HYPERPLANE ARRANGEMENT LECTURE NOTES

A hyperplane in \mathbb{R}^d is the set of points (x_1,\ldots,x_d) satisfying the equation

$$a_0 + a_1 x_1 + \dots + a_d x_d = 0.$$

An arrangement A is a finite set of hyperplanes in \mathbb{R}^d . A cut is by definition a non-empty affine subspace u which can be obtained as the intersection of some hyperplanes from A. By L(A) we denote the set of all cuts. For any $u,v\in L(A)$ define $u\leq v$ if $v\subseteq u$. Then L(A) is a poset with \mathbb{R}^d being $\widehat{0}$. One can show easily that L(A) is the lattice if and only if L(A) contains $\widehat{1}$, that happens if the intersection of all hyperplanes from A is non-empty. Furthermore, L(A) is graded with rank function $\rho(u)=\operatorname{codim} u$. Every interval $\left[\widehat{0},y\right]$ in L(A) is a geometric lattice, atoms are all hyperplanes $h\in A$ which contain y.

The connected components of $\mathbb{R}^d - \bigcup_{h \in A} h$ are called the *regions* of A. The set of regions will be denoted by C(A), c(A) = |C(A)|.

Let $u \in L(A)$, $h \in A$, and $h \cap u \neq \emptyset$, then either $h \cap u = u$ or $h \cap u$ is a hyperplane in u. Thus, the arrangement A induces the hyperplane arrangement on u which is by definition the collection of all hyperplanes $h \cap u \subset u$. We denote this arrangement by $A \cap u$. Check that $L(A \cap u)$ is isomorphic to the subposet of all $x \in L(A)$ such that $x \geq u$.

A face is a region in $c \in C(A \cap u)$, dimension of a face c is by definition the dimension of u. One can check that the closure of a face is a union of faces. The set of all faces F(A) is a poset with order $\alpha \leq \beta$ if α lies in the closure of β . Two arrangements A and B are combinatorially equivalent if F(A) is isomorphic to F(B). Note that $L(A) \cong L(B)$ does not imply that A and B are combinatorially equivalent.

Denote by μ_A the Moebius function in the poset L(A).

Theorem 0.1. For any hyperplane arrangement A

$$c(A) = \sum_{x \in L(A)} \left| \mu_A(\widehat{0}, x) \right|.$$

Example 0.2. Let A be an arrangement of n hyperplanes in generic position. Then every interval $[\widehat{0}, x]$ is a Boolean lattice and

$$c(A) = \sum_{k=0}^{d} \binom{n}{k}.$$

Date: October 29, 2006.

Proof. Denote by $A \cup h$ the arrangement obtained from A by adjoining a new hyperplane h. This new hyperplane h either does not cut a region $\alpha \in C(A)$ or divides α into two regions. The number of regions which are cut by h equals the number of regions on $A \cap h$. Therefore

$$c(A \cup h) = c(A) + c(A \cap h).$$

Now we are going to use the following

Lemma 0.3. Let L be a geometric lattice and $\{a_0,\ldots,a_n\}$ be the set of atoms. Let

$$L' = \{x \in L \mid x = a_{i_1} \lor \dots \lor a_{i_k}, i_j \neq 0\}.$$

If $\widehat{1} \notin L'$, then

$$\mu_L\left(\widehat{0},\widehat{1}\right) = -\mu_L\left(a_0,\widehat{1}\right).$$

If $\widehat{1} \in L'$, then

$$\mu_L\left(\widehat{0},\widehat{1}\right) = \mu_{L'}\left(\widehat{0},\widehat{1}\right) - \mu_L\left(a_0,\widehat{1}\right).$$

Proof. Corollary 3.9.4 in Stanley in the dual form implies

$$\mu_L\left(\widehat{0},\widehat{1}\right) = \sum \left(-1\right)^k M_k,$$

where M_k is the number of k-tuples of atoms $\{b_1, \ldots, b_k\}$ such that $\widehat{1} = b_1 \vee \cdots \vee b_k$. Note that L' is geometric with atoms $\{a_1, \ldots, a_n\}$ and $\left[a_0, \widehat{1}\right]$ is geometric with atoms $\{a_0 \vee a_1, \ldots, a_0 \vee a_n\}$. Let M'_k is the number of k-tuples of atoms such that $\widehat{1} = a_{i_1} \vee \cdots \vee a_{i_k}$ and all $i_j \neq 0$, M''_k is the number of k-1-tuples $a_{i_1}, \ldots, a_{i_{k-1}}$ such that $\widehat{1} = a_0 \vee a_{i_1} \vee \cdots \vee a_{i_{k-1}}$. Assume that $M'_k \neq 0$ at least for one k. Then

$$\mu_{L'}(\widehat{0},\widehat{1}) = \sum_{k} (-1)^k M'_k, \ \mu_L(a_0,\widehat{1}) = \sum_{k} (-1)^{k-1} M''_k.$$

