
ELLIPTIC FUNCTIONS IN EXERCISES

ILYA ZAKHAREVICH

Abstract. Solving this handful of semi-hard exercises would make you ready to

work with elliptic functions.
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0. Introduction

Personally, I find it very hard to learn a new domain unless I discover most key
concepts myself. The exercises below mark a path through the marches so that this
rediscovery will not take as much time as the original discovery did.
Very few of the exersizes are trivial—unless you know already how to solve them.

Very few should require more than a half an hour to solve, thus if it takes more time
that this, it may be more useful to consult a book. If difficulties arise, a good book
on complex analysis would help; I prefer [1].
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1. The principal players

A two-periodic (or elliptic) function is a function f (z), z ∈ C, such that f (z + T1,2) =
f (z); here T1,2 ∈ C are R-linearly independent. If we consider C as 2-dimensional
vector space over R, then Z-linear combinations of T1, T2 form a lattice L of periods.
A fundamental domain U ⊂ C is a closed subset with a piecewise-smooth boundary
such that L-translations of U cover C and intersect only along boundaries. When
we count points in fundamental domains, we always assume for simplicity that the
points do not meet the boundary.

Label exer10

Exercise 1.1. Show that there exists a 2-periodic meromorphic function p (z) which
has exactly one pole on the fundamental domain, and this pole is of order 2.

Exercise 1.2. Show that there is no 2-periodic meromorphic function which has
exactly one pole on the fundamental domain, and this pole is of order 1.

Label exer30

Exercise 1.3. Show that p (z) satisfies an ODE of the first order with constant
coefficients. (In fact, this ODE is implicit, as in F (p, p′) = 0.)

Label exer40

Exercise 1.4. Show that p (z) satisfies an ODE of the form

p′′ (z) = F (p (z)) ;

here F is a polynomial of degree 2.
Label exer54

Exercise 1.5. Show that there exists a holomorphic function ϑ (z) such that p =
(lnϑ)′′; here p satisfies the conditions of Exercise 1.1.

2. Normalizations

The functions p (z) and ϑ (z) of the previous section are not uniquely defined.
There are natural ways to choose a “best” representative of such a function. When
there are several independent ways, the reduction of one of the ways to another leads
to useful relations between elliptic functions.

Exercise 2.1. The function ϑ (z) of Exersize 1.5 is subject to transformations of the

form ϑ (z) = aebz+cz2ϑ̃ (z + d)n, n ∈ N. Show that one can chose ϑ̃ (z) in such a way
that any function ϑ of Exersize 1.5 can be expressed by such a formula.

Functions ϑ̃ from the previous exersize are characterized by the condition that they
do not have multiple zeros. In what follows, the notation ϑ is used only for functions
of such form.
A function f (z) has a λ-quasiperiod T if f (z + T ) ≡ λf (z).

Exercise 2.2. Show that that ϑ (z) can be chosen having T1 as a period. In fact,
for any λ 6= 0, ϑ (z) can be chosen in such a way that T1 is a λ-quasiperiod, i.e.,
ϑ (z + T1) ≡ λϑ (z). The choice of λ determines ϑ up to a transformation ϑ (z) =
aϑ (z + b).
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It is convenient to be able to restrict the freedom in the choice of ϑ (z) yet more.
In the previous exercise, ϑ is determined by the lattice L of periods together with a
subgroup generated by T1. These data is invariant w.r.t. reflection z 7→ −z.

Label exer50

Exercise 2.3. Show that ϑ (z) can be chosen so that ϑ (z) is either even, or odd. How
many such choices of ϑ (z) exist (up to a multiplicative constant)? Same questions
under the condition that ϑ (z) has 1 as a λ-quasiperiod.

The previous exersize shows that one can significantly restrict the freedom in the
choice of ϑ (z), as well as importance of λ = ±1.
To simplify normalizations, suppose that T1 = 1, T2 = τ . Since Im τ cannot be 0,

it is convenient to restrict the attention to the connected component Im τ > 0 (the
other case is similar due to invariance w.r.t. τ 7→ −τ). Suppose also that ϑ (z) has 1
as a ±1-quasiperiod, and is either even, or odd.

Label exer60

Exercise 2.4. Express ϑ (z + 1), ϑ (z + τ) in terms of ϑ (z) for all possible choices
of such functions ϑ (z).

Exercise 2.5. Find Fourier coefficients for ϑ (x), x ∈ R, for all possible choices of
such functions ϑ (z). Hint: for some choices the period is 1, for some it is 2.

Label exer80

Exercise 2.6. The conditions above determine ϑ (z) up to a multiplicative constant
and a discrete parameter. This defines several functions of two complex variables
ϑ (z, τ); they are defined up to a multiplication by a function of τ and a discrete
parameter.
Show that there is a choice of ϑ (z, τ) in the region Im τ > 0 which satisfies a PDE

C ∂ϑ
∂τ

= ∂2ϑ
∂z2

for an appropriate choice1 of a constant C.

