MORE HOMEWORK SOLUTIONS MATH 114

Problem set 8.

1. Let F be the splitting field of the polynomial $x^4 + 25$ over \mathbb{Q} . List all subfields in F and the corresponding subgroups in the Galois group.

Solution. As we proved in class $(F/\mathbb{Q}) = 4$. The Galois group G is the Klein subgroup of S_4 , isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. Note that F contains i and $\sqrt{5}$, each subgroup of G of index 2 corresponds to a subfield of degree 2. There are 3 such subfiels $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{-5})$. The trivial subgroup of G corresponds to F and G corresponds to \mathbb{Q} .

2. Prove that the Galois group of $x^4 - 5$ is isomorphic to D_4 . Hint: prove that the degree of the splitting field is 8, then recall that the Galois group is a subgroup of S_4 .

Solution. By Eisenstein criterion $x^4 - 5$ is irreducible. Let F be a splitting field, then we have the following chain of extensions

$$\mathbb{Q} \subset \mathbb{Q}\left(\alpha\right) \subset \mathbb{Q}\left(\alpha,i\right) = F_{i}$$

where α is a real root of $x^4 - 5$. Thus,

$$(F/\mathbb{Q}) = (\mathbb{Q}(\alpha, i) / \mathbb{Q}(\alpha)) (\mathbb{Q}(\alpha) / \mathbb{Q}) = 2 \times 4 = 8,$$

the Galois group G is a subgroup of S_4 of order 8. Since G is a Sylow subgroup of S_4 and all such subgroups are conjugate, hence isomorphic, we obtain G is isomorphic to D_4 .

3. Prove that the Galois group of $x^4 + 5x^2 + 5$ over \mathbb{Q} is cyclic of order 4. Hint: use the formula for the roots.

Solution. The polynomial is irreducible by Eisenstein criterion. The roots can be found from the formulae

$$\alpha_{1,2} = \left(\frac{-5\pm\sqrt{5}}{2}\right)^{1/2}, \ \alpha_{3,4} = -\alpha_{1,2}.$$

First, we prove that the splitting field has degree 4. Indeed

$$\alpha_1\alpha_2 = \sqrt{5} = 2\alpha_1^2 + 5,$$

hence

$$\alpha_{2} = 2\alpha_{1} + \frac{5}{\alpha_{1}} \in \mathbb{Q}(\alpha_{1}), \, \alpha_{3} = -\alpha_{1} \in \mathbb{Q}(\alpha_{1}), \, \alpha_{4} = -\alpha_{2} \in \mathbb{Q}(\alpha_{1}).$$

Date: April 4, 2006.

The Galois group G is a subgroup of S_4 of order 4. There exists $s \in G$ such that $s(\alpha_1) = \alpha_2$, then

$$s\left(\sqrt{5}\right) = 2s\left(\alpha_1\right)^2 + 5 = 2\alpha_2^2 + 5 = -\sqrt{5}.$$

Then

$$s(\alpha_2) = s\left(\frac{\sqrt{5}}{\alpha_1}\right) = \frac{-\sqrt{5}}{\alpha_2} = -\alpha_1 = \alpha_3, \ s(\alpha_3) = s(-\alpha_1) = -\alpha_2 = \alpha_4.$$

The order of s is 4, therefore G is isomorphic to \mathbb{Z}_4 .

4. Let $f(x) = x^4 + ax^2 + b \in \mathbb{Q}[x], b \neq 0$.

(a) Prove that if α is a root of f(x), then $-\alpha$ and $\frac{\sqrt{b}}{\alpha}$ are also roots. (b) Prove that the degree of the splitting field is 1,2,4 or 8.

(c) Prove that the Galois group is isomorphic to $\{1\}, \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_4$ or D_4 . Solution. (a) can be done by direct check. Indeed,

$$\left(\frac{\sqrt{b}}{\alpha}\right)^4 + a\left(\frac{\sqrt{b}}{\alpha}\right)^2 + b = \frac{b^2 + ab\alpha^2 + b\alpha^4}{\alpha^4} = \frac{b + a\alpha^2 + \alpha^4}{b\alpha^4} = 0.$$