Since $M_k = M'_k + M''_k$ one obtains

$$\mu_L\left(\widehat{0},\widehat{1}\right) = \mu_{L'}\left(\widehat{0},\widehat{1}\right) - \mu_L\left(a_0,\widehat{1}\right).$$

If $M'_k = 0$ for all k, then

$$\mu_L\left(\widehat{0},\widehat{1}\right) = -\mu_L\left(a_0,\widehat{1}\right).$$

Now let

$$f(A) = \sum_{x \in L(A)} \left| \mu_A(\widehat{0}, x) \right|.$$

We will prove that

$$(0.1) f(A \cup h) = f(A) + f(A \cap h).$$

Let $x \in L(A \cup h)$. If x does not belong to h then $\left[\widehat{0}, x\right] \subset L(A)$, hence

$$\mu_{A \cup h}\left(\widehat{0}, x\right) = \mu_A\left(\widehat{0}, x\right).$$

If x belongs to h apply Lemma 0.3 with $L = [\widehat{0}, x] \subset L(A \cup h)$, $a_0 = h, \{a_1, \dots, a_n\}$ being all hyperplanes in A containing x. The lemma implies

$$\mu_{A \cup h}\left(\widehat{0}, x\right) = \mu_A\left(\widehat{0}, x\right) - \mu_{A \cap h}\left(h, x\right).$$

Using

$$\mu\left(\widehat{0},x\right)(-1)^{\rho(x)} \ge 0,$$

obtain

$$\left|\mu_{A \cup h}\left(\widehat{0}, x\right)\right| = \left|\mu_A\left(\widehat{0}, x\right)\right| + \left|\mu_{A \cap h}\left(h, x\right)\right|.$$

To get (0.1) take the sum over all $x \in L(A \cup h)$.

Since f(A) = c(A) for |A| = 1 and $A = \emptyset$, theorem follows by induction on the number of hyperplanes and d.

Denote by $C_{bd}(A)$ the set of bounded regions, put $c_{bd}(A) = |C_{bd}(A)|$.

Theorem 0.4. Assume that the rank of an arrangement A in \mathbb{R}^d equals d. Then

$$c(A) = \left| \sum_{x \in L(A)} \mu_A(\widehat{0}, x) \right|.$$

Example 0.5. Let A be an arrangement of n hyperplanes in generic position. Then

$$c(A) = (-1)^d \sum_{k=0}^d (-1)^k \binom{n}{k} = \binom{n-1}{d}.$$

Proof. First, we are going to write recurrence relation for $c_{bd}(A)$. Let h be a hyperplane in \mathbb{R}^d given by the equation

$$a_0 + a_1 x_1 + \dots + a_d x_d = 0.$$

By \widetilde{h} denote the hyperplane in \mathbb{R}^{d+1} given by the equation

$$a_0 x_0 + a_1 x_1 + \dots + a_d x_d = 0.$$

If A is a hyperplane arrangement in \mathbb{R}^d , set

$$\widetilde{A} = \left\{ \widetilde{h} \subset \mathbb{R}^{d+1} \mid h \in A \right\}.$$

Clearly, $L(\widetilde{A})$ is a geometric lattice. The assumption that A has rank d implies $\widehat{1} = \{0\}$. By A_P we denote the arrangement $\widetilde{A} \cup \infty$, where ∞ is the hyperplane in \mathbb{R}^{d+1} defined by the equation $x_0 = 0$. Let

$$M_{\infty} = \left\{ x \in L\left(\widetilde{A}\right) | x \subset \infty \right\}.$$

Clearly if $u \in M_{\infty}$ and $x \geq u$ ($x \subseteq u$), then $x \in M_{\infty}$. Let $\alpha \in C(A_P)$. There exists a unique face $\beta \in F(A_P \cap \infty)$ such that $\bar{\alpha} \cap \infty = \bar{\beta}$, here $\bar{\alpha}$ and $\bar{\beta}$ are the closures of α and β . Such β is called the *ideal face* of α .

