Due December 7.
Choose five problems from the list below.

1. Give a combinatorial proof for the following identities

\[
S(n + 1, m + 1) = \sum_{k=0}^{n} \binom{n}{k} S(k, m),
\]

\[
s(n + 1, m + 1) = \sum_{k=m}^{n} s(n, k) \binom{k}{m},
\]

here \(S(n, l) \) is the Stirling number of the second kind, \(s(n, l) \) is the signless Stirling number of the first kind.

2. Give a combinatorial proof of the identity

\[
\prod_{i \geq 0} (1 + tx^{2i+1}) = \sum_{k \geq 0} x^k \frac{e^{x(k+1)}}{(1-x^2)(1-x^4)\ldots(1-x^{2k})}.
\]

3. In how many ways one can sit \(n \) couples around the table so that nobody sits near his own spouse?

4. Let \(P \) be the convex hull of \((s(1), \ldots, s(n)) \in \mathbb{R}^n\) for all \(s \in S_n \). Find \(f \) and \(h \)-polynomials for \(P \). Recall that \(f(x) = \sum f_k x^k \), where \(f_k \) is the number of \(k \)-dimensional faces, \(h(x) = f(x-1) \).

5. Let \(P \) be an integral convex polytope in \(\mathbb{R}^d \) of dimension \(d \). Prove that the volume of \(P \) can be calculated by the formula

\[
\frac{1}{d!} \sum_{k=0}^{d} \binom{d}{k} (-1)^{d-k} i(P, k),
\]

where \(i(P, k) \) is the Ehrhart polynomial.

6. Let \(n \) be a positive integer. Let \(\mu(n) = 0 \) if \(p^2|n \) for some prime \(p \) and \(\mu(n) = (-1)^{k(n)} \) where \(k(n) \) is the number of prime factors of \(n \) if \(p^2 \) does not divide \(n \) for all prime \(p \).
 (a) For a given sequence \(f(n) \) let

\[
g(n) = \sum_{t|n} f(t).
\]
Show that

\[f(n) = \sum_{t \mid n} \mu\left(\frac{n}{t}\right) g(t). \]

(b) Prove the identity

\[\prod_{n=1}^{\infty} \left(1 - x^n\right)^{-\mu(n)/n} = e^x. \]

7. Let \(K_5 \) be the complete graph with 5 vertices. Prove that it is impossible to embed \(K_5 \) into a sphere. Find a surface of a minimal genus in which \(K_5 \) can be embedded.

8. Prove the following identity for symmetric functions

\[\sum_{i=0}^{k} (-1)^i h_{k-i} e_{l+i} = s_{\lambda}, \]

where \(\lambda = (k + 1, 1^{l-1}) \).