
SOLUTION FOR SAMPLE FINALS

1.
a) List all proper nontrivial subgroups in the group Z3 × Z3;
b) List all proper nontrivial ideals in the ring Z3 × Z3.
Solution.

a) A proper non-trivial subgroup of Z3 ×Z3 has order 3 and therefore cyclic. Thus
it has one generator. Hence there are the following subgroups

< (1, 0) >=< (2, 0) > ; < (0, 1) >=< (0, 2) > ; < (1, 2) >=< (2, 1) > ; < (1, 1) >=< (2, 2) > .

b) Every ideal is a subgroup with respect to addition. One can see immediately that
the subgroups

I1 =< (1, 0) >=< (2, 0) > and I2 =< (0, 1) >=< (0, 2) >;

are ideals, and two other subgroups are not since (1,1) and (1,2) are units.
2. Let U10 be the group of units in the ring Z10. Show that U10 is isomorphic to

Z4. List all generators of U10.
Solution. U10 = {1, 3, 7, 9} =< 3 >=< 7 >.
3. List all group homomorphisms
a) of Z6 into Z3;
b) of S3 into Z3.
Explain your answer.
Solution.

a) A homomorphism f : Z6 → Z3 is defined by its value f (1) on the generator.
There are three possibilities

f (1) = 0, then f (x) = 0;

f (1) = 1, then f (x) = [x] mod 3,

f (1) = 2, then f (x) = [2x] mod 3.

b) For any transposition τ ∈ S3, 2f (τ ) = f (τ 2) = f (e) = 0. Since Z3 does not have
elements of order 2, f (τ ) = 0. Every permutation is a product of transpositions.
Therefore f (σ) = 0 for any σ ∈ S3.

4. Find all normal subgroups of S4.
Solution. The only proper non-trivial normal subgroups of S4 are the Klein

subgroup
K4 = {e, (12) (34) , (13)(24), (14) (23)}

and A4. Let us prove it. Suppose that N is a normal proper non-trivial subgroup of
S4. First note that N does not contain a transposition, because if one transposition τ
lies in N , then N contains all transpositions, hence N = S4. If N contains a 3-cycle,
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then N contains all 3-cycles (as they are all conjugate). Therefore N = A4 (we have
proven in class that 3-cycles generate A4). If N contains a 4-cycle (abcd), then it also
contains its conjugate (bacd), and the product

(bacd) (abcd) = (bdc) .

If N contains a 3-cycle, we already have shown that it contains A4. But N also
contains an odd permutation. Hence N = S4. Finally, if N does not contain a trans-
position, 3-cycle or 4-cycle, it must contain a disjoint product of two transpositions
(ab) (cd). Then N = K4.

5. Factor the polynomial x2 + 3x − 1 into a product of irreducibles in the ring
a) Q [x];
b) Z13 [x].
Solution.

a) Irreducible, there is no roots. To check use the rational root test.
b) x2 + 3x − 1 = (x − 5)2.
6. Let φ6 : Z11 [x] → Z11 be the evaluation homomorphism, given by φ6 (p (x)) =

p (6).
a) Find φ6 (x123 − x10 + 1);
b) Is Ker (φ6) a principal ideal? Explain your answer.
Solution.

a) Use Fermat’s theorem to obtain

610 ≡ 1 mod 11, 6123 ≡ 63
(

610
)12 ≡ 63 ≡ 7 mod 11,

and therefore φ6 (x123 − x10 + 1) = 6123 − 610 + 1 = 7.
b) Yes. In fact any ideal in a polynomial ring F [x], where F is a field, is principal.
7. Determine which of the following rings are integral domains:
a) Z15;
b) Z × Z5;
c) Z11 [x].
Solution.

a) No, 3 is a zero divisor.
b) No, (1,0) is a zero divisor.
c) Z11 [x] is an integral domain. In fact every polynomial ring over a field is an

integral domain..
8. Find the degree of Q

(√
3, 5
√

7
)

over Q and write down a basis of Q
(√

3, 5
√

7
)

over Q.
Solution.
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9. Find the minimal polynomial of
√

5 +
√

6 over Q and prove that your answer is
correct.

Solution. Let α =
√

5 +
√

6, then α2 = 11 + 2
√

30, and

(

α2 − 11
)2

= α4 − 22α2 + 121 = 120.