Exercise 2.3 gives a list of several “good” normalizations for the function ϑ. It is
convenient to denote these choices by the positions of zeros of ϑ. Chose the parallel-
ogram built on T1,2 as a fundamental domain; then denote2 an even-or-odd functions
ϑ depending on the position of the zero inside this parallelogram: the function which
has a zero at αT1/2 + βT2/2 is ϑα,β . Obviously, α, β ∈ {0, 1}. These functions of z
are determined up to multiplication by a constant.
On the other hand, Exercise 2.6 provides a way to normalize the functions ϑα,β (z)

up to a multiplicative constant which does not depend on τ . The convenient choice
of this multiplicative constant is given by the following exercises:

Exercise 2.7. Find the quasiperiod-factors λ for ϑα,β (x).

Exercise 2.8. The average value of ϑα,1 (x), x ∈ R, on its period does not vanish.
In the conditions of Exercise 2.6 the average value does not depend on τ .

1This is the first time we used the condition Im τ > 0.
2This notation is slightly different from the Jacobi notation Θα,β ; the latter functions are defined

for all integer α and β, and differ from our notation by a shift of α and β by 1.
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Normalize ϑα,1 (z) by requiring that the average value above is 1. This makes ϑα,1

into a well-defined function depending on z and τ . The notation ϑα,1 (z) may be used
when τ is assumed to be a fixed number.
With the normalization above, ϑα,1 satisfies the equation of Exercise 2.6. Similarly,

it is convenient to normalize ϑα,0 applying the equation of Exercise 2.6 to the first
Fourier coefficient a1 (τ) (instead of the 0-th one—proportional to the average value—
above). By Exercise 2.6, a1 (τ) = Ae−Bτ with a known constant B (here Im τ > 0).
The standard normalization makes the first Fourier term of ϑα,0 (z) at τ = i into
e−π/8eπiz.
Note that the function p (z) is automatically even if its pole is at 0.

Exercise 2.9. Normalize p (z) so that it has a pole at 0 with the leading term of
Laurent series z−2. Express p (z) in terms of ϑα,β for all choices of α, β ∈ {0, 1}.
Exercise 2.10. Show that in the conditions of the previous exercise p (z) − p (1/2)
has a zero of order 2 at 1/2; moreover, this difference (as a function of z) is uniquely
determined by τ .

Exercise 2.11. Express p (τ/2)− p (1/2) in terms of three numbers ϑα,β (0), α, β ∈
{0, 1} (three since ϑ0,0 (0)

def
= 0).

Exercise 2.12. Show that there exists a number C such that p (τ/2) − p (1/2) =
Cϑ′′

1,1 (0). Find C.

The conditions on the pole (position and the leading coefficient) determine p (z)
up to an addititive constant. Chose this constant to kill the 0-th Laurent coefficient
near 0; the resulting function is called the Weierstrass P-function. It depends on z
and τ , but usually we write P (z) assuming τ fixed.

Remark 2.13. Note that this normalization of p and the normalization of ϑ0,0 above
is not compatible with Exercise 1.5 (see Exercise 5.2).

To define ϑ-function for an arbitrary lattice 〈T1, T2〉, transfer it from the lattice

〈1, T2/T1〉 by multiplication: ϑ (z|T1, T2)
def
= ϑ (z/T1|1, T2/T1). The normalization of

the P-function defined above is applicable for an arbitrary lattice of periods. However,
if not stated otherwise, the lattice is assumed to be with T1 = 1 if τ is mentioned in
the context.

3. Values at semi-periods

Exercise 3.1. Show that P (1/2) = const d
dτ

log ϑ1,0 (0); both sides are functions of
τ .

Exercise 3.2. Write similar formulae for P (τ/2) and P ((1 + τ) /2).

The usual notations for the values P (T1/2), P ((T1 + T2) /2), and P (T2/2) are e1,
e2, e3. The ordering corresponds to a counter-clockwise walk around the parallelo-
gram with T1/2, T2/2 as sides adjacent to the vertex 0.
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Exercise 3.3. Find periods of the meromorphic functions
√

P (z)−P (ek), k =
1, 2, 3.

4. Conformal mappings

Exercise 4.1. If τ ∈ iR>0, then the function ϑα,β (z), z ∈ R, are real. Moreover,
P (z) and P (z + τ/2), z ∈ R, are real.

Exercise 4.2. If τ ∈ iR>0, then the correspondence t = −P (z) is a conformal
mapping of the (rectangular) parallelogram above to {Im t > 0}.

Exercise 4.3. If τ = i, then the correspondence t = P(z)+ie1
P(z)−ie1

is a conformal mapping

of the (square) parallelogram above to the unit circle which commutes with π/4-
rotations of the square and the circle.

