let V be an infinite countable dimensional complex vector space, we
consider the group G = GL(V ). Denote by T the full subcategory of the category of
G-modules whose objects are submodules of direct sums of tensor powers of V . We
saw in section 2 that T is a semisimple category. The simple modules are indexed
by partitions and we denote by Sλ(V ) the simple module associated to the partition
λ. We denote by K(T ) the Grothendieck group of T .

Our aim is to equip K(T ) with a structure of PSH algebra of rank one.
We define the multiplication: m([M ], [N ]) = [M ⊗ N ] for M and N in T (recall

that if M ∈ T , we denote by [M ] its class in the Grothendieck group).
We define the scalar product: 〈[M ], [N ]〉 = dim HomG(M,N), and the grading:

by convention, the degree of V ⊗n is n.
Finally we proceed to define the comultiplication m∗, and it is a trifle more tricky.

Since V is infinite dimensional, we can choose an isomorphism ϕ : V → V ⊕ V . By
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composition with ϕ, we obtain a group morphism Φ : G×G to G,

Φ

(
A 0
0 B

)
= ϕ−1 ◦

(
A 0
0 B

)
◦ ϕ.

We have two canonical projectors of V ⊕ V and we denote by V1 (resp.V2) the image
of the first (resp. second) one.

{VIGrothGps}
Exercise 8.16. Show that V ⊗p1 ⊗ V ⊗q2 is a semisimple G × G-module and that

its irreducible components are of the form Sλ(V1)⊗ Sµ(V2), where λ is a partition of
p and µ is a partition of q.

Therefore, if we denote T̃ the full sucategory of the category of G × G-modules
whose objects are submodules of direct sums of V ⊗p1 ⊗ V ⊗q2 , then its Grothendieck
group is isomorphic to K(T )⊗K(T ).

Hence, the restriction functor Res (with respect to the inclusion of G × G in
G) maps the category T to the category T̃ . Therefore it induces a linear map
m∗ : K(T )→ K(T )⊗K(T ).

{VIGLinftyPSH}
Theorem 8.17. The Grothendieck group K(T ), equipped the operations de-

scribed above and the basis given by the classes of simple modules, is a PSH algebra
of rank one, and the basic primitive element is the class of V , [V ].

Proof. The only axiom of the definition of PSH algebras which is not straight-
forward and needs to be checked is the self-adjointness, namely the fact that m and
m∗ are mutually adjoint with respect to the scalar product. For this, we have to find
a functorial bijective map HomG(M ⊗ N,P ) → HomG×G(M ⊗ N,Res(P )) (where
M , N , P are objects of T ). Since any G- module is the direct sum of its homoge-
neous components, we may asume that M , N , P are homogeneous of degree p, q, n
respectively, with n = p+ q.

For any object W ∈ T homogeneous of degree r, set ΠW := HomG(V ⊗r,W ) which
is an Sr-module; Schur-Weyl duality (see Proposition 2.13) can be reformulated in
saying that there is a canonical isomorphism of G-modules W ' ΠW ⊗C(Sr) V

⊗r. We

set M1 := ΠM ⊗C(Sp) V
⊗p

1 ↪→M , N2 := ΠN ⊗C(Sq) V
⊗q

2 ↪→ N .
Then we have an inclusion M1 ⊗N2 ⊂M ⊗N , and the restriction defines a map

HomG(M ⊗ N,P ) → HomG×G(M1 ⊗ N2, Res(P )). This is the functorial map we
where looking for.

In order to show this map is bijective, it is enough (by the semisimplicity of the
categories T and T̃ ) to check it for M = V ⊗p, N = V ⊗q and P = V ⊗n with p+ q = n
indeed, on one hand, one has:

dim HomG(V ⊗p ⊗ V ⊗q, V ⊗n) = dim HomG×G(V ⊗p1 ⊗ V ⊗q2 , V ⊗n) = n!

the first equality coming from the Schur-Weyl duality and the second equality comes
from the formula

V ⊗n ' ⊕nr=0

(
V ⊗r1 ⊗ V ⊗(n−r)

2

)⊕ n!
r!(n−r)!

.



1486. SYMMETRIC GROUPS, SCHUR–WEYL DUALITY AND POSITIVE SELF-ADJOINT HOPF ALGEBRAS

On the other hand, the map is injective because V ⊗p1 ⊗V
⊗q

2 spans the G-module V ⊗n.
�

9. General linear groups over a finite field

This section is a summary without proofs of Chapter III, sections 9–11 of Zelevin-
sky’s book [37].

Let p be a prime and q a power of p. We denote by Fq the finite field with q
elements and by Gn the linear group GLn(Fq). We consider, for every integer n,
the category Cn of Gn-modules over the complex numbers and we denote by Kn the
Grothendieck group of Cn. We want to consider the collection of all Gn at the same
time, so we set Aq := ⊕n≥0Kn, where by convention K0 = Z.

As a Z-module, Aq has a basis Ω consisting of the classes of all the irreducible
modules over Gn, n ≥ 1, and 1 ∈ K0. There is a non-degenerate bilinear form on Aq
which is defined by, for [V ], [W ] ∈ Kn, 〈V,W 〉 = dim HomGn(V,W ) and 〈Km,Kn〉 = 0
if m 6= n.

We equip Aq with a multiplication µm,n : Km ⊗ Kn → Km+n, which comes from
the parabolic induction: let Pm,n denote the subgroup of Gm+n:

Pm,n =

{(
A B
0 C

)
, A ∈ Gm, C ∈ Gn

}
.

If V ∈ Cm and W ∈ Cn, we extend the Gm ×Gn-module V ⊗W into a Pm,n-module
with trivial action of the normal subgroup of Pm,n, Um,n,

Um,n =

{(
Idm B
0 Idn

)}
.

We then define a Gm+n-module by induction from Pm,n to Gm+n, and this functor
Im,n is called the parabolic induction. By definition, the class of this module is
µm,n([V ]⊗ [W ]).

Now we equip Aq with a comultiplication µ∗, defined over Kr by the direct sum
(for m+n = r) of the maps µ∗m,n coming from the functor (called parabolic restriction)
Rm,n which is right-adjoint to Im,n. The functor Rm,n transforms the Gr-module M
into the Gm ×Gn-module HomUm,n(C,M).

{VIZelevinskyGL}
Theorem 9.1. (Zelevinsky) When equipped with µ, µ∗, the basis Ω and the

scalar product defined above, Aq is a PSH algebra.

Remark 9.2. 1) The proof of this theorem essentially follows the same lines
as the proof of Proposition 4.7. Nevertheless, contrary to the symmetric case, the
commutativity of the multiplication is not obvious (but is automatic, see Proposition
3.9).

2) In order to prove that the comultiplication is a ring homomorphism, Zelevin-
sky uses the identification (which follows from the Bruhat decomposition) between
Pm,n\Gm+n/Pm,n and (Sm × Sn)\Sm+n/(Sm × Sn).
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Contrary to the previous cases we studied, this PSH algebra is not of rank one.
In order to decompose it, we need the following definition:

{VIcuspidal}
Definition 9.3. Let V be an irreducible module over Gn. If V is not a direct

summand in any Gn-module obtained by (strict) parabolic induction, then V is called
a cuspidal representation of Gn.

Remark 9.4. (1) This amounts to saying that [V ] ∈ Kn is a primitive ele-
ment of Aq.

(2) We will call the integer n the cuspidal degree of V and denote it by d(V ).

We denote by Γ the set of classes in Aq of all cuspidal representations for all
Gn. The following proposition is a direct consequence of Zelevinsky’s decomposition
theorem (Theorem 5.6):

{VIcuspidaldecomposition}
Proposition 9.5. One has:

Aq =
⊗
γ∈Γ

Aγ,

where Aγ is the rank one PSH algebra with basic primitive element γ, which, as a
Z-module, is spanned by the supports of the powers of γ.

The table of characters of the group GLn(Fq) is understood since the work of J. A.
Green (J.A. Green, The characters of the finite general linear groups, Trans. AMS,
80 (1955) pp. 402-447). The problem is to understand the transition matrix, in the
C-vector space Aq⊗ZC, from the set Ω of characters of irreducible representations to
the set Υ of characteristic functions of conjugacy classes in the collection of groups
Gn. The multiplication of Aq ⊗Z C in the basis Υ is exactly the multiplication of the
classical Hall algebra H(Fq[t, t−1]):

An element υ ∈ Υ of degree n is the isomorphism class of a Fq[t, t−1]-module of
finite length: n is the dimension of the underlying Fq vector space V and t is seen
as an automorphism of V . The multiplication rule is given by υ1υ2 =

∑
υ∈Υ c

υ
υ1,υ2

υ,

where, for a given Fq[t, t−1]-module M of isomorphism class υ, the constant cυυ1,υ2
is

the number of submodules N ⊂M of type υ1 such that M/N is of type υ2.
This statement is an interpretation of parabolic induction in terms of conjugacy

classes.
The Hall algebra H(Fq[t, t−1]) is an infinite tensor product of local Hall algebras

H(Fq[t, t−1]p) where p is a maximal ideal of Fq[t, t−1] (which is automatically generated
by a monic irreducible polynomial with non-zero constant term). This decomposition
amounts to the equality M = ⊕pMp for any torsion Fq[t, t−1]-module M of finite type.

{VI-Hall}
Remark 9.6. The definition of local Hall algebras remains meaningful if we re-

place Fq[t, t−1]p by any discrete valuation ring o, with finite residue field k. This
algebra H(o) has a marked basis, the classes of o-modules of finite length, which can
be indexed by partitions, we will abuse notation and denote the element associated
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to the partition λ in this basis by υλ. The multiplication table, that is the matrix
of the product H(o) ⊗ H(o) → H(o), is given by the family gνλ,µ(|k|) (λ, µ, ν vary
among the partitions) where gνλ,µ(t) is the so-called Hall polynomial associated to the
partitions λ, µ, ν; therefore H(o) depends only on the cardinal of the residue field k.

Moreover, there is a scalar product 〈, 〉|k| on H(o) for which the basis (υλ)λ is
orthogonal and, if λ is a partition of n, 〈υλ, υλ〉|k| is the cardinal of the GLn(k)-orbit
of shape λ. We apologise for not giving a combinatorial formula for this cardinal but
it is quite complicated to state and anyway we will use it only for small values of n.

This is the beginning of a long story told by I.G. Macdonald, in [24]

Hence we are now given two tensor decompositions of Aq ⊗Z C, the one we just
obtained and the one coming from Proposition 9.5 after tensorisation by C. Un-
derstanding the character table is now theoretically “reduced” to understanding the
composed maps

ϕγ,p : Aγ → Aq → Aq ⊗Z C→ H(Fq[t, t−1]p)

when the cuspidal representation γ and the maximal ideal p vary.
Note that Aq ⊗Z C is the algebra of central functions on the collection of groups

Gn. Hence it comes with a hermitian scalar product and a comultiplication which
is the complexification of µ∗. We carry them into the Hall algebra H(Fq[t, t−1]).
The resulting scalar product is obviously the tensor product of the family of scalar
products 〈, 〉Fq [t,t−1]/p when the prime ideal p varies. It is a formal consequence of
those facts that the local Hall algebras are equipped with a comultiplication, which
is adjoint to the given multiplication. Finally, we note that the projection morphism
H(Fq[t, t−1]) → H(Fq[t, t−1]p) is the orthogonal projection, and that the maps ϕγ,p
are morphisms of Hopf algebras.

{VIHopfSymmetric}
Remark 9.7. This last fact is important, since we know that a graded Hopf

algebra over C is the symmetric algebra S(P ) of the graded vector space P consisting
of its primitive elements, and a morphism of graded Hopf algebras F : S(P1)→ S(P2)
always restricts to a linear map f : P1 → P2 and therefore F is obtained from f after
taking symmetric algebras.

In his book, Zelevinsky computes the maps ϕγ,p for all γ and for p = (t−1), which
will be denoted by q in what follows. In other words, he computes the values of each
character on every unipotent conjugacy class. Later on, Springer and Zelevinsky
([30]) were able to extend this description to every map ϕγ,p (i.e. for every maximal
ideal p).

Let us give an idea of Zelevinsky’s argument.
We denote by c ∈ Γ the trivial representation of G1: it is a cuspidal representation.

Since Ac is of rank one, it is isomorphic to A, and there a unique way of sending
hn ∈ A on the trivial representation of Gn. We compute the map

ϕc,q : Ac → H := H(Fq[t, t−1]q),
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starting from

ϕc,q(hn) =
∑

υ unipotent,deg(υ)=n

υ.

We use the multiplication table of the elements υ in order to compute ϕc,q(pn) where
pn is the primitive element in A defined in Proposition 7.2. Zelevinsky gives the
formula

ϕc,q(pn) =
∑
λ`n

(1− q)(1− q2) . . . (1− ql(λ)−1)υqλ

where l(λ) is the number of parts of λ and υqλ is the unipotent basic element of shape λ
(see [37], Theorem 10.3.(b)). This formula implies that ϕc,q is injective and induces
an isomorphism Ac ⊗Z C ' H since the dimension of the spaces of homogeneous
elements coincide (see Remark 9.7).

{VIMacdo}
Remark 9.8. In other words, H can be identified (as a Hopf algebra) with the

algebra of symmetric polynomials in infinitely many variables over C, but this iden-
fication is not compatible with the scalar products. We do not wish to make this
identification in the long run, but let us proceed with it for a little while. Denote
by 〈, 〉H the scalar product induced by the one of Aq ⊗ C. In the book [24], Chap.
3, Macdonald expresses the symmetric function υλ

〈υλ,υλ〉H
, which corresponds to the

unipotent conjugacy class of shape λ divided by the cardinnal of its stabilizer, as re-
ciprocal Hall-Littlewood polynomials in the variable t specialized at q, tn(λ)Pλ(x; t−1).

Here n(λ) =
∑

i≥0

(
λ′i
2

)
, where λ′ is the conjugate partition of λ and x is the set

of variables. Hall-Littlewood polynomials are given by an explicit formula, see [24]
Chap.3, formulae (2.1), (2.2); the degree in t of Pλ(x; t) is ≤ n(λ), and the transition
matrix from the Schur polynomials (ωλ) to (υλ) is upper unitriangular with respect
to the dominant order on partitions. Tables are given pp. 239-241 (of Macdonald’s
book).

{VIHalloriented}
Remark 9.9. If we replace H by any other Hall algebra over a discrete valua-

tion ring o with the same residue field, then the result is unchanged if we replace∑
υ unipotent,deg(υ)=n υ by the sum of classes of o-modules of length n.

Fix γ ∈ Γ a cuspidal representation, of cuspidal degree d, the map ϕγ,q transforms
primitive elements of Aγ into primitive elements ofH, we can identify Aγ (in two ways
due to the automorphism ι) with the PSH A where the degree has been multiplied
by d. Thus, we have ϕγ,q(pn) = αnϕc,q(pdn), for some constant αn . If we change
the identification (by applying ι), αn is changed into −αn. Our problem amounts to
computing the constants αn.

In order to do that, we need to introduce the Gel’fand-Graev modules,[16], Gn,χ:
we choose a non trivial additive character χ of the base field Fq. Take Un to be
the unipotent subgroup of Gn consisting of upper triangular matrices with 1s on the
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diagonal. We set Cn,χ the 1-dimensional Un-module such that, if u = ((ui,j)i,j) ∈ Un,
u acts on Cn,χ by

∏
i χ(ui,i+1). Then we set

Gn,χ = IndGnUn Cn,χ.
{VIindepchar}

Remark 9.10. The class of the Gel’fand-Graev module in the Grothendieck group
does not depend on the choice of the characher χ. Indeed, if χ1 and χ2 are two non-
trivial additive characters of Fq, there is a unique a ∈ F∗q such that χ2 = aχ1.
Therefore the diagonal matrix Diag(a, 1, . . . , 1) =: D conjugates Cn,χ1 and Cn,χ2 as
Un-modules and thus the two induced modules are isomorphic.

For any fixed n, consider the linear form δn : Kn → Z given by the scalar product
with [Gn,χ]. Let δ : Aq → Z be the linear form which restricts to δn on Kn.

By Remark 9.10, this map does not depend on the choice of χ.
{VIGelfandGraev}

Theorem 9.11. (Gel’fand-Gel’fand-Graev) The linear form δ is multiplicative
and maps every cuspidal representation to 1.

We do not provide any outline of proof but we apply it to the problem of com-
puting the constants αn.

The first thing is that we can fix an identification between Aγ and the PSH algebra
A in such a way that δ(en) = 1, for all n, hence δ(pn) = (−1)n.

On the other hand, the complexification of δ factors through a linear form on
H since, by definition, δ vanishes on all conjugacy classes which are not unipotent.
Therefore we get δ(ϕc,q(pdn)) = (−1)dn and δ(ϕγ,q(pn)) = (−1)n, thus

{VICorvarphi}
Corollary 9.12. One has ϕγ,q(pn) = (−1)(d−1)nϕc,q(pdn).

The reader should feel that this corollary allows to compute the values of the
irreducible characters of Gn on unipotent conjugacy classes. Let us make this more
precise.

{VIJordan}
Notation 9.13. For any family of partitions (λγ)γ∈Γ, with

∑
γ∈Γ d(γ)|λγ| = n,

we set
[V(λγ)] =

⊗
γ∈Γ

ωγλγ .

This notation is parallel to the following indexation of conjugacy classes in the union
of all groups GLn(Fq): we denote by X the set of maximal ideals in Fq[t, t−1], if p ∈ X
we set d(p) to be the degree of the corresponding residue field over Fq, and we index
Υn by the families of partitions (λp)p∈X such that

∑
p d(p)|λp| = n.

We thus obtain an indexation of all the irreducible representations of Gn for any
n. We apologise for the intricate notations.

Let ω = ⊗γ∈Γω
γ
λγ

be the class in Aq of an irreducibleGn-module (we have
∑
|λγ| =

n), let υµ be the characteristic function of the unipotent class in Gn of shape µ, we
want to compute the scalar product 〈ω, υµ〉. In this computation, we may replace ω by
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its orthogonal projection in the Hall algebra H, which is by definition Πγ∈Γϕγ,q(ω
γ
λγ

).

For each γ, we express ωγλγ as a linear combination with rational coefficients of the

Newton functions pν , where |ν| = |λγ|; by Corollary 9.12, ϕγ,q(ω
γ
λγ

) is expressed as a

linear combination of ϕc,q(pν′) with |ν ′| = d(γ)|λγ|, and their product, when γ varies,
is given as an explicit expression in terms of ϕc,q(pi), i ∈ N.

For instance, we obtain a dimension formula for a cuspidal representation γ of
cuspidal degree d:

dim γ = (qd−1 − 1)(qd−2 − 1) . . . (q − 1).
{VI-Newton}

Remark 9.14. The basis (ωλ) of H is not orthogonal with respect to 〈, 〉H, but
the Newton polynomials pλ are (see the proof of Lemma 5.5, and use the fact that
the elements pn are primitive and their degrees are all distinct).

Furthermore, Theorem 9.11 leads to a branching rule for the representations of
GLn(Fq).

{VIcor1GG}
Corollary 9.15. We fix the integer n and the character χ of Fq. The Gel’fand-

Graev representation Gn,χ is multiplicity-free.

An irreducible representation M satisfies δ([M ]) = 0 or 1. Gel’fand-Graev call the
representations such that δ([M ]) = 1 non-degenerate. Therefore the non-degenerate
modules are the ones appearing in the decomposition of Gel’fand-Graev representa-
tions.

{VIcor2GG}
Corollary 9.16. Consider a family of non-negative integers (kγ) for γ ∈ Γ,

of finite support. Set [V(kγ)] :=
⊗

γ∈Γ ω
γ

1kγ
. Then every non-degenerate irreducible

representation is isomorphic to a unique V(kγ).

Our next goal is to state an analogous of Theorem 8.8 for the present situation.
We denote by Affk the group of affine transformations of the space Fkq and by

K(Affk) the Grothendieck group of the category of finite dimensional Affk-modules.
We notice that Affn−1 can be seen as the subgroup of Gn consisting of matrices with
last row (0, . . . , 0, 1).

By definition, Affk is the semi-direct product Fkq oGk, and K(Affk) can be deter-
mined using [29] 8.2, Prop. 25. One has

K(Affk) = Kk ⊕K(Affk−1),

where Kk is seen as a subgroup of K(Affk) through the quotient map Affk → Gk. In
order to define the map K(Affk−1)→ K(Affk), we view Affk−1 as the stabilizer in Gk

of the character (1, . . . , 1, χ) of the additive group Fkq and we use Serre’s construction.
This decomposition does not depend on the choice of χ.

Using induction, we immediately obtain that
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K(Affn−1) =
⊕

0≤i≤n−1

Ki.

We construct a ring homomorphism D : Aq → Aq as the composition map:

Aq
m∗−→ Aq ⊗ Aq

Id⊗δ−−−→ Aq ⊗ Z = Aq.

Proposition 9.17. (1) The restriction functor from Gn to Affn−1 induces the
map D − Id : Kn → Kn−1 ⊕ . . .⊕K1 ' K(Affn−1).

(2) The induction functor from Gn−1 to Affn−1 induces the map D : Kn−1 →
Kn−1 ⊕ . . .⊕K1 ' K(Affn−1).

We now apply Pieri’s rule (Theorem 7.6) and Theorem 9.11. Recall the notations
introduced just before Pieri’s rule, and set Rλ the union of all the Rλ

i . We obtain
the following result:

{VIGelfandPieri}
Theorem 9.18. (1) Let V be the irreducible Gn-module indexed by the family

of partitions λγ (with
∑

γ d(γ)|λγ| = n), then the restriction of V to Affn−1 can be

expressed as the direct sum
⊕

V(µγ), with µγ ∈ Rλγ and (µγ) 6= (λγ).
(2) Let W be an irreducible Affn−1-module. Then there exists a family of par-

titions (µγ)γ∈Γ, with
∑

γ d(γ)|µγ| < n, representing [W ] in K(Affn−1). Then the
irreducible components of the image of W by the induction to Gn are labelled by
the families of partitions (λγ) such that µγ ∈ Rλγ and

∑
γ d(γ)|λγ| = n, each with

multiplicity one.

Remark 9.19. In the first statement, each V(µγ) is an irreducible representation
of Gi for some i < n since

∑
γ d(γ)|µγ| < n, hence it is a representation of Affn−1.

Our next goal is to state the main result of [30], which computes the maps ϕγ,p
for all maximal ideals p. The main difficulty resides in the construction of a bijection
between the set Γd of cuspidal representations of cuspidal degree d and the set of
conjugacy classes of primitive multiplicative characters of Fqd under the action of the
Frobenius automorphism x 7→ xq of Fqd (a multplicative character of Fqd is primitive
if it doesn’t factorize through any norm map Fqd → Fqd′ where d′ is a strict divisor of
d). One of the tools is Brauer’s theory of modular characters which we do not intend
to explain in this book (nevertheless, this theory is developed in [29]).

