PROBLEM SET # 10 MATH 249

Due November 14.

1. Let

$$P = \left\{ (x_1, \dots, x_N) \in \mathbb{R}^N \mid 0 \le x_i \le 1, \sum_{i=1}^N x_i = 1 \right\}.$$

Show that P is a convex polytope and find i(P, n) and $i^+(P, n)$.

2. Let P be a convex integral polytope in \mathbb{R}^N and $f: \mathbb{R}^N \to \mathbb{R}^N$ be defined by the formula

$$f(x) = Ax + \beta,$$

where $\beta \in \mathbb{Z}^N$, A be a matrix with integral coefficients such that $\det A = \pm 1$. Prove that i(P, n) = i(f(P), n).

3. Let $\operatorname{Par}(n)$ denote the set of partitions of n. Define a partial order on $\operatorname{Par}(n)$ by $\lambda \leq \mu$ if $\lambda_1 + \cdots + \lambda_k \leq \mu_1 + \cdots + \mu_k$ for all $k \geq 1$. Prove that $\operatorname{Par}(n)$ is a lattice.

4. Let $\lambda = (\lambda_1, \dots, \lambda_n) \in \operatorname{Par}(n)$ and P_{λ} be the convex hull of $(\lambda_{s(1)}, \dots, \lambda_{s(n)})$ for all $s \in S_n$. Prove that $\lambda \leq \mu$ iff $P_{\lambda} \subseteq P_{\mu}$.

Date: November 6, 2006.