SAMPLE MIDTERM MATH 130

Midterm will be on Friday September 26 during usual class hours. It will consist of 3 problems and cover the first chapter of Hartshorne book. You can use Euclid's books during the exam. You can refer to any statement in the first four books of Euclid or any proposition proved in Hartshorne. Below is a sample midterm (it has 4 problems since it was longer).

1. Using ruler and compass for a given point P inside an angle construct points A and B on the sides of an angle such that P is the midpoint of the segment $A B$. Count the number of steps and justify your construction.
2. Let ABCD be a cyclic quadrilateral such that $A B \cong C D$. Show that the sides $B C$ and $A D$ are parallel. (You may use any proposition from Book $1-4$ of Euclid.)
3. Using ruler and compass divide a given segment into 3 equal pieces.
4. Prove that if two medians of a triangle are equal, then the triangle is isosceles.
[^0]
Solutions.

1. Denote the angle EDF. Here are the steps of construction
(1) line $D P$;
(2) a point C on $D P$ such that $C P \cong P D$;
(3) line $E P$;
(4) a point G on $E P$ such that $E P \cong P G$;
(5) line $C G$, the point $B=C G \cap D F$
(6) line $B P$, the point $A=B P \cap D E$.

Triangles $D P E$ and $C P G$ are congruent (by SAS, vertical angles $D P E$ and $C P G$ are congruent, $E P \cong P G, D P \cong P C)$. Therefore the angles $E D P$ and $P C G$ are congruent. Then the triangles $B P C$ and $A P D$ are congruent (by ASA we have the angles $A P D$ and $B P C$ are vertical, $D P \cong P C$, and the angles $E D P$ and $P C G$ are congruent). Thus, $A P \cong P B$.
2. Let O be the point of intersection of the diagonals. By proposition 3.21 the angles $A B O$ and $O C D$ are congruent and the angles $B A O$ and $O D C$ are congruent. Then since $A B \cong C D$ the triangles ABO and DCO are congruent by ASA. In particular $O B \cong O C$ and $O D \cong O A$. Then the angles $O B C$ and $O C B$ are congruent and therefore the angles ABC and BCD are congruent. Since ABC and $C D A$ together are two right angles by 3.23 , we obtain $B C D$ and $C D A$ together are two right angles. Proposition 1.28 implies that $B C$ is parallel to $A D$.
3. Given a segment $A B$. Draw a line $A P$ and construct points C, D and E on $A P$ so that $A C=C D=D E$. Draw the line $E B$ and lines l through D and m through C parallel to $E B$. Let F be the point of intersection of l and $A B$ and G be the point of intersection of m and $A B$. Then $A G=G F=F B$. For the proof use Thales theorem (see Exercise 5.3).
4. Consider a triangle $A B C$ and medians $A D$ and $C E$ so that D is the midpoint of $B C$ and E is the midpoint of $A B$. Given $A D=C E$. Let P be the point of intersection of $A D$ an $C E$. It divides both medians in the ratio $2: 1$. So we have $A P=P C$ and $E P=P D$. Furthermore, the angle $E P A$ and $C P D$ are congruent as vertical angles. Hence the triangles $A P E$ and $C P D$ are congruent. That implies $A E=C D$ and hence $A B=2 A E=2 C D=B D$.

[^0]: Date: September 17, 2014.

