SAMPLE MIDTERM MATH 130

Midterm will cover Sections $6,7,8,9,10,11$. This will be a closed book exam.

1. Let Π be an incidence plane that satisfies the conditions

- Every line contains exactly 7 points.
- Every point is contained in exactly 7 lines.
(a) Prove that every two lines meet at a point.
(b) Show that Π has 43 points.

2. In a Hilbert plane $A * B * C$ on one line and $A * D * E$ on another line. Show that the segment $B E$ meets the segment $C D$.
3. Show that in any Hilbert plane there exists a quadrilateral with all sides congruent and all angles congruent.
4. Prove that in a Hilbert plane any triangle has at most one angle which is bigger than the right angle.

Solutions.

1. (a) Suppose that there are two lines l and m which do not intersect. Pick up a point A on l. Then for any point X on m there is a line $A X$. Thus, we have seven lines $A X_{1}, \ldots, A X_{7}$ for each point X_{i} on m. In addition we have the line l. Therefore A is contained in at least 8 lines. Contradiction.
(b) Let m be a line consisting of points X_{1}, \ldots, X_{7}. Let A be some point not on m. Since A is contained in exactly 7 lines, a line through A must coincide with $A X_{i}$ for some i. Any point not equal to A must belong to one of these seven lines, and each of these lines has six points not counting A. Hence altogether we have $7 \times 6+1=43$ points.
2. Apply B4 to the triangle $A B E$ and the line $D C$. $D C$ must intersect $A B$ or $B E$, but it could not intersect $A B$ because C is not between A and B. Hence the line $C D$ intersects the segment $B E$. By the same argument the line $B E$ meets the segment $C D$.
3. Consider a line l. Take a point A on it. Pick up another point B on l and C on the opposite side such that $A B \simeq A C(\mathrm{C} 1)$. Let m be the line through A perpendicular to l, and D and E on m such that $A C \simeq A D \simeq A E$. Then the triangles $B A D, C A D, B A E$ and $C A E$ are congruent by C6. Therefore $B D \simeq D C \simeq$ $C E \simeq E B$ and the angles are congruent by addition of angles.
4. Consider a triangle $A B C$. Assume that angles $A B C$ and $B A C$ are both bigger than the right angle. The supplementary to $A B C$ is less than RA but it is bigger than $B A C$. Contradiction.
