
MIDTERM SOLUTIONS

1. Find all positive n such that 3 divides 2n − 1.
Solution. Since 2 ≡ −1 mod 3, then 2n ≡ (−1)n mod 3. If n is odd (−1)n = −1

and 2n − 1 ≡ 1 mod 3. If n is even (−1)n = 1 and 2n − 1 ≡ 0 mod 3. So n must be
even.

2. Is 21 a unit in Z2000? If yes, find its inverse.
Solution. Yes, since (21, 2000) = 1. The invers is 381 by use of Euclidean algo-

rithm. Indeed, 2000 = 21 · 95 + 5, 21 = 5 · 4 + 1. So 5 = 2000− 21 · 95,

1 = 21− 5 · 4 = 21− (2000− 21 · 95) · 4 = 21 · 381− 2000 · 4.

3. List all subrings in Z35 and explain why your list is complete.
Solution. The list: {0}, {0, 5, 10, 15, 20, 25, 30}, {0, 7, 14, 21, 28}, Z35.
To prove that all subrings are listed above let R be a subring of Z35 and R 6= {0}. If

a ∈ R then na ∈ R for any n ∈ Z. Hence if c = an+35k with n, k ∈ Z, then [c] ∈ R.
Therefore (a, 35) ∈ R. Pick up a 6= 0 and a ∈ R. Then (a, n) = 1, 5 or 7. If (a, n) = 1,
then 1 ∈ R and hence R = Z35. If (a, n) = 5, then R = {0, 5, 10, 15, 20, 25, 30}. If
(a, n) = 7, then R = {0, 7, 14, 21, 28}.

4. Prove that Q × Q is not isomorphic to Q. (Q denotes the field of rational
numbers).

Solution. Note that Q×Q is not a filed since (1, 0) is not a unit. Therefore Q×Q

is not isomorphic to Q, because Q is a field.
5. (a) Prove that x4 + x3 + 1 is irreducible in Z2[x].
(b) Prove that x4 + x3 + 1 is irreducible in Q[x].
Solution. (a) First, we check that x4 + x3 + 1 does not have roots in Z2[x] by

substituting x = 0, 1. Next we have to show that x4 + x3 + 1 is not divisible by any
irreducible quadratic polynomial in Z2[x]. A quadratic polynomial is irreducible if
and only if it does not have roots. All quadratic polynomials are x2, x2 + x, x2 + 1
and x2 + x + 1. The only irreducible polynomial is x2 + x + 1. But x4 + x3 + 1 =
(x2 + x+ 1)(x2 + 1) + x so x2 + x+ 1 does not divide x4 + x3 + 1.

(b) Follows from (a) by Theorem 4.24.
6. Consider the subring S of real numbers which can be written in the form a+b

√
5

for some integers a and b.
(a) Prove that a+ b

√
5 is a unit in S if and only if a2 − 5b2 = ±1.

(b) Prove that S has infinitely many units. (Hint: (
√
5 − 2)n is a unit for any

integer n).
Solution. (a) If a2 − 5b2 = 1, then (a+ b

√
5)−1 = a− b

√
5. If a2 − 5b2 = −1, then

(a+ b
√
5)−1 = −a+ b

√
5. Hence a2 − 5b2 = ±1 implies that a+ b

√
5 is a unit in S.
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To prove the statement in the opposite direction, observe that if (a + b
√
5)(c +

d
√
5) = 1, then (a− b

√
5)(c− d

√
5) = 1. Therefore a+ b

√
5 is a unit in S if and only

if a−b
√
5 is a unit in S. A product of two units is a unit, because (u1u2)

−1 = u−1

2
u−1

1
.

Therefore if a+ b
√
5 is a unit, then (a+ b

√
5)(a− b

√
5) = a2− 5b2 is a unit in S. But

(a2 − 5b2)−1 ∈ S implies (a2 − 5b2)−1 ∈ Z. Hence a2 − 5b2 = ±1.
(b) Since ((

√
5− 2)n)−1 = (

√
5 + 2)n, we have (

√
5− 2)n is a unit for any integer

n. Next we claim that (
√
5− 2)n = (

√
5− 2)m implies m = n. Indeed, (

√
5− 2)n =

(
√
5−2)m implies (

√
5−2)m−n = 1, which in turn impliesm = n, because |

√
5−2| < 1.

Therefore for each integer n we have a unit in S and all these units are distinct. Hence
there are infinitely many units in S.