To show (b) denote the splitting filed by F. Then $\sqrt{b} \in F$ and $\mathbb{Q}\left(\alpha, \sqrt{b}\right)$ clearly contains all roots of $x^4 + ax^2 + b$. $(\mathbb{Q}(\alpha)/\mathbb{Q}) = 1, 2$ or 4 (this degree can not be 3, because the polynomial could not have only one rational root), $\left(\mathbb{Q}\left(\alpha,\sqrt{b}\right)/\mathbb{Q}\left(\alpha\right)\right) =$ 1 or 2. Hence

$$\left(\mathbb{Q}\left(\alpha,\sqrt{b}\right)/\mathbb{Q}\right) = \left(\mathbb{Q}\left(\alpha\right)/\mathbb{Q}\right)\left(\left(\mathbb{Q}\left(\alpha,\sqrt{b}\right)/\mathbb{Q}\left(\alpha\right)\right) = 1, 2, 4 \text{ or } 8.$$

Finally, for (c) note that the order of the Galos group is the same as the degree of the splitting field. Thus, if the order is 2, the group is \mathbb{Z}_2 , if the order is 4 the group is either $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_4 . If the order of the Galois group is 8, the group is isomorphic to D_4 , because it is a subgroup of S_4 (see the previous problem).

5. For a cubic polynomial $f(x) = x^3 + ax + b$ the discriminant is given by the formula

$$D = -4a^3 - 27b^2.$$

Assume that a and b are real numbers. Prove that D is negative if and only if f(x)has exactly one real root.

Solution. Use

$$D = (\alpha_1 - \alpha_2)^2 (\alpha_2 - \alpha_3)^2 (\alpha_1 - \alpha_3)^2,$$

where $\alpha_1, \alpha_2, \alpha_3$ are the roots. If all 3 roots are real, then D is a square of a real number. Hence $D \ge 0$. Assume that α_1, α_2 are complex conjugate, α_3 is real. Write

$$\alpha_1 = a + bi, \alpha_2 = a - bi, \alpha_3 = c.$$

Then

$$D = (bi)^{2} (a - c - bi)^{2} (a - c + bi)^{2} = -b^{2} ((a - c)^{2} + b^{2})^{2} < 0$$

6. Assume that f(x) = g(x) h(x) for some separable polynomials $f(x), g(x), h(x) \in F[x]$. Denote by E_f, E_g and E_h the splitting fields of the polynomials f(x), g(x) and h(x) respectively. Let

$$(E_f/F) = (E_g/F) (E_h/F).$$

Prove that the Galois group of f(x) is isomorphic to the direct product of the Galois groups of g(x) and h(x).

Solution. Let $G = \operatorname{Aut}_F E_f$ be the Galois group of f(x), $K = \operatorname{Aut}_{E_g} E$, $H = \operatorname{Aut}_{E_h} E$. Since E_g and E_h are normal extensions of F, K and H are normal subgroups of G and by fundamental theorem of Galois theory

$$\operatorname{Aut}_F E_h \cong G/H, \operatorname{Aut}_F E_q \cong G/K.$$

Consider the subgroup $U = K \cap H \subset G$. Note that U fixes every element of E_g and E_h , but $E_g E_h = E_f$, therefore $K \cap H = \{1\}$. Consider the restriction map $r: G \to \operatorname{Aut}_F E_h$, the kernel of r is H. Therefore $r: K \to \operatorname{Aut}_F E_h$ is injective as $K \cap H = \{1\}$. Note that r is surjective because

$$|\operatorname{Aut}_F E_h| = (E_h/F) = \frac{(E_f/F)}{(E_g/F)} = \frac{|G|}{|G/K|} = |K|.$$

Thus, r is an isomorphism and we obtain $K \cong \operatorname{Aut}_F E_h$. Similarly $H \cong \operatorname{Aut}_F E_g$. Finally G = KH, because |KH| = |K||H| = |G|.

Problem set # 9

1. Let n = p, or 2p where p is a prime number. Prove that the Galois group of the polynomial $x^n - 1$ over any field F is cyclic.

Solution. We may assume that the characteristic does not divide n, because otherwise the Galois group is trivial. Then the roots of $x^n - 1$ form a cyclic group, and the Galois group G of $x^n - 1$ is a subgroup of automorphisms of \mathbb{Z}_n , in other words $G \subset \mathbb{Z}_n^*$. If n = p is prime, then \mathbb{Z}_n^* is cyclic as the multiplicative group of a finite field. If n = 2p, p > 2, then \mathbb{Z}_{2p}^* is isomorphic to \mathbb{Z}_p^* . (The isomorphism $f : \mathbb{Z}_p^* \to \mathbb{Z}_{2p}^*$ can be given, for example, by f(x) = x for odd x, f(x) = x + p for even x). If n = 4, then $\mathbb{Z}_4^* \cong \mathbb{Z}_2$ is cyclic. A subgroup of a cyclic group is cyclic. Hence G is cyclic.