Lemma 0.6. Let β be the ideal face of some $\alpha \in C(A_P)$, then either $\beta \in C(A_P \cap \infty)$ or $\beta \in C(\widetilde{A} \cap u)$ for some $u \in M_{\infty}$.

Proof. Let $\alpha \in C(A_P)$, then either $\alpha \in C(\widetilde{A})$ or α is cut by the hyperplane ∞ from some $\alpha' \in C(\widetilde{A})$. In the former case the ideal face β should belong to some cut of \widetilde{A} , hence $\beta \subseteq u \in M_{\infty}$. In the latter case β is a region of $A_P \cap \infty$.

The above proof implies the following

Corollary 0.7. If $\beta \in C(A_P \cap \infty)$, then $c^{\beta}(A_P) = 2$.

Denote by $C^{\beta}(A_P)$ the set of $\alpha \in C(A_P)$ whose ideal face is β and let $c^{\beta}(A_P) = |C^{\beta}(A_P)|$.

Lemma 0.8. $c(A_P) = 2c(A), c^0(A_P) = 2c_{bd}(A).$

Proof. For every region α of A_P there exists a unique region γ of A such that either

$$\alpha = \{(t, tx_1, \dots, tx_d) \mid (x_1, \dots, x_d) \in \gamma, t > 0\}$$

or

$$\alpha = \{(t, tx_1, \dots, tx_d) \mid (x_1, \dots, x_d) \in \gamma, t < 0\}$$

Thus, there is two-to-one correspondence between the regions of A_p and the regions of A. One can see immediately that γ is bounded iff α lies in the half space $x_0 > 0$ or $x_0 < 0$. Lemma follows.

Let $u \in M_{\infty}$, $\tilde{A}^u = \{h \in \widetilde{A} \mid u \subseteq h\}$, define the arrangement \widetilde{A}/u in the quotient space \mathbb{R}^{d+1}/u as

$$\widetilde{A}/u = \left\{ h/u \mid h \in \widetilde{A}^u \right\}.$$

By A/u we denote the arrangement induced by \widetilde{A}/u on the image of the hyperplane $x_0 = 1$ in \mathbb{R}^{d+1}/u .

Lemma 0.9. Let $\beta \in C(\widetilde{A} \cap u)$ for some $u \in M_{\infty}$. Then

$$c^{\beta}(A_P) = c^{\beta}(\widetilde{A}) = c^0(\widetilde{A}/u) = 2c_{bd}(A/u).$$

Proof. The first equality $c^{\beta}(A_P) = c^{\beta}(\widetilde{A})$ follows from the proof of Lemma 0.6. To prove $c^{\beta}(\widetilde{A}) = c^0(\widetilde{A}/u)$ note that for any $\gamma \in C^{\beta}(\widetilde{A})$ there exists exactly one $\alpha \in C(\widetilde{A}^u)$ such that $\gamma \subseteq \alpha$ and the ideal face of α is β . The natural projection $\pi : \mathbb{R}^{d+1} \to \mathbb{R}^{d+1}/u$ maps α to the region in $C(\widetilde{A}/u)$, whose ideal face is $\{0\}$. Thus, π induces the map $C^{\beta}(\widetilde{A}^u) \to C^0(\widetilde{A}/u)$, (check that this map is injective and surjective). Hence

$$c^{\beta}\left(\widetilde{A}\right) = c^{\beta}\left(\widetilde{A}^{u}\right) = c^{0}\left(\widetilde{A}/u\right).$$

Finally, Lemma 0.8 implies $c^0\left(\widetilde{A}/u\right) = 2c_{bd}\left(A/u\right)$.

Corollary 0.10.

$$c(A_P) = 2c(A_P \cap \infty) + \sum_{u \in M_\infty} 2c(A_P \cap u) c_{bd}(A/u),$$

$$c(A) = c(A_P \cap \infty) + \sum_{u \in M} c(A_P \cap u) c_{bd}(A/u).$$

We prove Theorem by induction on d assuming that

$$c_{bd}\left(A/u\right) = \left|\sum_{x \in L(A/u)} \mu_{A/u}\left(\widehat{0}, x\right)\right| = \left|\sum_{x \in L\left(\widetilde{A}\right), x < u, x \not \geq \infty} \mu_{\widetilde{A}}\left(\widehat{0}, x\right)\right|.$$

