

FINAL EXAM MATH 249

Due December 7.

Choose five problems from the list below.

1. Give a combinatorial proof for the following identities

$$S(n+1, m+1) = \sum_{k=0}^n \binom{n}{k} S(k, m),$$

$$s(n+1, m+1) = \sum_{k=m}^n s(n, k) \binom{k}{m},$$

here $S(n, l)$ is the Stirling number of the second kind, $s(n, l)$ is the signless Stirling number of the first kind.

2. Give a combinatorial proof of the identity

$$\prod_{i \geq 0} (1 + tx^{2i+1}) = \sum_{k \geq 0} \frac{x^{k^2} t^k}{(1 - x^2)(1 - x^4) \dots (1 - x^{2k})}.$$

3. In how many ways one can sit n couples around the table so that nobody sits near his own spouse?

4. Let \mathcal{P} be the convex hull of $(s(1), \dots, s(n)) \in \mathbb{R}^n$ for all $s \in S_n$. Find f and h -polynomials for \mathcal{P} . Recall that $f(x) = \sum f_k x^k$, where f_k is the number of k -dimensional faces, $h(x) = f(x-1)$.

5. Let \mathcal{P} be an integral convex polytope in \mathbb{R}^d of dimension d . Prove that the volume of \mathcal{P} can be calculated by the formula

$$\frac{1}{d!} \sum_{k=0}^d \binom{d}{k} (-1)^{d-k} i(\mathcal{P}, k),$$

where $i(\mathcal{P}, k)$ is the Ehrhart polynomial.

6. Let n be a positive integer. Let $\mu(n) = 0$ if $p^2 \mid n$ for some prime p and $\mu(n) = (-1)^{k(n)}$ where $k(n)$ is the number of prime factors of n if p^2 does not divide n for all prime p .

(a) For a given sequence $f(n)$ let

$$g(n) = \sum_{t \mid n} f(t).$$

Show that

$$f(n) = \sum_{t|n} \mu\left(\frac{n}{t}\right) g(t).$$

(b) Prove the identity

$$\prod_{n=1}^{\infty} (1 - x^n)^{\frac{-\mu(n)}{n}} = e^x.$$

7. Let K_5 be the complete graph with 5 vertices. Prove that it is impossible to embed K_5 into a sphere. Find a surface of a minimal genus in which K_5 can be embedded.

8. Prove the following identity for symmetric functions

$$\sum_{i=0}^k (-1)^i h_{k-i} e_{l+i} = s_{\lambda},$$

where $\lambda = (k+1, 1^{l-1})$.