The minimal polynomial of α is p (x) = x4 − 22x2 + 1. To prove it, note that p (x)
does not have a rational root, and p (x) can not be factored into a product of two
quadratic polynomials (x2 + ax± 1) (x2 − ax± 1), since −a2 ± 2 = −22 does not
have solution for rational a. Hence p (x) is irreducible.

10. Find an abelian subgroup of maximal order in S5.
Solution. An element of maximal order in S5 is (12)(345), it has order 6. Hence

the cyclic subgroup generated by this element has order 6. We prove that it is an
abelian subgroup of maximal order. Let A be an abelian subgroup of S5. If 5 divides
the order of A and |A| > 5, then 2 or 3 divides the order of A. Then A must have an
element of order 10 or 15, which is impossible since S5 does not have such elements.
Note that 8 does not divide |A|, because otherwise A must contain a Sylow subgroup
of order 8 which is D4 (not abelian). Thus, |A| can be 6 or 12. On the other hand, A
must have an element g of order 3, i.e. a 3 cycle. Since A is abelian, it is contained
in the centralizer C (g) which has 6 elements only.

1. Evaluate 22007 ( mod 19).
Solution.

29 = 64 × 8 ≡ 7 × 8 ≡ −1 ( mod 19) , 22007 =
(

29
)223 ≡ −1 ( mod 19) .

2. Determine if the polynomial x5 + 3x + 3 is irreducible
(a) Over Q.
(b) Over Z7.
Solution.

a) Yes, by Eisenstein criterion p = 3.
b) No, x = 1 is a root in Z7.
3. Let R = Z [x].
(a) Show that R is an integral domain.
(b) Find all units of R.
Solution.

a) Note that Z [x] ⊂ Q [x], contains 1. Since Q [x] is an integral domain, Z [x] is
an integral domain.

b) All units are ±1. Indeed, if p (x) has inverse q (x), then p (x) q (x) = 1, which
imply that the degree of p (x) and q (x) is zero, i. e. p (x) = c ∈ Z, q (x) = c−1 ∈ Z.
The latter implies c = ±1.

4. Let p be an odd prime number. Show that the equation

x2 = −1



4 SOLUTION FOR SAMPLE FINALS

has a solution in Zp if and only if p ≡ 1 ( mod 4). (Hint: use the fact that the group
of units is cyclic.)

Solution. If x = b is a solution, then b is an element of order 4 in Up
∼= Zp−1.

Zp−1 has an element of order 4 if and only if 4|p − 1.
5. Show that the groups D6 and A4 are not isomorphic.
Solution. The groups are not isomorphic because D6 has an element of order 6,

for instance the rotation on 60◦, but A4 has only elements of order 2 ( products of
disjoint transpositions) and order 3 (a 3-cycle).

6. Show that the quotient ring Z25/ (5) is isomorphic to Z5.
Solution. The homomorphism f (x) = [x]

mod 5
, is surjective as clear from the

formula and Ker f = (5). Therefore by the first isomorphism theorem Z25/ (5) is
isomorphic to Z5.

7. Show that the rings Z25 and Z5 [x] / (x2) have the same number of elements but
not isomorphic.

Solution. Elements of Z5 [x] / (x2) are of the form [ax + b] where a, b ∈ Z5. Hence
Z5 [x] / (x2) has 25 elements. But 5a = 0 for any a ∈ Z5 [x] / (x2), and this is not so
in Z25.

8. How many Sylow 5-subgroups does the group A5 have? Write down one Sylow
subgroup and its normalizer.

Solution. The number of Sylow 5-subgroups is 6. As an example one can take a
subgroup generated by (12345). The normalizer is generated by (12345) and (15)(24),
it has 10 elements and one can check that it is isomorphic to D5.

9. Show that every group of order 51 is cyclic.
Solution. Denote a group by G. There is only one Sylow 3-subgroup K and only

one Sylow 17-subgroup H. So K and H are normal, K ∩ H = {e}, and by counting
elements G = KH. Then G is a direct product of H ∼= Z17 and K ∼= Z3, hence
isomorphic to Z51.

10. Show that Q [x] / (x2 + x + 1) and Q [x] / (x2 + 3) are isomorphic. (Hint: show
that Q [x] / (x2 + 3) contains a root of x2 + x + 1.)

Solution. Define a homomorphism f : Q [x] → Q
(√

−3
)

by

f (p (x)) = p

(−1 +
√
−3

2

)

.

Clearly, f is surjective and the kernel of f is (x2 + x + 1) since x2+x+1 is the minimal

polynomial of −1+
√
−3

2
. Now the isomorphism follows from the first isomorphism

theorem.