Note that since

$$\sum_{x\in L\left(\widetilde{A}\right)}\mu_{\widetilde{A}}\left(\widehat{0},x\right)=0,$$

then

$$c_{bd}(A/u) = \left| \sum_{\infty \le x \le u} \mu_{\widetilde{A}}(\widehat{0}, x) \right|.$$

To evaluate $c(A), c(A_P \cap \infty)$ and $c(A_P \cap u)$ use Theorem 0.1

$$c(A) = \sum_{x \in L(A)} \left| \mu_A\left(\widehat{0}, x\right) \right| = \sum_{x \in L(\widetilde{A}), x \not\geq \infty} \left| \mu_{\widetilde{A}}\left(\widehat{0}, x\right) \right| = \sum_{x \in L(A_P), x \not\geq \infty} \left| \mu_{A_P}\left(\widehat{0}, x\right) \right|,$$

$$c(A_P \cap \infty) = \sum_{x \in L(A_P), x > \infty} \left| \mu_{A_P}\left(\infty, x\right) \right|,$$

$$c\left(A_{P}\cap u\right) = \sum_{x\in L(A_{P}), x\geq u} \left|\mu_{A_{P}}\left(u, x\right)\right|$$

Thus, to prove Theorem it suffices to verify the identity

$$(0.2) \sum_{x \ngeq \infty} \left| \mu_{A_P} \left(\widehat{0}, x \right) \right| = \sum_{x \ge \infty} \left| \mu_{A_P} \left(\infty, x \right) \right| + \sum_{u \in M_{\infty}} \left| \sum_{\infty \le x \le u} \mu_{\widetilde{A}} \left(\widehat{0}, x \right) \right| \sum_{y \ge u} \left| \mu_{A_P} \left(u, y \right) \right|.$$

Rewrite

$$\sum_{u \in M_{\infty}} \left| \sum_{\infty \le x \le u} \mu_{\widetilde{A}} \left(\widehat{0}, x \right) \right| \sum_{y \ge u} \left| \mu_{A_P} \left(u, y \right) \right| = \sum_{\infty \le x \le u \le y} (-1)^{\rho(u)} \mu_{\widetilde{A}} \left(\widehat{0}, x \right) (-1)^{\rho(y) - \rho(u)} \mu_{A_P} \left(u, y \right).$$

The relations

$$\sum_{x \le u \le y} \mu_{A_P}(u, y) = 0$$

if $x \neq y$ and

$$\sum_{x \le u \le y} \mu_{A_P} (u, y) = 1$$

if x = y imply

$$\sum_{u \in M_{\infty}} \left| \sum_{\infty \le x \le u} \mu_{\widetilde{A}} \left(\widehat{0}, x \right) \right| \sum_{y \ge u} |\mu_{A_P} \left(u, y \right)| = \sum_{x \in M_{\infty}} \left| \mu_{\widetilde{A}} \left(\widehat{0}, x \right) \right|.$$

Now (0.2) becomes

(0.3)
$$\sum_{x \neq \infty} \left| \mu_{A_P} \left(\widehat{0}, x \right) \right| = \sum_{x \geq \infty} \left| \mu_{A_P} \left(\infty, x \right) \right| + \sum_{x \in M_{\infty}} \left| \mu_{\widetilde{A}} \left(\widehat{0}, x \right) \right|.$$

Let

$$N_{x} = \left\{ x \in L\left(\widetilde{A}\right) | x \cap \infty \notin L\left(\widetilde{A}\right) \right\}, O_{x} = \left\{ x \in L\left(\widetilde{A}\right) | x \cap \infty \in L\left(\widetilde{A}\right) \right\}.$$

Check that if $x \in N_{\infty}$, then the intervals $[\widehat{0}, x]$ and $[\infty, x \vee \infty]$ are isomorphic, isomorphism is defined by $y \to y \vee \infty$. Therefore (0.3) can be reduced to

(0.4)
$$\sum_{x \in O_{\infty}} \left| \mu_{A_P} \left(\widehat{0}, x \right) \right| = \sum_{x \in M_{\infty}} \left| \mu_{A_P} \left(\infty, x \right) \right| + \sum_{x \in M_{\infty}} \left| \mu_{\widetilde{A}} \left(\widehat{0}, x \right) \right|,$$

using

$$\sum_{x \geq \infty} \left| \mu_{A_P} \left(\widehat{0}, x \right) \right| = \sum_{x \in O_{\infty}} \left| \mu_{A_P} \left(\widehat{0}, x \right) \right| + \sum_{x \in N_{\infty}} \left| \mu_{A_P} \left(\widehat{0}, x \right) \right|,$$

$$\sum_{x \geq \infty} \left| \mu_{A_P} \left(\infty, x \right) \right| = \sum_{x \in M_{\infty}} \left| \mu_{A_P} \left(\infty, x \right) \right| + \sum_{x \in N_{\infty}} \left| \mu_{A_P} \left(\infty, x \vee \infty \right) \right|$$