Let γ ∈ Γd a cuspidal representation, choose a multiplicative character ξ of Fqd
representing γ. Let p be a maximal ideal of Fq[t, t−1], generated by a polynomial
P of degree d. The graded group of primitive elements in Aγ has the natural basis
(pn,γ)n∈N, which is the image of the family (pn) ⊂ A by the map of the proof of
Theorem 9.11; the degree of pn,γ is nd. Similarly, the graded vector space of primitive
elements in the Hall algebra H(Fq[t, t−1]p) has the natural basis (pn,p)n∈N, which is
the image of the family (pn) ⊂ A by the isomorphism A ⊗Z C → H(Fq[t, t−1]p) (see
remark 9.9); the degree of pn,p is nd.
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{VISZ}
Theorem 9.20. (Springer-Zelevinsky) One has:

ϕγ,p(pn,γ) = (−1)n(d−1)

 ∑
x,P (x)=0

1

α(x)
ξ(NF

qd
(x)/F

qd
(x))

 pnd
d
,p

where α(x) = [Fqd(x) : Fqd ] and N is the norm of field extensions. Note that the
expression vanishes if d does not divide nd.

We want to test this compact formula with two examples of character tables:
the cases of GL3(F2) and GL2(Fq). The second example is developed in [12] with
classical methods. For both cases we also refer Steinberg’s thesis ([33]).

Example 9.21. Character table of GL3(F2).
In this case, there are lots of tremendous simplifications in the computations

due to the small size of the base field F2 and the uniqueness of the character of its
multiplicative group. Thus we are able to give details which would necessitate more
notations with a bigger base field.

The list of irreducible polynomials with non-zero constant term of degree ≤ 3
is X + 1, X2 + X + 1, X3 + X + 1, X3 + X2 + 1. We denote by j the chosen root
of X2 + X + 1 in F4 and by y (resp. y−1) the chosen root of X3 + X + 1 (resp.
X3 +X2 + 1) in F8. Therefore, the list of conjugacy classes of cuspidal characters of
degree ≤ 3 is parametrized by χ0 = c, the trivial character of F∗2, χj (conjugate to
χj2) character of F∗4 and two non-conjugate characters of F∗8, η and η.

The 6 conjugacy classes in GL3(F2) are Id, the Jordan block J(2,1), the maximal
Jordan block J(3), Diag(j, 1) (j is a 2× 2 matrix, and we abuse notation), y and y−1.

The northwest 3×3 block of the table is obtained with the table for n = 3 in [24]
p. 239, after taking the reciprocal polynomials evaluated at t = 2 (see Remark 9.8).

The southwest 3×3 block is deduced from the northwest block after multiplication

on the left by the matrix M =

 −1 0 1
1 −1 1
1 −1 1

: indeed, tM is the matrix of the

character table of the group S3, taking the colums indexed by the partitions (21) and
(twice) (3) because the image of (1)χj(1)c (resp. (1)η and (1)η) in H is p(21) (resp.
p(3)).

The northeast 3× 3 block comes from the composed homomorphism

m∗ ϕc,X2+X+1 ⊗ ϕc,X+1

Ac → Ac ⊗ Ac −→ HX2+X+1 ⊗HX+1
.

Finally, let us find the southeast 3× 3 block: the northwest coefficient is trivially
1, and since F4 is not included in F8 the other entries of the first line and the first

column are 0. The remaining 2×2 matrix is

(
β β
β β

)
where β = ξ(x)+ξ(x2)+ξ(x4)
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in the notations of Theorem 9.20. We get β = −1±
√

7
2

, since ξ(x) is a primitive 7-th
root of 1.

Id J(2,1) J(3) Diag(j, 1) y y−1

(3)c 1 1 1 1 1 1
(2, 1)c 6 2 0 0 −1 −1

(1, 1, 1)c 8 0 0 −1 1 1
(1)χj(1)c 7 −1 −1 1 0 0

(1)η 3 −1 1 0 −1+i
√

7
2

−1−i
√

7
2

(1)η 3 −1 1 0 −1−i
√

7
2

−1+i
√

7
2

Example 9.22. Character table of GL2(Fq).
The irreducible representations of GL2(Fq) give the basis Ω2 of the homogeneous

component of degree 2 of the PSH algebra Aq, we use the notation 9.13 and check
that they come in four families:

• if χ1, χ2 are two distinct characters of F∗q, they belong to Ω1 and we denote
by (1)χ1(1)χ2) their (commutative) product in Ω2.
• if χ is a character of F∗q, one sees it as a cuspidal representation of GL1(Fq)

and the square of χ in Aq is the sum e2,χ+h2,χ (of elements of Ω2) according
to the isomorphism A→ Aχ. This gives clearly two families indexed by the
partitions (1, 1)χ for e2,χ and (2)χ for h2,χ (this one corresponds to the trivial
representation if χ = 1).
• if η is a primitive character of F∗q2 , it corresponds by Theorem 9.20 to a

cuspidal representation of GL2(Fq), which we denote by (1)η.

The conjugacy classes of GL2(Fq) are indexed by Υ2, they also come in four families,
we indicate the cardinal of the corresponding orbits:

• if x1, x2 are two dinstinct elements of F∗q, we denote by Diag(x1, x2) the
class of the corresponding diagonal element in Υ2, the cardinal of the orbit
is q2 + q.
• if x ∈ F∗q, we denote by Diag(x, x) and Jord(x) the classes of the diagonal

element and the Jordan block element in Υ2, the cardinal of the orbits is 1
for Diag(x, x) and q2 − 1 for Jord(x).
• if y is a primitive element in F∗q2 , we denote by Pmin,y its minimal polynomial

on Fq and get an element of Υ2, the cardinal of the orbit is q2 − q.
The character table is the following (we used a different ordering in enumeration in
order to be consistent with usual notations in character tables).
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Diag(x, x) Diag(x1, x2) Jord(x) Pmin,y
(2)χ χ(x2) χ(x1x2) χ(x2) χ(N(y))

(1)χ1(1)χ2 (q + 1)χ1(x)χ2(x) χ1(x1)χ2(x2)+ χ1(x)χ2(x) 0
+χ1(x2)χ2(x1)

(1, 1)χ qχ(x2) χ(x1x2) 0 −χ(N(y))
(1)η (q − 1)η(x) 0 −η(x) −(η(x) + η(xq))





CHAPTER 7

Introduction to representation theory of quivers

Who killed Cock Robin? I, said the Sparrow, with my bow and arrow, I killed
Cock Robin. (Nursery Rhyme)

In which we enter the ”non-semisimple” woods: armed with quivers, we encounter tame and wild
problems.

1. Representations of quivers

A quiver is an oriented graph. For example

•1
α ++ •2

γ

��

β

kk •3

δ

kk
εss

is a quiver.
In this chapter we consider only finite quivers, namely quivers with finitely many

vertices and arrows.
The underlying graph of a quiver Q is the graph obtained from Q by forgetting

the orientation of the arrows.
If Q is a quiver, we denote by Q0 the set of vertices of Q and by Q1 the set of

arrows of Q. In the example above, Q0 = {1, 2, 3} and Q1 = {α, β, γ, δ, ε}.
A quiver Q′ is a subquiver of a quiver Q if Q′0 ⊂ Q0 and Q′1 ⊂ Q1.

For every arrow γ ∈ Q1 : i
γ−→ j we define s(γ) = i as the source or tail of γ and

t(γ) = j as the target or head of γ. In the example the vertex 1 is the source of α
and the target of β.

An oriented cycle is a subgraph with vertices C0 := {s1, . . . , sr} ⊂ Q0 and arrows
C1 = {γ1, . . . , γr} ⊂ Q1 such that γi goes from si to si+1 if i < r and γr goes from

sr to s1. In our example •1
α ++ •2

β

kk is a oriented cycle. A loop is an arrow with the

same head and tail. In our example, there is only one loop •2

γ

��
.

159
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Definition 1.1. Fix a field k. Let Q be a quiver. Consider a k-vector space

V =
⊕
i∈Q0

Vi

and a collection of k-linear maps

ρ = {ργ : Vi → Vj | γ ∈ Q1, s(γ) = i, t(γ) = j}.

Then (V, ρ) is called a representation of Q. The dimension of the representation (V, ρ)
is the vector d ∈ ZQ0 such that di = dimVi.

We sometimes use a diagram to visualize a representation of a quiver. For exam-
ple, if Q is of shape

•1 α−→ •2 β←− •3,

and if V1 = k2, V2 = k, V3 = k and ρα = 0, ρβ = id, we present it as the following
diagram:

k2 0−→ k
id←− k.

Definition 1.2. Let (V, ρ) and (W,σ) be two representations of Q. A morphism
of representations φ : (V, ρ) → (W,σ) is a set of linear maps {φi : Vi → Wi | i ∈ Q0}
such that the diagram

Vj
ργ←− Vi

↓ φj ↓ φi
Wj

σγ←− Wi

is commutative for every γ ∈ Q1, where i = s(γ), j = t(γ).
We say that two representations (V, ρ) and (W,σ) of Q are isomorphic if there

exists a morphism φ : (V, ρ)→ (W,σ) such that φi is an isomorphism for every i ∈ Q0.

The direct sum (V ⊕W, ρ⊕σ) of two representations (V, ρ) and (W,σ) of a quiver
Q is defined in the obvious way.

A representaion (W,σ) is a subrepresentation of (V, ρ) if for every i ∈ Q0 there is
an inclusion Wi ⊂ Vi such that for every γ ∈ Q1 with s(γ) = i, the restriction of ργ
to Wi coincides with σγ.

A representation (V, ρ) is irreducible if it does not have non-trivial proper sub-
representations and is indecomposable if it can not be written as a direct sum of two
non-trivial subrepresentations.

{VIIexample1}
Example 1.3. Consider the quiver 1

γ−→ 2 and the representation (V, ρ) which

corresponds to the diagram k
id−→ k. Then (V, ρ) has only one non-trivial proper

subrepresentation, namely the one given by the diagram 0
0−→ k. Therefore (V, ρ) is

indecomposable but not irreducible.
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In many cases it is not difficult to classify irreducible representations of a given
quiver. On the other hand, classifiying all indecomposable representations up to
isomorphism is very hard. Many classical problems of linear algebra can be viewed
as particular cases of this general problem. Let us see few examples.

{VIIexample2}
Example 1.4. Let Q be the quiver of Example 1.3. A representation of Q can

be seen as a pair of vector spaces V1 and V2 together with a linear map ργ : V1 → V2.
Let us fix the dimension (d1, d2) and identify V1 with kd1 , V2 with kd2 . Classifying the
representations of Q of dimension (d1, d2) is equivalent to the following problem of
linear algebra. Consider the space of matrices of size d2× d1. Then the linear groups
GL(d1) and GL(d2) act on this space by multiplication on the left and on the right
respectively. We would like to describe all the orbits for this action.

Consider a representation (V, ρ) of Q. Choose subspaces W1 ⊂ V1 and W2 ⊂ V2

such that V1 = Ker ργ ⊕W1 and V2 = ργ(W1) ⊕W2. Note that ργ induces an iso-
morphism α : W1 → ργ(W1). Then (V, ρ) is the direct sum of the subrepresentations

Ker ργ
0−→ 0, 0

0−→ W2 and W1
α−→ ργ(W1). It is clear that the first representation can

be written as a direct sum of several copies of k
0−→ 0, the second one is a direct sum

of several copies of 0
0−→ k. These decompositions are not unique, they depend on the

choice of basis in Ker ργ and W2. Finally the representation W1
α−→ ργ(W1) can be

written as a direct sum of several copies of k
id−→ k.

Therefore there are three (up to isomorphism) indecomposable representations
of Q. Their dimensions are (1, 0), (0, 1) and (1, 1). Furthermore, in every dimen-
sion there are finitely many non-isomorphic representations. Quivers with the latter
property are called quivers of finite type.

{VIIexampleloop}
Example 1.5. Consider the quiver Q with one vertex and one loop. Then a

finite-dimensional representation of Q is a pair (V, T ), where V is a finite-dimensional
vector space and T is a linear operator in V . Isomorphism classes of representations
of this quiver are the same as conjugacy classes of n × n matrices when n is the
dimension of V . If k is algebraically closed, this classification problem amounts to
describing Jordan canonical forms of n × n matrices. In particular, indecomposable
representations correspond to matrices with one Jordan block.

If k is not algebraically closed, the problem of classifying conjugacy classes of
matrices is more tricky. This example shows that representation theory of quivers
depends very much on the base field.

{VIIexampleKronecker}
Example 1.6. Consider the Kronecker quiver • •jj

tt . Classification of finite-
dimensional representations of this quiver is also a classical problem of linear algebra.
It amounts to the classification of pairs of linear operators S, T : V1 → V2 up to
multiplication by some X ∈ GL(V1) on the left and by some Y ∈ GL(V2) on the
right. It is still possible to obtain this classification by brute force. We will solve this
problem using general theory of quivers in the next chapter.
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{VIIexamplewilds}
Example 1.7. Now let Q be the quiver with one vertex and two loops. Repre-

sentation theory of Q is equivalent to classifying pairs of linear operators (T, S) in a
vector space V up to conjugation. In contrast with all previous examples in this case
the number of variables parametrizing indecomposable representations of dimension
n grows as n2. We call a pair (T, S) generic if T is diagonal in some basis e1, . . . , en
with distinct eigenvalues and the matrix of S in this basis does not have any zero
entry.

{VIIexercisewild}
Exercise 1.8. Check that if (T, S) is generic and W ⊂ V is both T -stable and

S-stable, then W = 0 or W = V . Thus, the corresponding representation of Q is
irreducible.

Therefore every generic pair of operators (T, S) gives rise to an irreducible repre-
sentation of Q. The eigenvalues of T give n distinct parameters. If T is diagonalized,
we can conjugate S by linear operators diagonal in the eigenbasis of T . Thus, we
have n2 − n parameters for the choice of S.

The situation which appears in this example is refered to as wild. There is a
precise definition of wild quivers and we refer the reader to Chapter 9 for further
reading on this subject.

2. Path algebra

As in the case of groups, we can reduce the representation theory of a quiver to
the representation theory of some associative ring. In the case of groups, this ring is
the group algebra, while in the case of quivers it is the path algebra.

Definition 2.1. Let Q be a quiver. A path p is a sequence γ1, . . . , γk of arrows
such that s (γi) = t (γi+1). Set s (p) = s (γk), t (p) = t (γ1). The number k of arrows
is called the length of p.

Definition 2.2. Let p1 = γ1, . . . , γk and p2 = δ1, . . . , δl be two paths of Q. We
define the product of p1 and p2 to be the path δ1, . . . , δl, γ1, . . . γk if t(γ1) = s(δl) and
zero otherwise.

Next we introduce elements ei for each vertex i ∈ Q0 and define the product of
ei and ej by the formula

eiej = δijei.

For a path p, we set

eip =

{
p, if i = t (p)

0 otherwise
,

pei =

{
p, if i = s (p)

0 otherwise
.
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The path algebra k (Q) of Q is the vector space of k-linear combinations of all
paths of Q and elements {ei}i∈Q0 , with the multiplication law obtained by extending
of the product defined above by bilinearity.

Note that every ei, i ∈ Q0, is an idempotent in k(Q) and that
∑

i∈Q0
ei = 1.

{VIIfreeexample}
Example 2.3. Let Q be the quiver with one vertex and n loops then k (Q) is the

free associative algebra with n generators.
{VIIexquivermatrix}

Exercise 2.4. Let Q be a quiver such that the underlying graph of Q does not
contain any cycle or loop. Let Q0 = {1, . . . , n}. Show that the path algebra k (Q) is
isomorphic to the subalgebra of the matrix algebra Matn (k) generated by the subset
of elementary matrices {Eii | i ∈ Q0}, {Eji | γ ∈ Q1, s(γ) = i, t(γ) = j}.

In particular, show that the path algebra of the quiver

• ← • ← · · · ← •

is isomorphic to the algebra Bn of upper triangular matrices, see Example 7.19 Chap-
ter 5.

{VIIbasicpath}
Lemma 2.5. Let Q be a quiver.

(1) The path algebra k (Q) is generated by the idempotents {ei | i ∈ Q0} and
the paths {γ | γ ∈ Q1} of length 1.

(2) The algebra k (Q) is finite-dimensional if and only if Q does not contain an
oriented cycle.

(3) If Q is the disjoint union of two quivers Q′ and Q′′, then k (Q) is isomorphic
to the direct product k (Q′)× k (Q′′).

(4) The path algebra has a natural Z-grading

k (Q) =
∞⊕
n=0

k (Q)(n) ,

where k(Q)(0) is the span of the idempotents ei for all i ∈ Q0 and k(Q)(n) is
the span of all paths of length n.

(5) For every vertex i ∈ Q0 the element ei is a primitive idempotent of k (Q),
and hence k(Q)ei is an indecomposable projective k (Q)-module.

Proof. The first four assertions are straightforward and we leave them to the
reader as an exercise. Let us prove (5).

Let i ∈ Q0. By Exercise 7.14 Chapter 5, proving (5) amounts to checking that if
ε ∈ k(Q)ei is an idempotent such that eiε = εei = ε, then ε = ei or ε = 0. We use
the grading of k(Q) defined in (4). By definition, the left ideal k(Q)ei inherits this
grading. Hence we can write

k(Q)ei =
∞⊕
n=0

k (Q)(n) ei,



164 7. INTRODUCTION TO REPRESENTATION THEORY OF QUIVERS

where k(Q)(0)ei = kei and, for n > 0, the graded component k(Q)(n)ei is spanned
by the paths of length n with source at i. We can write ε = ε0 + · · · + εl with
εn ∈ k(Q)(n)ei. Since ε is an idempotent, we have ε2

0 = ε0, which implies ε0 = ei or
ε0 = 0. In the latter case let εp be the first non-zero term in the decomposition of ε.
Then the first non-zero term in the decomposition of ε2 has degree no less than 2p.
This implies ε = 0. If ε0 = ei, consider the idempotent ei − ε and apply the above
argument again. �

Given a representation (V, ρ) of a quiver Q, V =
⊕
i∈Q0

Vi one can equip V with a

structure of k (Q)-module in the following way

(1) The idempotent ei acts on Vj by δij IdVj .
(2) For γ ∈ Q1 and v ∈ Vi we set γv = ργ(v) if i = s(γ) and zero otherwise.
(3) We extend this action for the whole k(Q) using Lemma 2.5 (1).

Conversely, every k (Q)-module V gives rise to a representation ρ of Q when one
sets Vi = eiV .

This implies the following Theorem. 1

{VIIthequivalence}
Theorem 2.6. The category of representations of Q over a field k is equivalent

to the category of k (Q)-modules.
{VIIexpathideal}

Exercise 2.7. Let Q be a quiver and J(Q) be the ideal of k(Q) generated by
all arrows γ ∈ Q1. Then the quotient k(Q)/J is a semisimple commutative ring
isomorphic to kQ0 .

{VIIsubquiver}
Exercise 2.8. Let Q′ be a subquiver of a quiver Q. Let I(Q′) be the ideal of

k(Q) generated by ei for all i /∈ Q′0 and by all γ /∈ Q′1. Prove that k(Q′) is isomorphic
to the quotient ring k(Q)/I(Q′).

{VIIgradrad}

Lemma 2.9. Let A =
∞⊕
i=0

A(i) be a graded algebra and R be the Jacobson radical

of A. Then

(1) R is a graded ideal, i.e. R =
∞⊕
i=0

R(i), where R(i) = R ∩ A(i);

(2) If u ∈ R(p) for some p > 0, then u is nilpotent.

Proof. Assume first that the ground field k is infinite. Let t ∈ k∗. Consider
the automorphism ϕt of A such that ϕt(u) = tpu for all u ∈ A(p). Observe that
ϕt(R) = R. Suppose that u belongs to R and write it as the sum of homogeneous
components u = u0 + · · · + un with uj ∈ A(j). We have to show that ui ∈ R for all
i = 1, . . . , n. Indeed,

ϕt(u) = u0 + tu1 + · · ·+ tnun ∈ R
1Compare with the analogous result for groups in Chapter 2.
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for all t ∈ k∗. Since k is infinite, this implies ui ∈ R for all i. If k is finite, consider
the algebra A⊗k k̄ and use the fact that R⊗k k̄ is included in the radical of A⊗k k̄.

Let u ∈ R(p). Then 1 − u is invertible. Hence there exists ai ∈ A(i), for some
i = 1, . . . , n such that

(a0 + a1 + · · ·+ an)(1− u) = 1.

This relation implies a0 = 1 and apj = uj for all j > 0. Thus uj = 0 for sufficiently
large j. �

Let us call a path p of a quiver Q a one way path if there is no path from t(p) to
s(p).

{VIIexoneway}
Exercise 2.10. The span of all one way paths of Q is a two-sided nilpotent ideal

in k(Q).
{VIIradical}

Lemma 2.11. The Jacobson radical of the path algebra k (Q) is the span of all
one way paths of Q.

Proof. Let N be the span of all one way paths. By Exercise 2.10 N is contained
in the radical of k(Q).

Assume now that y belongs to the radical of k(Q). Exercise 2.7 implies that y ∈
J(Q) and moreover by Lemma 2.9(2) we may assume that y is a linear combination
of paths of the same length. We want to prove that y ∈ N . Note that eiyej belongs
to the radical for all i, j ∈ Q0. Assume that the statement is false. Then there
exist i and j such that z := eiyej is not in N , in other words there exists a path u
with source j and target i. Furthermore zu is a linear combination of oriented cycles
u1, . . . , ul of the same length. By Lemma 2.9 u must be nilpotent. But it is clearly
not nilpotent. Contradiction. �

Lemma 2.11 implies the following {VIIbasic}
Proposition 2.12. Let Q be a quiver which does not contain oriented cycles.

Then k(Q)/ rad k(Q) ' kn, where n is the number of vertices. In particular, every
simple k(Q)-module is one dimensional.

Proof. The assumption on Q implies that every path is a one way path. Hence
the radical of k(Q) is equal to J(Q). �

3. Standard resolution and consequences

3.1. Construction of the standard resolution. A remarkable property of
path algebras is the fact that every module has a projective resolution of length at
most 2: {VIIth2}

Theorem 3.1. Let Q be a quiver, A denote the path algebra k (Q) and V be an
A-module. Recall that V =

⊕
i∈Q0

Vi. Then the following sequence of A-modules

0→
⊕
γ∈Q1

Aet(γ) ⊗ Vs(γ)
f−→
⊕
i∈Q0

Aei ⊗ Vi
g−→ V → 0,
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where

f
(
aet(γ) ⊗ v

)
= aet(γ)γ ⊗ v − aet(γ) ⊗ γv

for all γ ∈ Q1, v ∈ Vs(γ), and

g (aei ⊗ v) = av

for any i ∈ Q0, v ∈ Vi, is exact. Hence it is a projective resolution of V .
{VIIremthm2}

Remark 3.2. The structure of A-modules considered in the statement is defined
by the action of A on the lefthand side of the tensor product.

Proof. The fact that f and g are morphisms of A-modules is left to the reader.
First, let us check that g ◦ f = 0. Indeed,

g (f (aej ⊗ v)) = g (aejγ ⊗ v − aej ⊗ γv) = aejγv − aejγv = 0.

Since V = ⊕i∈Q0Vi and Vi = eiV , g is surjective.
Now let us check that f is injective. To simplify notations we set

X =
⊕
γ∈Q1

Aet(γ) ⊗ Vs(γ), Y =
⊕
i∈Q0

Aei ⊗ Vi.

Consider the Z-grading

A⊗ V =
∞⊕
p=0

A(p) ⊗ V.

