SPRING 2009. FINAL EXAM MATH 130

1. Let $A B C$ be a triangle in a Hilbert plane and M be the midpoint of $B C$. Prove that $2 A M<A B+A C$.
2. Let $A B C D$ be a cyclic quadrilateral in an Euclidean plane and let the angle bisectors of the angles $A B D$ and $A C D$ meet in M. Prove that M lies on the circle passing through A, B, C, D.
3. (a) Given two acute angles α and β in a Hilbert plane, prove that there exists a triangle with angles α and β.
(b) Give a construction of such triangle by Hilbert tools.
4. Let $\Pi_{\mathbb{Q}}$ be the Cartesian plane over the field of rational numbers. Which of the congruence axioms (C1)-(C6) hold in $\Pi_{\mathbb{Q}}$?
5. Let A be a P-point and l be a P-line in a Poincare plane. Give a ruler and compass construction (in the ambient Euclidean plane) of a P-line limiting parallel to l and passing through A.
6. Let l and m be two distinct lines in a hyperbolic plane which are parallel but not limiting parallel. Prove that there exists a unique reflection r such that $m=r(l)$.
7. Let a be a real root of the polynomial $x^{4}+5 x^{2}-1$.
(a) Is a constructible by ruler and compass?
(b) Is a constructible by Hilbert tools?
8. Let $A B C$ be a triangle in a Hilbert plane, M be the midpoint of $A B$ and N be the midpoint of $A C$. Show that if $B C=2 M N$, then the plane is semi-Euclidean. (Hint: construct a Saccheri quadrilateral with defect $\delta(A B C)$ and prove that it is a rectangle.)
9. Let $A B$ be a P-segment in a Poincare plane and $\alpha(A B)$ be its angle of parallelism. Show that

$$
\tan \alpha=\frac{2 \mu(A B)}{\mu^{2}(A B)-1},
$$

where $\mu(A B)$ is the multiplicative distance.

