SAMPLE FINAL MATH 113

1.

- a) List all proper nontrivial subgroups in the group $\mathbb{Z}_3 \times \mathbb{Z}_3$;
- b) List all proper nontrivial ideals in the ring $\mathbb{Z}_3 \times \mathbb{Z}_3$.

2. Let U_{10} be the group of units in the ring \mathbb{Z}_{10} . Show that U_{10} is isomorphic to \mathbb{Z}_4 . List all generators of U_{10} .

3. List all group homomorphisms

a) of \mathbb{Z}_6 into \mathbb{Z}_3 ;

b) of S_3 into \mathbb{Z}_3 .

Explain your answer.

4. Find all normal subgroups of S_4 .

5. Factor the polynomial $x^2 + 3x - 1$ into a product of irreducibles in the ring a) $\mathbb{Q}[x]$;

b) $\mathbb{Z}_{13}[x]$.

6. Let $\phi_6 \colon \mathbb{Z}_{11}[x] \to \mathbb{Z}_{11}$ be the evaluation homomorphism, given by $\phi_6(p(x)) = p(6)$.

a) Find $\phi_6 (x^{123} - x^{10} + 1);$

b) Is Ker (ϕ_6) a principal ideal? Explain your answer.

7. Determine which of the following rings are integral domains:

a) $\mathbb{Z}_{15};$

b) $\mathbb{Z} \times \mathbb{Z}_5$;

c) $\mathbb{Z}_{11}[x]$.

8. Find the degree of $\mathbb{Q}(\sqrt{3}, \sqrt[5]{7})$ over \mathbb{Q} and write down a basis of $\mathbb{Q}(\sqrt{3}, \sqrt[5]{7})$ over \mathbb{Q} .

9. Find the irreducible polynomial of $\sqrt{5} + \sqrt{6}$ over \mathbb{Q} and prove that your answer is correct.

10. Find an abelian subgroup of maximal order in S_5 .