Since all Aei for i ∈ Q0 are homogeneous left ideals of A, there are induced gradings
X = ⊕p≥0X(p) and Y = ⊕p≥0Y(p). Define f0 : X → Y and f1 : X → Y by

f1

(
aet(γ) ⊗ v

)
= aet(γ)γ ⊗ v, f0

(
aet(γ) ⊗ v

)
= aet(γ) ⊗ γv.

Note that for any p ≥ 0 we have f1(X(p)) ⊂ X(p+1) and f0(X(p)) ⊂ X(p). Moreover, it
is clear from the definition that f1 is injective. Since f = f1 − f0, we obtain that f
is injective by a simple argument on gradings.

It remains to prove that Im f = Ker g.

Exercise 3.3. Show that for any p > 0 and y ∈ Y(p) there exists y′ ∈ Y(p−1) such
that y′ ≡ y mod Im f . (Hint: it suffices to check the statement for x = u⊗ v where
v ∈ Vi and u is a path of length p with source i).

The exercise implies that for any y ∈ Y there exists y0 ∈ Y(0) such that y ≡ y0

mod Im f . Let y ∈ Ker g, then y0 ∈ Ker g. But g restricted to Y(0) is injective. Thus,
y0 = 0 and y ∈ Im f . �
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3.2. Extension groups. Let X and Y be two k(Q)-modules. We define a linear
map

(7.1){equ11} d :
⊕
i∈Q0

Homk (Xi, Yi)→
⊕
γ∈Q1

Homk

(
Xs(γ), Yt(γ)

)
by the formula

(7.2){equ12} dφ (x) = φ (γx)− γφ (x)

for any γ ∈ Q1, x ∈ Xs(γ) and φ ∈ Homk

(
Xt(γ), Yt(γ)

)
. Theorem 3.1 implies that

Ext1 (X, Y ) is isomorphic to the cokernel of the map d.
According to Section 6.4 Chapter 5, every non-zero ψ ∈ Ext1 (X, Y ) induces a

non-split exact sequence

0→ Y → Z → X → 0.

In our situation we can describe the k(Q)-module structure on Z precisely. Indeed,
consider ψ ∈

⊕
γ∈Q1

Homk

(
Xs(γ), Yt(γ)

)
and denote by ψγ the component of ψ ∈

Homk

(
Xs(γ), Yt(γ)

)
. We set Zi = Xi ⊕ Yi for every i ∈ Q0. Furthermore, for every

γ ∈ Q1 with source i and target j we set

γ (x, y) = (γx, γy + ψγx) .

Obviously we obtain an exact sequence of k(Q)-modules

0→ Y
i−→ Z

π−→ X → 0,

where i(y) = (0, y) and π(x, y) = x. This exact sequence splits if and only if there
exists η ∈ HomQ (X,Z) such that π ◦ η = Id. Note that η = ⊕i∈Q0ηi with ηi ∈
Homk(Xi, Zi) and for every x ∈ Xi we have

ηi(x) = (x, φix) ,

for some φi ∈ Homk (Xi, Yi). The condition that η is a morphism of k(Q)-modules
implies that for every arrow γ ∈ Q1 with source i and target j we have

γ (x, φix) = (γx, γφix+ ψγx) = (γx, φjγx) .

Hence we have

ψγx = φjγx− γφix.
If we write φ = ⊕i∈Q0φi, then the latter condition is equivalent to ψ = dφ.

Note also that Theorem 3.1 implies the following.
{VIIhereditary}

Proposition 3.4. In the category of representations of Q one has

Exti (X, Y ) = 0 for all i ≥ 2.
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{VIIcor13}
Corollary 3.5. Let

0→ Y → Z → X → 0

be a short exact sequence of representations of Q, then the maps

Ext1 (V, Z)→ Ext1 (V,X) , Ext1 (Z, V )→ Ext1 (Y, V )

are surjective.

END OF EDITING IN NANCY

Proof. Follows from Proposition 3.4 and the long exact sequence for extension
groups, Theorem 5.7 Chapter 5. �

{VIIlm12}
Lemma 3.6. If X and Y are indecomposable finite-dimensional k(Q)-modules

and Ext1 (Y,X) = 0, then every non-zero ϕ ∈ HomQ (X, Y ) is either surjective or
injective.

Proof. Consider the exact sequences

(7.3){auxex} 0→ Kerϕ→ X
β−→ Imϕ→ 0,

(7.4){equ90} 0→ Imϕ
δ−→ Y → S ∼= Y/ Imϕ→ 0.

Note that both sequences do not split. Let ψ ∈ Ext1 (S, Imϕ) be an element associ-
ated to the sequence (7.4). By Corollary 3.5 and (7.3) we have a surjective map

g : Ext1(S,X)→ Ext1(S, Imϕ).

Let ψ′ ∈ g−1(ψ). Then ψ′ induces a non-split exact sequence

0→ X
α−→ Z → S → 0.

This exact sequence and the sequence (7.4) can be arranged in the following commu-
tative diagram

0 → X
α−→ Z → S → 0

↓β ↓γ ↓Id

0 → Imϕ
δ−→ Y → S → 0

here β and γ are surjective. We claim that the sequence

(7.5){combexact} 0→ X
α+β−−→ Z ⊕ Imϕ

γ−δ−−→ Y → 0

is exact. Indeed, α + β is obviously injective and γ − δ is surjective. Furthermore,
dimZ = dimX + dimS, dim Imϕ = dimY − dimS. Therefore,

dim (Z ⊕ Imϕ) = dimX + dimY,

and therefore Ker (γ − δ) = Im (α + β).
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By the assumption Ext1 (Y,X) = 0. Hence the exact sequence (7.5) splits, and
we have an isomorphism

Z ⊕ Imϕ ∼= X ⊕ Y.
By the Krull–Schmidt theorem either X ∼= Imϕ and hence ϕ is injective or Y ∼= Imϕ
and hence ϕ is surjective. �

3.3. Canonical bilinear form and Euler characteristic. Let Q be a quiver
and X be a finite-dimensional k(Q)-module. We use the notation x = dimX ∈ ZQ0

where xi = dimXi for every i ∈ Q0.
We define the bilinear form on ZQ0 by the formula

〈x, y〉 :=
∑
i∈Q0

xiyi −
∑
γ∈Q1

xs(γ)yt(γ) = dim HomQ (X, Y )− dim Ext1 (X, Y ) ,

where the second equality follows from calculating Euler characteristic in (7.1). The
symmetric form

(x, y) := 〈x, y〉+ 〈y, x〉
is called the Tits form of the quiver Q. We also consider the corresponding quadratic
form

q (x) := 〈x, x〉 .

4. Bricks

Here we discuss further properties of finite-dimensional representations of a path
algebra k (Q). In the rest of this chapter we assume that the ground field k
is algebraically closed and all representations are finite-dimensional.

Definition 4.1. A k(Q)-module X is a brick, if EndQ (X) = k.

Exercise 4.2. If X is a brick, then X is indecomposable. If X is indecomposable
and Ext1 (X,X) = 0, then X is a brick (by Lemma 3.6).

Example 4.3. Consider the quiver • → •. Then every indecomposable represen-
tation is a brick.

For the Kronecker quiver • ⇒ • the representation k2 ⇒ k2 with ργ1 = Id,
ργ2 = (01

00) is not a brick because ϕ = (ϕ1, ϕ2) with ϕ1 = ϕ2 = (01
00) is a non-scalar

element in EndQ (X).
{VIIlm13}

Lemma 4.4. Let X be an indecomposable k(Q)-module which is not a brick.
Then X contains a brick W such that Ext1 (W,W ) 6= 0.

Proof. We will prove the lemma by induction on the length l of X. The base
case l = 1 is trivial, since in this case X is irreducible and hence a brick by the Schur
lemma.

Recall that if X is indecomposable and has finite length, then ϕ ∈ EndQ (X) is
either an isomorphism or nilpotent. Therefore, since k is algebraically closed and
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X is not a brick, the algebra EndQ (X) contains a non-zero nilpotent element. Let
ϕ ∈ EndQ (X) be a non-zero operator of minimal rank. Then ϕ is nilpotent and
rkϕ2 < rkϕ, hence ϕ2 = 0.

Let Y := Imϕ, Z := Kerϕ. Clearly, Y ⊂ Z. Consider a decomposition

Z = Z1 ⊕ · · · ⊕ Zp
into a sum of indecomposable submodules. Denote by pi the projection Z → Zi.
Let i be such that pi(Y ) 6= 0. Set η := pi ◦ ϕ, Yi := pi(Y ) = η(Z). Note that by
our assumption rk η = rkϕ, therefore Yi is isomorphic to Y . Let Yi = pi (Y ). Then
Ker η = Z and Im η = Yi.

Note that the exact sequence

0→ Z → X
η−→ Yi → 0

does not split since X is indecomposable. Let Xi be the quotient of X by the
submodule ⊕j 6=iZj and π : X → Xi be the canonical projection. Then we have the
exact sequence

0→ Zi → Xi
η̄−→ Yi → 0,

where η̄ := η ◦ π−1 is well define since Kerπ ⊂ Ker η. We claim that (7.6) does not
split. Indeed, if it splits, then Xi decomposes into a direct sum Zi ⊕ L for some
submodule L ⊂ Xi which is isomorphic to Yi. But then X = Zi ⊕ π−1(L), which
contradicts indecomposability of X.

Therefore we have shown that Ext1 (Yi, Zi) 6= 0. Recall that Yi is a submodule of
Zi. By Corollary 3.5 we have the surjection

Ext1 (Zi, Zi)→ Ext1 (Yi, Zi) .

Hence Ext1 (Zi, Zi) 6= 0.
The length of Zi is less than the length of X. If Zi is not a brick, then it contains

a brick W by the induction assumption. �
{cor14}

Corollary 4.5. Assume that Q is a quiver such that its Tits form is positive
definite. Then every indecomposable representation X of Q is a brick with trivial
Ext1 (X,X). Moreover, if x = dimX, then q (x) = 1.

Proof. Assume that X is not a brick, then it contains a brick Y such that
Ext1 (Y, Y ) 6= 0. Then

q (y) = dim EndQ (Y )− dim Ext1 (Y, Y ) = 1− dim Ext1 (Y, Y ) ≤ 0,

but this is impossible. Therefore X is a brick. Then

q (x) = dim EndQ (X)− dim Ext1 (X,X) = 1− dim Ext1 (X,X) ≥ 0.

By positivity of q we have q (x) = 1 and dim Ext1 (X,X) = 0. �
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5. Orbits in representation variety

Fix a quiver Q. For arbitrary x ∈ NQ0 consider the space

Rep (x) :=
∏
γ∈Q1

Homk (kxs(γ) , kxt(γ)) .

We can see every representation of Q of dimension x as a point ρ ∈ Rep (x) with
components ργ for every γ ∈ Q1.

Let us consider the group

G =
∏
i∈Q0

GL (kxi) ,

and define an action of G on Rep (x) by the formula

gργ := gt(γ)ργg
−1
s(γ) for every γ ∈ Q1.

Two representations ρ and ρ′ of Q are isomorphic if and only if they belong to the
same orbit of G. In other words we have a bijection between isomorphism classes of
representations of Q of dimension x and G-orbits in Rep(x). For a representation X
we denote by OX the corresponding G-orbit in Rep (x).

Note that
dim Rep (x) =

∑
γ∈Q1

xs(γ)xt(γ), dimG =
∑
i∈Q0

x2
i ,

therefore

(7.6) {equ30} dim Rep (x)− dimG = −q (x) .

Let us formulate without proof certain properties of G-action on Rep(x). They
follow from the general theory of algebraic groups, see for instance Humphreys. We
work in Zariski topology.

• Each orbit is open in its closure;
• if O and O′ are two distinct orbits and O′ belongs to the closure of O, then

dimO′ < dimO;
• If (X, ρ) is a representation of Q, then dimOX = dimG− dim StabX , where

StabX denotes the stabilizer of ρ.
{VIIlm15}

Lemma 5.1. For any representation (X, ρ) of dimension x we have

dim StabX = dim AutQ (X) = dim EndQ (X) .

Proof. The condition that φ ∈ EndQ (X) is not invertible is given by the poly-
nomial equations ∏

i∈Q0

detφi = 0.

Since AutQ (X) is not empty and open in EndQ (X), we obtain that AutQ (X) and
EndQ (X) have the same dimension. �



172 7. INTRODUCTION TO REPRESENTATION THEORY OF QUIVERS

{VIIcor16}
Corollary 5.2. If (X, ρ) is a representation of Q and dimX = x, then

codimOX = dim Rep (x)−dimG+dim StabX = −q (x)+dim EndQ (X) = dim Ext1 (X,X) .
{VIIlm17}

Lemma 5.3. Let (Z, τ) be a nontrivial extension of (Y, σ) by (X, ρ), i.e. there is
a non-split exact sequence

0→ X → Z → Y → 0.

Then OX⊕Y belongs to the closure of OZ and OX⊕Y 6= OZ .

Proof. Following Section 3.2 for every i ∈ Q0 consider a decomposition Zi =
Xi ⊕ Yi such that for every γ ∈ Q1 and (x, y) ∈ Xs(γ) ⊕ Ys(γ)

τγ(x, y) = (ργ(x) + ψγ(y), σγ(y))

for some ψγ ∈ Hom(Ys(γ), Xt(γ)).
Next, for every λ ∈ k \ 0 define gλ ∈ G by setting for every i ∈ Q0

gλi |Xi = IdXi , gλi |Yi = λ IdYj .

Then we have

gλτγ(x, y) = (ργ(x) + λψγ(y), σγ(y)).

The latter formula makes sence even for λ = 0 and g0τ lies in the closure of {gλτ |λ ∈
k \0}. Furthermore g0τ is the direct sum X⊕Y . Hence OX⊕Y belongs to the closure
of OZ .

It remains to check that X ⊕Y is not isomorphic to Z. This follows immediately
from the inequality

dim HomQ (Y, Z) < dim HomQ (Y,X ⊕ Y ) .

�

The following corollary is straightforward.
{VIIcor17}

Corollary 5.4. If the orbit OX is closed in Rep(x), then X is semisimple.
{VIInew}

Corollary 5.5. Let (X, ρ) be a representation of Q and X =
m⊕
j=1

Xj be a

decomposition into the direct sum of indecomposable submodules. If OX is an orbit
of maximal dimension in Rep(x), then Ext1(Xi, Xj) = 0 for all i 6= j.

Proof. If Ext1(Xi, Xj) 6= 0, then by Lemma 5.3 we can construct a representa-
tion (Z, τ) such that OX is in the closure of OZ . Then dimOX < dimOZ . �
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6. Coxeter–Dynkin and affine graphs

6.1. Definition and properties. Let Γ be a connected non-oriented graph with
vertices Γ0 and edges Γ1. We define the Tits form (·, ·) on ZΓ0 by

(x, y) :=
∑
i∈Γ0

(2− 2l(i))xiyi −
∑

(i,j)∈Γ1

xiyj,

where l(i) is the number of loops at i. If we equip all edges of Γ with orientation
then the symmetric form coincides with the introduced earlier symmetric form of the
corresponding quiver. We define the quadratic form q on ZΓ0 by

q(x) :=
(x, x)

2
.

By {εi | i ∈ Γ0} we denote the standard basis in ZΓ0 . If Γ does not have loops,
then (εi, εi) = 2 for all i ∈ Γ0. If i, j ∈ Γ0 and i 6= j, then (εi, εj) equals minus the
number of edges between i and j. The matrix of the form (·, ·) in the standard basis
is called the Cartan matrix of Γ.

Example 6.1. The Cartan matrix of • − • is

(
2 −1
−1 2

)
. The Cartan matrix of

the loop is (0).

Definition 6.2. A connected graph Γ is called Coxeter–Dynkin if its Tits form
(·, ·) is positive definite and affine if (·, ·) is positive semidefinite but not positive
definite. If Γ is neither Coxeter–Dynkin nor affine, then we say that it is of indefinite
type.

Remark 6.3. For affine graph Γ the form (·, ·) is necessarily degenerate. Fur-
thermore

(7.7) {VIIeqform} Ker(·, ·) = {x ∈ ZQ0 | (x, x) = 0}.
{VIIgraphprop}

Lemma 6.4. (a) If Γ is affine then the kernel of (·, ·) equals Zδ for some δ ∈ NΓ0

with all δi > 0.
(b) If Γ is of indefinite type, then there exists x ∈ NΓ0 such that (x, x) < 0.

Proof. Let x ∈ ZQ0 . We define suppx to be the set of vertices i ∈ Q0 such
that xi 6= 0. Let |x| be defined by the condition |x|i = |xi| for all i ∈ Q0. Note that
suppx = supp |x| and by the definition of (·, ·) we have

(7.8) {first} (|x|, |x|) ≤ (x, x).

To prove (b) we just notice that if Γ is of indefinite type then there exists x ∈ ZQ0

such that (x, x) < 0. But then (7.8) implies (|x|, |x|) < 0.
Now let us prove (a). Let δ ∈ Ker(·, ·) and δ 6= 0. Then (7.8) and (7.7) imply

that |δ| also lies in Ker(·, ·). Next we prove that supp δ = Q0. Indeed, otherwise we
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can choose i ∈ Q0 \ supp δ such that i is connected with at least one vertex in supp δ.
Then (εi, δ) < 0, therefore

(εi + 2δ, εi + 2δ) = 2 + 4(εi, δ) < 0

and Γ is not affine.
Finally let δ′, δ ∈ Ker(·, ·). Since supp δ = supp δ′ = Q0, one can find a, b ∈ Z

such that supp(aδ + bδ′) 6= Q0. Then by above aδ + bδ′ = 0. Hence Ker(·, ·) is
one-dimensional and the proof of (a) is complete. �

Note that (a) implies the following
{subgraph}

Corollary 6.5. Let Γ be Coxeter–Dynkin or affine. Any proper connected
subgraph of Γ is Coxeter–Dynkin.

Definition 6.6. A non-zero vector x ∈ ZQ0 is called a root if q (x) ≤ 1. Note for
every i ∈ Q0, εi is a root. It is called a simple root.

Exercise 6.7. Let Γ be a connected graph. Show that the number of roots is
finite if and only if Γ is a Coxeter–Dynkin graph.

{VIIlm20}
Lemma 6.8. Let Γ be Coxeter–Dynkin or affine. If x is a root, then either all

xi ≥ 0 or all xi ≤ 0.

Proof. Assume that the statement is false. Let

I+ := {i ∈ Q0 |xi > 0}, I− := {i ∈ Q0 |xi < 0}, x± =
∑
i∈I±

xiεi.

Then x = x+ + x− and (x+, x−) ≥ 0. Furthermore, since Γ is Coxeter–Dynkin or
affine, we have q(x±) > 0. Therefore

q(x) = q(x+) + q(x−) + (x+, x−) > 1.

�

We call a root x positive (resp. negative) if xi ≥ 0 (resp. xi ≤ 0) for all i ∈ Q0.

6.2. Classification. The following are all Coxeter–Dynkin graphs (below n is
the number of vertices).

An r r r . . . r
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Dn r r r . . . rr

E6 r r r r rr

E7 r r r r r rr

E8 r r r r r r rr
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The affine graphs, except the loop •
��
, are obtained from the Coxeter–Dynkin

graphs by adding a vertex (see Corollary 6.5). Here they are.

Ã1 r r

For n > 1, Ãn is a cycle with n+ 1 vertices. In this case δ = (1, . . . , 1).
In what follows the numbers are the coordinates of δ.

D̃n r r r . . . r rr r
1 2 2 2 1

1 1

Ẽ6 r r r r rrr
1 2 3 2 1

2

1

Ẽ7 r r r r r r rr
1 2 3 4 3 2 1

2

Ẽ8 r r r r r r r rr
2 4 6 5 4 3 2 1

3
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The proof that the above classification is complete is presented below in the
exercises. {exVIID1}

Exercise 6.9. Check thatAn, Dn, E6, E7, E8 are Coxeter–Dynkin using the Sylvester
criterion and the fact that every subgraph of a Coxeter–Dynkin graph is Coxeter–
Dynkin. One can calculate the determinant of a Cartan matrix inductively. It is
n+ 1 for An, 4 for Dn, 3 for E6, 2 for E7 and 1 for E8.

{exVIID2}
Exercise 6.10. Check that the Cartan matrices of Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8 have corank

1 and every proper connected subgraph is Coxeter–Dynkin. Conclude that these
graphs are affine.

{exVIID3}
Exercise 6.11. Let Γ be a Coxeter–Dynkin graph. Using Corollary 6.5 prove

that Γ does not have loops, cycles and multiple edges. Prove that Γ has no vertices
of degree 4 and at most one vertex of degree 3.

{exVIID4}
Exercise 6.12. Let a Coxeter–Dynkin graph Γ have a vertex of degree 3. Let

p, q and r be the lengths of “legs” coming from this vertex. Prove that 1
p

+ 1
q

+ 1
s
> 1.

Use this to complete classification of Coxeter–Dynkin graphs.
{exVIID5}

Exercise 6.13. Complete classification of affine graphs using Corollary 6.5, Ex-
ercise 6.10 and Exercise 6.12.

7. Quivers of finite type and Gabriel’s theorem

Recall that a quiver is of finite type if it has finitely many isomorphism classes of
indecomposable representations.

{exVIIconnected}
Exercise 7.1. Prove that a quiver is of finite type if and only if all its connected

components are of finite type.
{thVIIGabriel}

Theorem 7.2. (Gabriel) Let Q be a connected quiver and Γ be its underlying
graph. Then

(1) The quiver Q has finite type if and only if Γ is a Coxeter–Dynkin graph.
(2) Assume that Γ is a Coxeter–Dynkin graph and (X, ρ) is an indecomposable

representation of Q. Then dimX is a positive root.
(3) If Γ is a Coxeter–Dynkin graph, then for every positive root x ∈ ZQ0 there

is exactly one indecomposable representation of Q of dimension x.

Proof. Let us first prove that if Q is of finite type then Γ is a Coxeter–Dynkin
graph. Indeed, if Q is of finite type, then for every x ∈ NQ0 , Rep (x) has finitely
many G-orbits. Therefore Rep (x) must contain an open orbit. Assume that Q is
not Coxeter–Dynkin. Then there exists a non-zero x ∈ ZQ0 such that q (x) ≤ 0. Let
OX ⊂ Rep (x) be an open orbit. Then codimOX = 0. But by Corollary 5.2

(7.9) {equ91} codimOX = dim EndQ (X)− q (x) > 0.

This is a contradiction.



178 7. INTRODUCTION TO REPRESENTATION THEORY OF QUIVERS

Now assume that Γ is Coxeter–Dynkin. To show that Q is of finite type it suffices
to prove assertions (2) and (3).

Note that (2) follows from Corollary 4.5.
Suppose that x is a positive root. Let (X, ρ) be a representation of Q such that

dimOX in Rep (x) is maximal. Let us prove that X is indecomposable. Indeed,
let X = X1 ⊕ · · · ⊕ Xs be a sum of indecomposable bricks. Then by Corollary 5.5
Ext1 (Xi, Xj) = 0. Therefore q (x) = s = 1 and X is indecomposable.

Finally, if (X, ρ) is an indecomposable representation of Q, then (7.9) implies that
OX is an open orbit in Rep (x). By irreducibility, Rep (x) has at most one open orbit.
Hence (3) is proved. �

Remark 7.3. Gabriel’s theorem implies that the propery of a quiver to be of finite
type depends only on the underlying graph and does not depend on orientation.

