
MORE HOMEWORK SOLUTIONS

MATH 114

Problem set 8.
1. Let F be the splitting field of the polynomial x4 + 25 over Q. List all subfields

in F and the corresponding subgroups in the Galois group.
Solution. As we proved in class (F/Q) = 4. The Galois group G is the Klein

subgroup of S4, isomorphic to Z2×Z2. Note that F contains i and
√

5, each subgroup
of G of index 2 corresponds to a subfield of degree 2. There are 3 such subfiels Q (i),
Q
(√

5
)

and Q
(√

−5
)

. The trivial subgroup of G corresponds to F and G corresponds
to Q.

2. Prove that the Galois group of x4 − 5 is isomorphic to D4. Hint: prove that
the degree of the splitting field is 8, then recall that the Galois group is a subgroup
of S4.

Solution. By Eisenstein criterion x4 − 5 is irreducible. Let F be a splitting field,
then we have the following chain of extensions

Q ⊂ Q (α) ⊂ Q (α, i) = F,

where α is a real root of x4 − 5. Thus,

(F/Q) = (Q (α, i) /Q (α)) (Q (α) /Q) = 2 × 4 = 8,

the Galois group G is a subgroup of S4 of order 8. Since G is a Sylow subgroup of S4

and all such subgroups are conjugate, hence isomorphic, we obtain G is isomorphic
to D4.

3. Prove that the Galois group of x4 + 5x2 + 5 over Q is cyclic of order 4. Hint:
use the formula for the roots.

Solution. The polynomial is irreducible by Eisenstein criterion. The roots can be
found from the formulae

α1,2 =

(

−5 ±
√

5

2

)1/2

, α3,4 = −α1,2.

First, we prove that the splitting field has degree 4. Indeed

α1α2 =
√

5 = 2α2
1 + 5,

hence

α2 = 2α1 +
5

α1
∈ Q (α1) , α3 = −α1 ∈ Q (α1) , α4 = −α2 ∈ Q (α1) .
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The Galois group G is a subgroup of S4 of order 4. There exists s ∈ G such that
s (α1) = α2, then

s
(√

5
)

= 2s (α1)
2 + 5 = 2α2

2 + 5 = −
√

5.

Then

s (α2) = s

(√
5

α1

)

=
−
√

5

α2
= −α1 = α3, s (α3) = s (−α1) = −α2 = α4.

The order of s is 4, therefore G is isomorphic to Z4.
4. Let f (x) = x4 + ax2 + b ∈ Q [x], b 6= 0.

(a) Prove that if α is a root of f (x), then −α and
√

b
α

are also roots.
(b) Prove that the degree of the splitting field is 1,2,4 or 8.
(c) Prove that the Galois group is isomorphic to {1}, Z2, Z2 × Z2, Z4 or D4.
Solution. (a) can be done by direct check. Indeed,

(√
b

α

)4

+ a

(√
b

α

)2

+ b =
b2 + abα2 + bα4

α4
=

b + aα2 + α4

bα4
= 0.

To show (b) denote the splitting filed by F . Then
√

b ∈ F and Q

(

α,
√

b
)

clearly

contains all roots of x4 + ax2 + b. (Q (α) /Q) = 1, 2 or 4 (this degree can not be 3,

because the polynomial could not have only one rational root),
(

Q

(

α,
√

b
)

/Q (α)
)

=

1 or 2. Hence
(

Q

(

α,
√

b
)

/Q

)

= (Q (α) /Q)
((

Q

(

α,
√

b
)

/Q (α)
)

= 1, 2, 4 or 8.

Finally, for (c) note that the order of the Galos group is the same as the degree of
the splitting field. Thus, if the order is 2, the group is Z2, if the order is 4 the group
is either Z2 ×Z2 or Z4. If the order of the Galois group is 8, the group is isomorphic
to D4, because it is a subgroup of S4 (see the previous problem).

5. For a cubic polynomial f (x) = x3 + ax + b the discriminant is given by the
formula

D = −4a3 − 27b2.

Assume that a and b are real numbers. Prove that D is negative if and only if f (x)
has exactly one real root.

Solution. Use

D = (α1 − α2)
2 (α2 − α3)

2 (α1 − α3)
2 ,

where α1, α2, α3 are the roots. If all 3 roots are real, then D is a square of a real
number. Hence D ≥ 0. Assume that α1, α2 are complex conjugate, α3 is real. Write

α1 = a + bi, α2 = a − bi, α3 = c.
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Then
D = (bi)2 (a − c − bi)2 (a − c + bi)2 = −b2

(

(a − c)2 + b2
)2

< 0.

6. Assume that f (x) = g (x)h (x) for some separable polynomials f (x) , g (x) , h (x) ∈
F [x]. Denote by Ef , Eg and Eh the splitting fields of the polynomials f (x) , g (x)
and h (x) respectively. Let

(Ef/F ) = (Eg/F ) (Eh/F ) .