Label exer120

Exercise 4.4. One has e1 + e2 + e3 = 0. If τ ∈ iR>0, then e3 < e2 < e1.

To restore the symmetry between ek and Tk, one can define half-periods ω1,2,3 as
ω1 = T1/2, ω2 = − (T1 + T2) /2, ω3 = T2/2. Then ω1 + ω2 + ω3 = 0 and P (ωk) = ek.

Exercise 4.5. Find a conformal mapping of a given ellipse to a circle. Hint: the
Zhukovsky’s mapping t = z + 1/z sends the annulus {1 < |z| < a} to an ellipse with
a removed interval on the major axis.

5. Infinite products

Exercise 5.1. Write a representation of ϑα,β (z) as an infinite product over its zeros.
Label exer200

Exercise 5.2. Show that P = −
(

ϑ′

0,0

ϑ0,0

)′
+ 1

3

ϑ′′′

0,0(0)

ϑ′

0,0(0)
.

6. Weierstrass ζ-function and representations of doubly-periodic

functions

The antiderivative of the function P (z) exists as a merormorphic function. It is
uniquely determined by the condition that it is odd; denote this function as −ζ (z).
The principal part of the function ζ (z) near z = 0 is 1/z.
This function is called Weierstrass ζ-function. Do not mix it with Riemann ζ-

function!
Use Exercises 2.4, 5.2 for the following:

Exercise 6.1. The function ζ (z) is not 2-periodic. Denote ζ (z + Tk) − ζ (z) by

2ηk ∈ C, k = 1, 2. Then η1 = −T1

6

ϑ′′′

0,0(0)

ϑ′

0,0(0)
; η2 = −T2

6

ϑ′′′

0,0(0)

ϑ′

0,0(0)
− πi/T1.

In particular, the formulae above imply the Legendre relation

η1T2 − η2T1 = πi.
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Exercise 6.2. Prove this relation independently. If T1 = 1, T2 = i (lemniscatic case)

this implies η1 = π/2; similarly, if T1 = 1, T2 = 1+i
√
3

2
, then η1 = π/

√
3. Hint: use

the residue formula.

Alternatively, ηk can be defined as ζ (Tk/2).

Exercise 6.3. Show that ζ (ω2) = −η1 − η2.

Exercise 6.4. If τ ∈ iR>0, then the correspondence t = ζ (z) + e2z is a conformal
mapping of the (rectangular) parallelogram fundamental domain centered at 0 to the
complex sphere with a removed rectangle with vertices at±a±bi; here a = η1+e2T1/2,
ib = η2 + e2T2/2.

Exercise 6.5. If τ ∈ iR>0, then the correspondence t = ζ (z) − 2η2
T2

z is a conformal

mapping of the (rectangular) parallelogram fundamental domain centered at 0 to the
complex sphere with cuts along [−a, a], [−a− ib,−a + ib], and [a− ib, a + ib]; here
a = πi/T2, b is an appropriate number.

Exercise 6.6. There exists τ which corresponds to η2 = 0.

In particular, ζ is not necessary a 1-to-1 mapping from the fundamental parallelo-
gram centered at 0.

Exercise 6.7. Consider an arbitrary meromorphic elliptic function f (z) with simple
poles z1, . . . , zK on the fundamental domain with residues a1, . . . , aK . Then f (z) =∑K

k=1 akζ (z − zk) + const.

In particular, T1-periodicity of the last expression implies that
∑

ak = 0 (this
is easy to prove independently). Similarly, one can allow higher orders of poles by
allowing additional terms of the form ak,lζ

(l) (z − zk).
Label exer165

Exercise 6.8. Consider an arbitrary meromorphic elliptic function f (z). There is a
meromorphic elliptic function g (z) and numbers K, ak, zk ∈ C, k = 1, . . . , K, C1, C2

such that f (z)− g′ (z) =
∑K

k=1 akζ (z − zk) + C1P (z) + C2.
Label exer170

Exercise 6.9. Consider an arbitrary 2-periodic meromorphic function f (z) with ze-
ros and poles on the fundamental domain at points z1, . . . , zK with multiplicities nk

(write nk positive for zeros, negative for poles). Then f (z) = const
∏K

k=1 ϑ0,0 (z − zk)
nk .

In particular, T2-periodicity of the last expression implies that
∑

nk = 0, and that∑
nkzk is in the lattice.

Exercise 6.10. Prove these relations independently. Hint: use the residue formula.
Label exer6.80

Exercise 6.11. Show that if f is a meromorphic function, and f ′ is 2-periodic, then
f (z) =

∑K
k=1 akζ

(lk) (z − zk) + C1z + C2, for an appropriate choice of C1, C2, K, ak,
zk, and lk.
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Label exer6.90

Exercise 6.12. Show that if f (z) is a meromorphic function, and (log f)′′ is 2-

periodic, then f (z) = C1e
C2z+C3z2

∏K
k=1 ϑ0,0 (z − zk)

ak , for an appropriate choice of
C1, C2, C3, K, zk, and ak.