Remark 7.4. Theorem 7.2 does not provide an algorithm for finding all inde-
composable representations of quivers with Coxeter–Dynkin underlying graphs. We
give such algorithm in the next chapter using the reflection functor.

Exercise 7.5. Let Q be a quiver whose underlying graph is An. Check that the
positive roots are in bijection with connected subgraphs of An. For each positive root
x give a precise construction of an indecomposable representation of dimension x.



CHAPTER 8

Representations of Dynkin and affine quivers

1. Reflection functors

For a quiver Q we denote by modQ the category of representations of Q. Let i
be a vertex of Q. We denote by Q+(i) the set of all arrows of Q with target i and
by Q−(i) the set of all arrows of Q with source i. We say that a vertex i ∈ Q0 is
(+)-admissible if Q−(i) = ∅ and (−)-admissible if Q+(i) = ∅. By σi (Q) we denote
the quiver obtained from Q by inverting all arrows belonging to Q+(i)∪Q−(i). Note
that we have

σi(Q)−(i) = Q+(i), σi(Q)+(i) = Q−(i).

Let i ∈ Q0 be a (+)-admissible vertex and Q′ := σi (Q). Let us introduce the
reflection functor F+

i : modQ → modQ′ . For every representation (X, ρ) of Q we
define (X ′, ρ′) := F+

i (X, ρ) as follows. If j 6= i, then we set X ′j := Xj. If γ /∈ Q+(i),
then we set ρ′γ := ργ. Next we consider the map

h =
∑

γ∈Q+(i)

ργ :
⊕

γ∈Q+(i)

Xs(γ) → Xi

and set X ′i := Kerh. Finally for every γ ∈ Q′−(i) we define ρ′γ : X ′i → Xt(γ) to be the

restriction of the canonical projection Kerh → Xt(γ). One defines the action of F+
i

on morphisms in the natural way.
If i ∈ Q0 is a (−)-admissible vertex, we define the reflection functor F−i from the

category of representations of Q to the category of representations of Q′ := σi(Q) in
the following way. We set (X ′, ρ′) = F−i (X, ρ), where X ′j = Xj for all j 6= i, ρ′γ = ργ

for all γ /∈ Q−(i), X ′i := Coker h̃, where

h̃ =
∑

γ∈Q−(i)

ργ : Xi →
⊕

γ∈Q−(i)

Xt(γ),

and for every γ ∈ Q′+(i), ρ′γ : Xs(γ) → X ′i is the composition

Xs(γ) ↪→
⊕

γ∈Q−(i)

Xs(γ) → X ′i.

Example 1.1. Let Q be the quiver • → •. Then σ1(Q) = σ2(Q) = Qop. If
(X, ρ) is the representation presented by the diagram k → 0, F−1 (X, ρ) is the zero

representation and F+
2 (X, ρ) is presented by the diagram k

id←− k.

179
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{VIIIexduality}
Exercise 1.2. Let Q be a quiver. Denote by Qop the quiver with the same

set of vertices and with all arrows reversed. Define a contravariant duality functor
D : modQ → modQop by setting

D (Xj) = X∗j (j ∈ Q0), D (ργ) = ρ∗γ (γ ∈ Q1).

Show that if i ∈ Q0 is (+)-admissible then

D ◦ F+
i = F−i ◦D.{VIIIexsimple}

Exercise 1.3. Let i ∈ Q0 and denote by (Li, ρi) the irreducible representation
of Q which has k in the vertex i and zero in all other vertices. If i is (+)-admissible,
then F+

i (Li) = 0 and if i is (−)-admissible, then F−i (Li) = 0.

Let Q′ = σi (Q), X be a representation of Q′ and Y be a representation of Q, set
X ′ = F−i X and Y ′ = F+

i Y . Let η ∈ HomQ (X, Y ′), we define χ ∈ HomQ′ (X
′, Y ) by

setting χj = ηj for j 6= i and deducing χi from the following commutative diagram

Xi
h̃−→ ⊕Xj

h−→ X
′
i → 0

↓ηi ↓⊕ηj ↓χi

0→ Y ′i
h̃−→ ⊕Y ′j

h−→ Yi

Note that χi is uniquely determined by η. Similarly, for each χ ∈ HomQ (X ′, Y ), one
can define η ∈ HomQ′ (X, Y

′). A routine check now proves the following
{VIIIlm2}

Lemma 1.4. Let Q′ = σi (Q), X be a representation of Q′ and Y be a represen-
tation of Q, then

HomQ

(
F−i X, Y

) ∼= HomQ′
(
X,F+

i Y
)
.

This means that the functors F+
i and F−i are mutually adjoint and it implies:

{VIIIlemexact}
Lemma 1.5. The functor F+

i is left exact and the functor F−i is right exact.

Proof. Indeed, let X ′ → X → X ′′ → 0 be an exact sequance of k(Q′)-modules
and let Y be a k(Q)-module. The sequence

0→ HomQ′(X
′′, F+

i (Y ))→ HomQ′(X,F
+
i (Y ))→ HomQ′(X

′, F+
i (Y ))

is exact since Hom is left-exact, and is isomorphic to

0→ HomQ(F−i (X ′′), Y )→ HomQ(F−i (X), Y )→ HomQ(F−i (X ′), Y ).

Since Y is arbitrary, this implies the exactness of the sequence

F−i (X ′)→ F−i (X)→ F−i (X ′′)→ 0.

The left exactness of F+
i can be proven similarly. �

{VIIIth1}
Theorem 1.6. Let (X, ρ) be an indecomposable representation of Q.
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(1) If i is a (+)-admissible vertex of Q then (X ′, ρ′) := F+
i (X, ρ) is either in-

decomposable or zero. Furthermore, F+
i (X, ρ) is zero if and only if X is

isomorphic to the irreducible representation (Li, ρi) (notation of Exercise
1.3).

(2) If (X, ρ) is not isomorphic to (Li, ρi), then

dimX
′

i = − dimXi +
∑

γ∈Q+(i)

dimXs(γ)

and F−i (X ′, ρ′) is isomorphic to (X, ρ).

Proof. Note that if (X, ρ) is not isomorphic to (Li, ρi), then h must be surjective
by the indecomposability of (X, ρ). This implies the dimension formula. Furthermore,
we have the following exact sequence

(8.1) {VIIIequ2} 0→ X
′

i
h̃−→

⊕
γ∈Q+(i)

Xs(γ)
h−→ Xi → 0

and thus we have an isomorphism(
F−i X

′)
i

= Coker h̃ ∼= Xi.

Observe also that h̃ is injective by definition, hence (X ′, ρ′) is indecomposable.
Recall the functor D : Rep Q→ Rep Qop, from Exercise 1.2: the second statement

of the Theorem follows from the equality D◦F+
i = F−i ◦D and the exactness of D. �

Exercise 1.7. (1) Show that F+
i (resp. F−i ) define surjective maps HomQ(X,X ′)→

HomQ′(F
+
i (X), F+

i (X ′)) (resp. HomQ′(Y, Y
′)→ HomQ(F−i (Y ), F−i (Y ′))).

(2) Deduce from Lemma 1.4 that there is a canonical direct injection ϕ : F−i F
+
i (X)→

X and a natural direct surjection ψ : Y → F+
i F

−
i (Y ).

2. Reflection functors and change of orientation.
{VIIIlm3}

Lemma 2.1. Let Γ be a connected graph without cycles, Q and Q′ be two quivers
on Γ. Then there exists an enumeration of the vertices of Γ by the set [1, . . . , k] such
that Q′ = σk ◦ · · · ◦σ1 (Q) and every i is a (+)-admissible vertex for σi−1 ◦ · · · ◦σ1 (Q).

Proof. It is sufficient to prove the statement when Q and Q′ differ by one arrow
γ ∈ Q1. After removing γ, Q splits in two connected components; let Q′′ be the
component which contains t (γ). Since Q′′ does not contain any cycle, it is possible
to enumerate its vertices in such a way that if i → j ∈ Q′′1, then i > j. Let k be
the cardinal of Q′′0, then one can check that Q′ = σk ◦ · · · ◦ σ1 (Q) and that i is a
(+)-admissible vertex for σi−1 ◦ · · · ◦ σ1 (Q). �

{VIIIth2}
Theorem 2.2. Let i be a (+)-admissible vertex for Q and Q′ = σi (Q). Then F+

i

and F−i establish a bijection between the indecomposable representations of Q which
are not isomorphic to Li and the indecomposable representations of Q′ which are not
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isomorphic to L′i, where by L′i we denote the corresponding irreducible representation
of Q′.

Theorem 2.2 follows from Theorem 1.6. Together with Lemma 2.1 it allows to
change the orientation on any quiver without cycles.

3. Weyl group and reflection functors.

Given any graph Γ without loops, one can associate to it a certain linear group,
which is called the Weyl group of Γ. We denote by ε1, . . . , εn vectors in the standard
basis of ZΓ0 , εi = dimLi corresponds to the vertex i. These vectors are called simple
roots. For each simple root εi, put

ri (x) = x− 2 (x, εi)

(εi, εi)
εi.

One can check that ri preserves the scalar product and r2
i = id. The linear transfor-

mation ri is called a simple reflection. Note that ri also preserves the lattice generated
by simple roots. Hence ri maps roots to roots. If Γ is Dynkin, the scalar product
is positive-definite, and ri is the reflection across the hyperplane orthogonal to εi.
The Weyl group W is the group generated by r1, . . . , rn. For a Dynkin diagram W
is finite (since the number of roots is finite).

Example 3.1. Let Γ = An. Let ε1, . . . , εn+1 be an orthonormal basis in Rn+1.
Then one can take the roots of Γ to be εi−εj, simple roots to be ε1−ε2, ε2−ε3, . . . , εn−
εn+1, ri (εj) = 0 if j 6= i, i + 1, and ri (εi) = εi+1. Therefore W is isomorphic to the
permutation group Sn+1.

One can check by direct calculation, that Theorem 1.6 (2) implies
{VIIIlm5}

Lemma 3.2. If X is an indecomposable representation of Q and the dimension
vector x of X is such that x 6= εi, then dimF±i X = ri (x).

The element c = rn . . . r1 ∈ W is called a Coxeter transformation. It depends on
the enumeration of simple roots.

Example 3.3. In the case Γ = An a Coxeter element is always a cycle of length
n+ 1.

{VIIIlm6}
Lemma 3.4. If c (x) = x, then (x, εi) = 0 for all i. In particular, for a Dynkin

graph, c (x) = x implies x = 0.

Proof. By definition,

c (x) = x+ a1ε1 + · · ·+ anεn, ai = −2 (εi, x+ a1ε1 + . . . ai−1εi−1)

(εi, εi)
.

The condition c (x) = x implies all ai = 0. Hence (x, εi) = 0 for all i. �



4. COXETER FUNCTORS. 183

4. Coxeter functors.

Let Q be a graph without oriented cycles. We call an enumeration of vertices
admissible if i > j for any arrow i → j. Such an enumeration always exists. One
can easily see that every vertex i is a (+)-admissible for σi−1 ◦ · · · ◦ σ1 (Q) and (−)-
admissible for σi+1 ◦ · · · ◦ σn (Q). Furthermore,

Q = σn ◦ σn−1 ◦ · · · ◦ σ1 (Q) = σ1 ◦ · · · ◦ σn (Q) .

We define the Coxeter functors Φ± : modQ → modQ by:

Φ+ := F+
n ◦ · · · ◦ F+

2 ◦ F+
1 , Φ− := F−1 ◦ F−2 ◦ · · · ◦ F−n . {VIIIlm7}

Lemma 4.1. (1) One has: HomQ (Φ−X, Y ) ∼= HomQ (X,Φ+Y );
(2) if X is indecomposable and Φ+X 6= 0, then Φ−Φ+X ∼= X;
(3) if X is indecomposable of dimension x and Φ+X 6= 0, then dim Φ+X = c (x);
(4) if Q is Dynkin, then, for any indecomposable X, there exists k such that

(Φ+)
k
X = 0.

Proof. (1) follows from Lemma 1.4, (2) follows from Theorem 1.6, (3) follows
from Lemma 3.2. Let us prove (4). Since W is finite, c has finite order h. It
is sufficient to show that for any x there exists k such that ck (x) is not positive.
Assume that this is not true. Then y = x + c (x) + · · · + ch−1 (x) > 0 is c invariant.
Contradiction with Lemma 3.4.

� {VIIIlm8}
Lemma 4.2. The functors Φ± do not depend on the choice of admissible enumer-

ation.

Proof. Note that if i and j are distinct and both (+) (resp. (−))-admissible,
then F+

i ◦ F+
j = F+

j ◦ F+
i (resp. F−i ◦ F−j = F−j ◦ F−i ). If a sequence i1, . . . , in

gives another admissible enumeration of vertices, and ik = 1, then 1 is distinct from
i1, . . . , ik−1, hence

F+
1 ◦ F+

ik−1
◦ · · · ◦ F+

i1
= F+

ik−1
◦ · · · ◦ F+

i1
◦ F+

1 .

We then proceed by induction. The proof is similar for Φ−. �

In what follows we usually assume that our enumeration of vertices is admissible.
{VIIIcor9}

Corollary 4.3. Let Q be a Dynkin quiver, X be an indecomposable representa-
tion of dimension x, and k be the minimal number such that ck+1 (x) is not positive.
There exists a unique vertex i such that

x = c−kr1 . . . ri−1 (εi) , X ∼=
(
Φ−
)k ◦ F−1 ◦ · · · ◦ F−i−1 (L′i) ,

where L′i is the simple k(Q′)-module for Q′ := σi−1 . . . σ1(Q). In particular, x is a
positive root and for each positive root x, there is a unique (up to isomorphism)
indecomposable representation of dimension x.
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Proof. Follows from Theorem 1.6 and Lemma 3.2.
�

5. Further properties of Coxeter functors

Here we assume again that Q is a quiver without oriented cycles or loops and the
enumeration of vertices is admissible. We discuss the properties of the bilinear form
〈, 〉. Since we plan to change the orientation of Q we use a subindex 〈, 〉Q, where it is
needed to avoid ambiguity.

{VIIIlm10}
Lemma 5.1. Let i be a (+)-admissible vertex, Q′ = σi (Q), and 〈, 〉Q, 〈, 〉Q′ the

corresponding bilinear forms. Then

〈ri (x) , y〉Q′ = 〈x, ri (y)〉Q .
Proof. It suffices to check the formula for a subquiver containing i and all its

neighbors. Let x′ = ri (x) and y′ = ri (y). Then

x′i = −xi +
∑
i 6=j

xj, y
′
i = −yi +

∑
i 6=j

yj,

〈x′, y〉Q′ = x′iyi − x′i
∑
i 6=j

yj +
∑
i 6=j

xjyj = −x′iy′i +
∑
i 6=j

xjyj,

〈x, y′〉Q = xiy
′
i − y′i

∑
i 6=j

xj = −x′iy′i +
∑
i 6=j

xjyj.

�{VIIIrefext}
Corollary 5.2. Let X be an indecomposable k(Q)-module, and Y be an k(Q′)-

module, where Q′ = σi(Q) for some (−)-admissible vertex i of Q. Assume that
F−i X 6= 0 and F+

i Y 6= 0. Then

Ext1
Q(X,F+

i Y ) = Ext1
Q′(F

−
i X, Y ).

Proof. Let x and y be the dimensions of X and Y respectively. Then ri(x) =
dimF+

i (X) and ri(y) = dimF−i (X) and we have 〈ri(x), y〉Q′ = 〈x, ri(y)〉Q. Recall
that

〈x, ri(y)〉Q = dim HomQ

(
X,F+

i Y
)
− dim Ext1

Q

(
X,F+

i Y
)

and
〈ri(x), y〉Q′ = dim HomQ′

(
F−i X, Y

)
− dim Ext1

Q′

(
F−i X, Y

)
.

Now the statement follows from Lemma 1.4. �{VIIIcor11}
Corollary 5.3. For a Coxeter element c we have〈

c−1 (x) , y
〉
Q

= 〈x, c (y)〉Q .

If X and Y are two indecomposable representations of Q and Φ+Y 6= 0, Φ−X 6= 0
then

Ext1
Q

(
X,Φ+Y

)
= Ext1

Q

(
Φ−X, Y

)
.
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Let A = k (Q) be the path algebra. Recall that any indecomposable projective
module is isomorphic to Aei for some vertex i of Q.

{VIIIlmlocalreflection}
Lemma 5.4. Let j be a (−)-admissible vertex of a quiver Q, Q′ := σj(Q) and

A′ := k (Q′). Then F−j (Aei) ' A′ei for all i 6= j.

Proof. First we show that F−j (Aei) is projective. It suffice to check that

Ext1
Q′(F

−
j (Aei), L

′
k) = 0

for all vertices k of Q′. Indeed, if k 6= j we have

Ext1
Q′(F

−
j (Aei), L

′
k) = Ext1

Q(Aei, F
+
j L
′
k) = 0.

Now let us consider the case k = j. We have

HomQ′(F
−
j (Aei), L

′
j) = HomQ(Aei, F

+
j L
′
j) = 0

and

Ext1
Q(Aei, Lj) = 0,

since Aei is a projective k(Q)-module. Let x := dimAei. Taking into account that
dimLj = εj and rj(εj) = −εj we have

dim Ext1
Q′(F

−
j (Aei), L

′
j) = −〈rj(x), εj〉Q′ = 〈x, εj〉Q = dim HomQ(Aei, Lj) = 0.

To finish the proof we observe that F+
j L
′
i = Li if i is not adjacent to j and F+

j L
′
i is

indecomposable with simple subquotients Lj and Li if i is adjacent to j. Therefore
we obtain

dim HomQ′(F
−
j (Aei), L

′
i) = dim HomQ(Aei, F

+
j L
′
i) = 1,

which implies that F−j (Aei) is the projective cover of L′i. Therefore F−j (Aei) '
A′ei. �

{VIIIlm12}
Lemma 5.5. Let Q be a quiver with admissible enumeration of vertices, i be a

vertex of Q and Q′ := σi−1 . . . σ1(Q). One has:

(1) Aei ' F−1 ◦ · · · ◦ F−i−1L
′
i;

(2) F+
i−1 ◦ · · · ◦ F+

1 (Aei) ∼= L′i;
(3) F+

i ◦ · · · ◦ F+
1 (Aei) = 0.

Proof. The first assertion follows from Lemma 5.4 by induction on i. The second
is a consequence of Theorem 1.6 and the last one is an immediate consequence of (2)
since F+

i L
′
i = 0. �

{VIIIcor13}
Corollary 5.6. For every projective k(Q)-module P , Φ+P = 0. Similarly for

every injective k(Q)-module I, Φ+I = 0.

Proof. The first statement follows from Lemma 5.5 (3) immediately. The anal-
ogous statement for an injective module follows by duality. �
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{VIIIcoxeq}
Lemma 5.7. For all x, y ∈ ZQ0 one has

〈y, x〉+ 〈x, c (y)〉 = 0.

Proof. Denote by Pj the projective cover of Lj (recall that Pj = Aej) and let
pj := dimPj. Furthermore, let Ij be the injective hull of Lj and ij := dim Ij. Using
Lemma 5.5 (1) we have

pj = r1 . . . rj−1(εj), c(pj) = rn . . . rj(εj) = −rn . . . rj+1(εj).

On the other hand, the statement dual to Lemma 5.5 (1) implies

Ij ' F+
n ◦ · · · ◦ F+

j+1L
′
j, ij = rn . . . rj+1(εj).

Thus, we obtain c(pj) = −ij. For any representation X of Q of dimension x we have

〈pj, x〉Q = dim HomQ(Pj, X) = [X : Lj] = dim HomQ(X, Ij) = 〈x, ij〉Q.
Thus we obtain

〈pj, x〉Q = −〈x, c(pj)〉Q.
Since p1, . . . , pn form a basis of ZQ0 , the statement follows. �

6. Affine root systems

We now proceed to description of indecomposable representations of affine quivers.
Let Γ be an affine Dynkin graph. As we have seen in Chapter 7 the kernel of the
bilinear symmetric form q in ZQ0 is one-dimensional and after removing one vertex
from Γ we obtain a Dynkin graph. We enumerate vertices of Γ by numbers 0, 1, . . . , n
in such a way that removing the vertex number zero gives a Dynkin graph Γ0. If we
denote by δ the minimal positive isotropic element in ZQ0 then

δ = ε0 + a1ε1 + · · ·+ anεn.

We call a root α of an affine graph Γ real if q (α) = 1 and imaginary if q (α) = 0.
{VIIIlm14}

Lemma 6.1. (1) All the imaginary roots are proportional to δ;
(2) The real roots can be written as α +mδ for some root α of Γ0;
(3) Every positive real root can be obtained from a simple root by the action of

the Weyl group W .

Remark 6.2. Observe that δ is fixed by any element of the Weyl group.

Proof. (1) follows from Lemma 6.4 (a) Chapter 7.
To show (2) consider the projection p : Zn+1 → Zn = span(ε1, . . . , εn) with kernel

Zδ. Since q (α) = q (α +mδ) the projection p maps a root of Γ to a root of Γ0 and
every vector in the preimage p−1(α) is a root.

Let us prove (3). Let α =
∑n

i=1 biεi be a positive root. We set |α| :=
∑n

i=1 bi
and prove the statement by induction on |α|. The case |α| = 1 is clear since then
α = εi for some i. Let |α| > 1. Since (α, α) > 0 there exists j such that (α, εj) > 0.
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Then β := rj(α) = α + cεj for some c > 0. Hence β is a positive real root and
|β| < |α|. By the induction assumption β = w(εi) for some i and some w ∈ W .
Hence α = rjw(εi). �

Example 6.3. Consider the affine graph Ã1: r r.
In this case δ = ε0 + ε1. All imaginary positive roots are of the form (m,m) where

m ∈ Z>0, the positive real roots are of the form (m,m + 1) or (m + 1,m) for some
m ∈ N. The Weyl group is infinite with generators r0, r1. Consider the Coexeter
element c := r1r0. Then c generates the infinite cyclic normal subgroup in W . One
can easily check that

c(m,m+ 1) = (m+ 2,m+ 3) = (m,m+ 1) + 2δ,

c(m+ 1,m) = (m− 1,m− 2) = (m+ 1,m)− 2δ.

6.1. Representations of the Kronecker quiver. In this subsection we use the
Coxeter functors to classify indecomposable representations of the Kronecker quiver
Q

•⇒ •.
The only admissible enumeration of vertices is 1 ⇒ 0. Let X be an indecomposable
representation of Q of dimension x = (n,m). It is given by a pair of linear operators
A,B : km → kn.

We will show first that x is a root. Indeed, one can check that c(n,m) = x +
2(m− n)δ. Therefore if m > n, then c−s(x) < 0 for sufficiently large s, and if m < n
then cs(x) < 0 for sufficiently large s. Since dim Φ+X = c(x) and dim Φ−X = c−1(x),
we know that in the former case (Φ−)sX = 0 and in the latter case (Φ+)sX = 0 for
sufficiently large s.

Consider the case m > n. Then we have the following two possibilities:

(1) F−1 ◦ (Φ−)s(X) = 0 and (Φ−)sX 6= 0. Then (Φ−)sX ' L1 and hence
X ' (Φ+)sL1.