Prove that the Galois group of f (x) is isomorphic to the direct product of the Galois
groups of g (x) and h (x).

Solution. Let G = AutF Ef be the Galois group of f (x) , K = AutEg E, H =
AutEh

E. Since Eg and Eh are normal extensions of F, K and H are normal subgroups
of G and by fundamental theorem of Galois theory

AutF Eh
∼= G/H, AutF Eg

∼= G/K.

Consider the subgroup U = K ∩ H ⊂ G. Note that U fixes every element of Eg

and Eh, but EgEh = Ef , therefore K ∩ H = {1}. Consider the restriction map
r : G → AutF Eh, the kernel of r is H. Therefore r : K → AutF Eh is injective as
K ∩ H = {1}. Note that r is surjective because

|AutF Eh| = (Eh/F ) =
(Ef/F )

(Eg/F )
=

|G|
|G/K| = |K|.

Thus, r is an isomorphism and we obtain K ∼= AutF Eh. Similarly H ∼= AutF Eg.
Finally G = KH, because |KH| = |K||H| = |G|.

Problem set # 9
1. Let n = p, or 2p where p is a prime number. Prove that the Galois group of the

polynomial xn − 1 over any field F is cyclic.
Solution. We may assume that the characteristic does not divide n, because

otherwise the Galois group is trivial. Then the roots of xn − 1 form a cyclic group,
and the Galois group G of xn − 1 is a subgroup of automorphisms of Zn, in other
words G ⊂ Z∗

n. If n = p is prime, then Z∗
n is cyclic as the multiplicative group of

a finite field. If n = 2p, p > 2, then Z∗
2p is isomorphic to Z∗

p. (The isomorphism
f : Z∗

p → Z∗
2p can be given, for example, by f (x) = x for odd x, f (x) = x + p for

even x ). If n = 4, then Z∗
4
∼= Z2 is cyclic. A subgroup of a cyclic group is cyclic.

Hence G is cyclic.
2. Show that the Galois group of x15 − 1 over Q is isomorphic to Z2 × Z4.
Solution. The Galois group of x15 − 1 is isomorphic to Z∗

15. One has an isomor-
phism Z∗

15
∼= Z∗

3 × Z∗
5
∼= Z2 × Z4. One can take 4 and 7 as generators.

3. Find the Galois groups of x6 − 1 over F5, F25 and F125.
Solution. We know that the Galois group of a finite extension is always cyclic.

Thus, we just have to find the degree of a splitting field. Since we have the decom-
position

x6 − 1 = (x − 1) (x + 1)
(

x2 + x + 1
) (

x2 − x + 1
)

,
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and if α is a root of x2 + x + 1, then −α is a root of x2 − x + 1, the splitting field
for x6 − 1 coincides with the splitting field of x2 + x + 1. Note that x2 + x + 1 does
not have roots in F5, therefore it is irreducible over F5. Therefore the splitting field
for x2 + x + 1 is isomorphic to F25. Thus, the Galois group over F5 is isomorphic to
Z2, the Galois group over F25 is trivial. Note that x2 + x + 1 does not have roots in
F125, because F125 has degree 3 over F5 and does not contain a subfield of degree 2.
Thus, the Galois group over F125 is again Z2.

4. Let F ⊂ E be an extension of finite fields. Prove that

|E| = |F |(E/F ).

Solution. Let m = (E/F ). Choose a basis α1, . . . , αm in E over F . Every element
α ∈ E can be written uniquely as α = b1α1 + · · ·+ bmαm with b1, . . . , bm ∈ F . Hence
|E| = |F |m.

5. Let f (x) ∈ Zp [x] be an irreducible polynomial of degree 3. Prove that f (x) is
irreducible over Fp5.

Solution. Assume that f (x) is reducible over Fp5 . Then there is root α of f (x)
lying in Fp5. Then Zp (α) is a subfield of Fp5 . On the other hand

(Fp5/Zp) = 5, (Zp (α) /Zp) = 3,

hence 3 divides 5. Contradiction.
6. Let q = pk for some prime p, n be a number relatively prime to p, m be the

minimal positive integer such that

qm ≡ 1 mod n.

Show that the Galois group of xn − 1 over Fq is isomorphic to Zm.
Solution. Let E be the unique extension of Fq of degree m. We will prove that

E is a splitting field of xn − 1 over Fq. Let E∗ denote the multiplicative group of
E. Then E∗ is cyclic of order qm − 1. Since n divides qm − 1, E∗ contains a cyclic
subgroup of order n. Elements of this cyclic subgroup are the roots of xn − 1. To
check that E is a splitting field, we need to show that every proper subfield of E does
not contain all roots for xn − 1. Indeed, let B be a subfield such that F ⊂ B ⊂ E.
Then |B| = qs for some s < m. Then n does not divide |B∗| = qs − 1 and therefore
B∗ can not contain a cyclic subgroup of order n.

To finish the problem, just note that the Galois group of xn − 1 is AutFq E ∼= Zm.