7. Uniformization of cubic curves

Now we have more notations and normalizations to make the Exercise 1.3 more
precise.
Recall that the projective plane CP

2 consists of lines in C
3 passing through the

origin; the line through (X, Y, Z) ∈ C3 is denoted as (X : Y : Z). The affine plane
C2 is a subset of CP2 via (X, Y ) → (X : Y : 1); the complement is a projective line
l∞ ≃ CP1; it consists of points of the form (X : Y : 0).

Label exer7.10

Exercise 7.1. Fix two numbers g4, g6. Denote by E0 the set of solutions of Y 2 =
4X3 − g4X − g6; here (X, Y ) ∈ C2. Consider C2 as a subset of the projective plane
CP2; let E be the closure of E0 in CP2. Then the closure E of E0 in CP2 is E0∪{P∞};
here P∞ = (0 : 1 : 0).

The curve E is called the projective closure of E0.
In addition to (X : Y : 1), one can consider other coordinate charts on CP2. The

chart (X : Y : 1) works near (X0 : Y0 : Z0) iff Z0 6= 0; similarly, the chart (X : 1 : Z)
works iff Y0 6= 0, and the chart (1 : Y : Z) works iffX0 6= 0. Since transition mappings
between these charts are complex analytic, CP2 is a complex analytic manifold, thus
it makes sense to consider complex analytic submanifolds of CP2.

Exercise 7.2. The neighborhood of P∞ on E is complex analytic; t = 2X/Y is a
coordinate system near P∞. In this coordinate system X− t−2 and Y −2t−3 (defined
for small t 6= 0) can be extended to t = 0 as complex analytic functions of t.
The tangent line to E at P∞ coincides with l∞. In fact, l∞ has a tangency of the

second order with E; in other words, P∞ is an inflection point on E.

Exercise 7.3. Let ∆
def
= ∆12 = g34 − 27g26. The manifold E is complex analitic iff

∆ 6= 0. This happens iff 4X3 − g4X − g6 has 3 distinct roots.

Exercise 7.4. If ∆ 6= 0, then E is homeomorphic to a torus; in other words, E is a
compact orientable surface of Euler characteristic 0.

Recall that a complex curve of genus g is a 1-dimensional complex analytic manifold
homeomorphic to a compact surface of Euler characteristic 2 − 2g (i.e., to a sphere
with g handles). It is automatically orientable. Thus E is complex curve of genus 1.

Label exer205

Exercise 7.5. Let L be the lattice of periods generated by T1 and T2. Let e1,2,3 be the
corresponding values of the P-function at half-periods, and 4 (X − e1) (X − e2) (X − e3) =
4X3− g4X − g6 (compare with Exercise 4.4). The mapping U : z 7→ (P (z) ,P ′ (z)) ∈
C2 is well-defined on CrL; extend it to a mapping C → CP2 by U (z) = P∞ if z ∈ L.
Then U send C onto E; U (z) = U (z′) iff z′ − z ∈ L.
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In other words, U identifies the quotient space C/L with E. (Such an identification
is called uniformization.) In particular, any elliptic function with the lattice of periods
L can be considered as a function on E. Because of this, E is called an elliptic curve.
Note that the domain C of the variable z is naturally identified with the universal

cover Ē of the torus E.

Exercise 7.6. If an entire analytic function is a bijection C → C, it coincides with
az + b.

Thus the automorphisms of C have the form z̃ = az + b, and the identification of
Ē with C is defined uniquely up to such an automorphism. In the settings above we
normalized the variable a by requiring that dz goes to dX/Y , and normalized b by
the requirement that 0 maps to P∞ ∈ E.

8. Elliptic integrals

The functions X, Y on C2 cannot be extended to CP2 as a holomorphic function;
however, they can be extended asmeromorphic functions ; in other words, in any chart
on CP2 they can be written as f/g; here f and g are holomorphic functions. Thus
the differential forms dX and dY on C2 can be extended as meromorphic differential
forms (i.e., forms which can be written as ω/g, ω being a holomorphic differential
form, g being a holomorphic function) on CP2.

Exercise 8.1. The differential forms dX and dY on C2 have a pole of the second
order on l∞; in other words, if u = 0 is the equation of l∞ in a coordinate chart on
CP2, then u2dX and u2dY are holomorphic differential forms on this chart.

Exercise 8.2. Consider the elliptic curve E from the previous section. When re-
stricted to E, the meromorphic differential forms dX and dY on C2 have poles of the
3rd and the 4th order correspondingly. In other words, if t = 0 is the equation of P∞
in a coordinate chart on E, then t3dX and t4dY are holomorphic differential forms
on this chart.