(2) (Φ−)sX = 0 and F−0 ◦ (Φ−)s−1(X) 6= 0. Then F−0 ◦ (Φ−)s−1(X) ' L′1 and
hence X ' (Φ+)s−1 ◦ F+

0 (L′1), where L′1 is the irreducible representation of
Q′ = σ0(Q) = Qop.

Similarly in the case m < n we obtain two possibilities:

(1) F+
0 ◦ (Φ+)s(X) = 0 and (Φ+)sX 6= 0. Then (Φ+)sX ' L0 and hence
X ' (Φ−)sL0.

(2) (Φ+)sX = 0 and F+
1 ◦ (Φ+)s−1(X) 6= 0. Then (Φ+)s−1X ' L′0 and hence

X ' (Φ−)s−1 ◦ F−1 (L′0), where as in the previous case L′0 is the irreducible
representation of Q′ = σ0(Q) = Qop.

It follows that x is either (m,m) and x is an imaginary root or (m,m ± 1) and
x is a real root. Moreover, the above arguments imply that for every real positive
root x there exists exactly one up to isomorphisn indecomposable representation
X of dimension x. We can describe this X precisely in terms of linear operators
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A,B : km → kn. If n = m + 1 we can set A = (Im, 0), B = (0, Im) and if m = n + 1
we set A = (Im, 0)t, B = (0, Im)t, where M t stands for the transposed matrix of M
and Im is the identity m×m-matrix.

It remains to classify indecomposable representations of dimension x = (m,m).
We will prove that, for everym > 0, there is a one-parameter family of representations
of dimension (m,m) enumerated by t ∈ P1 := P1(k). In the case x = (1, 1) = δ,
the indecomposable representations of dimension δ are in bijection with pairs (a, b) ∈
k2\(0, 0). We denote the corresponding representation by X(a:b). It is easy to see that
two representations X(a:b) and X(a′:b′) are isomorphic if and only if (a, b) = λ(a′, b′)
for some invertible λ ∈ k. Thus, indecomposable representations of dimension δ form
the family

{X(a:b) | (a : b) ∈ P1}.

Note that 〈δ, δ〉Q = 0 implies

Ext1
Q(X(a:b), X(c:d)) = HomQ(X(a:b), X(c:d)) = 0

if (a : b) and (c : d) are two distinct points in P1.

Exercise 6.4. LetX be a representation of dimension (m,m). Show by induction
on m that HomQ(X(a:b), X) 6= 0 for at most m points (a : b) ∈ P1.

The exercise implies that one can find t ∈ k such that HomQ(X(1:t), X) 6= 0. In
terms of the linear operators A,B : km → km, this is equivalent to the invertibility
of the operator tA − B. Use this operator to identify the components X0 and X1.
Every A-stable subspace of km is also B-stable. Hence the indecomposability of X
implies that there exists (a, b) ∈ k2 \ (0, 0) such that A = aIm+Jm and B = bIm+Jm
where Jm is the nilpotent Jordan block of size m×m. We denote the corresponding

representation X
(m)
(a:b). It is obvious that the isomorphism class of X

(m)
(a:b) depends only

on the point (a : b) ∈ P1. Finally we observe that

HomQ(X(c:d), X
(m)
(a:b)) =

{
0 if (a : b) 6= (c : d)

k if (a : b) = (c : d)
.

This implies that X
(m)
(a:b) and X

(m)
(c:d) are not isomorphic when (a : b) and (c : d) are

distinct in P1.

One may get an impression from the above example that any indecomposable
representation whose dimension is given by a real root is annihilated by some power
of one of the Coxeter functors. This is not true in general as one can see from the
following exercise.

{VIIIexd4}
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Exercise 6.5. Consider the quiver Q

4
↓

1 → 0 ← 3
↑
2

Let α := ε0+ε1+ε2. Check that α is a root, c(α) = ε3+ε1+ε4 and c2(α) = α. Therefore
for any indecomposable X of dimension α we have an isomorphism (Φ+)2X ' X.

7. Preprojective and preinjective representations.

We assume in this section that Q is a quiver with fixed admissible enumeration
of vertices.

An indecomposable representation X is called preprojective1 if (Φ+)
s
X = 0 for

some s, preinjective if (Φ−)
s
(X) = 0 for some s and regular if it is neither prepro-

jective nor preinjective.

Example 7.1. For the Kronecker quiver, an indecomposable representation is
preprojective if its dimension is (m,m+1), preinjective if the dimension is (m+1,m)
and regular if the dimension is (m,m).

{VIII-lm1}
Lemma 7.2. If X is preprojective, then X = (Φ−)

s
P for some projective P . If

X is preinjective, then X = (Φ+)
s
I for some injective I.

Proof. Suppose (Φ+)
s
X 6= 0, and (Φ+)

s+1
X = 0. Then

F+
i−1 . . . F

+
1

(
Φ+
)s
X = L′i, X

∼=
(
Φ−
)s
F−1 . . . F−i−1 (L′i)

as in Corollary 4.3. Therefore, by Lemma 5.5, we have an isomorphism

X ∼=
(
Φ−
)s

(Aei) .

The proof for preinjective follows from duality. �
{VIIIcor111}

Corollary 7.3. IfX is indecomposable preprojective or preinjective, then dimX
is a real root.

Proof. It follows from the proof of Lemma 7.2 that dimX = w(εi) for some i
and some w ∈ W . �

{VIII-lm2}
Lemma 7.4. If X, Y are indecomposable and X is preprojective, Y is not, then

HomQ (Y,X) = Ext1
Q (X, Y ) = 0. If X is preinjective, Y is not, then HomQ (X, Y ) =

Ext1
Q (Y,X) = 0.

1Some authors prefer the term postprojective instead of preprojective, see [13].
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Proof. Let X be preprojective. Then X = (Φ−)
s
P for some projective P and

Ext1
Q

((
Φ−
)s
P, Y

)
= Ext1

Q

(
P,
(
Φ+
)s
Y
)

= 0

by Corollary 5.3. On the other hand,(
Φ+
)s+1

X = 0, Y ∼=
(
Φ−
)s+1 (

Φ+
)s+1

Y

and

HomQ

(
X,
(
Φ−
)s+1 (

Φ+
)s+1

Y
)

= HomQ

((
Φ+
)s+1

X,
(
Φ+
)s+1

Y
)

= 0.

For preinjective use duality. �

From now on we assume that Q is affine. Note that if X is indecomposable
and x := dimX = mδ, then c(x) = x and hence X is isomorphic to Φ+X. Therefore
X is regular.

Define the defect of X by

def (X) = 〈δ, x〉Q = −〈x, c(δ)〉Q = −〈x, δ〉Q .

We write x ≤ y if y − x ∈ Zn≥0

{VIII-lm3}
Lemma 7.5. If x < δ and X is indecomposable of dimension x, then X is a brick,

x is a root and Ext1
Q (X,X) = 0.

Proof. If X is not a brick, then there is a brick Y ⊂ X such that Ext1 (Y, Y ) 6= 0,
see Lemma 4.4 of Chapter 7. But then q (y) ≤ 0, which is impossible as y < δ. Hence
X is a brick. Since q (x) > 0, we have Ext1 (X,X) = 0 and q (x) = 1. �

{VIII-lm4}
Lemma 7.6. There exists an indecomposable representation of dimension δ.

Proof. Pick an orbit OZ in Rep (δ) of maximal dimension. Then by Corollary 5.5
of Chapter 7, Z = X1⊕· · ·⊕Xp, where Xi are indecomposable and Ext1 (Xi, Xj) = 0
if i 6= j. If p > 1, then q (z) > 0 which is impossible. �

{VIII-lm5}
Lemma 7.7. If X is regular, then there exists m > 0 such that cm (x) = x.

Proof. From the description of affine root system (Lemma 6.1) we know that
thatW -orbits on ZQ0/Zδ are finite. Therefore one can findm such that cm (x) = x+lδ
for some l ∈ Z. If l 6= 0, then cd(x) = x + ldδ. Hence there exists d ∈ Z such that
cd (x) < 0. That contradicts regularity of X. �

{VIIIthdefect}
Theorem 7.8. Let X be indecomposable.

(1) If X is preprojective, then def (X) < 0;
(2) If X is regular, then def (X) = 0;
(3) If X is preinjective, then def (X) > 0.
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Proof. Let X be preprojective, Z be an indecomposable representation of di-
mension δ constructed in Lemma 7.6. Then Ext1

Q (X,Z) = 0 by Lemma 7.4. On the
other hand, X = (Φ−)

s
Aei. Therefore

HomQ (X,Z) = HomQ

((
Φ−
)s
Aei, Z

)
= HomQ

(
Aei,

(
Φ+
)s
Z
)
6= 0,

and hence 〈x, δ〉 = dim HomQ (X,Z) > 0. For preinjective X the proof follows by
duality.

Finally, let X be regular. Assume def (X) 6= 0, say def (X) > 0. Since x is regular
cp (x) = x for some p. Then y = x + c (x) + · · · + cp−1 (x) is c-invariant, therefore
x+ c (x) + · · ·+ cp−1 (x) = mδ by Lemma 3.4. But for all integer l we have〈

δ, cl (x)
〉

=
〈
c−l(δ), x

〉
= 〈δ, x〉 > 0,

hence 〈δ,mδ〉 > 0. But 〈δ, δ〉 = q (δ) = 0. Contradiction. �

8. Regular representations

8.1. Abelian category of regular representations. In this section we again
assume that Q is an affine quiver. We say that a representation of Q is regular if it
is a direct sum of indecomposable regular representations.

{VIIIpropreg}
Proposition 8.1. LetX and Y be regular representations ofQ and ϕ ∈ HomQ(X, Y ).

Then Kerϕ and Cokerϕ are regular. In other words, the full subcategory of regular
representations of an affine quiver Q is abelian.

Proof. Consider the exact sequence

0→ Kerϕ→ X
ϕ−→ Y → Cokerϕ→ 0.

Then
dim Kerϕ− dimX + dimY − dim Cokerϕ = 0

and therefore by Theorem 7.8

def(Kerϕ) = def(Cokerϕ).

Assume that Kerϕ is not regular. Lemma 7.4 implies that for any preinjective W ,

HomQ(W,Kerϕ) ↪→ HomQ(W,X) = 0.

Therefore any non-regular indecomposable direct summand of Kerϕ is preprojective.
Hence

def(Kerϕ) = def(Cokerϕ) < 0.

Therefore Cokerϕ has an indecomposable preprojective direct summand U . However,
Lemma 7.4 implies HomQ(Y, U) = 0. Using the embedding

HomQ(Y,Cokerϕ) ↪→ HomQ(Y, U)

we obtain HomQ(Y,Cokerϕ) = 0, which is a contradiction.
The proof that Cokerϕ is regular is similar. �
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{VIIIlmreg}
Lemma 8.2. Let

0→ X → Z → Y → 0

be an exact sequence of k(Q)-modules. If X and Y are regular, then Z is also regular.

Proof. Suppose that Z has a preprojective direct summand Zi. Then we have
an exact sequence

HomQ (Y, Zi) = 0→ HomQ (Z,Zi)→ HomQ (X,Zi) = 0,

which is a contradiction.
Similarly one can show that Z could not have preinjective direct summand. �

A regular representation X is called regular simple if X has no proper non-trivial
regular subrepresentations.

{VIIIexregsim}
Exercise 8.3. Show that a regular simple representation X is a brick, hence

q (x) ≤ 1. In particular, dimX is a root.

Exercise 8.4. Prove that any regular simple representation of the Kronecker
quiver is isomorphic to X(a:b) for some (a : b) ∈ P1.

{VIIIexJH}
Exercise 8.5. Check that the following analogue of Jordan-Hölder theorem

holds.
Let Y be a regular representation of Q. There exists a filtration

0 = F0(Y ) ⊂ F1(Y ) ⊂ · · · ⊂ Fk(Y ) = Y,

such that Yi = F i(Y )/F i−1(Y ) are simple for all i > 0. Furthemore, two such filtra-
tions give the same set of regular simple subquotients counting with multiplicities.
Therefore for any regular X and any regular simple S the regular multiplicity [X : S]r
is well defined.

{VIIIsecproj}
8.2. A one-parameter family of indecomposable representations of di-

mension δ. Recall the enumeration of vertices of Q introduced in Section 6. (It may
be not admissible.) Let P := Ae0 be the projective cover of L0 and p := dimP . Since
P is obtained by application of a sequence of reflection functors from the irreducible
representation L′0 for a suitable Q′, we know that p is a real root. Furthermore, if Z
is a representation of dimension δ, then

Ext1
Q(P,Z) = 0, dim HomQ(P,Z) = [Z : L0] = 1

and we obtain that 〈p, δ〉Q = 1.
Since r := p + δ is a real root, using reflection functors we can construct an

indecomposable representation R of dimension r. Then we have

〈r, δ〉Q = 1, 〈r, p〉Q = 0, 〈p, r〉Q = 2.

Since Ext1 (P,R) = 0, HomQ (P,R) = k2.
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{VIIIlm23}
Lemma 8.6. Let θ ∈ HomQ (P,R). If θ 6= 0, then θ is injective.

Proof. Recall that both P and R are preprojective of defect −1. Let W be an
indecomposable summand of Ker θ. Then HomQ(W,P ) 6= 0 and hence W is pre-
projective. Similarly, every indecomposable summand of Im θ ⊂ R is preprojective.
Assume that both Ker θ and Im θ are not zero, then they both have negative defect.
But

−1 = def (P ) = def (Ker θ) + def (Im θ) ,

and we obtain a contradiction. �

Exercise 8.7.

(1) Let η ∈ HomQ (R,P ). Prove that if η 6= 0 then η is surjective.
(2) Show that HomQ (R,P ) = Ext1

Q (R,P ) = 0.
{VIIIlemdelta}

Lemma 8.8. Let θ ∈ HomQ (P,R), θ 6= 0. Then Zθ = Coker θ is regular indecom-
posable.

Proof. Consider the exact sequence

0→ P
θ−→ R→ Zθ → 0.

The corresponding long exact sequence

0 = HomQ (R,P )→ HomQ (R,R)→ HomQ (R,Zθ)→ Ext1
Q (R,P ) = 0.

provides an isomorphism HomQ (R,Zθ) ' HomQ (R,R).
Next we will show that R is a brick. Indeed, otherwise R would contain a brick

Z with non-trivial self-extension. Then dimZ = δ and Z is regular. But then
HomQ(Z,R) 6= 0 which is impossible as R is preprojective.

Thus, we have HomQ (R,Zθ) = k. Furthermore, the embedding EndQ(Zθ) ↪→
HomQ (R,Zθ) implies EndQ(Zθ) = k. Therefore Zθ is indecomposable. Furthermore,
def (Zθ) = 0, hence Zθ is regular. �

{VIIIlmpr}
Lemma 8.9. If Zθ is isomorphic to Zτ , then θ = cτ for some c ∈ k∗.

Proof. Let πξ denote the natural projection R → Zξ. Preprojectivity of R
implies that Ext1

Q(R,Z) = 0 for all regular Z. Therefore Ext1
Q(R, ·) is exact on the

category of regular representation. Thus, if ϕ : Zθ → Zτ is an isomorphism then
there exists γ : R → Zτ such that πτ = γπθ. Therefore Ker πθ = Ker πτ and hence
θ(P ) = τ(P ). Since P is projective, we have τ = θϕ for some ϕ ∈ AutQ(P ). Since P
is a brick, ϕ = c IdP . �

8.3. Properties of regular simple representations.
{VIIIlm24}

Lemma 8.10. Let X be regular indecomposable of dimension x such that x0 6= 0.
Then there exists θ ∈ HomQ (P,R) such that HomQ (Zθ, X) 6= 0.
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Proof. First note that

dim HomQ (P,X) = x0 = dim HomQ (R,X)

since 〈p, x〉 = 〈r, x〉 = x0.
Every θ ∈ HomQ (P,R) induces the linear map

θ∗ : HomQ (R,X)→ HomQ (P,X) .

Since dim HomQ (P,R) = 2, one can find θ ∈ HomQ (P,R) such that θ∗ is not in-
vertible. Then there is ϕ ∈ HomQ (R,X) such that θ∗ (ϕ) = ϕ ◦ θ = 0. Then
ϕ (θ (P )) = 0, and ϕ is well defined homomorphism Zθ → X. �

{VIIIcor25}
Corollary 8.11. Let X be regular simple of dimension x. Then x ≤ δ.

Proof. By Exercise 8.3, x is a root. If x0 6= 0, then HomQ (Zθ, X) 6= 0 for some
θ. Consider a non-zero homomorphism ϕ : Zθ → X. Since the image of ϕ is regular
and X is regular simple, ϕ is surjective. Therefore X is a quotient of Zθ, hence x ≤ δ.
Finally, if x0 = 0, then x < δ. �

Exercise 8.12. Let Q be as in Exercise 6.5. Check that regular simple represen-
tations have dimensions εi+εj +ε0 for all 0 < i < j < 4 and δ = ε1 +ε2 +ε3 +ε4 +2ε0.
Show that an indecomposable representation ρ of dimension δ is regular simple if and
only if Im ργ 6= Im ργ′ for all distinct γ, γ′ ∈ Q1.

{VIIIlm26}
Lemma 8.13. Let X and Y be two regular simple representations of Q. Then

HomQ (X, Y ) =

{
k, if X ' Y

0 otherwise

and

Ext1
Q (X, Y ) =

{
k, if Φ+X ' Y

0 otherwise
.

Proof. For any homomorphism ϕ : X → Y both Kerϕ and Cokerϕ are regular.
Therefore either ϕ is an isomorphism or ϕ = 0. Moreover, HomQ (X,X) = k because
X is a brick (see Exercise 8.3).

To prove the second assertion use Lemma 5.7:

〈x, y〉Q = −〈y, c (x)〉Q .

If Y is not isomorphic to X or Φ+X, then

〈x, y〉Q = dim HomQ (X, Y )− dim Ext1
Q (X, Y ) ≤ 0

and

〈y, c (x)〉Q = dim HomQ

(
Y,Φ+X

)
− dim Ext1

Q

(
Y,Φ+X

)
≤ 0.

Therefore we must have 〈x, y〉Q = 0. Hence Ext1
Q (X, Y ) = 0.
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If Y ' X, then
〈x, x〉Q = 1 = −〈x, c(x)〉Q

if x is a real root and
〈x, x〉Q = 0 = −〈x, c(x)〉Q

if x = c(x) is imaginary. In both cases we obtain dim Ext1 (Y,Φ+X) = 1. The case
Y ' Φ+X is similar. �

{VIIIprop26}
Proposition 8.14.

(1) If X is regular simple, then Φ+X is also regular simple.
(2) If x < δ, then (Φ+)

s
X ∼= X for some s > 1.

(3) If x = δ, then Φ+X ∼= X.

Proof. Set Y := Φ+X. Then

〈x, y〉Q = −〈c(x), c(x)〉Q =

{
−1, if x is real

0, if x is imaginary
.

If x is real, then Ext1
Q(X, Y ) 6= 0. Consider a filtration of Y as in Exercise 8.5. Then

Ext1
Q(X, Yi) 6= 0 at least for one i. But by Lemma 8.13, this implies Yi ' Φ+X.

Hence Y is regular simple. The set of real roots α < δ is finite. Therefore cs(x) = x
for some s. Then 〈x, x〉Q = 〈x, cs(x)〉Q = 1. Therefore HomQ(X,ΦsX) 6= 0. This

proves (1) in the case of real x and (2).
Let x = δ. If Y is not simple then it contains a proper regular simple submodule

Z and we have

HomQ(Z, Y ) ' HomQ(Z,Φ+X) ' HomQ(Φ−Z,X) = 0.

A contradiction. Hence (1) holds for imaginary x. Furthermore, Ext1
Q(X, Y ) '

HomQ(X, Y ) = k by Lemma 8.13. Thus, (3) is proved. �

The minimal number s such that (Φ+)
s
X ∼= X is called the period of X. Regular

simple representations can be divided into orbits with respect to the action of Φ+.
{VIIIcorblock}

Corollary 8.15. Let X be a regular indecomposable representation. Then all
regular simple S such that [X : S]r > 0 belong to the same Φ+-orbit.

Proof. Let r denote the regular length of X, i.e. the length of a filtration
introduced in Exercise 8.5. Assume that the statement is false and pick up X with
the minimal regular length r for which it fails. Let S be a regular simple submodule
of X. Consider the exact sequence

0→ S → X → Y → 0

and let Y = ⊕ki=1Yi be a direct sum of indecomposables. Then all regular simple
constituents of Yi belong to the same Φ+-orbit. Indecomposability of X implies that
Ext1

Q(Yi, S) 6= 0 for all i = 1, . . . k. Lemma 8.13 implies that S lies in the Φ+-orbit of
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the regular simple constituents of Yi. Therefore all regular simple constituents of X
are in the same orbit. A contradiction. �

{VIIIextube}
Exercise 8.16. Let {S1, . . . Sp} be an orbit of Φ+ in the set of regular simple

representation and let αi = dimSi. Assume that Si = (Φ+)i−1S1. If p = 1, then
α1 = δ, if p = 2, then (α1, α2) = −2. If p > 2 then (αi, αj) = 0 if i 6= j ± 1 and
(i, j) 6= (p, 1), (1, p) and

(αi, αi+1) = −1, i = 1, . . . , p− 1, (α1, αp) = −1.

In other words, α1, . . . , αp form simple roots system for Ãp−1. Prove also that
α1, . . . , αp are linearly independent.

8.4. Indecomposable regular representations and tubes. As follows from
Corollary 8.15 simple regular constituents of an indecomposable regular representa-
tion belong to the same orbit of Φ+. Thus, each orbit of Φ+ in the set of simple
regular representations defines a family of indecomposables called a tube.

Exercise 8.17. Let Q be the quiver of Exercise 6.5. Then there are 3 orbits of
regular simple representations of period 2 and infinitely many orbits of period 1.

{VIII-th3}
Theorem 8.18. Let T be a tube and S be the set of isomorphism classes of

regular simple representations in T . Then for every r > 0 and S ∈ S there exists
a unique up to isomorphism regular representation X(r)(S) ∈ T of regular length r
such that

(1) it has a unique regular simple quotient which is isomorphic to S,
(2) every non-zero regular submodule of X(r)(S) has a unique regular simple

quotient.

Moreover, every indecomposable representation in T is isomorphic to X(r)(S) for
some r > 0 and S ∈ S.

Proof. We first prove the existence of X(r)(S) by induction on r, with the base
case X(1)(S) = S. To construct X(r)(S) for arbitrary r use X(r−1)(Φ+S) and the
surjection p : X(r−1)(Φ+S)→ Φ+S which defines the surjection:

p̄ : Ext1
Q(S,X(r−1)(Φ+S))→ Ext1

Q(S,Φ+S) = k.

Let ϕ ∈ Ext1
Q(S,X(r−1)(Φ+S)) be such that p̄(ϕ) 6= 0. Then it induces a non-split

exact sequence

0→ X(r−1)(Φ+S)→ Z
π−→ S → 0.

Denote by N a maximal proper regular submodule of X(r−1)(Φ+S) which is unique
by the induction assumption. Then the sequence

(8.2){VIIIs1} 0→ Φ+S → Z/N → S → 0

does not split.
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We set X(r)(S) := Z and claim that Z satisfies the requirements of the theorem.
It suffices to check that Z has a unique proper maximal regular submodule. Indeed,
let M be a proper maximal regular submodule of Z. If M 6= X(r−1)(Φ+S) then
M ∩X(r−1)(Φ+S) = N and M/N = Φ+S is embedded in Z/N . This contradicts the
non-splitting of the sequence (8.2).

