SOLUTION FOR SAMPLE FINALS

1.

a) List all proper nontrivial subgroups in the group $\mathbb{Z}_3 \times \mathbb{Z}_3$;

b) List all proper nontrivial ideals in the ring $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Solution.

a) A proper non-trivial subgroup of $\mathbb{Z}_3 \times \mathbb{Z}_3$ has order 3 and therefore cyclic. Thus it has one generator. Hence there are the following subgroups

 $<(1,0)>=<(2,0)>; \ <(0,1)>=<(0,2)>; \ <(1,2)>=<(2,1)>; \ <(1,1)>=<(2,2)>.$

b) Every ideal is a subgroup with respect to addition. One can see immediately that the subgroups

$$I_1 = \langle (1,0) \rangle = \langle (2,0) \rangle$$
 and $I_2 = \langle (0,1) \rangle = \langle (0,2) \rangle;$

are ideals, and two other subgroups are not since (1,1) and (1,2) are units.

2. Let U_{10} be the group of units in the ring \mathbb{Z}_{10} . Show that U_{10} is isomorphic to \mathbb{Z}_4 . List all generators of U_{10} .

Solution. $U_{10} = \{1, 3, 7, 9\} = <3> = <7>$.

3. List all group homomorphisms

a) of \mathbb{Z}_6 into \mathbb{Z}_3 ;

b) of S_3 into \mathbb{Z}_3 .

Explain your answer.

Solution.

a) A homomorphism $f: \mathbb{Z}_6 \to \mathbb{Z}_3$ is defined by its value f(1) on the generator. There are three possibilities

$$f(1) = 0$$
, then $f(x) = 0$;
 $f(1) = 1$, then $f(x) = [x] \mod 3$
 $f(1) = 2$, then $f(x) = [2x] \mod 3$

b) For any transposition $\tau \in S_3$, $2f(\tau) = f(\tau^2) = f(e) = 0$. Since \mathbb{Z}_3 does not have elements of order 2, $f(\tau) = 0$. Every permutation is a product of transpositions. Therefore $f(\sigma) = 0$ for any $\sigma \in S_3$.

4. Find all normal subgroups of S_4 .

Solution. The only proper non-trivial normal subgroups of S_4 are the Klein subgroup

 $K_4 = \{e, (12) (34), (13)(24), (14) (23)\}$

and A_4 . Let us prove it. Suppose that N is a normal proper non-trivial subgroup of S_4 . First note that N does not contain a transposition, because if one transposition τ lies in N, then N contains all transpositions, hence $N = S_4$. If N contains a 3-cycle,

then N contains all 3-cycles (as they are all conjugate). Therefore $N = A_4$ (we have proven in class that 3-cycles generate A_4). If N contains a 4-cycle (*abcd*), then it also contains its conjugate (*bacd*), and the product

$$(bacd)(abcd) = (bdc).$$

If N contains a 3-cycle, we already have shown that it contains A_4 . But N also contains an odd permutation. Hence $N = S_4$. Finally, if N does not contain a transposition, 3-cycle or 4-cycle, it must contain a disjoint product of two transpositions (ab)(cd). Then $N = K_4$.

5. Factor the polynomial $x^2 + 3x - 1$ into a product of irreducibles in the ring a) $\mathbb{Q}[x]$;

b) $\mathbb{Z}_{13}[x]$.

Solution.

a) Irreducible, there is no roots. To check use the rational root test.

b) $x^2 + 3x - 1 = (x - 5)^2$.

6. Let $\phi_6: \mathbb{Z}_{11}[x] \to \mathbb{Z}_{11}$ be the evaluation homomorphism, given by $\phi_6(p(x)) = p(6)$.

a) Find $\phi_6 (x^{123} - x^{10} + 1);$

b) Is Ker (ϕ_6) a principal ideal? Explain your answer.