Label exer300

Exercise 8.3. Consider two rational functions R and Q of two variables. Consider
the restriction ωRQ of the differential form R (X, Y ) dX+Q (X, Y ) dY to E. Assume
that ωRQ 6= 0. Then ωRQ is holomorphic on E iff E is complex analytic and ωRQ is
proportional to dX/Y . Any such holomorphic form has no zeros on E.

Exercise 8.4. Consider the mapping U from Exercise 7.5, and the differential form
ω = dX/Y from Exercise 8.3. Then U∗ω = dz.

Given a holomorphic differential 1-form ω, the set of periods of this form consists
of numbers p ∈ C which can be written as

∫
C
ω for a closed curve C. Since these

numbers do not change when one changes the curve C in a continuous family Cs, they
depend only on the topological class of C. Clearly, they form a group w.r.t. addition.
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Label exer340

Exercise 8.5. Consider the differential form ω = dX/Y from Exercise 8.3. Suppose
that E is complex-analytic. Then there are numbers T1, T2 ∈ C such that the set of
periods of ω coincides with the Z-lattice L generated by T1, T2.

Label exer350

Exercise 8.6. Consider the differential form ω = dX/Y from Exercise 8.3 and the
lattice L from Exercise 8.5. Then for any point p ∈ E there is a number z ∈ C such
that z −

∫
C
ω ∈ L for any curve C on E going from p∞ to p. Number z is defined

uniquely by p up to addition of the element of L.
Label exer360

Exercise 8.7. The values e1, e2, e3 corresponding to the lattice L of Exercisse 8.5
coincide with the roots of the polynomial 4X3 − g4X − g6. Thus any cubic curve of
the form Y 2 = 4X3 − g4X − g6 can be uniformized as in Exercise 7.5.

Exercise 8.8. Consider a meromorphic differential form ω on E. Then there are
rational functions R and Q (as in Exercise 8.3) such that ω = ωRQ. In fact one can
take Q = 0. Hint: one can kill the poles on E0 by multiplying by X − X0 for an
appropriate X0. One can kill the remaining poles at P∞ by subtracting Xn or XnY .
(One can also apply uniformization and Exercise ? exer170.)? exer170.) exer170.)

In other words, consideration of meromorphic differential forms on E is equiva-

lent to consideration of integrals of the form
∫
R
(
X,

√
4X3 − g4X − g6

)
dX ; here

R (X, Y ) is a ratio of two polynomials. Such integrals are called elliptic integrals.
We already saw that the elliptic integral for R (X, Y ) = 1/Y solves the problem of
uniformization: find a lattice L such that E can be uniformized by C/L.

Exercise 8.9. Write the integral for the length of the arc of an ellipse as an elliptic
integral.

In fact it is this problem which lead to the word elliptic for elliptic integrals,
functions, and curves. Measuring the length of the arc counterclockwise, one obtains
a differential 1-form ω = ds on the ellipse.

Label exer400

Exercise 8.10. The above discussion defines ω on the real part of the ellipse only.
This form has no analytic extension to the complex ellipse C (i.e., the set of complex
solutions (x, y) of the equation x2/a2 + y2/b2 = 1). However, it has a “two-valued”
extension ±ω to C; in other words, there is a (ramified) 2-sheet covering E of C and
an analytic 1-form ωE on E which coincides with ω or −ω on the preimage of the
real part of the ellipse.

Exercises of this section imply that any elliptic integral can be written as an integral
of ω = f dX/Y ; here f (X, Y ) is a meromorphic function on the elliptic curve. Using
uniformization coordinate z and Exercise 6.8, one can reduce this integral to the cases
f = 1 (when ω = dz), f = X (when ω = dζ ; this corresponds to the term P (z) in
Exercise 6.8), and f (X, Y ) = Y+Y0

2X−2X0

with (X0, Y0) ∈ E (corresponding to the term

fz0 (z)
def
= ζ (z − z0)− ζ (z) in Exercise 6.8).
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Exercise 8.11. Show that fz0 (z) =
Y+Y0

2X−2X0

.

It is clear that exp
∫
fz0 (z) dz is a meromorphic function; by Exercise 6.12 it can

be written as C1e
C2zϑ00 (z − z0) /ϑ00 (z). Consequently, one can write a formula for

an arbitrary elliptic integral written as a function of z in terms of z, P (z) (and its
derivatives), ζ (z), and log ϑ (z − zk); here zk are the values of z at the poles of the
expression under the integral. Moreover, this procedure is completely algorithmic—
except for the value of the constant C2 above.
One can write the formula for the constant C2, however, it is more convenient to

normalize the function fz0 differently. Using d log (P (z)− P (z0)) /dz = ζ (z − z0) +
ζ (z + z0)−2ζ (z), one can reduce integration of fz0 to integration of gz0 = ζ (z − z0)−
ζ (z + z0) = C/ (P (z)−P (z0)), which corresponds to so called elliptic integral of the
third kind

∫
dX

(X−c)Y
. Since gz0 is an odd function, exp

∫
gz0 (z) dz is C1e

C2zϑ00 (z − z0) /ϑ00 (z + z0).