Lemma 0.11.

$$\sum_{x \in O_{\infty}} \left| \mu_{A_P} \left(\widehat{0}, x \right) \right| = \sum_{x \in M_{\infty}} \left| \mu_{A_P} \left(\widehat{0}, x \right) \right|.$$

Proof. Use formula (27) section 3.10 in Stanley for the lattice $\left[\widehat{0},x\right]$, $x\in M_{\infty}$. The coatoms are ∞ and all $y\in O_{\infty}$ such that $y\vee\infty=y\cap\infty=x$. Thus,

$$\left| \mu_{A_P} \left(\widehat{0}, x \right) \right| = \sum_{y \in O_{\infty}, \ y \lor \infty = x} \left| \mu_{A_P} \left(\widehat{0}, y \right) \right|$$

for any $x \in M_{\infty}$. Now take the sum over all $x \in M_{\infty}$ and obtain the desired formula.

Thus, (0.4) is equivalent to

$$\sum_{x \in M_{\infty}} \left| \mu_{A_P} \left(\widehat{0}, x \right) \right| = \sum_{x \in M_{\infty}} \left| \mu_{A_P} \left(\infty, x \right) \right| + \sum_{x \in M_{\infty}} \left| \mu_{\widetilde{A}} \left(\widehat{0}, x \right) \right|.$$

But Lemma 0.3 implies

$$\left| \mu_{A_P} \left(\widehat{0}, x \right) \right| = \left| \mu_{A_P} \left(\infty, x \right) \right| + \left| \mu_{\widetilde{A}} \left(\widehat{0}, x \right) \right|$$

for every $x \in M_{\infty}$. The proof of Theorem is complete.

Let $S \subseteq A$ and $u = \bigcap_{h \in S} h \neq \emptyset$. The *nullity* of S is the number $n(S) = |S| - \rho(u)$. Let d_k be the number of $S \subseteq A$ such that n(S) = k.

Theorem 0.12.

$$c(A) = \sum (-1)^k d_k.$$

Proof. For any $x \in L(A)$ let

$$S_x = \{ S \subseteq A \mid x = \cap_{h \in S} h \} .$$

Then By Corollary 3.9.4 in Stanley (in dual form)

$$\mu\left(\widehat{0},x\right) = \sum_{s \in S_x} \left(-1\right)^{|S|},$$

$$\sum_{x \in L(A)} \left| \mu\left(\widehat{0}, x\right) \right| = \sum_{x \in L(A)} (-1)^{\rho(x)} \mu\left(\widehat{0}, x\right) = \sum_{x \in L(A), S \in S_x} (-1)^{\rho(x) + |S|} = \sum_{S \subseteq A} (-1)^{n(S)}.$$

Let $f_k(A)$ denote the number of faces of dimension k and $f_k^{bd}(A)$ denote the number of bounded faces of dimension k.

Theorem 0.13. For any arrangement A

$$\sum (-1)^k f_k(A) = (-1)^d,$$

and

$$\sum \left(-1\right)^k f_k^{bd}\left(A\right) = 1$$

if rank of A is d.

Proof. Theorem 0.1 implies

$$f_k(A) = \sum_{u \in L(A), \ \rho(u) = d - k, x \ge u} |\mu_A(u, x)|.$$

Hence

$$\sum (-1)^k f_k(A) = \sum_{x \ge u} (-1)^{d-\rho(u)} (-1)^{\rho(x)-\rho(u)} \mu_A(u,x) = (-1)^d.$$

Theorem 0.4 implies

$$f_k^{bd}(A) = \sum_{u \in L(A), \rho(u) = d-k} \left| \sum_{x \ge u} \mu_A(u, x) \right| = \sum_{x \ge u} (-1)^{d-\rho(u)} \mu_A(u, x).$$

Therefore

$$\sum (-1)^k f_k^{bd}(A) = \sum_{x \ge u} \mu_A(u, x) = 1.$$

Reference: Zaslavsky, Mem. Amer. Math. Society, no. 154.