SAMPLE FINAL 2 MATH 113

- **1**. Evaluate $2^{2007} \pmod{19}$.
- **2**. Determine if the polynomial $x^5 + 3x + 3$ is irreducible
- (a) Over \mathbb{Q} .
- (b) Over \mathbb{Z}_7 .
- **3**. Let $R = \mathbb{Z}[x]$.
- (a) Show that R is an integral domain.
- (b) Find all units of R.
- 4. Let p be an odd prime number. Show that the equation

$$x^2 = -1$$

has a solution in \mathbb{Z}_p if and only if $p \equiv 1 \pmod{4}$. (Hint: use the fact that the group of units is cyclic.)

5. Show that the groups D_6 and A_4 are not isomorphic.

6. Show that the quotient ring $\mathbb{Z}_{25}/(5)$ is isomorphic to \mathbb{Z}_5 .

7. Show that the rings \mathbb{Z}_{25} and $\mathbb{Z}_5[x]/(x^2)$ have the same number of elements but not isomorphic.

8. How many Sylow 5-subgroups does the group A_5 have? Write down one Sylow subgroup and its normalizer.

9. Show that every group of order 51 is cyclic.

10. Show that $\mathbb{Q}[x]/(x^2+x+1)$ and $\mathbb{Q}[x]/(x^2+3)$ are isomorphic. (Hint: show that $\mathbb{Q}[x]/(x^2+3)$ contains a root of x^2+x+1 .)