Exercise 8.12. Show that C2 = 2ζ (z0) +
2
3
ϑ′′′
00 (0) /ϑ

′
0,0 (0).

By Exercise 1.3, derivatives of P may be written as functions of X = P and
Y = P ′, one can conclude that elliptic integrals can be written as a sum of rational
function R (X, Y ), of several terms proportional to log (X −X0), and of terms pro-

portional to z, ζ (z), and log ϑ00(z−z0)
ϑ00(z+z0)

. The coefficients for the terms R (X, Y ), ζ (z)

and log ϑ00(z−z0)
ϑ00(z+z0)

can be explicitly calculated given the singular part3 of the meromor-

phic differential form f (X, Y ) dX/Y = f̃ (z) dz near its poles. The coefficient at z

can be calculated given the 0-th Laurent coefficient of f̃ at 0. (One does not need any
other information about f since the singular parts and the 0-th Laurent coefficient
at a point determine f uniquely.)
When one considers the elliptic integrals as (multivalued) functions of X , the

function z is called the integral of the first kind, the function ζ (z) is the integral of
the second kind.

9. Curves of genus 1

As defined above, a curve of genus 1 is a 1-dimensional complex analytic manifold
which is a torus when considered as a real surface. The target of this section is to
show that any abstract elliptic curve is isomorphic to an elliptic curve.
A ramified covering C

π−→ C ′ is a mapping of complex curves which is locally
invertible on a complement to a finite subset of C. A ramified covering is an n-
sheet covering if the preimage of a point P ∈ C ′ consists of n points if P is in the
complement to a finite subset R ⊂ C ′; one says that π is ramified over R.

Label exer445

Exercise 9.1. Consider a complex analytic manifold C which is isomorphic to
CP1; consider its ramified 2-sheet covering E ramified over {x1, . . . , xN = ∞} ⊂ C.

3Negative Laurent coefficients.
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Then E is isomorphic to the projective closure of the set of solutions (x, y) to

y2 =
∏N−1

n=1 (x− xN).

Exercise 9.2. Show that the curve E from Exercise 8.10 is isomorphic to an elliptic
curve. This isomorphism sends the differential form ds to a form proportional to
dX/Y .

Given a 1-dimensional complex analytic manifold C and a point P ∈ C, define Γk

as the vector space of complex analytic functions on C r {P} which have at most
a pole of order k at P . Let γk = dimΓk. Recall that any function f ∈ Γk gives a
complex analytic mapping C → CP1.

Exercise 9.3. γk+l ≤ γk + l if l ≥ 0. Suppose that C is compact. Then γ0 = 1. If
f ∈ Γk r Γk−1, then f gives a k-sheet ramified covering C → CP1. Thus if γ1 = 2,
and f ∈ Γ1 r Γ0, then f : C → CP1 is an isomorphism; hence γk = k + 1 if k ≥ 0.
Hint: use inverse function theorem to appropriate reparametrization of f .

Exercise 9.4. Suppose that γ2 = 2. Then C is isomorphic to a 2-sheet covering of
CP1 ramified at 2g + 2 points; here g is the genus of C.

The curves of the previous exercise are called hyper-elliptic curves ; their structure
is described by Exercise 9.1. In particular, any curve of genus 1 with γ2 ≥ 2 is an
elliptic curve (in particular, γk = k for k ≥ 2).
In fact, any curve of genus 1 has γ2 = 2; thus it is an elliptic curve. However, to

prove this one needs to show the existence of a non-constant meromorphic function
with the only pole of order 2 at P . This is a not-trivial problem: essentially, one needs
to show that the corresponding Cauchy–Riemann equation has a global solution; this
is more or less equivalent4 to a calculation of an index of a differential operator (index
formula or Riemann–Roch formula).
In fact, one can make the previous Exercise more precise:

Exercise 9.5. Suppose that γ3 = 3. Then C is of genus 1. Hint: denote by f2 and f3
functions with poles of the corresponding order; then one can construct 7 monomials
of f2,3 in Γ6.

10. Cubic curves

Consider a cubic polynomial Q3 (X, Y ); let E0 ⊂ C2 be a cubic curve; i.e., it con-
sists of solutions to Q3 = 0. Let E be the projective closure of E0 (see Exercise 7.1);
it is also called a cubic curve. Assume that E contains no projective line.

Exercise 10.1. E contains a projective line iff Q3 can be written as a non-trivial
product.