Solution.

a) Use Fermat's theorem to obtain

$$6^{10} \equiv 1 \mod 11, \ 6^{123} \equiv 6^3 \left(6^{10}\right)^{12} \equiv 6^3 \equiv 7 \mod 11,$$

and therefore $\phi_6 (x^{123} - x^{10} + 1) = 6^{123} - 6^{10} + 1 = 7$.

b) Yes. In fact any ideal in a polynomial ring F[x], where F is a field, is principal.

7. Determine which of the following rings are integral domains:

- a) $\mathbb{Z}_{15};$
- b) $\mathbb{Z} \times \mathbb{Z}_5$;

c) $\mathbb{Z}_{11}[x]$.

Solution.

a) No, 3 is a zero divisor.

b) No, (1,0) is a zero divisor.

c) $\mathbb{Z}_{11}[x]$ is an integral domain. In fact every polynomial ring over a field is an integral domain.

8. Find the degree of $\mathbb{Q}(\sqrt{3}, \sqrt[5]{7})$ over \mathbb{Q} and write down a basis of $\mathbb{Q}(\sqrt{3}, \sqrt[5]{7})$ over \mathbb{Q} .

Solution.

$$\begin{bmatrix} \mathbb{Q}\left(\sqrt{3}, \sqrt[5]{7}\right) : \mathbb{Q} \end{bmatrix} = \begin{bmatrix} \mathbb{Q}\left(\sqrt{3}, \sqrt[5]{7}\right) : \mathbb{Q}\left(\sqrt{3}\right) \end{bmatrix} \begin{bmatrix} \mathbb{Q}\left(\sqrt{3}\right) : \mathbb{Q} \end{bmatrix} = 5 \times 2 = 10.$$

A basis: 1, $\sqrt[5]{7}$, $\left(\sqrt[5]{7}\right)^2$, $\left(\sqrt[5]{7}\right)^3$, $\left(\sqrt[5]{7}\right)^4$, $\sqrt{3}$, $\sqrt{3}\sqrt[5]{7}$, $\sqrt{3}\left(\sqrt[5]{7}\right)^2$, $\sqrt{3}\left(\sqrt[5]{7}\right)^3$, $\sqrt{3}\left(\sqrt[5]{7}\right)^4$.

9. Find the minimal polynomial of $\sqrt{5} + \sqrt{6}$ over \mathbb{Q} and prove that your answer is correct.

Solution. Let $\alpha = \sqrt{5} + \sqrt{6}$, then $\alpha^2 = 11 + 2\sqrt{30}$, and

$$\left(\alpha^2 - 11\right)^2 = \alpha^4 - 22\alpha^2 + 121 = 120.$$

The minimal polynomial of α is $p(x) = x^4 - 22x^2 + 1$. To prove it, note that p(x) does not have a rational root, and p(x) can not be factored into a product of two quadratic polynomials $(x^2 + ax \pm 1) (x^2 - ax \pm 1)$, since $-a^2 \pm 2 = -22$ does not have solution for rational a. Hence p(x) is irreducible.

10. Find an abelian subgroup of maximal order in S_5 .

Solution. An element of maximal order in S_5 is (12)(345), it has order 6. Hence the cyclic subgroup generated by this element has order 6. We prove that it is an abelian subgroup of maximal order. Let A be an abelian subgroup of S_5 . If 5 divides the order of A and |A| > 5, then 2 or 3 divides the order of A. Then A must have an element of order 10 or 15, which is impossible since S_5 does not have such elements. Note that 8 does not divide |A|, because otherwise A must contain a Sylow subgroup of order 8 which is D_4 (not abelian). Thus, |A| can be 6 or 12. On the other hand, Amust have an element g of order 3, i.e. a 3 cycle. Since A is abelian, it is contained in the centralizer C(g) which has 6 elements only.

1. Evaluate $2^{2007} \pmod{19}$.

Solution.

$$2^9 = 64 \times 8 \equiv 7 \times 8 \equiv -1 \pmod{19}, \ 2^{2007} = \left(2^9\right)^{223} \equiv -1 \pmod{19}.$$

2. Determine if the polynomial $x^5 + 3x + 3$ is irreducible

(a) Over \mathbb{Q} .

