PROBLEM SET # 11 MATH 249

Due November 21.

1. Let J_N denote the ideal in $\mathbb{C}[x_1,\ldots,x_N]$ generated by elementary symmetric polynomials e_1,\ldots,e_N . Define $R_N=\mathbb{C}[x_1,\ldots,x_N]/J_N$. Show that R_N is a finite-dimensional algebra over \mathbb{C} . Prove the inequality

$$\dim R_N < N!$$
.

Hint: note that x_1 is a root of a monic polynomial of degree N with coefficients $\pm e_i$ and use induction on N.

2. Let $s_i = (i, i+1)$ with $i \leq N-1$. Define the linear operator $D_i : \mathbb{C}[x_1, \ldots, x_N] \to \mathbb{C}[x_1, \ldots, x_N]$ by the formula

$$D_i(f) = \frac{f(s_i x) - f(x)}{x_{i+1} - x_i}.$$

Prove that D_i is well-defined, i.e. $D_i(f)$ is a polynomial, and that $D_i(J_N) \subset J_N$. Thus, D_i is a well-defined operator on R_N .

3. Show that $D_iD_j = D_jD_i$ if $i \neq j \pm 1$ and $D_iD_{i+1}D_i = D_{i+1}D_iD_{i+1}$. Using this prove that if $s_{i_1} \dots s_{i_k} = s_{j_1} \dots s_{j_k} = w$ with k = l(w), then

$$D_{i_1} \dots D_{i_k} = D_{j_1} \dots D_{j_k}.$$

Thus, for each element $w \in W$ one can define the operator D_w which does not depend on a reduced decomposition of w into the product of adjacent transpositions. You may use without proof that the relations $s_i s_j = s_j s_i$, for $i \neq j \pm 1$, $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ and $s_i^2 = 1$ generate S_N .

and $s_i^2 = 1$ generate S_N . 4. Let $p_w = D_w \left(x_N^{N-1} x_{N-1}^{N-2} \dots x_2 \right)$. Prove that $\{p_w\}_{w \in S_N}$ is a basis in R_N . Hence dim $R_N = N!$. The polynomials p_w are called Schubert polynomials.

Date: November 14, 2006.