- **1**. A field \mathbb{F} is an ordered field if there is a total order \leq on \mathbb{F} satisfying properties if $a \leq b$, then $a + c \leq b + c$ for all $a, b, c \in \mathbb{F}$;
- if $0 \le a$ and $0 \le b$, then $0 \le ab$ for all $a, b \in \mathbb{F}$.

Show that one can not introduce a total order on \mathbb{C} to make it an ordered filed.

2. Let

$$f(z) = \frac{az+b}{cz+d},$$

where a, b, c, d are complex number satisfying $ad - bc \neq 0$. Show that f(z) defines a continuous bijective map of the Riemann sphere to itself and that the set of all such maps is a group with operation of composition.

- 3. Let f(z) be as in the previous problem. Show that it maps any line in the complex plane to a line or a circle, and any circle to a line or a circle.
- 4. Give an example of f(z) = u(x,y) + iv(x,y) such that the partial derivatives u_x, u_y, v_x, v_y are defined everywhere in the complex plane, the Cauchy–Riemann condition holds at z = 0 but f'(0) does not exist.
 - **5**. Prove the Jordan curve theorem for a simple polygon contour.
- **6.** Prove the Jordan curve theorem in case when a simple closed contour C is the union of a graph of some function y = f(x) such that f(a) = f(b) = 0 for $a \le x \le b$ and the segment [a, b].
 - 7. Give an example of a (non-smooth) simple closed curve of infinite length.
- **8.** Prove that if f(z) is analytic inside and on a closed contour C, then for any z inside C

$$f^{(n)} = \frac{n!}{2\pi i} \int_C \frac{f(w)}{(w-z)^{n+1}} dw.$$

- **9**. Let f(z) be analytic on a domain D and $f'(z) \neq 0$ for any $z \in D$. Prove that f(D) is a domain.
- 10. Let f(z) be continuous on a domain D and analytic at all except finitely many points in D. Prove that f(z) is analytic on D.
- 11. Let f(z) be an entire function and f(z) = 0 for all real z. Show that f(z) = 0 for all z.
- 12. Let $f(x) = e^{-1/x^2}$ if $x \neq 0$ and f(0) = 0. Show that for all n > 0 $f^{(n)}(x)$ is continuous on the entire real line. Show that f(x) can not be extended to an entire function on the complex plane.
- 13. Let $f(z) = \frac{az+b}{cz+d}$, where a, b, c, d are complex number satisfying ad bc = 1. Let $\{z_n\}$ be a sequence defined by $z_{n+1} = f(z_n)$. Find all a, b, c, d and z_1 such that $\lim_{n\to\infty} z_n$ exists.
 - 14. Let a Laurent series

$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$$

converge in an annular domain $D = \{z \in \mathbb{C} | R_1 < |z - z_0| < R_2 \}.$

- (a) Show that the series uniformly converges in the closed ring $r_1 \leq |z z_0| \leq r_2$ for any $R_1 < r_1 < r_2 < R_2$.
 - (b) Show that the sum

$$S(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$

is continuous in D.

(c) Show that for any contour C inside D and a continuous function g(z) on C

$$\int_C g(z)S(z)dz = \sum_{n=-\infty}^{\infty} c_n \int_C g(z)(z-z_0)^n dz.$$

- (d) Show that S(z) is analytic in D.
- 15. (For people who took set theory and linear algebra.) Let V be a vector space of functions analytic at z = 0. Show that the dimension of V is not countable.
 - **16**. Find a function analytic at 0 with Maclaurin series

$$\sum_{n=0} {2n \choose n} z^n.$$

What is the circle of convergence for this series?

17. Use the previous problem to prove the identity

$$\sum_{k=0}^{n} {2(n-k) \choose n-k} {2k \choose k} = 4^{n}.$$

18. Let f(z) have an essential singularity at $z = z_0$ and w be a complex number. Show that there exists a sequence $\{z_n\}$ such that

$$\lim_{n \to \infty} z_n = z_0, \ \lim_{n \to \infty} f(z_n) = w.$$

19. Let z_0 be an isolated singular point. Show that if

$$\lim_{z \to z_0} f(z) = \infty,$$

then z_0 is a pole.

20. We say that f(z) has a pole at ∞ if

$$\lim_{z \to \infty} f(z) = \infty.$$

Prove that if f(z) has finitely many singular points which are all poles including ∞ , then f(z) is a rational function.

- 21. Construct a conformal bijective map from the interior of a rectangle to the interior of the unit disk.
- **22**. Let A and B be two annular domains $r_1 < |z| < R_1$ and $r_2 < |z| < R_2$ and let there exist a bijective conformal mapping $f: A \to B$. Show that $\frac{R_1}{r_1} = \frac{R_2}{r_2}$.