(b) Over \mathbb{Z}_7 .

Solution.

- a) Yes, by Eisenstein criterion p = 3.
- b) No, x = 1 is a root in \mathbb{Z}_7 .
- **3**. Let $R = \mathbb{Z}[x]$.
- (a) Show that R is an integral domain.
- (b) Find all units of R.

Solution.

a) Note that $\mathbb{Z}[x] \subset \mathbb{Q}[x]$, contains 1. Since $\mathbb{Q}[x]$ is an integral domain, $\mathbb{Z}[x]$ is an integral domain.

b) All units are ± 1 . Indeed, if p(x) has inverse q(x), then p(x)q(x) = 1, which imply that the degree of p(x) and q(x) is zero, *i*. *e*. $p(x) = c \in \mathbb{Z}$, $q(x) = c^{-1} \in \mathbb{Z}$. The latter implies $c = \pm 1$.

4. Let p be an odd prime number. Show that the equation

$$x^2 = -1$$

has a solution in \mathbb{Z}_p if and only if $p \equiv 1 \pmod{4}$. (Hint: use the fact that the group of units is cyclic.)

Solution. If x = b is a solution, then b is an element of order 4 in $U_p \cong \mathbb{Z}_{p-1}$. \mathbb{Z}_{p-1} has an element of order 4 if and only if 4|p-1.

5. Show that the groups D_6 and A_4 are not isomorphic.

Solution. The groups are not isomorphic because D_6 has an element of order 6, for instance the rotation on 60°, but A_4 has only elements of order 2 (products of disjoint transpositions) and order 3 (a 3-cycle).

6. Show that the quotient ring $\mathbb{Z}_{25}/(5)$ is isomorphic to \mathbb{Z}_5 .

Solution. The homomorphism $f(x) = [x]_{\text{mod }5}$, is surjective as clear from the formula and Ker f = (5). Therefore by the first isomorphism theorem $\mathbb{Z}_{25}/(5)$ is isomorphic to \mathbb{Z}_5 .

7. Show that the rings \mathbb{Z}_{25} and $\mathbb{Z}_5[x]/(x^2)$ have the same number of elements but not isomorphic.

Solution. Elements of $\mathbb{Z}_5[x]/(x^2)$ are of the form [ax + b] where $a, b \in \mathbb{Z}_5$. Hence $\mathbb{Z}_5[x]/(x^2)$ has 25 elements. But 5a = 0 for any $a \in \mathbb{Z}_5[x]/(x^2)$, and this is not so in \mathbb{Z}_{25} .

8. How many Sylow 5-subgroups does the group A_5 have? Write down one Sylow subgroup and its normalizer.

Solution. The number of Sylow 5-subgroups is 6. As an example one can take a subgroup generated by (12345). The normalizer is generated by (12345) and (15)(24), it has 10 elements and one can check that it is isomorphic to D_5 .

9. Show that every group of order 51 is cyclic.

Solution. Denote a group by G. There is only one Sylow 3-subgroup K and only one Sylow 17-subgroup H. So K and H are normal, $K \cap H = \{e\}$, and by counting elements G = KH. Then G is a direct product of $H \cong \mathbb{Z}_{17}$ and $K \cong \mathbb{Z}_3$, hence isomorphic to \mathbb{Z}_{51} .

10. Show that $\mathbb{Q}[x]/(x^2+x+1)$ and $\mathbb{Q}[x]/(x^2+3)$ are isomorphic. (Hint: show that $\mathbb{Q}[x]/(x^2+3)$ contains a root of x^2+x+1 .)

Solution. Define a homomorphism $f: \mathbb{Q}[x] \to \mathbb{Q}(\sqrt{-3})$ by

$$f(p(x)) = p\left(\frac{-1+\sqrt{-3}}{2}\right).$$

Clearly, f is surjective and the kernel of f is $(x^2 + x + 1)$ since $x^2 + x + 1$ is the minimal polynomial of $\frac{-1+\sqrt{-3}}{2}$. Now the isomorphism follows from the first isomorphism theorem.