4Is it possible to reduce this particular case to the fact that the index of self-adjoint operator is

0?
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Exercise 10.2. Any projective line intersects E in 3 points counting with multiplicity
(for a point P near which E is complex-analytic: the multiplicity is 2 if the line is
tangent to E at the given point; is 3 if the tangency is at the inflection point).

In what follows we assume that E is complex-analytic. (However, for the first
steps one can proceed similarly in the general case if one restricts the attention to
the complex-analytic part of E.)
Given 3 points P1,2,3, say that P1 + P2 + P3 = 0 (here + and 0 are formal symbols

only!) iff the points are the points of intersection of a projective line with E (counted
with multiplicities).

Exercise 10.3. Given a point 0 ∈ E, E may be equipped with a group law + with
the neutral element 0 which is compatible with the relation P1 + P2 + P3 = 0 given
above iff 0 is an inflection point of E. The group law + is uniquely defined.

Exercise 10.4. In the group structure as in the previous exercise, a point is a point
of order 3 iff it is an inflection point.

In particular, an elliptic curve Y 2 = P3 (X) has a group law for which P∞ is the
neutral element (if P3 has simple roots). Consider this group law on this curve.

Exercise 10.5. The inversion on the group is the mapping (X, Y ) → (X,−Y ). The
group has exactly 4 elements of order 2.

Exercise 10.6. The uniformization U from Exercise 7.5 indentifying E with C2/L
is a group isomorphism.

Exercise 10.7. There are exactly 9 inflection points on E.

Consider an arbitrary cubic curve E which contains P∞ as an inflection point such
that the tangent line is l∞.

Exercise 10.8. There is a coordinate change X̃ = AX + C, Ỹ = aX + bY + c

and numbers g4, g6 ∈ C such that in the coordinates X̃ , Ỹ the curve E can be

written as Ỹ 2 = 4X̃3 − g4X̃ − g6. The coordinates X̃, Ỹ are defined uniquely up

to a transformation X̃ ′ = sX̃2, Ỹ ′ = sỸ 3. Under such transformations g′4 = s4g4,
g′6 = s6g6.

Label exer485

Exercise 10.9. The transformation X̃ = AX+BY+C
αX+βY+γ

, Ỹ = aX+bY +c
αX+βY+γ

can be contin-

uously extended to a bijection CP2 → CP2 iff there is no relationship of the form

εX̃ + ζỸ = const. The set of solutions to an equation Rk (X, Y ) = 0 goes to the set

of solutions to an equation R̃k

(
X̃, Ỹ

)
= 0; here Rk, R̃k are polynomials of degree k

without linear factors.
Given 4 distinct points P1,2,3,4 ∈ CP1 such that no triple is on the same projective

line, and another such collection Q1,2,3,4, one can find a unique transformation f as
above such that f (Pk) = Qk, k = 1, . . . , 4.
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Such transformation are called projective transformations. In fact, any complex
analytic bijection CP2 → CP2 has this form.

Exercise 10.10. Given a complex-analytic cubic curve C and an inflection point
P ∈ C, there is a projective transformation f and a polynomial P3 (X) of degree 3
with simple roots such that f (P ) = P∞, and f (C) is the projective completion of
{Y 2 = P3 (X)}. In particular, if a cubic has an inflection point, it has exactly 9 of
them.

Actually, any cubic has an inflection point; thus it is isomorphic to an elliptic curve,
has genus 1, and has exactly 9 inflection points. To show this, one needs a little bit
of enumerative geometry.

Exercise 10.11. Given a function f (X, Y ) of two variables, and a point P with
coordinates (X, Y ) such that f (P ) = 0, denote by fP restriction of P to the tangent
line to the curve C = {f = 0} on the plane. Suppose that C has no singularity at
P ; i.e., df |P 6= 0. The point P is an inflection point for C iff fP has a zero of the
order ≥ 3 at P . Thus singular and inflection points coincide with common zeros of f
and f 2

,yf,xx − 2f,xf,yf,xy + f 2
,xf,yy; here lower indices denote the corresponding partial

derivatives.

Exercise 10.12. Consider two projective curves C, C̃ ⊂ CP
2 given by equations

P (X, Y ) = 0, P̃ (X, Y ) = 0 correspondingly; here P and P̃ are polynomials. Suppose

that C ∩C ′ is a finite set, and any point of this set is non-singular both on C and C̃.
Count points of C ∩ C ′ with “the usual” multiplicity (i.e., 1 if the tangent lines are
different, 2 if there is a tangency with different curvatures, 3 if there is a tangency
with the same curvature but different derivative of the curvature etc). Then the total

count is (degP ) ·
(
deg P̃

)
. Hint: The equation holds if P and P̃ are products of

linear factors; moreover, the difference does not change if one deforms P or P̃ such
that all the conditions hold. Thus it is enough to show that any polynomial P can
be deformed to a product of linear polynomials without introducing singular points on
{P = 0}.
Given a polynomial P3 (X, Y ), let P5 = f 2

,yf,xx − 2f,xf,yf,xy + f 2
,xf,yy; here f = P3.

