Solutions of homework problems.

Math 113

Vera Serganova

25(3.2) Use the identity $a + a = (a + a)^2 = a^2 + a^2 + a^2 + a^2 = a + a + a + a$, which implies that $a + a = 0_R$, or $a = -a$. Now write $a + b = (a + b)^2 = a^2 + ab + ba + b^2 =$ $a + ab + ba + b$. Hence $ab + ba = 0_R$ or $ab = -ba = ba$.

31(3.2) $n \cdot 1 = n \neq 0$. Hence characteristic of Z is zero. In $\mathbb{Z}_n n \cdot 1 = n = 0$, and for any $m < n$, $m \cdot 1 = m \neq 0$, hence characteristic of \mathbb{Z}_n is n. In $\mathbb{Z}_4 \times \mathbb{Z}_6$

 $n(1,1)=0$

if and only if $4|n$ and $6|n$. The smallest such n is 12. Hence the characteristic of $\mathbb{Z}_4 \times \mathbb{Z}_6$ is 12.

32(3.2) If R is a finite set, then $m1_R = k1_R$ for some $m \neq k$. Therefore $(m - k) 1_R = 0_R$. The smallest positive n such that $n1_R = 0_R$ is the characteristic of R.

33 (3.2)

$$
na = n(1_{R}a) = (n1_{R})a = 0_{R}a = 0_{R}.
$$

Assume that *n* is composite, let $n = pq$. Then $p1_R \neq 0_R$, $q1_R \neq 0_R$, but

$$
(p1_R)(q1_R) = (pq)1_R = 0_R.
$$

Hence R is not an integral domain. Contradiction.

17(3.3) One can describe S as the subset of \mathbb{Z}_{28} of elements of the form 4k for some $k \in \mathbb{Z}_{28}$. Since $4k - 4l = 4(k - l)$, and $4k4l = 4(4kl)$, S is a subring of \mathbb{Z}_{28} . To check that f is well defined note that $x \equiv y \mod 7$ implies $8x \equiv 8y \mod 28$. Next check that $f : \mathbb{Z}_7 \to \mathbb{Z}_{28}$ preserves addition and multiplication

$$
f([x]_7 + [y]_7) = [8 (x + y)]_{28} = [8x + 8y]_{28} = [8x]_{28} + [8y]_{28} = f([x]_7) + f([y]_7),
$$

$$
f([x]_7 [y]_7) = [8 (xy)]_{28} = [8x8y]_{28} = f([x]_7) f([y]_7),
$$

to show the second identity we use $8^2 \equiv 8 \mod 28$. Finally, to check that f is an isomorphism it is sufficient to show that Ker $f = \{0\}$. Indeed, let $f([x]_7) = 0$, then $8x \equiv 0 \mod 28$. In other words, $28|8x$. Since $(7, 8) = 1, 7|x$. Hence $[x]_7 = 0$.

23(3.3)

$$
f\begin{pmatrix} a+a'0 \ b+b'c+c' \end{pmatrix} = a + a' = f\begin{pmatrix} a0 \ bc \end{pmatrix} + f\begin{pmatrix} a'0 \ b'c' \end{pmatrix}
$$

$$
f\begin{pmatrix} aa' & 0 \ ba'+cb'cc' \end{pmatrix} = aa' = f\begin{pmatrix} a0 \ bc \end{pmatrix} f\begin{pmatrix} a'0 \ b'c' \end{pmatrix}.
$$

,

The map is surjective since $a = f \binom{a}{0}$ for any $a \in \mathbb{R}$. The map is not injective, since $f\left(\begin{smallmatrix} 00\\bc \end{smallmatrix}\right)=0$ for all b and c.

33(3.3) (a) E does not have identity, but \mathbb{Z} has one. (b) The first ring is commutative. The second ring is not. (c) Different number of elements. (d) if there is an isomorphism $f : \mathbb{R} \to \mathbb{Q}$, then $x = f(\sqrt{2})$ satisfies the equation $x^2 = 2$. But such equation does not have solutions in Q. (e) The second ring is an integral domain , the first ring is not. (f) If $f: \mathbb{Z}_4 \times \mathbb{Z}_4 \to \mathbb{Z}_{16}$ is an isomorphism, then $f([1]_4, [1]_4) = [1]_{16}$, $f([0]_4, [0]_4) = [0]_{16}$. But

$$
f([0]_4, [0]_4) = f(4([1]_4, [1]_4)) = 4f([1]_{16}) = [4]_{16} \neq 0.
$$

40(3.3) Assume that $(m, n) = d > 1$. Let $k = \frac{mn}{d}$ $\frac{dn}{d}$. Then $m|k$ and $n|k$. Assume that there is an isomorphism $f : \mathbb{Z}_m \times \mathbb{Z}_n \to \mathbb{Z}_{mn}$. Then

 $f([1]_m, [1]_n) = [1]_{mn},$

$$
f([0]_m, [0]_n) = f(k([1]_m, [1]_n)) = kf([1]_{mn}) = [k]_{mn} \neq [0]_{mn}.
$$

3(4.1) There are eight polynomials of degree 3 in $\mathbb{Z}_2[x] : x^3, x^3 + x^2, x^3 + x, x^3 + 1$, $x^3 + x^2 + 1$, $x^3 + x + 1$, $x^3 + x^2 + x$, $x^3 + x^2 + x + 1$.

There are 27 polynomials of degree less than 3 in $\mathbb{Z}_3[x]$. Here they are

 $0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2$

 $x^2, x^2 + 1, x^2 + 2, x^2 + x, x^2 + x + 1, x^2 + x + 2, x^2 + 2x, x^2 + 2x + 1, x^2 + 2x + 2$ $2x^2, 2x^2+1, 2x^2+2, 2x^2+x, 2x^2+x+1, 2x^2+x+2, 2x^2+2x, 2x^2+2x+1, 2x^2+2x+2$