PRACTICE PROBLEMS

MATH 250A, FALL 2014

1. Let G be an abelian subgroup of the symmetric group S_n and p_1, \ldots, p_k be all prime divisors of |G|. Prove that $n \ge p_1 + \cdots + p_k$.

2. Let p be an odd prime. Prove that for any r > 0 the group of units of $\mathbb{Z}/p^r\mathbb{Z}$ is cyclic.

3. Give an example of a ring R which is not isomorphic to R^{op} .

4. Let k be a field, G be a finite group and k[G] denote the group ring.

(a) Any finitely generated k[G]-module is finite-dimensional over k.

(b) Any finite-dimensional projective module is injective.

5. Let $R = \mathbb{C}[z, z^{-1}]$ be the ring of Laurent polynomials. Prove that any finitely generated projective *R*-module is free.

6. Show that the primitive element theorem may not hold for a finite non-separable extension.

7. Let p be prime. Show that for any n > 0, there exists an irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.

8. Show that any finite group is isomorphic to the Galois group of some finite extension $F \subset E$.

9. Let p be prime and ζ be a primitive p-th root of unity. Find all subfileds $F \subset \mathbb{Q}(\zeta)$ such that $[F : \mathbb{Q}] = 2$.

10. Find the Galois group of the polynomial $x^5 - 5$ over \mathbb{Q} .

11. Let $\overline{\mathbb{Q}} \subset \mathbb{C}$ denote the subfield of algebraic numbers and G be the (infinite) Galois group of $\overline{\mathbb{Q}}$ over \mathbb{Q} . We call $\alpha \in \overline{\mathbb{Q}}$ totally real if $g(\alpha) \in \mathbb{R}$ for any $g \in G$.

(a) Prove that the set H of all totally real elements is a subfiled of \mathbb{Q} .

(b) Is the field extension $\mathbb{Q} \subset H$ normal?

12. Let p be a prime number and F be the splitting field for the family of polynomials $x^{p^r} - 1$ for all r > 0. Prove that the Galois group of F over \mathbb{Q} is isomorphic to the inverse limit $\lim_{r \to 0} (\mathbb{Z}/p^r\mathbb{Z})$, where U(R) denotes the group of units of R.