2. Show that the Galois group of $x^{15} - 1$ over \mathbb{Q} is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4$.

Solution. The Galois group of $x^{15} - 1$ is isomorphic to \mathbb{Z}_{15}^* . One has an isomorphism $\mathbb{Z}_{15}^* \cong \mathbb{Z}_3^* \times \mathbb{Z}_5^* \cong \mathbb{Z}_2 \times \mathbb{Z}_4$. One can take 4 and 7 as generators.

3. Find the Galois groups of $x^6 - 1$ over \mathbb{F}_5 , \mathbb{F}_{25} and \mathbb{F}_{125} .

Solution. We know that the Galois group of a finite extension is always cyclic. Thus, we just have to find the degree of a splitting field. Since we have the decomposition

$$x^{6} - 1 = (x - 1)(x + 1)(x^{2} + x + 1)(x^{2} - x + 1),$$

and if α is a root of $x^2 + x + 1$, then $-\alpha$ is a root of $x^2 - x + 1$, the splitting field for $x^6 - 1$ coincides with the splitting field of $x^2 + x + 1$. Note that $x^2 + x + 1$ does not have roots in \mathbb{F}_5 , therefore it is irreducible over \mathbb{F}_5 . Therefore the splitting field for $x^2 + x + 1$ is isomorphic to \mathbb{F}_{25} . Thus, the Galois group over \mathbb{F}_5 is isomorphic to \mathbb{Z}_2 , the Galois group over \mathbb{F}_{25} is trivial. Note that $x^2 + x + 1$ does not have roots in \mathbb{F}_{125} , because \mathbb{F}_{125} has degree 3 over \mathbb{F}_5 and does not contain a subfield of degree 2. Thus, the Galois group over \mathbb{F}_{125} is again \mathbb{Z}_2 .

4. Let $F \subset E$ be an extension of finite fields. Prove that

$$|E| = |F|^{(E/F)}.$$

Solution. Let m = (E/F). Choose a basis $\alpha_1, \ldots, \alpha_m$ in E over F. Every element $\alpha \in E$ can be written uniquely as $\alpha = b_1\alpha_1 + \cdots + b_m\alpha_m$ with $b_1, \ldots, b_m \in F$. Hence $|E| = |F|^m$.

5. Let $f(x) \in \mathbb{Z}_p[x]$ be an irreducible polynomial of degree 3. Prove that f(x) is irreducible over \mathbb{F}_{p^5} .

Solution. Assume that f(x) is reducible over \mathbb{F}_{p^5} . Then there is root α of f(x) lying in \mathbb{F}_{p^5} . Then $\mathbb{Z}_p(\alpha)$ is a subfield of \mathbb{F}_{p^5} . On the other hand

$$\left(\mathbb{F}_{p^{5}}/\mathbb{Z}_{p}\right) = 5, \left(\mathbb{Z}_{p}\left(\alpha\right)/\mathbb{Z}_{p}\right) = 3,$$

hence 3 divides 5. Contradiction.

6. Let $q = p^k$ for some prime p, n be a number relatively prime to p, m be the minimal positive integer such that

$$q^m \equiv 1 \mod n.$$

Show that the Galois group of $x^n - 1$ over \mathbb{F}_q is isomorphic to \mathbb{Z}_m .

Solution. Let E be the unique extension of \mathbb{F}_q of degree m. We will prove that E is a splitting field of $x^n - 1$ over \mathbb{F}_q . Let E^* denote the multiplicative group of E. Then E^* is cyclic of order $q^m - 1$. Since n divides $q^m - 1$, E^* contains a cyclic subgroup of order n. Elements of this cyclic subgroup are the roots of $x^n - 1$. To check that E is a splitting field, we need to show that every proper subfield of E does not contain all roots for $x^n - 1$. Indeed, let B be a subfield such that $F \subset B \subset E$. Then $|B| = q^s$ for some s < m. Then n does not divide $|B^*| = q^s - 1$ and therefore B^* can not contain a cyclic subgroup of order n.

To finish the problem, just note that the Galois group of $x^n - 1$ is $\operatorname{Aut}_{\mathbb{F}_q} E \cong \mathbb{Z}_m$.