PROBLEM SET # 8 MATH 249

Due October 31.

- 1. Classify finite Eulerian semimodular lattices.
- **2**. Let S be a finite set and $\rho: 2^S \to \mathbb{N}$ be a function satisfying

$$\rho(X) \le \rho(Y)$$
 if $X \subset Y$, $\rho(X) \le |X|$, $\rho(X \cap Y) + \rho(X \cup Y) \le \rho(X) + \rho(Y)$.

Call $X \subset S$ closed if for any Y containing X as a proper subset $\rho(X) < \rho(Y)$. Prove that the poset of closed sets with order defined by inclusion is a geometric lattice and $X \wedge Y = X \cap Y$.

3. Let A be a hyperplane arrangement without parallel cuts, i.e. for any cut $u \in L(A)$ of dimension greater than zero and any hyperplane $h \in A$ the intersection of h and u is not empty. Let $h \in A$ and V_h be the number of vertices (cuts of dimension zero) which do not belong to h. Show that the number of bounded regions equals

$$\sum_{v \in V_b} |\mu\left(\widehat{0}, v\right)|.$$

Date: October 25, 2006.