Solutions of homework problems.

Math 113

Vera Serganova

25 (7.4) Let $f_1(a) = c^{-1}ac$ and $f_2(a) = d^{-1}ad$. Then $f_1^{-1}(a) = cac^{-1}$ and hence $f_1^{-1} \in \text{Inn } G$, $f_1 \circ f_2(a) = (dc)^{-1}a(dc)$, and hence $f_1 \circ f_2 \in \text{Inn } G$.

27 (7.4) We have to show that \mathbb{Q} is not cyclic. Indeed, assume that \mathbb{Q} is cyclic, let $c \in \mathbb{Q}$ be a generator. Then for any $x \in Q$, there exists $n \in \mathbb{Z}$ such that x = nc. Take $x = \frac{c}{2}$ and obtain contradiction.

43 (7.4) Let $f \in \operatorname{Aut} \mathbb{Z}_n$. Since 1 is a generator of \mathbb{Z}_n , u = f(1) is a generator of \mathbb{Z}_n , and therefore (u, n) = 1. Then for any $m \in \mathbb{Z}_n$

$$f(m) = f(m1) = mf(1) = mu.$$

Therefore any automorphism f is equal to $f_u : \mathbb{Z}_n \to \mathbb{Z}_n$ defined by the formula

$$f_u\left(x\right) = xu_i$$

with $u \in U_n$. Moreover

$$f_u \circ f_v(x) = xuv = x(vu).$$

Thus, $f_u \circ f_v = f_{uv}$, and the map $f_u \mapsto u$ defines an isomorphism $\operatorname{Aut} \mathbb{Z}_n \to U_n$.

12 (7.5) If G is not cyclic, then $|a| \neq 25$ for $a \in G$. Since |a| divides |G| = 25, and $|a| \neq 1$ if $a \neq e$, |a| = 5.

18 (7.5) Let [G:H] = m, [H:K] = n. Then G is a disjoint union of H-cosets

$$a_1H\cup\cdots\cup a_nH,$$

and H is a disjoint union of K-cosets

$$b_1 K \cup \cdots \cup b_m K$$
.

Then the cosets $a_i b_j K$ for i = 1, ..., n, j = 1, ..., m cover the whole G. We want to show that none of them coincide. Indeed, assume

$$a_i b_j K = a_p b_q K$$

Then

$$a_n^{-1}a_i \in b_a K b_i^{-1} \in H_i$$

and therefore $a_i = a_p$. Then $b_j K = b_q K$ and $b_j = b_q$.

Thus, the number of K-cosets in G is mn.

22 (7.5) Since the number of all subsets of G containing e is equal to 2^{n-1} , any subset S of G such that $e \in S$ is a subgroup. In particular for any $a \in G$, $a \neq e$ the subset $\{e, a\}$ is a subgroup. Therefore |a| = 2 for any $a \in G$, $a \neq e$. Assume that |G| > 2. Then choose a 3-element set $S = \{e, a, b\}$. We have shown that S is a subgroup, but the order of a does not divide |S|. Contradiction. Thus, we obtain |G| = 1, 2, and the statement follows.

24 (7.5) Suppose that the statement is false. Then G is not cyclic, and none of its elements has order 3. Then every $a \in G$, $a \neq e$ must have order 11. Let $H = \langle a \rangle$ be the cyclic subgroup generated by a. Then G has 3 cosets H, Hb and Hb², where

b is some element which does not belong to H. Then $b^3 \in H$, and therefore $b^3 = a^k$ for some k < 11. If k = 0 we are done, if k > 0 let $x = b^{11}$, and then $x^3 = b^{33} = e$. On the other hand,

$$b^{11} = (b^3)^3 b^2 = a^{3k} b^2 \in Hb^2,$$

and hence $x \neq e$. Thus |x| = 3.

7 (7.6) Just check that

$$(b,c)^{-1}(a,e)(b,c) = (b^{-1}ab,c^{-1}ec) = (b^{-1}ab,e) \in G^*.$$

16 (7.6) If $x \in G$, $y \in K \cap N$, then $x^{-1}yx \in K$ and $x^{-1}yx \in N$ since both K and N are normal.

17 (7.6) If $x \in K$, $y \in N \cap K$, then $x^{-1}yx \in K$ since K is a subgroup, and $x^{-1}yx \in N$ since N is a normal subgroup.

18 (7.6) If $x_1, x_2 \in N, y_1, y_2 \in K$, then

$$x_1y_1x_2y_2 = x_1(y_1x_2y_1^{-1})y_1y_2 \in NK,$$

and

$$(x_1y_1)^{-1} = y_1^{-1}x_1^{-1} = (y_1^{-1}x_1^{-1}y_1) y_1^{-1} \in NK.$$

That shows that NK is a subgroup.

If K is also normal for any $g \in G$

(

$$g^{-1}x_1y_1g = (g^{-1}x_1g)(g^{-1}y_1g) \in NK$$
, and NK is normal.

21 (7.6) Any $x \in H$ can be written as f(y) for some $y \in G$. Any $b \in f(N)$ can be written as f(a) for some $a \in N$. Then

$$x^{-1}bx = f(y^{-1}) f(a) f(y) = f(y^{-1}ay) \in f(N).$$

Hence f(N) is normal.

24 (7.6) Note that $x^{-1}Hx$ is a subgroup of G of the same order as H. If H is a unique subgroup of order $n, x^{-1}Hx = H$.