Due November 14.

1. Let

\[P = \left\{ (x_1, \ldots, x_N) \in \mathbb{R}^N \mid 0 \leq x_i \leq 1, \sum_{i=1}^{N} x_i = 1 \right\} . \]

Show that \(P \) is a convex polytope and find \(i(P, n) \) and \(i^+(P, n) \).

2. Let \(P \) be a convex integral polytope in \(\mathbb{R}^N \) and \(f : \mathbb{R}^N \to \mathbb{R}^N \) be defined by the formula

\[f(x) = Ax + \beta, \]

where \(\beta \in \mathbb{Z}^N \), \(A \) be a matrix with integral coefficients such that \(\det A = \pm 1 \). Prove that \(i(P, n) = i(f(P), n) \).

3. Let \(\text{Par}(n) \) denote the set of partitions of \(n \). Define a partial order on \(\text{Par}(n) \) by \(\lambda \leq \mu \) if \(\lambda_1 + \cdots + \lambda_k \leq \mu_1 + \cdots + \mu_k \) for all \(k \geq 1 \). Prove that \(\text{Par}(n) \) is a lattice.

4. Let \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \text{Par}(n) \) and \(P_\lambda \) be the convex hull of \((\lambda_{s(1)}, \ldots, \lambda_{s(n)}) \) for all \(s \in S_n \). Prove that \(\lambda \leq \mu \) iff \(P_\lambda \subseteq P_\mu \).