We know that the intersection of curves {P3 = 0} and {P5 = 0} consists of 15 points
counting the multiplicity. To show that there is an inflection point, it is enough to
show that not all of the intersection points can be at the infinity l∞ of CP1.
Since P3 = 0 has at most 3 points on l∞, and the total count with multiplicities is

15, it is enough to show that the multiplicity of a point on l∞ is 4 or less.

Exercise 10.13. Consider a curve C passing through the point (0,0) which is not
an inflection point on C. Suppose C is not tangent to {X = 0} at (0,0), and that
g (X, Y ) = 0 is the equation of C near (0,0). Let f (X, Y ) = g (X, Y ) /Xn; let

h = f 2
,yf,xx − 2f,xf,yf,xy + f 2

,xf,yy; let C
′ = {f = 0}, C̃ ′ = {h = 0}. Then near (0,0)
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the curve C coincides with the closure of C ′; denote by C̃ the closure of C̃ ′. Show

that (0, 0) ∈ C ∩ C̃ with multiplicity (n− 1) (n− 2).

Exercise 10.14. Suppose that the projective completion of {P3 = 0} has 3 distinct
points on l∞ and none of these points is an inflection point. Show that the multiplicity
of any of these points in intersection of {P3 = 0} and {P5 = 0} is 2.

Exercise 10.15. Show that any complex analytic cubic has an inflection point, is
isomorphic to an elliptic curve, and has exactly 9 inflection points. Hint: compare
with Exercise 10.9.

11. Elliptic quartics

Exercise 11.1. Consider the set E ′
0 of solution to Y 2 = P4 (X) in C2; here P4 is

a polynomial of degree 4. Then for large enough R, the intersection of E ′
0 with the

complement of a ball of radius R consists of two connected components. Denote
these components by E+ and E−. Then the closure Ē+ of E+ in CP2 is E+ ∪ {P∞};
P∞ = (0 : 1 : 0). Ē+ is a complex analytic manifold with boundary; the boundary is
a subset of the sphere of radius R.
The tangent line to Ē+ at P∞ coincides with l∞; the order of tangency of l∞ with

Ē+ is 1 (so P∞ is not an inflection point of Ē+).
Same statements are applicable to E− too.

In other words, the closure E ′ of E ′
0 in CP

2 is not complex analytic; E ′
r E ′

0

consists of one point P∞ through which two branches of the curve E ′ pass. These
two branches are tangent to each other at P∞.

Exercise 11.2. “Split” the point P∞ on E ′; in other words, construct a manifold E
by gluing two points P±

∞ to E ′
0 so that the neighborhood of P+

∞ is P+
∞ ∪ E+ ≃ Ē+,

the neighborhood of P−
∞ is P−

∞ ∪ E− ≃ Ē−. Then E is a complex analytic manifold;
there is a natural mapping E → E ′ which is identical on E ′

0 ⊂ E, and sends P±
∞ to

P∞.
Then E is a torus.

This construction is usually called normalization; so E is the normalization of E ′.
One can make this construction less abstract: say that two curves C, C ′ on a plane
are 2-equivalent at the point P , if P ∈ C, P ∈ C ′, and C and C ′ have a tangency of
2nd order at P (i.e., C and C ′ have the same direction and the same curvature at P).
A 2-element on a plane π is an equivalence class of curves at a point of the plane.
The set Jet2 (π) of 2-elements forms a 4-dimensional manifold (two coordinates to
specify P , direction and curvature). Any smooth curve C on the plane has a lifting
C2 to Jet2 (π); C2 consists of 2-elements of C at points of C. The lifting is a smooth
curve in Jet2 (π); the natural projection Jet2 (π) → π2 sends C2 to C.
In the construction above π may be a projective plane too; similarly, π may be a

complex plane C
2 (or CP2).
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Exercise 11.3. Let Ẽ be the closure in Jet2 (CP
2) of the lifting (E ′

0)2. Then Ẽr(E ′
0)2

consists of two points Q±
∞; Ẽ is smooth in a neighborhood of these points. Thus Ẽ

is isomorphic to E.

Exercise 11.4. Show that if E ′
0 is complex-analytic, E is diffeomorphic to a torus.

Exercise 11.5. Show that any meromorphic function onE can be written asR (X, Y ),
and any meromorphic differential form on E can be written as R (X, Y ) dX ; here
R (X, Y ) is a rational function of X and Y .

If E ′
0 is complex-analytic (in other words, P4 has only simple zeros), then E is an

elliptic curve. Taking a uniformization of this curve reduces any integral of the form∫
R
(
X,

√
P4 (X)

)
dX to the situation of Exercise 6.11.
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