Now let us show that X(r)(S) is unique up to isomorphism again by induction on
r. We will need the following

{VIIIauxlm}
Lemma 8.19. For any r > 0 and S, S ′ ∈ S we have

Ext1
Q(S,X(r)(S ′)) =

{
0, if S ′ 6= Φ+S

k, if S ′ = Φ+S
.

Proof. We prove Lemma by induction on r. If r = 1 the statement is Lemma
8.13. Let S ′′ be the unique regular simple submodule of X(r)(S ′). We consider the
exact sequence

0→ S ′′ → X(r)(S ′)→ X(r−1)(S ′)→ 0

and the corresponding long exact sequence for ExtQ(S, ·). Note that HomQ(S, S ′′)→
HomQ(S,X(r)(S ′)) is an isomorphism since S ′′ is the unique regular simple submodule
of X(r)(S ′). Furthermore, Ext1

Q(S, S ′′) = 0 if S ′′ 6= Φ+S. So in this case we obtain
an isomorphism

Ext1
Q(S,X(r)(S ′))

∼−→ Ext1
Q(S,X(r−1)(S ′))

and the statement follows by induction. On the other hand, if S ′′ = Φ+S, the unique
simple submodule of X(r−1)(S ′) is isomorphic to S and therefore we have

0→ HomQ(S,X(r−1)(S ′))
∼−→ Ext1

Q(S, S ′′)
0−→ Ext1

Q(S,X(r)(S ′))
∼−→ Ext1

Q(S,X(r−1)(S ′))→ 0.

�

Now by induction assumption X(r)(S) has a unique maximal regular submod-
ule isomorphic to X(r−1)(Φ+(S)). By Lemma 8.19 Ext1

Q(S,X(r−1)(Φ+)) = k which

implies the uniquness of X(r)(S).
Finally let us prove the last assertion. Let X ∈ T be an indecomposable repre-

sentation of regular length r and let S be some regular simple quotient of X. We
will prove that X is isomorphic to X(r)(S) by induction on r. Consider the exact
sequence

(8.3) {VIIIex2} 0→ Y → X → S → 0

and let Y1, ..., Ym be the indecomposable summands of Y . Assume that m ≥ 2.
Indecomposability of X implies that Ext1

Q(S, Yi) 6= 0 for all i = 1, . . . ,m. So by

induction assumption and Lemma 8.19, each summand Yi is isomophic to X(ri)(Φ+S)
for some ri. Without loss of generality we may assume that r1 is maximal. Then
for every i ≥ 2 we have a surjective homomorphism fi : Y1 → Yi which induces
an isomorphism f̃i : Ext1

Q(S, Y1) → Ext1
Q(S, Yi). Assume that the sequence (8.3)
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corresponds to the element
∑m

i=1 ψi for some ψi ∈ Ext1
Q(S, Yi). Then ψi = cif̃i(ψ1).

Let
Z2 := {c2m− f2(m) |m ∈ Y1}.

Then Z2 splits as a direct sumand in X and we obtain a contradiction.
Thus Y is indecomposable, isomorphic to X(r−1)(S) and hence X is isomorphic

to X(r)(S). �
{VIIIlm35}

Lemma 8.20. Every tube contains exactly one indecomposable representation
isomorphic to Zθ.

Proof. Pick up a simple regular X in a tube T . Let p be the period of X, i.e.
(Φ+)

p
X ∼= X. If x = dimX, then

x+ c (x) + · · ·+ cp−1 (x) = mδ

There exists i such that y := ci (x) has the coordinate y0 6= 0. Let Y := (Φ+)
i
X. By

Lemma 8.10 there exists θ ∈ HomQ (P,R) and a non-zero homomorphism ϕ : Zθ → Y .
Hence Zθ is in the tube T . Moreover Zθ is isomorphic to X(p)(Y ). This implies m = 1
and the choice of i is unique.

To prove uniquness of Zθ, recall preprojective representations P and R introduced
in Section 8.2. Note that for any regular simple Z of dimension z we have

〈p, z〉Q = 〈r, z〉Q = z0.

Since R is preprojective, Ext1
Q(R,Z) = 0. Therefore if Z is not isomorphic to Y we

have HomQ(R,Z) = 0. Since any Zτ is a quotient of R we also have HomQ(Zτ , Z) =
0. Therefore any indecomposable representation in T isomorphic to Zτ must be
isomorphic to X(p)(Y ). Hence the uniquness part of the statement. �

{VIIIcorsum}
Corollary 8.21. Let T be a tube and S1, . . . , Sp be all regular simple represen-

tations of T up to isomorphism. Then dimS1 + · · ·+ dimSp = δ.
{VIII-lm34}

Lemma 8.22. Let X be regular indecomposable, then dimX is a root.

Proof. Lemma follows from Theorem 8.18 and Exercise 8.16. Indeed, for any S
and r we have

dimX(r)(S) = mδ + α1 + · · ·+ αq,

where αi := dim(Φ+)i−1X, r = mp + q, 0 ≤ q < p. Then dimX(r) is a root by
Exercise 8.16. �

9. Indecomposable representations of affine quivers
{VIII-th4}

Theorem 9.1. Let Q be a quiver whose underlying graph is affine.

(1) The dimension of every indecomposable representation of Q is a root.
(2) If α is a real root, then there exists exactly one (up to isomorphism) inde-

composable representation of dimension α.
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(3) If α = mδ is an imaginary root, then there are infinitely many indecom-
posable representations of dimension α. Every tube contains finitely many
indecomposable representation of dimension α.

Proof. (1) Let α be the dimension of an indecomposable representation X. If
〈α, δ〉 6= 0, then X is preprojective or preinjective, and α is a real root by Corol-
lary 7.3. If 〈α, δ〉 = 0, then X is regular and α is a root by Lemma 8.22.

(2) Let α be a real root and X be indecomposable of dimension α. If 〈α, δ〉Q 6= 0
then X is annihilated by some power of Φ+ or Φ−. In this case the proof of uniquness
is similar to the proof of Corollary 4.3 and we leave it to the reader. If 〈α, δ〉Q = 0 then
X is regular and hence belongs to some tube T . Then by Theorem 8.18, X ' X(r)(S)
for some simple S. It suffices to check that for any r which is not a multiple of p and
two distinct regular simple representation S and S ′, dimX(r)(S) 6= dimX(r)(S ′). It
easily follows from the the linear independence of dimension vectors of the regular
simple representation of the tube T , see Exercise 8.16.

(3) The first assertion follows from Lemma 8.9 and the second one is a simple
consequence of Theorem 8.18. �

Example 9.2. Let Q be a quiver with underlying graph Γ = Ãn for n > 1. Then
we have δ = ε0 + · · · + εn. Roots are in bijection with counterclockwise paths on Γ
disregarding the orientation of arrow. Indeed, write a path as a sequence of vertices
i1, . . . , is such that (ij, ij+1) ∈ Γ1 and ij+1 is the next to ij in the counterclockwise
direction. Then the corresponding root α equals εi1 + · · ·+ εis . It is easy to see that
α is imaginary if and only if s = m(n + 1), in which case i1 is the next to is in the
counterclockwise direction.

Let α be a real root. We define the unique indecomposable representation of
dimension α as follows. Let V = ks with fixed basis v1, . . . , vs. For every i ∈ Q0

define Vi to be the span of all vj such that ij = i. For every γ define ργ : Vs(γ) → Vt(γ)

by setting for each j such that ij = s(γ)

ργ(vj) =


vj+1, if ij+1 = t(γ)

vj−1, if ij−1 = t(γ)

0 otherwise

.

In particular, ργ(v1) = 0 if and only if i1 is the target of the first edge of the path
and ργ(vs) = 0 if and only if is is the target of the last edge of the path.

Exercise 9.3. Show that ρ is indecomposable.

Now let α = mδ be imaginary. We define a family of indecomposable represen-
tation ρt,β where β ∈ Q1 and t ∈ k. We identify Vi with km for each i ∈ Q0 and
set

ρt,βγ =

{
Im, if γ 6= β

Jm(t), if γ = β
,



200 8. REPRESENTATIONS OF DYNKIN AND AFFINE QUIVERS

where Im is the identity matrix and Jm(t) is the Jordan block with eigenvalue t.

Exercise 9.4.

(1) Show that ρt,β are indecomposable.

(2) If t 6= 0, then ρt,β is isomorphic to ρt
−1,β′ if β and β′ have the same direction

(clockwise or counterclockwise) and is isomorphic to ρt,β
′

if β and β′ have
opposite directions.

(3) The representations ρt,β for t 6= 0 and fixed β together with ρ0,β for all
β ∈ Q1 provide a complete list of all up to isomorphism indecomposable
representations of Q of dimension mδ.



CHAPTER 9

Applications of quivers

In this chapter we define quivers with relations and use them to study certain
abelian categories.

1. From abelian categories to algebras

Consider an abelian category C which satisfies the following properties:

(1) For any pair of objects X, Y , the abelian group HomC(X, Y ) is a finite-
dimensional vector space over a ground field k;

(2) there are finitely many isomorphism classes of simple objects L1, . . . , Ln;
(3) every object in C has finite length;
(4) The category C has enough projective objects, i. e. for every object X there

exists a projective object P and a surjective morphism ψ : P → X.

Exercise 1.1. Check that the category of finite-dimensional representations of a
finite group G over k and the category of finite-dimensional representations of quiver
Q without loops or oriented cycles satisfy the conditions above. More generally, let A
be a finite-dimensional k-algebra, then the category of finite-dimensional A-modules
satisfies the conditions above. {IXIKS}

Exercise 1.2. If X is an object of C, then any ϕ ∈ EndC(X) is either nilpotent
or an isomorphism. Therefore the Krull–Schmidt theorem holds for any object of C. {IXIpr}

Exercise 1.3. Prove that any object of C has a projective resolution and that
ExtiC(X, Y ) is a finite-dimensional vector space for all i ≥ 0 and all objects X, Y ∈ C.

Using the property (1) of C, we define a new category Vect⊗C whose objects are
M ⊗X for some M ∈ Vect and X ∈ C and morphisms are defined by

HomVect⊗C(M ⊗X,N ⊗ Y ) := Homk(M,N)⊗k HomC(X, Y ).

Obviously we have a fully faithful functor C → Vect⊗C sending X to k ⊗ X and
we have an isomorphism M ⊗ X ' k ⊗ X⊕ dimM . On the other hand, we have a
forgetful functor Vect⊗C → C. We will denote by M �X an object of C obtained by
application of the forgetful functor to M⊗X, keeping in mind that M�X isomorphic
to X⊕ dimM .

A projective generator of C is a projective object P such that for any X ∈ C there
exist M ∈ Vect and a surjective morphism ψ : M ⊗ P → X. Let

A := EndC(P ).

201
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ThenA is a finite-dimensional k-algebra. For anyX ∈ C, the space ΦX := HomC(P,X)
has a natural structure of right A-module. Clearly, Φ is a functor from C to the cat-
egory of finite-dimensional right A-modules, which we denote by modA. Projectivity
of P implies that Φ is exact.

For every M ∈ modA, define the following object in C:

M �A P := M � P/

(∑
a∈A

Ker(a� IdP − IdM �a)

)
.

We claim that there exists a canonical isomorphism

HomC(M �A P,X) ' HomA(M,HomC(P,X)).

Indeed, by definition of Vect⊗C there is a canonical isomorphism

HomC(M � P,X) ' Homk(M,HomC(P,X)).

The spaces on the both sides of this identity are equipped with natural structures of
A-bimodule. For any A-bimodule R we set

RA = {r ∈ R | ar = ra for all a ∈ A}.

Then

HomC(M � P,X)A = HomC(M �A P,X)

and

Homk(M,HomC(P,X)) = HomA(M,HomC(P,X)).

Therefore the functor Ψ : modA → C, defined by ΨM := M �A P , is right adjoint to
Φ. In particular, Ψ is right exact.

{IXGabriel}
Theorem 1.4. The functors Φ and Ψ establish an equivalence between the cat-

egories C and modA.

Proof. We start with proving that Φ and Ψ establish a bijection on isomorphism
classes of simple modules in both categories. Pick up a simple object Li in C and
let Si := HomC(P,Li). Since P is a projective generator of C, we have Si 6= 0.
Let us check that Si is a simple A-module. Indeed, given two non-zero morphisms
ψ : P → Li and ψ′ : P → Li, there exists a commutative diagram

P
ψ−−−→ Li −−−→ 0

ϕ

y id

y
P

ψ′−−−→ Li −−−→ 0

for some ϕ ∈ A. Hence ψA = Si for any non-zero ψ ∈ Si.
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Since P has finite length there exists a unique minimal R ↪→ P such that P/R is
semisimple. Furthermore, for any simple Li we have HomC(P,Li) = HomC(P/R,Li).
Therefore, we have a decomposition

(9.1){IXdecomp} P/R '
n⊕
i=1

(Si �Di Li) , Di := EndC(Li).

We claim that any simple A-module S is isomorphic to some Si. As follows from
results of Section 7 Chapter 5, it suffices to check that for every primitive idempotent
e ∈ A there exists i such that Sie 6= 0. Indeed, otherwise eP ⊂ R and a simple quo-
tient of eP can be lifted to a simple quotient of P , which contradicts the minimality
of R. Now we obtain

Si �A P ' Si �A (P/R) ' Li.

Thus, we have proved that Φ and Ψ provide a bijection between isomorphism classes
of simple objects in C and modA.

By adjointness of Φ and Ψ, we have morphisms αM : M → ΦΨM for all
M ∈ modA and βX : ΨΦX → X for all X ∈ C. We need to show that they are
isomorphisms. It follows from (9.1) that αM (resp. βX) is an isomorpism if M (resp.
X) is simple.

First we will prove that βX is an isomorphism for any X ∈ C by induction on the
length of X. We consider an exact sequence

0→ L→ X → Y → 0,

where L is simple. Since ΦΨ is right exact, we have the following commutative
diagram

ΨΦL −−−→
ΨΦ(f)

ΨΦX −−−→ ΨΦY −−−→ 0

βL

y βX

y βY

y
0 −−−→ L −−−→

f
X −−−→ Y −−−→ 0

with exact upper and low rows. By the induction assumption, βL and βY are isomor-
phisms. Note also that fβL is injective, which implies the injectivity of ΨΦ(f). By
Snake lemma (Exercise 5.6, Chapter 5) βX is an isomorphism.

Finally let us show that αM is an isomorphism for all M ∈ modA. It is trivial
that αM is an isomorphism for a free A-module M . Any module is a quotient of a
free module. Hence it suffices to prove that for any exact sequence

0→ S →M → N → 0,
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such that αS and αM are isomorphisms, αN is also an isomorphism. We consider the
commutative diagram

0 −−−→ S −−−→
f

M −−−→ N −−−→ 0

αS

y αM

y αN

y
ΦΨS −−−→

ΦΨ(f)
ΦΨX −−−→ ΦΨY −−−→ 0

and observe that αMf is injective. Hence ΦΨ(f) is injective. Again using Snake
lemma, we obtain that αN is an isomorphism. The proof of the theorem is complete.

�

Note that the above Theorem allows to prove many facts about C using the results
of Section 7 in Chapter 5. For example, we have the following

{IXcorproj2}
Corollary 1.5. For any simple object Li there exists a unique, up to isomor-

phism, indecomposable projective object Pi, whose unique simple quotient is iso-
morphic to Li. Every indecomposable projective object of C is isomorphic to one of
P1, . . . , Pn.

2. From categories to quivers

2.1. Quivers with relations. Let us assume that C satisfies conditions (1)-(4)
of Section 9.1. Assume also that EndC(Li) = k for every simple module L1, . . . , Ln.
We can choose the direct sum P1⊕· · ·⊕Pn as projective generator P . The extension
quiver of C is the quiver with vertices {1, . . . , n} such that for every ordered pair of
vertices (i, j), the number of arrows with source i and target j equals dim Ext1

C(Li, Lj).
{IXlmquiver}

Lemma 2.1. Let P := P1 ⊕ · · · ⊕ Pn and A := EndC(P ). Then Aop is isomorphic
to a quotient k(Q)/R, for some two-sided-ideal R contained in rad2 k(Q).

Proof. For every indecomposable Pi consider the radical filtration

Pi ⊃ ∇1(Pi) ⊃ ∇2(Pi) ⊃ . . . .

Recall that ∇s(Pi) is the minimal submodule in ∇s−1(Pi) such that the quotient
∇s−1(Pi)/∇s(Pi) is semisimple. By Theorem 1.4, we have the following identity for
the radical filtration of P (see Corollary 7.11, Chapter 5):

(9.2){eqIXaux1} (radsA)P = ∇s(P ).

Then Pi/∇1(Pi) ' Li and for any non-trivial extension

0→ Lj → X → Li → 0

we have a surjection Pi/∇2(Pi)→ X. This implies

Ext1
C(Li, Lj) ' HomC(Lj,∇1(Pi)/∇2(Pi)) ' HomC(Pj,∇1(Pi)/∇2(Pi)).
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Now we fix a basis in HomC(Pj,∇1(Pi)/∇2(Pi)) enumerated by arrows of the opposite
quiver Qop with source j and target i. By a slight abuse of notation we can consider
every arrow γ = (j → i) as an element of HomC(Pj,∇1(Pi)/∇2(Pi)).

By projectivity of Pj the natural map

θ : HomC(Pj,∇1(Pi))→ HomC(Pj,∇1(Pi)/∇2(Pi))

is surjective.
We construct a homomorphism F : k(Qop) → A by setting F (ei) to be the pro-

jector P → Pi with kernel ⊕j 6=jPj and F (γ) to be a element in the preimage θ−1(γ).
This homomorphism depends on the choice of bases in HomC(Pj,∇1(Pi)/∇2(Pi)) and
on the choice of a lift γ 7→ θ−1(γ).

It follows immediately from the construction of F and (9.2) that the induced
homomorphism k(Qop)→ A/ rad2A is surjective. It is easy to show by induction on
s that k(Qop) → A/ radsA is surjective for all s. Since radsA = 0 for sufficiently
large s, F is surjective. �

Corollary 2.2. The category C with Ext quiver Q is equivalent to the category
of finite-dimensional left BC-modules, where BC = k(Q)/R for some ideal R of k(Q).

Proof. Follows from Lemma 2.1 and Theorem 1.4, since BC is isomorphic to
Aop. �

The representations of k(Q)/R are called representations of the quiver Q with
relations R. In general, classifying indecomposable representations of k(Q)/R may be
a very difficult problem. There are however two boundary cases, when the problem
can be reduced to the ordinary representation theory of quivers. The first case is
R = 0, where one can use the results of two previous chapters. The second case is
when R is maximal possible, i.e. the product of any two arrows is zero. In this case
the following trick of duplicating the quiver may be useful:

Let Q be a quiver with set of vertices Q0 = {1, . . . , n} and assume that the ideal
R ⊂ k(Q) is generated by all paths of length 2. Consider the quiver Q̄, with set of
vertices {1−, . . . , n−, 1+, . . . n+} and with set of arrows Q̄1 defined by

Q̄1 := {(i− → j+) | (i→ j) ∈ Q1}.

For example, if Q is a loop •1

γ

��
, then Q̄ is •1− → •1+

. Let (V, ρ) be a representation

of k(Q)/R, then for every i ∈ Q0 we have∑
γ∈Q+(i)

Im γ ⊂
⋂

γ∈Q−(i)

Ker γ.



206 9. APPLICATIONS OF QUIVERS

If we assume that (V, ρ) is indecomposable but not irreducible, then the above em-
bedding becomes the equality∑

γ∈Q+(i)

Im γ =
⋂

γ∈Q−(i)

Ker γ.

We construct a representation (V̄ , ρ̄) of Q̄ in the following way. We set

V̄i+ :=
⋂

γ∈Q−(i)

Ker γ, V̄i− := Vi/V̄i+ .

For any γ = (i→ j) ∈ Q1, the map ργ : Vi → Vj induces in the natural way the map
ρ̄γ̄ : Vi− → Vj+ , where γ̄ = (i− → j+) ∈ Q̄1.

Conversely, let (V̄ , ρ̄) be a representation of Q̄. We can construct a representation
(V, ρ) of k(Q)/R by setting

Vi := V̄i− ⊕ V̄i+ , ργ := ρ̄γ̄ for all γ̄ = (i− → j+), γ = (i→ j).

The following statement is straightforward.
{IXdouble}

Lemma 2.3. The map (V, ρ) 7→ (V̄ , ρ̄) defines a bijection between isomorphism
classes of non-irreducible indecomposable representations of k(Q)/R and isomor-
phism classes of non-irreducible indecomposable representations of Q̄.

Example 2.4. Let us revisit Example 7.17 from Chapter 5. Let C be the cate-
gory of finite-dimensional representations of S3 over F3. There are exactly two (up
to isomorphism) simple objects in C, the trivial representation and the sign repre-
sentation. The corresponding indecomposable projectives are P+ := IndS3

S2
triv and

P− := IndS3
S2

sgn. The Ext quiver Q is

•
α

�
β
•.

It is not difficult to check, using the radical filtration of P± calculated in Example
7.17, that the ideal R is generated by αβα and βαβ. The classification of all (up
to isomorphism) indecomposable representations of S3 is therefore equivalent to the
classification of indecomposable left BC-modules. If we set P1 := ΦP+ and P2 := ΦP−,
then P1 = Ae1 and P2 = Ae2, where e1, e2 are the primitive idempotents of BC
corresponding to the vertices of Q. Let us note also that in this case BC is isomorphic
to Bop

C . If P is an indecomposable projective module, then P ∗ is an indecomposable
injective Bop

C -module. By direct inspection one can see that P1 and P2 are slef-dual,
hence they are injective.

Suppose that M is an indecomposable BC-module. Assume that βαM 6= 0. There
exists a non-zero vector m ∈M such that m,αm, βαm are linearly independent. This
implies that M contains a submodule isomorphic to P1. Since P1 is injective and M
is indecomposable we obtain that M is isomorphic to P1. Similarly, if αβM 6= 0 we
obtain that M is isomorphic to P2.
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Next, we assume that βαM = αβM = 0. Then we can use Lemma 2.3. Indeed,
Q̄ is the disjoint union of two A2 quivers:

• → • • → •.

Hence k(Q)/(αβ, βα) has four indecomposable representations: two of dimension
(1, 1) and two, which are irreducible, of dimension (0, 1) and (1, 0) respectively. In
particular, we obtain that in this case every indecomposable representation is a quo-
tient of an indecomposable projective representation.

We do not need the assumption that the number of simple or projective objects
is finite. We illustrate this in the following example.

{IXexproj}
Example 2.5. Let Λ be the Grassmann algebra with two generators, i.e.

Λ = k < x, y > /
(
x2, y2, xy + yx

)
.

Consider the Z-grading Λ = Λ0 ⊕ Λ1 ⊕ Λ2, where

Λ0 = k Λ1 = kx+ ky, Λ2 = kxy.

