SAMPLE MIDTERM MATH 130

Midterm will cover Sections 6,7,8,9,10,11. This will be a closed book exam.

1. Let Π be an **incidence plane** that satisfies the conditions

• Every line contains exactly 7 points.

• Every point is contained in exactly 7 lines.

(a) Prove that every two lines meet at a point.

(b) Show that Π has 43 points.

2. In a Hilbert plane A * B * C on one line and A * D * E on another line. Show that the segment BE meets the segment CD.

3. Show that in any Hilbert plane there exists a quadrilateral with all sides congruent and all angles congruent.

4. Prove that in a Hilbert plane any triangle has at most one angle which is bigger than the right angle.

SAMPLE MIDTERM MATH 130

Solutions.

1. (a) Suppose that there are two lines l and m which do not intersect. Pick up a point A on l. Then for any point X on m there is a line AX. Thus, we have seven lines AX_1, \ldots, AX_7 for each point X_i on m. In addition we have the line l. Therefore A is contained in at least 8 lines. Contradiction.

(b) Let *m* be a line consisting of points X_1, \ldots, X_7 . Let *A* be some point not on *m*. Since *A* is contained in exactly 7 lines, a line through *A* must coincide with AX_i for some *i*. Any point not equal to *A* must belong to one of these seven lines, and each of these lines has six points not counting *A*. Hence altogether we have $7 \times 6 + 1 = 43$ points.

2. Apply B4 to the triangle ABE and the line DC. DC must intersect AB or BE, but it could not intersect AB because C is not between A and B. Hence the line CD intersects the segment BE. By the same argument the line BE meets the segment CD.

3. Consider a line *l*. Take a point *A* on it. Pick up another point *B* on *l* and *C* on the opposite side such that $AB \simeq AC$ (C1). Let *m* be the line through *A* perpendicular to *l*, and *D* and *E* on *m* such that $AC \simeq AD \simeq AE$. Then the triangles BAD, CAD, BAE and CAE are congruent by C6. Therefore $BD \simeq DC \simeq CE \simeq EB$ and the angles are congruent by addition of angles.

4. Consider a triangle ABC. Assume that angles ABC and BAC are both bigger than the right angle. The supplementary to ABC is less than RA but it is bigger than BAC. Contradiction.