Solutions of homework problems.

Math 113

Vera Serganova

25 (7.4) Let $f_1(a) = c^{-1}ac$ and $f_2(a) = d^{-1}ad$. Then $f_1^{-1}(a) = cac^{-1}$ and hence f_1^{-1} ∈Inn G, $f_1 \circ f_2(a) = (dc)^{-1} a (dc)$, and hence $f_1 \circ f_2$ ∈Inn G.

27 (7.4) We have to show that $\mathbb Q$ is not cyclic. Indeed, assume that $\mathbb Q$ is cyclic, let $c \in \mathbb{Q}$ be a generator. Then for any $x \in Q$, there exists $n \in \mathbb{Z}$ such that $x = nc$. Take $x = \frac{c}{2}$ and obtain contradiction.

43 (7.4) Let $f \in \text{Aut } \mathbb{Z}_n$. Since 1 is a generator of \mathbb{Z}_n , $u = f(1)$ is a generator of \mathbb{Z}_n , and therefore $(u, n) = 1$. Then for any $m \in \mathbb{Z}_n$

$$
f(m) = f(m1) = mf(1) = mu.
$$

Therefore any automorphism f is equal to $f_u : \mathbb{Z}_n \to \mathbb{Z}_n$ defined by the formula

$$
f_u\left(x\right) = xu,
$$

with $u \in U_n$. Moreover

$$
f_u \circ f_v (x) = xuv = x (vu).
$$

Thus, $f_u \circ f_v = f_{uv}$, and the map $f_u \mapsto u$ defines an isomorphism $\text{Aut } \mathbb{Z}_n \to U_n$.

12 (7.5) If G is not cyclic, then $|a| \neq 25$ for $a \in G$. Since $|a|$ divides $|G| = 25$, and $|a| \neq 1$ if $a \neq e$, $|a| = 5$.

18 (7.5) Let $[G : H] = m$, $[H : K] = n$. Then G is a disjoint union of H-cosets

$$
a_1H\cup\cdots\cup a_nH,
$$

and H is a disjoint union of K -cosets

$$
b_1K\cup\cdots\cup b_mK.
$$

Then the cosets $a_i b_j K$ for $i = 1, \ldots, n, j = 1, \ldots, m$ cover the whole G. We want to show that none of them coincide. Indeed, assume

$$
a_i b_j K = a_p b_q K.
$$

Then

$$
a_p^{-1}a_i\in b_qKb_j^{-1}\in H,
$$

and therefore $a_i = a_p$. Then $b_j K = b_q K$ and $b_j = b_q$.

Thus, the number of K -cosets in G is mn .

22 (7.5) Since the number of all subsets of G containing e is equal to 2^{n-1} , any subset S of G such that $e \in S$ is a subgroup. In particular for any $a \in G$, $a \neq e$ the subset $\{e, a\}$ is a subgroup. Therefore $|a| = 2$ for any $a \in G$, $a \neq e$. Assume that $|G| > 2$. Then choose a 3-element set $S = \{e, a, b\}$. We have shown that S is a subgroup, but the order of a does not divide $|S|$. Contradiction. Thus, we obtain $|G| = 1, 2$, and the statement follows.

24 (7.5) Suppose that the statement is false. Then G is not cyclic, and none of its elements has order 3. Then every $a \in G$, $a \neq e$ must have order 11. Let $H = \langle a \rangle$ be the cyclic subgroup generated by a. Then G has 3 cosets H , Hb and $Hb²$, where

b is some element which does not belong to H. Then $b^3 \in H$, and therefore $b^3 = a^k$ for some $k < 11$. If $k = 0$ we are done, if $k > 0$ let $x = b^{11}$, and then $x^3 = b^{33} = e$. On the other hand,

$$
b^{11} = (b^3)^3 b^2 = a^{3k} b^2 \in Hb^2,
$$

and hence $x \neq e$. Thus $|x| = 3$.

7 (7.6) Just check that

$$
(b, c)^{-1} (a, e) (b, c) = (b^{-1}ab, c^{-1}ec) = (b^{-1}ab, e) \in G^*.
$$

16 (7.6) If $x \in G$, $y \in K \cap N$, then $x^{-1}yx \in K$ and $x^{-1}yx \in N$ since both K and N are normal.

17 (7.6) If $x \in K$, $y \in N \cap K$, then $x^{-1}yx \in K$ since K is a subgroup, and $x^{-1}yx \in \overline{N}$ since \overline{N} is a normal subgroup.

18 (7.6) If $x_1, x_2 \in N$, $y_1, y_2 \in K$, then

$$
x_1y_1x_2y_2 = x_1(y_1x_2y_1^{-1}) y_1y_2 \in NK,
$$

and

$$
(x_1y_1)^{-1} = y_1^{-1}x_1^{-1} = (y_1^{-1}x_1^{-1}y_1) y_1^{-1} \in NK.
$$

That shows that NK is a subgroup.

If K is also normal for any $g \in G$

$$
g^{-1}x_1y_1g = (g^{-1}x_1g)(g^{-1}y_1g) \in NK
$$
, and NK is normal.

21 (7.6) Any $x \in H$ can be written as $f(y)$ for some $y \in G$. Any $b \in f(N)$ can be written as $f(a)$ for some $a \in N$. Then

$$
x^{-1}bx = f(y^{-1}) f(a) f(y) = f(y^{-1}ay) \in f(N).
$$

Hence $f(N)$ is normal.

24 (7.6) Note that $x^{-1}Hx$ is a subgroup of G of the same order as H. If H is a unique subgroup of order $n, x^{-1}Hx = H$.