Let C be the category of graded Λ-modules. The objects of C are Λ-modules M =⊕
i∈ZMi, such that ΛiMj ⊂Mi+j, and we assume that morphisms preserve the grad-

ing. We leave it to the reader to check that all up to isomorphism simple modules are
one-dimensional and hence are determined uniquely by the degree. Indecomposable
projective modules are free of rank 1 and are parametrized by integers. An indecom-
posable projective module Pi is isomorphic to Λ with shifted grading: deg (1) = i.
The Ext quiver Q has infinitely many vertices:

· · · •
αi
⇒
βi

•
αi+1

⇒
βi+1

•
αi+2

⇒
βi+2

. . . ,

and it is not hard to check that the defining relations are

αi+1αi = βi+1βi = 0, αi+1βi + βi+1αi = 0

for all i ∈ Z.
Let us classify the indecomposable representations of this quiver with relations.

First observe that, as in the previous example, any indecomposable projective is
injective. As in the previous example we first assume that αi+1βiM 6= 0 for some
i ∈ Z. Then if M is indecomposable, M is isomorphic Pi by an argument similar to
the one in the previous example.

Next we consider the case when αi+1βiM 6= 0 for all i. Then we should apply
again Lemma 2.3. Note that Q̄ is a disjoint union of infinitely many Kronecker
quivers. Thus, if M is a an indecomposable object which is neither projective nor
simple, then M is isomorphic to the corresponding representation of the Kronecker
quiver.
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Remark 2.6. The reader familiar with algebraic geometry could read [3] in order
to understand the link between the “derived category” of coherent sheaves over the
projective line and the “derived category” of C.

3. Finitely represented, tame and wild algebras

Let C be a finite-dimensional k-algebra. We say that C is finitely represented
if C has finitely many indecomposable representations. We call C tame if for each
d ⊂ Z>0, there exists a finite set M1, . . . ,Mr of C − k [x] bimodules (free of rank
d over k [x]) such that every indecomposable representation of C of dimension d is
isomorphic to Mi ⊗k[x] k [x] / (x− λ) for some i ≤ r, λ ∈ k. Finally, C is wild if
there exists a C − k < x, y > bimodule M such that the functor X 7→M ⊗k<x,y> X
preserves indecomposability and is faithful. We formulate here without proof the
following fundamental results. The first one is called Drozd’s thrichotomy.

{IXth21}
Theorem 3.1. [9] Every finite-dimensional algebra over an algebraically closed

field k is either finitely represented or tame or wild.
{IXth23}

Theorem 3.2. [9] Let Algn be the algebraic variety of all associative algebra
structures on a given n-dimensional k-vector space. Then the subset of finitely rep-
resented algebras is Zariski open in Algn.

Remark 3.3. If C is a category satisfying the assumptions (1)-(4) of section 1,
then by Theorem 1.4, it is equivalent to the category of representations of some
finite-dimensional algebra. Hence the notions of finitely-represented, tame and wild
are well-defined for such categories.

Let us consider the case where C = k(Q) is the path algebra of a quiver Q.
Gabriel’s theorem (Theorem 7.2) implies that C is finitely represented if and only
if all connected components of Q are Coxeter–Dynkin graphs. We have seen in
Chapter 8 that the path algebra of an affine quiver is not finitely represented. On
the other hand, it is tame, since indecomposable representation in each dimension can
be parametrized by at most one continuous parameter. The folowing result claims
that all other quivers are wild.

{IXth22}
Theorem 3.4. [13] Let Q be a connected quiver without oriented cycles. Then

k (Q) is finitely represented if and only if Q is Dynkin, k (Q) is tame if and only if Q
is affine.

In general, the classification of tame algebras seems to be an impossible problem.
If the Ext quiver has just a few vertices such a classification can be found in K.
Erdmann’s book [10]. However, in applications it is often possible to determine
whether the category in question is tame or wild.

Exercise 3.5. If an algebra C is finitely presented then any quotient algebra
C/I is finitely presented. If C is tame, then C/I is finitely presented or tame.
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Exercise 3.6. Let C be a category satisying our assumptions and Q be its Ext
quiver.

(1) If C is tame, then Q̄ is a disjoint union of Dynkin and affine quivers.
(2) If Q is a disjoint union of Dynkin and affine quivers, then C is tame.
(3) If Q is a disjoint union of Dynkin quivers, then C is finitely presented.

Exercise 3.7. Generalize Example 2.5 to the Grassman algebra

Λ = k < x1, . . . , xn > /
(
x2
i , xixj + xjxi

)
with n generators. Describe the Ext quiver for the category C of Z-graded Λ-modules
and show that for n > 2 the category C is wild.

4. Frobenius algebras

Let A be a finite-dimensional algebra over k. We use the notation A mod (resp.
modA) for the categories of finite- dimensionl left (resp. right) A-modules. We denote
by AA (resp. AA) the algebra A considered as a left (resp. right) module over itself.
We have an exact contravariant functor

D : A mod→ modA

defined by D(M) = M∗. Obviously, D sends projective objects to injective objects
and vice versa.

A finite-dimensional A algebra over k is called a Frobenius algebra if D (AA) is
isomorphic to AA.

{IXth10}
Theorem 4.1. The following conditions on A are equivalent

(1) A is a Frobenius algebra;
(2) There exists a non-degenerate bilinear form 〈·, ·〉 on A such that 〈ab, c〉 =
〈a, bc〉;

(3) There exists λ ∈ A∗ such that Kerλ does not contain non-trivial left or right
ideals.

Proof. A form 〈·, ·〉 gives an isomorphism µ : A→ A∗ by the formula x→ 〈·, x〉.
The condition 〈ab, c〉 = 〈a, bc〉 is equivalent to µ being a homomorphism of modules.
The linear functional λ can be constructed by λ (x) = 〈1, x〉. Conversely, given λ, one
can define 〈x, y〉 = λ (xy). The assumption that Kerλ does not contain non-trivial
one-sided ideals is equivalent to the condition that the left and right kernels of 〈·, ·〉
are zero. � {IXlm11}

Lemma 4.2. Let A be a Frobenius algebra. A left A-module X is projective if
and only if it is injective.

Proof. A projective module X is a direct summand of a free module, but a free
module is injective since D (AA) is isomorphic to AA. Hence, X is injective. By
duality, an injective module is projective. �
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Example 4.3. A group algebra k (G) is Frobenius. Take

λ

(∑
g∈G

agg

)
= a1.

The corresponding bilinear form is symmetric.

Example 4.4. The Grassmann algebra Λ = k < x1, . . . , xn > / (x2
i , xixj + xjxi)

is Frobenius. Put

λ

( ∑
i1<···<ik

ci1...ikxi1 . . . xik

)
= c12...n.

In a sense Frobenius algebras generalize group algebras. For example, if T ∈
Homk (X, Y ) for two k (G)-modules X and Y then

T̄ :=
∑
g∈G

gTg−1 ∈ HomG (X, Y ) .

The idea of taking average over the group is very important in representation theory.
It can be generalized for Frobenius algebras.

Choose a basis e1, . . . , en in a Frobenius algebra A. Let f1, . . . , fn be the dual
basis, i.e.

(9.3){IXequ1} 〈fi, ej〉 = δij.

Every a ∈ A can be written

(9.4){IXequ2} a =
∑
〈fi, a〉 ei =

∑
〈a, ei〉 fi.

and

(9.5){IXequ3}
∑

aei ⊗ fi =
∑
〈fj, aei〉 ej ⊗ fi =

∑
〈fja, ei〉 ej ⊗ fi =

∑
ej ⊗ fja.

{IXlm12}
Lemma 4.5. Let X and Y be A-modules, T ∈ Homk (X, Y ). Define T̄ by the

formula
T̄ =

∑
eiTfi.

Then T̄ ∈ HomA (X, Y ).

Proof. This is a direct calculation using (9.4) and (9.5).
�

Example 4.6. If A = k (G), the dual bases can be chosen as {g}g∈G and {g−1}g∈G.

Hence T̄ =
∑
gTg−1.

In a Frobenius algebra one can use the following criterion of projectivity:
{IXth14}

Theorem 4.7. An A-module X is injective (hence projective) if there exists
T ∈ Endk (X) such that T̄ = IdX .
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Proof. First, let us assume the existence of T . We have to show that X is
injective, i.e., for any embedding ε : X → Y there exists π ∈ HomA (Y,X) such that
π ◦ ε = Id. Consider a k-linear map p ∈ Homk (Y,X) such that p ◦ ε = Id. Put
π =

∑
eiTpfi. Then for any x ∈ X we have

π (ε (x)) =
∑

eiTpfi (ε (x)) =
∑

eiT (pε (fix)) =
∑

eiT (fix) = T̄ x = IdX ,

using fiε = εfi. By Lemma 4.5, π ∈ HomA (X, Y ).
Now assume that X is injective. We define a map δ : X → A⊗kX by the formula

δ (x) :=
∑

ei ⊗ fix.

Then δ ∈ HomA (X,A⊗k X) by (9.5). Furthermore, since fix span Ax, δ is injective.
Since X is an injective A-module, there exists τ : A⊗kX → X such that τ ◦δ = IdX .
We define S ∈ Homk (A⊗k X,A⊗k X) by the formula

S (a⊗ x) = 〈1, a〉 1⊗ x.
Then

S̄ (a⊗ x) =
∑

eiS (fia⊗ x) =
∑
〈1, fia〉 ei ⊗ x =

∑
〈fi, a〉 ei ⊗ x = a⊗ x

due to (9.4). Set T := τ ◦ S ◦ δ. Then T̄ = IdX . �

5. Application to group algebras

Let G be a finite group. The goal of this section is to determine when the group
algebra k(G) is finitely presented. If char k = 0, or char k does not divide |G|, then
k(G) is finitely presented because it is semisimple. Hence in this section we assume
that char k = p > 0 and that p divides |G|.

5.1. Relative projective and injective modules in a group algebra. Let
H be a subgroup of a group G. A k (G)-module X is H-injective if any exact sequence
of k (G)-modules

0→ X → Y → Z → 0,

which splits over k (H), splits over k (G).
In the similar way one defines H-projective module.
Let {g1, . . . , gr} be a set of representatives in the set of left cosets G/H. For any

k (G)-modules X, Y , and T ∈ HomH (X, Y ) put

T̄ =
∑

giTg
−1
i .

{IXlm30}
Exercise 5.1. Show that T̄ does not depend on the choice of representatives and

T̄ ∈ HomG (X, Y ).
{IXth31}

Theorem 5.2. The following conditions on k (G)-module X are equivalent

(1) X is H-injective;
(2) X is a direct summand in IndGH X;
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(3) X is H-projective;
(4) There exists T ∈ EndH (X) such that T̄ = Id.

Proof. This theorem is very similar to Theorem 4.7. To prove 1 ⇒ 2 we check
that δ : X → IndGH X, defined by the formula

δ (x) =
∑

gi ⊗ g−1
i x,

defines an embedding of X. By injectivity X is a direct summand of IndGH X.
To prove 3⇒ 2 we use the projection IndGH X → X defined by g ⊗ x 7→ gx.
Now let us prove 2⇒ 4. We define S : IndGH X → IndGH X by

S
(∑

gi ⊗ xi
)

= 1⊗ x1,

here we assume that g1 = 1. It is easily checked that S ∈ EndH
(
IndGH X

)
and S̄ = Id.

Then we obtain T = τ ◦ S ◦ δ, where τ : IndGH X → X is the projection such that
τ ◦ δ = Id.

It remains to prove 4⇒ 1 and 4⇒ 3. Both proofs are similar to the first part of
the proof of Theorem 4.7 and we leave them to the reader. �

Let p be prime. Recall that if |G| = psr with (p, r) = 1, then there exists a
subgroup P of order ps. It is called a Sylow subgroup. All Sylow p-subgroups are
conjugate in G. In what follows we will use the following statement:

{IXcor30}
Corollary 5.3. Let char k = p and P be a Sylow p-subgroup. Then every

k (G)-module X is P -projective.

Proof. We have to check condition (4) from Theorem 5.2. But r = [G : P ] is
invertible in k. So we can put T = 1

r
Id. �

5.2. Finitely represented group algebras. We assume that char k = p and
|G| = psr with (p, r) = 1 and s > 0. In this subsection we will prove the following:

{IXth47}
Theorem 5.4. The group algebra k (G) is finitely represented over a field of

characteristic p if and only if any Sylow p-subgroup of G is cyclic.
{IXlm41}

Lemma 5.5. Let H be a cyclic p-group, i.e. |H| = ps. Then there are exactly
ps isomorphism classes of indecomposable representations of H over k, exactly one
for each dimension. More precisely each indecomposable Lm of dimension m ≤ ps is
isomorphic to k (H) / (g − 1)m, where g is a generator of H.

Proof. We use

k (H) ∼= k[g]/(gp
s − 1) ∼= k [α] /αp

s

,

where α = g − 1 Let M be an m-dimensional indecomposable H-module. Then the
matrix of α in a suitable basis of M is the nilpotent Jordan block of size m and
m ≤ ps. �
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{IXlm42}
Lemma 5.6. If a Sylow p-subgroup P of G is cyclic, then k (G) is finitely repre-

sented. Moreover, the number of indecomposable k (G)-modules is not greater than
|G|.

Proof. Let {Yi | i = 1, . . . , ps} be the set of all (up to isomorphism) indecom-
posable P -modules, dimYi = i. Let mi denote the number of G-indecomposable
components of the induced module IndGP Yi. By comparing dimensions we know that
mi ≤ r.

By Corollary 5.3 every indecomposable k (G)-module X is P -projective. We have
a canonical exact sequence of G-modules:

0→ N → IndGP X → X → 0,

which splits over P and hence over G. Therefore X is isomorphic to a direct summand
of IndGP X and hence of IndGP Yi for some i. Moreover, i can be chosen in such a way
that dimX ≤ i.

This implies that the number of all (up to isomorphism) indecomposable k(G)-

modules does not exceed
∑ps

i=1mi ≤ |G|. �
{IXlm44}

Lemma 5.7. If P is a non-cyclic p-group, then P contains a normal subgroup N
such that P/N ∼= Zp × Zp.

Proof. This statement can be obtained easily by induction on |P |. If P is
abelian, the statement follows from the classification of finite abelian groups. If
P is not abelian, then P has a non-trivial center Z and the quotient P/Z is not
cyclic. By induction asumption we can choose a normal subgroup N ′ ⊂ P/Z such
that the quotient (P/Z)/N ′ is isomorphic to Zp × Zp. We set N = π−1(N ′), where
π : P → P/Z is the canonical projection. �

{IXlm45}
Lemma 5.8. The group Z = Zp × Zp has an indecomposable representation of

dimension n for each n ∈ Z>0.

Proof. Note that k(Z) has a unique (up to isomorphism) simple module. Hence
the unique indecomposable projective Z-module is isomorphic to k(Z). Let g and h
be generators of Z, α = g − 1, β = h − 1. Then k(Z) ' k[α, β]/(αp, βp). Therefore
the Ext quiver Q of the category of finite-dimensional Z-modules has one vertex and
two loops. The quiver Q̄ is the Kronecker quiver. It has at least one indecomposable
representation in each dimension. �

{IXlm46}
Lemma 5.9. If a Sylow p-subgroup P of G is not cyclic, then G has an indecom-

posable representation of arbitrary high dimension.

Proof. By Lemma 5.7 and Lemma 5.8, P has an indecomposable representation
Y of dimension n for any positive integer n. Decompose IndGP Y into direct sum of
indecomposable k (G)-modules. At least one indecomposable component X contains
Y as an indecomposable k (P )-component. Hence dimX ≥ n. �
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Lemma 5.6 and Lemma 5.9 imply Theorem 5.4.

6. On certain categories of sl2-modules

In this section we show how quivers can be used to study the category of Harish-
Chandra modules for the Lie algebra sl2. Let us point out that representation theory
of Lie algebras is a very deep and popular topic with multitude of applications. Here
we just touch it, hoping that it will work as a motivation for further study of the
subject.

6.1. Lie algebras. A Lie algebra g is a vector space equipped with a bilinear
operation (the Lie bracket) [·, ·] : g⊗ g→ k satisfying the following conditions for all
x, y, z ∈ g:

(1) [x, y] = −[y, x];
(2) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

Exercise 6.1. Let A be an associative algebra. Then the bracket [a, b] := ab−ba
defines a Lie algebra structure on A.

For instance:

Example 6.2. The Lie algebra sln(k) is the algebra of traceless n× n matrices,
the Lie bracket is given by the commutator, and one has dim sln(k) = n2 − 1.

The importance of Lie algebras is related to the fact that they can be seen as
tangent spaces to continuous groups at the identity element. Let us illustrate this
with an example. Let k = R or C. Consider the group G = SLn(R) or SLn(C) of
matrices with determinant 1. Let X(t) : R → G be a smooth function such that
X(0) = 1. Let x := X ′(0) = d

dt
X(t)|t=0. By differentiating the identity detX(t) = 1

we obtain
d

dt
detX(t)|t=0 = trX ′(0) = 0.

Therefore x ∈ sln(k). Conversely, if x ∈ sln(k), then X(t) = etx is a path in G (called
a 1-parameter subgroup) such that X(0) = 1 and X ′(0) = x.

{IXcommutator}
Exercise 6.3. Consider the paths X(t), Y (s) : R→ G such that X(0) = Y (0) =

1, X ′(0) = x, Y ′(0) = y, then show that

(1) d
dt
X(t)Y (t)|t=0 = x+ y,

(2) ∂2

∂t∂s
X(t)Y (s)X−1(t)Y −1(s)|t=0,s=0 = [x, y].

Let ρ : G→ GL(V ) be a finite-dimensional representation of G. We can differen-
tiate ρ to define a g action on V

xv :=
d

dt
X(t)v|t=0.
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It follows from Exercise 6.3 that the action of g is linear and satisfies the condition

[x, y]v = xyv − yxv.
This leads to the notion of a g-module: a vector space M is a g-module if there

is an action g⊗M →M such that [x, y]m = xym− yxm for all x, y ∈ g and m ∈M .
{IXexadjoint}

Exercise 6.4. The adjoint module. Consider the action ad of g on itself given
by ad(x)y := [x, y]. Check that ad defines a g-module structure on g. Let G = SLn,
X(t) : R→ G, X(0) = 1, X ′(0) = x. Check that for all y ∈ g

ad(x)y =
d

dt
X(t)yX−1(t)|t=0.

{IXtensor}
Exercise 6.5. Let M and N be g-modules. Define a g-action on M∗ and on

M ⊗N by the formulas

gϕ(m) := −ϕ(gm), g(m⊗ n) := gm⊗ n+m⊗ gn.
Check that M∗ and M ⊗N are g-modules.

6.2. Harish-Chandra modules: motivation. The reader can skip this sub-
section and go directly to the next one. We recommend the first chapter of[35] for
the detailed overview of Harish-Chandra modules for sl2.

We explained above how to define a g-module associated to a finite-dimensional
representation of the group G. But what to do if the representation is infinite-
dimensional?

Let ρ : G→ U(V ) be a unitary representation of G. We would like to differentiate
matrix coefficients. It is clear, however, that 〈gv, w〉 can not be a smooth function
of g ∈ G for all v, w ∈ V . One can prove the existence of a G-stable dense subspace
V0 ⊂ V such that 〈gv, w〉 is a smooth function of g ∈ G for all v, w ∈ V0

1. Now for
any x ∈ g and v ∈ V0 we can define xv ∈ V ∗0 by setting

〈xv, w〉 :=
d

dt
〈X(t)v, w〉 |t=0.

In this way we define a linear map g⊗V0 → V ∗0 where V ∗0 is the algebraic dual of V0.
The remarkable discovery of Harish-Chandra is that one can find a dense subspace
M in V0 invariant under g-action.

Let us consider a maximal compact subgroup K of G. If G = SLn(R) then K
is the orthogonal group SOn. Since all irreducible unitary representations of K are
finite-dimensional, we know that V is a topological direct sum of finite-dimensional
representation of K. Let us assume that every finite-dimensional irreducible represen-
tation of K appears in V with finite multiplicity (this can be proven for irreducible
V ). Let M be the subset of all vectors v ∈ V such that the span of gv for all
g ∈ K is finite-dimensional. Then M is dense in V , it is the sum of all irreducible
K-submodules in V . Furthermore, M ⊂ V0 since V0 is stable under the projector on

1It suffices to consider vectors
∫
G
f(g)gvdg for all smooth functions f(g) with compact support.
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every isotypic K-component. Let us show that M is invariant under the action of
g. Indeed, every v ∈ M belongs to a finite-dimensional K-stable W . Consider the
map α : g ⊗W → V ∗0 defined as the restriction of the map g ⊗ V0 → V ∗0 . For any
w ∈ W , g ∈ K and x ∈ g we have g(xw) = gxg−1gw. Therefore α is a homomor-
phism of K-modules, where K action on g is by conjugation. So the image of α is a
finite-dimensional K-submodule of V ∗. The assumption about finite multiplicities of
K-modules ensures that Imα ⊂M .

The above construction motivates the following definition. A Harish-Chandra
module is a g-module M , which is a direct sum of irreducible K-modules with finite
multiplicities, such that for any smooth path X(t) : R → K, with X(0) = 1 and
X ′(0) = x, and m ∈M we have

xm =
d

dt
X(t)m|t=0.

For any topologically irreducible unitary representation of G we can construct the
Harish-Chandra module M . It is not hard to show that M is simple in algebraic sense,
i.e., M does not have proper non-zero g-invariant subspaces. Not every simple Harish-
Chandra g-module gives rise to a unitary representation of G. One can consider
classification of simple Harish-Chandra modules as a first step towards describing
the unitary dual of G.

From now on, we assume that G = SL2(R) and K = SO2 ' S1. In matrix form

K = {
(
a b
−b a

)
| a2 + b2 = 1},

we set z = a+ bi. Let k be the Lie algebra of K. It is easy to see that k = Ru, where

u =

(
0 1
−1 0

)
. In this way

gθ =

(
cos θ sin θ
− sinθ cos θ

)
= euθ,

where 0 ≤ θ < 2π. All irreducible unitary representations of K are one-dimensional:
they are defined by the maps gθ 7→ einθ for n ∈ Z. Therefore an sl2(R)-module M is
a Harish-Chandra module if

M =
⊕
n∈Z

Mn, Mn = {m ∈M |um = inm}, dimMn ≤ ∞.

Since M is a vector space over C, it makes sense to complexify the Lie algebra
and consider sl2(C)-action on M . Consider the basis {e, h, f} in sl2(C) given by

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
−1 0

)
.

This basis satisfies the relations

(9.6){IXrel} [h, e] = 2e, [h, f ] = −2f, [e, f ] = h,
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which we have seen already in Section 3.4 of Chapter 3. Furthemore, the conjugation

by the matrix

(
1 1
i −i

)
maps k to the diagonal subalgebra of sl2.

6.3. Weight modules over sl2(C).

Definition 6.6. Let g = sl2(C). A g-module M is called a weight module if the
action of h in M is diagonalizable and all the corresponding eigenspaces are finite-
dimensional. By Mλ we denote the h-eigenspace with eigenvalue λ ∈ C. By suppM
we denote the set of all λ ∈ C such that Mλ 6= 0.

As we have shown above, a complexified Harish-Chandra module is a weight
module with integral eigenvalues of h.

Exercise 6.7. Show that submodules and quotients of weight modules are weight
modules. {IXweightlm1}

Lemma 6.8. Let M be a weight module. Then eMλ ⊂Mλ+2 and fM(λ) ⊂Mλ−2.

Proof. This is a simple consequence of (9.6). If hm = λm, then

hem = ([h, e] + eh)m = 2em+ ehm = (λ+ 2)em,

hfm = ([h, f ] + fh)m = 2fm+ fhm = (λ− 2)fm.

� {IXweightcor1}
Corollary 6.9. If M is an indecomposable weight module, then suppM ⊂

ν + 2Z for some ν ∈ C.

Now we are going to construct an important family F(λ, µ) of weight modules for
all λ, µ ∈ C. We identify F(λ, µ) with tλC[t, t−1] and define the action of f, h, e by
setting

f 7→ ∂

∂t
, h 7→ 2t

∂

∂t
+ µ, e 7→ −t2 ∂

∂t
− µt,

with the convention that ∂
∂t
tν := νtν−1.

{IXexF}
Exercise 6.10. Prove that:

(1) F(λ, µ) is a weight module and suppF(λ, µ) = 2λ+ µ+ 2Z;
(2) All h-eigenspaces in F(λ, µ) are one-dimensional;
(3) F(λ, µ) is simple if and only if λ, λ+ µ

2
/∈ Z.

Now let U be the associative algebra over C with generators e, h, f and relations
(9.6). Then every g-module is automatically a U -module.

{IXexU}
Exercise 6.11. Define the adjoint action of g on U by setting

adx y := xy − yx for all x ∈ g, y ∈ U .
Check that adx(yz) = (adx y) + y adx z and that U is a g-module with respect to this
action.
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Consider the adjoint action of h on U and set

Un = {y ∈ U | adh y = ny}.

Exercise 6.11 implies that Un 6= 0 if and only if n ∈ 2Z and

U =
⊕
n∈Z

Un

defines a grading of the associative algebra U . In particular, it is clear that U0 is a
commutative subalgebra of U generated by h and ef .

{IXexgrading}
Exercise 6.12. If M is a weight module, then UnMλ ⊂Mλ+n.

Now we describe the center Z of U . Note first that Z is a subalgebra of U0 since
U0 is the centralizer of h in U . Let

Ω :=
h2

2
− h+ 2fe =

h2

2
+ h+ 2ef.

This Ω is called the Casimir element. By a straightforward computation we see that
Ω ∈ Z. (It suffices to check that it commutes with e and f).

Exercise 6.13. Check that Ω acts on F(λ, µ) by the scalar operator µ2

2
− µ.

In fact, any element of Z acts by a scalar operator on any simple g-module. This
is a consequence of the following useful analogue of Schur lemma in the infinite-
dimensional case.

{IXlminfschur}
Lemma 6.14. Let A be a countable dimensional algebra over C and M be a simple

A-module. Then EndA(M) = C.

Proof. Note that M is countable dimensional and any ϕ ∈ EndA(M) is com-
pletely determined by its value on a generator of M . Hence EndA(M) is a countable
dimensional C-algebra. Since EndA(M) is a division ring, it suffices to show that
every ϕ ∈ EndA(M) \ C is algebraic over C. If ϕ is transcendental, then EndA(M)
contains a subfield field C(z) of rational functions. This field is not of countable
dimensional over C since the set { 1

ϕ−a | a ∈ C} is linearly independent. �
{IXlmUgr}

Lemma 6.15. (1) The commutative algebra U0 is isomorphic to the polyno-
mial algebra C[h,Ω].

(2) Let n = 2m. Then Un is a free U0-module of rank 1 with generator em for
m > 0 and fm for m < 0.

(3) The center Z of U coincides with C[Ω].

Proof. The relations (9.6) easily imply that the monomials eaf bhc for all a, b, c ∈
N span U . Each monomial is an eigenvector of adh with eigenvalue 2(a − b). Hence
U0 is generated by h and ef or equivalently by h and Ω.
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To show that h and Ω are algebraically independent we use F(λ, µ). Suppose that
there exists a polynomial relation p(h,Ω) = 0. Then p(h,Ω) acts by zero on F(λ, µ)
for all λ, µ ∈ C. This implies

p(2λ+ µ+ 2n,
µ2

2
− µ) = 0

for all n ∈ Z, λ, µ ∈ C. This implies p ≡ 0. This completes the proof of (1).
Let us show (2). Assume that m > 0 (the case m < 0 is similar). Then by the

same argument involving monomials, we easily obtain that em is a generator of Un
seen as a U0-module. Assume that p(h,Ω)em = 0. Then p(h,Ω)em acts by zero on
F(λ, µ) for all λ, µ ∈ C, which is only possible in the case p ≡ 0.

Finally, let us prove (3). Let z ∈ Z. By Lemma 6.14 z acts by a scalar operator
on all simple F(λ, µ). Let z = p(h,Ω) for some polynomial p. Fix λ, µ ∈ C such that

that F(λ, µ) is simple. Then p(2λ+ µ+ 2n, µ
2

2
− µ) is a constant function of n ∈ Z.

Since this holds for generic λ and µ, we obtain p = p(Ω). �

6.4. The category of weight sl2-modules with semisimple action of Ω.
Denote by C the category of finite length U -modules semisimple over U0. Any object
of M is a weight sl2-module with semisimple action of Ω.

Let us fix θ ∈ C/2Z and χ ∈ C. Denote by Cθ,χ the subcategory of C of all
modules such that

• If λ ∈ suppM , then λ ∈ θ.
• Ω acts on M by the scalar operator χ Id.

{IXlmblocks}
Lemma 6.16. For every M ∈ C there exists a unique decompostion

M = M1 ⊕ · · · ⊕Ml

with Mi ∈ Cθi,χi .

Proof. For every θ ∈ C/2Z and χ ∈ C set

M(θ, χ) := {m ∈M |Ωm = χm, hm = λm for some λ ∈ θ}.
By Lemma 6.8, M(θ, χ) is g-stable, M is the direct sum of M(θ, χ). Since M has
finite length, M(θ, χ) 6= 0 for finitely many (θ, χ). �

The subcategories Cθ,χ are called the blocks of C. We are going to show that they
satisfy the conditions of Sections 1 and 2 and hence they can be described by quivers
with relations. In fact, we only have to check that every block has finitely many iso-
morphism classes of simple objects and that C has enough projectives. The condition
that all objects have finite length and Lemma 6.14 imply all other properties.

{IXlmproj}
Lemma 6.17. Let Cν,χ denote the one-dimensional U0-module on which h acts by

ν and Ω by χ, and P (ν, χ) := U ⊗U0 Cν,χ. Then:

(1) P (ν, χ) is projective in C ;
(2) suppP (ν, χ) = ν + 2Z and all h-eigenspaces are one-dimensional;
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(3) P (ν, χ) has a unique proper maximal submodule.

Proof. The first assertion follows immediately from the Frobenius reciprocity
(see Theorem 5.3, Chapter 2). Indeed, for every M ∈ C we have

HomU(P (ν, χ),M) ' HomU0(Cν,χ,M).

Since every M is a semisimple U0-module, the functor HomU0(Cν,χ, ·) is exact on C
and therefore HomU(P (ν, χ), ·) is also exact.

The second assertion is a consequence of Lemma 6.15 (1). Indeed, we have

P (ν, χ) = Cν,χ ⊕
⊕
m>0

emCν,χ ⊕
⊕
m>0

fmCν,χ,

and emCν,χ is the h-eigenspace with eigenvalue ν+2m while fmCν,χ is the h-eigenspace
with eigenvalue ν − 2m.

To prove (3), let F be the sum of all submodules M of P (ν, χ) such that ν /∈
suppM . It is obvious that F is the unique maximal proper submodule of P (ν, χ). �

{IXcorproj}
Corollary 6.18. The category C has enough projective modules.

Proof. Every M ∈ C is finitely generated, since it has finite length. Therefore
there exists a finite-dimensional U0-module M ′ which generates M . Set P = U⊗U0M

′.
By Frobenius reciprocity the embedding M ′ ↪→ M induces the surjection P → M .
Since M ′ is a direct sum of finitely many Cν,χ, P is a direct sum of finitely many
P (ν, χ). �

{IXlmsimple}
Lemma 6.19. Let L be a simple module in Cθ,χ. Then all h-eigenspaces in L

are one dimensional. Furthemore, if L′ is another simple module in Cθ,χ and the
intersection suppL ∩ suppL′ is not empty, then L′ and L are isomorphic.

Proof. Let ν ∈ suppL. Then by Lemma 6.17, L is isomorphic to the unique
simple quotient of P (ν, χ). Hence the statement. �

{IXlmsimplesup}
Lemma 6.20. Let M be a simple weight module. The we have the following four

possibilities for the suppM :

(1) suppM = {m,m − 2, . . . , 2 − m,−m} for some m ∈ N. In this case M is
finite-dimensional;

(2) suppM = ν + 2N for some ν ∈ C;
(3) suppM = ν − 2N for some ν ∈ C;
(4) suppM = ν + 2Z for some ν ∈ C.

Proof. Consider the decomposition M =
⊕

λ∈suppM Mλ, by Lemma 6.19 every
Mλ is 1-dimensional. There are four possibilities

(1) Both e and f have a non-trivial kernel in M ;
(2) f acts injectively on M and eMν = 0 for some ν ∈ C;
(3) e acts injectively on M and fMν = 0 for some ν ∈ C;
(4) Both e and f act injectively on M .
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Cases (2), (3) and (4) immediately imply the corresponding cases in the lemma. Now
let us consider the first case. Take a non-zero v ∈ Mν such that ev = 0. Since M is
finite-dimensional, there exists m ∈ N such that v, fv, f 2v, . . . fmv form a basis of M
and fm+1v = 0. Then we have

efm+1v =
m∑
j=0

fm−jhf jv =

(∑
j=0m

(−2j + λ)

)
fmv = ((m+ 1)λ−m(m+ 1)) fmv = 0.

Hence λ = m and the proof of the lemma is complete. �

Now we can classify simple modules in all blocks Cθ,χ.
{IXpropsimple}

Proposition 6.21. Consider the category Cθ,χ. Then we have the following three
cases:

(1) Assume that 2χ 6= ν(ν + 2) for any ν ∈ θ. Then Cθ,χ has one (up to isomor-
phism) simple module M with suppM = θ. Furthermore M is projective.

(2) Assume that 2χ = ν(ν + 2) for some ν ∈ θ and θ 6= 2Z or 1 + 2Z or χ = −1
2
,

θ = 1+2Z, ν = −1. Then Cθ,χ has two (up to isomorphism) simple modules:
L−(ν) with suppL−(ν) = ν − 2N,
L+(ν + 2) with suppL+(ν) = ν + 2 + 2N.

(3) Finally if 2χ = m(m + 2) for some m ∈ N such that m ∈ θ. Then Cθ,χ has
three (up to isomorphism) simple modules:

L−(−m− 2) with suppL−(−m− 2) = −m− 2− 2N,
L+(m+ 2) with suppL+(m+ 2) = m+ 2 + 2N,
V (m) with suppV (m) = {m,m− 2, . . . , 2−m,−m}.

Proof. We use Lemma 6.20. If v is an h-eigenvector with eigenvalue ν such that
ev = 0, then

Ωv =
h2 + 2h

2
v = χv

which implies the relation 2χ = ν(ν − 2). Similarly, if fv = 0 we have

Ωv =
h2 − 2h

2
v = χv

which implies the relation 2χ = ν(ν − 2). Then the Proposition follows from Lemma
6.20. �

Remark 6.22. As a consequence, we obtained a classification of all simple finite-
dimensional sl2(C)-modules. Observe that V (m) is a submodule of F(0,−m). The
corresponding representation of the group SL2(C) can be realized as the m-th sym-
metric power of the natural 2-dimensional representation.

Furthermore, if θ = 2Z or 1+2Z, then Proposition 6.21 provides the classification
of simple Harish-Chandra modules. It makes sense to compare this classification with
the list of irreducible unitary representations of SL2(R) given in Section 3, Chapter
4. The reader can check that the discrete series representations H±m correspond to the
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Harish-Chandra modules L±(m) and that the principal, repectively complementary,
series correspond to the simple projective modules P (0, χ)respectively P (1, χ), for
specific values of the parameter χ.

6.5. Ext quivers of blocks. Now we will compute quivers and relations for eack
block Cθ,χ. Note that the blocks satisfying (1) of Proposition 6.21 are semisimple and
have only one simple object. Therefore this case is trivial.

{IXpropblocks}
Proposition 6.23. (a) If (θ, χ) satisfies the condition (2) of Proposition 6.21,

then the category Cθ,χ is equivalent to the category of representations of the quiver

•
α

�
β
•,

submitted to the relations αβ = βα = 0.
(b) If (θ, χ) satisfies the condition (3) of Proposition 6.21, then the category Cθ,χ

is equivalent to the category of representations of the quiver

•1
α

�
β
•2

α

�
β
•3.

submitted to the relations αβ = βα = 0.

Proof. (a) Assume (θ, χ) satisfies the condition (2) of Proposition 6.21. Then
the Ext quiver Q has two vertices corresponding to the two simple modules L−(ν)
and L+(ν+ 2), the indecomposable projective modules are P− := P (ν, χ) and P+ :=
P (ν + 2, χ). Furthemore, the radical filtration of P− (resp. P+) has two layers and
is determined from the exact sequence

0→ L+(ν + 2)→ P− → L−(ν)→ 0 (resp. 0→ L−(ν)→ P+ → L+(ν + 2)→ 0).

The statement follows.
(b) Now let us consider the most interesting case: when Cθ,χ has three simple

modules L−(−n−2), V (n), L+(n+2). Therefore the block has three indecomposable
projectives modules P−, P f , P+ which are covers of L−(−m − 2), V (m), L+(m + 2)
respectively. In this case the statement also follows from the calculation of the radical
filtration of the indecomposable projective modules.

The following exercise completes the proof:
{IXexradproj}

Exercise 6.24. The radical filtration of P+ and P− has three layers:

P+/∇(P+) ' L+(m+ 2), ∇(P+)/∇2(P+) ' V (m), ∇2(P+) ' L−(−m− 2),

P−/∇(P−) ' L−(−m− 2), ∇(P−)/∇2(P−) ' V (m), ∇2(P−) ' L+(m+ 2).

The radical filtration of P f has two layers

P f/∇(P f ) ' V (m), ∇(P f ) ' L+(m+ 2)⊕ L−(−2−m).

�{IXpropfintype}
Proposition 6.25. All the blocks of the category C are finitely represented.
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Proof. All we have to show that the quivers with relations appearing in Propo-
sition 6.23 are finitely represented. In case (a), we have a finitely represented algebra
since Q̄ is the disjoint union of two quivers of type A2. There are 4 (up to isomor-
phism) indecomposable representations P−, P−, L+(ν + 2) and L−(ν).

In case (b) we use the same trick as in Example 2.5. Assume that V = V0⊕V1⊕V2

is an indecomposable representation. If α2v 6= 0 for some v ∈ V0, then V contains a
submodule spanned by v, αv, α2v which is both injective and projective. Therefore
V ' P1. Similarly, if there is w ∈ V2 such that β2w 6= 0, then V ' P3. If we
exclude these two cases, then we may assume the relation α2 = β2 = 0. Hence the
classification of indecomposable modules can be reduced to the same problem for Q̄,
see Lemma 2.3. In this case Q̄ is the disjoint union of two Dynkin quivers:

• → • ← •, • ← • → •.

The reader can check that there are 9 indecomposable modules. �

6.6. The category of all weight modules. Finally, let us consider the sit-
uation which occurs when we drop the assumption that Ω is diagonalizable. Let
C̃ denote the category of all weight sl2-modules of finite length. Obviously C is a
subcategory of C̃ and both categories have the same simple modules.

Our first observation is that for any M ∈ C̃ there exists a polynomial p(x) ∈ C[x]
such that p(Ω)M = 0. Therefore the category C̃ decomposes into the following direct
sum of blocks

C̃ =
⊕
C̃θ,χ,

where C̃θ,χ is the subcategory consisting of modules M such that suppM ⊂ θ and
(Ω− χ)nM = 0 for sufficiently large n.

Our next observation concerns projective modules. It is not difficult to see that
C̃θ,χ does not have enough projectives. To overcome this obstacle we will consider the

categories C(n)
θ,χ for all n > 0, consisiting of modules M which satisfy the additional

condition (Ω− χ)nM = 0. Then we have a relation

(9.7) {IXind} C̃θ,χ = lim
→
C(n)
θ,χ ,

i.e. every object of C̃θ,χ is an object of C(n)
θ,χ for sufficiently large n. Thus, the problem

of classifying indecomposable weight modules is reduced to the same problem for

C(n)
θ,χ .

{IXlmallweight}
Lemma 6.26. (a) If (θ, χ) satisfies condition (1) of Proposition 6.21, then the

category C(n)
θ,χ is equivalent to the category of representations of the quiver •

α

��
with

the relation αn = 0.
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(b) If (θ, χ) satisfies condition (2) of Proposition 6.21, then the category C(n)
θ,χ is

equivalent to the category of representations of the quiver

•
α

�
β
•,

with relations (αβ)n = (βα)n = 0.

(c) If (θ, χ) satisfies condition (3) of Proposition 6.21, then the category C(n)
θ,χ is

equivalent to the category of representations of the quiver

•1
α

�
β
•2

γ

�
δ
•3.

with relations
(βα)n = (γδ)n = 0, αβ = δγ, (αβ)n = 0.

Proof. To construct projective modules in C(n)
θ,χ we use the induction

U ⊗U0 (U0/(h− ν, (Ω− χ)n)) .
{IXexnilp}

Exercise 6.27. Use the Frobenius reciprocity to show that

(1) If ν ∈ θ, then U ⊗U0 (U0/(h− ν, (Ω− χ)n)) is an indecomposable projective

module in C̃(n)
θ,χ .

(2) If z = Ω− χ, then

EndC̃ (U ⊗U0 (U0/(h− ν, (Ω− χ)n))) ' C[z]/(zn).

In case (a), there is only one indecomposable projective module and its endomor-
phism algebra is isomorphic C[z]/(zn) by Exercise 6.27 (2).

In case (b), there are two non-isomorphic indecomposable projective modules, call
them P1 and P2, the corresponding simple modules will be denoted by L1 and L2.
Note that z := Ω − χ is nilpotent on P1 and P2 and P1/zP1, P2/zP2 are indecom-
posable projectives in Cθ,χ. Then, using induction on n, one can compute the radical
filtrations of P1 and P2:

∇i(P1)/∇i+1(P1) =

{
L1 if i is even

L2 if i is odd
,

∇i(P2)/∇i+1(P2) =

{
L2 if i is even

L1 if i is odd
,

for i < 2n, and ∇2n(P1) = ∇2n(P2) = 0. The statement follows.
In case (c) there are 3 non-isomorphic indecomposable projective modules: P1,

P2, P3, with simple quotients L1, L2, L3 respectively. We assume that L2 is the finite-
dimensional module isomorphic to V (m). In order to calculate the radical filtration
of projective modules we consider first the filtration:

Pi ⊃ zPi ⊃ zn−1Pi ⊃ znPi = 0.
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Then every quotient zjPi/z
j+1Pi is isomorphic to the projective cover of Li in Cθ,χ.

After application of Exercise 6.24 and induction on n, we obtain the radical filtration
of P2:

∇i(P2)/∇i+1(P2) =

{
L2 if i is even

L1 ⊕ L3 if i is odd
,

for i < 2n and ∇2n(P2) = 0. The radical filtrations of P1 and P3 can be obtained
similarly:

∇i(Pj)/∇i+1(Pj) =


L1 ⊕ L3 if i is even and i 6= 0, 2n

L2 if i is odd

Lj if i = 0

Lj′ if i = 2n

,

where j = 1, 3 and j′ = 3, 1 respectively and i ≤ 2n, ∇2n+1(Pj) = 0. That implies
(c). �

A representation of a quiver Q is called nilpotent of every path acts nilpotently.
Lemma 6.26 implies the following:

{IXpropallweight}
Proposition 6.28. Each block C̃θ,χ is equivalent to the category of nilpotent

representation of one of the following quivers:

(1) •
��
;

(2) •� •;
(3) •

α

�
β
•

γ

�
δ
• with relation αβ = δγ.

Let us finish with the following proposition.
{IXproplast}

Proposition 6.29. For every θ ∈ C/2Z, χ ∈ C and n > 0, the block Cnθ,χ is

finitely presented and C̃θ,χ is tame.

Proof. Note that the second assertion is an immediate consequence of the first
one by (9.7). Moreover, the first assertion in case (a) is obvious: there is exactly one
indecomposable representation in every dimension, given by the nilpotent Jordan
block.

In case (b), the block is equivalent to the category of Z/2Z-graded modules over
the Z/2Z-graded algebra C[ξ]/(ξ2n), where the degree of ξ is equal to 1. For every
dimension vector of the shape (p, p), (p+1, p) and (p, p+1) for p ≤ n, there is exactly
one indecomposable representation.

In case (c), we give a description of all indecomposable nilpotent representations
of the quiver (3) of Proposition 6.28 and leave the proof to the reader. We call a
quiver Γ admissible if the following conditions hold:
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• The set Γ0 of vertices is a finite subset of N×N such that if (a, b) ∈ Γ0, then
b = a or a± 1.
• If (a, a), (a+ 1, a+ 1) ∈ Γ0 then (a, a+ 1), (a+ 1, a) ∈ Γ0.
• At least one of (0, 0), (1, 0) and (0, 1) belongs to Γ0.
• The arrows of Γ are of the form (a, b) → (c, d) where c = a, d = b + 1 or
c = a+ 1, d = b.
• Γ is connected.
• Each arrow has a mark α, β, γ or δ according to the following rule:

(a+ 1, a)
α−→ (a+ 1, a+ 1),

(a, a)
β−→ (a+ 1, a),

(a, a)
γ−→ (a, a+ 1),

(a, a+ 1)
δ−→ (a+ 1, a+ 1).

Here is an example of an admissible quiver:

(1, 2)
δ−−−→ (2, 2)

γ

x α

x
(0, 1)

δ−−−→ (1, 1)
β−−−→ (2, 1)

γ

x α

x .

(0, 0)
β−−−→ (1, 0)

To every admissible quiver Γ, we associate the representation (V Γ, ργ) as follows:
we set V Γ to be the formal span of es, for all s ∈ Γ0, assuming es ∈ V Γ

1 for s =
(a + 1, a), es ∈ V Γ

2 for s = (a, a) and es ∈ V Γ
3 for s = (a, a + 1). For every u ∈

{α, β, γ, δ} = Q1, we set ρΓes = et if (s
u−→ t) is an arrow of Γ, and zero otherwise.

It is not difficult to check that (V Γ, ρΓ) is indeed an indecomposable nilpotent rep-
resentation of the quiver (3). We claim that (V Γ, ρΓ) for all admissible Γ are pairwise
non-isomorphic and form a complete list of all up to isomorphism indecomposable
representations of (3). �

With these results, we hope we have shown that the quiver representation theory
is a powerful tool in relation with various classical problems and we believe that it is
time for us to end this book.
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24. I.G. Macdonald, Symmetric finctions and Hall polynomials, second edition, Oxford University

Press (1995).
25. S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114 Aca-

demic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Gottingen-Heidelberg (1963).
26. D. Mumford, Tata lectures on theta. III. With collaboration of Madhav Nori and Peter Norman.
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